
Infinitary Completeness in Ludics

Michele Basaldella Kazushige Terui
RIMS, Kyoto University, Japan

{mbasalde,terui}@kurims.kyoto-u.ac.jp

Abstract—Traditional Gödel completeness holds between
finite proofs and infinite models over formulas of finite depth,
where proofs and models are heterogeneous. Our purpose is to
provide an interactive form of completeness between infinite
proofs and infinite models over formulas of infinite depth
(that include recursive types), where proofs and models are
homogenous.

We work on a nonlinear extension of ludics, a monistic
variant of game semantics which has the same expressive power
as the propositional fragment of polarized linear logic. In order
to extend the completeness theorem of the original ludics to
the infinitary setting, we modify the notion of orthogonality by
defining it via safety rather than termination of the interaction.
Then the new completeness ensures that the universe of
behaviours (interpretations of formulas) is Cauchy-complete,
so that every recursive equation has a unique solution.

Our work arises from studies on recursive types in denota-
tional and operational semantics, but is conceptually simpler,
due to the purely logical setting of ludics, the completeness
theorem, and use of coinductive techniques.

Keywords-linear logic; ludics; completeness; recursive types;
coinduction.

I. INTRODUCTION

A. Ludics and interactive completeness

The traditional logical completeness states that every
proposition A has either a proof P or a countermodel M
exclusively:

∃P (P ` A) xor ∃M(M 6|= A).

Here proofs and models are heterogeneous entities, so that
there cannot be any interaction between them. It is quite
contrary to the ordinary discussion, where Prover P and
Refuter M do interact.

One aim of ludics [12], [8], [6], [21], a research program
proposed by J.-Y. Girard, is to understand logical com-
pleteness in a more interactive way, closer to the ordinary
discussion. In ludics, proofs and models are considered to
be homogenous entities, called designs. The homogeneity
allows us to obtain an interactive completeness theorem,
stating that for every proposition A and every proof-attempt
P , either P is a proof of A or there is a counter-argument
M against A that defeats P :

P ` A xor ∃M(M against A, M defeats P). (1)

This work was supported by JSPS KAKENHI 2008803 and 21700041.

Since counter-arguments tend to be infinite, designs must be
infinitary (coinductive) objects in general. Indeed, designs
can be considered an abstract form of Böhm trees, which
are possibly infinite (see [7] for a precise correspondence).
Having a structure similar to Böhm trees, there is a sensible
notion of normalization (cut-elimination), that defines the
outcome of interaction: Player P defeats Refuter M (P⊥M)
if the normalization of P applied to M succeeds, i.e.,
terminates without a type-error such as “love” + 1. In other
words, M defeats P (P 6⊥M) if the normalization either
leads to a “mismatch” (type-error), or gets into an “infinite
chattering”.

In ludics, types/formulas are identified with sets of designs
closed under the biorthogonal operation A = A⊥⊥, called
behaviours, and “M against A” simply means M ∈ A⊥.
Thus, statement (1) amounts to the standard concept of
denotational completeness: for every “logical” behaviour A,

P ` A ⇐⇒ ¬∃M ∈ A⊥(P 6⊥M) ⇐⇒ P ∈ A⊥⊥= A.

Although in ludics the denotation of a proof (the design
corresponding to a proof) is very close to the proof itself,
this does not mean that completeness is a trivial property.
Notice that P ` A is defined by induction on proofs
(syntax), M ∈ A⊥ is by induction on types (semantics),
and the orthogonality relation P⊥M is by induction on
reduction (computation). The interactive completeness theo-
rem establishes a harmony between these three fundamental
inductions, that is far from being trivial.

Uses of orthogonality to define “semantic types” as closed
sets of terms are abundant in the literature; see, e.g., [11]
for proving strong normalization, [14] for realizability, [20]
for parametricity as well as more recent works [17], [18].

Since the orthogonality of the original ludics involves
termination of reduction, which in turn implies consistency
(neither ` A nor ` A⊥ is provable), there is an inherent
logical limitation on possible behaviours (semantic types):
the Russell’s antinomy argument implies that there does not
exist a behaviour A such that A =↓↓A⊥ (where ↓↓ adjusts
the polarity; see Proposition III.6). Namely, some recursive
types do not exist due to logical consistency.

B. From Induction to Coinduction

So far is the situation described in our previous work
[3]. The purpose of this article is to illustrate the interactive
completeness in the infinitary setting, based on coinduction

rather than induction. Our starting point is an observation
that the termination requirement in the above definition of
orthogonality is not an indispensable one (as in [14]): one
can declare as well that P⊥M when the normalization is
just safe, i.e., never leads to a type-error [22], [17]. Thus,
“infinite chattering” between P and M counts as a win
of P (as sometimes happens in the ordinary discussion; a
persistent Prover wins just by continuing discussion until an
impatient Refuter gives up).

Since this new notion of orthogonality as safety is well
suited for coinduction, it motivates us to make all concepts
infinitary and coinductive. Thus we are led to coinductive
proofs (infinitary trees made of inference rules) and coin-
ductive logical behaviours (infinitary trees made of logical
connectives). Although consistency is lost, it turns out that
the interactive completeness theorem still holds with this
uniform change of induction into coinduction (Theorem
V.7).

Furthermore, behaviours are not only inductively built
from atomic ones as before, but also coinductively built
from Cauchy sequences of logical behaviours. Since
orthogonality-as-safety is no more associated to termination
and consistency, there is no logical limitation on possible
behaviours. Indeed, we prove the Cauchy completeness of
the universe of logical behaviours (Theorem IV.9), so that
all recursive equations have unique solutions in it (Theorem
IV.10). Recursive types do exist, as a compensation for loss
of consistency.

C. Outline

In Section II, we recall the term syntax of [21] adapted
for the nonlinear extension of ludics (in which duplication
of actions is allowed) introduced in [3]. We also relativize
the notion of orthogonality. In Section III we recall the
notions of behaviour and logical connective and give a
coinductive definition of logical behaviours. Section IV
introduces Cauchy sequences, and outlines how to prove
their convergence. Section V introduces a coinductive proof
system and proves the interactive completeness theorem. It is
then used in Section VI to prove a key property for Cauchy
completeness. Finally Section VII mentions some of the key
results in the vast literature on recursive types and compares
our work with them.

II. DESIGNS AND ORTHOGONALITY

We follow the term syntax approach of [21] and define
designs — the main entities of ludics — as terms, employing
a process calculus notation inspired by the close relationship
between ludics and linear π-calculus [9]. Although our
syntax sacrifices a fundamental feature of locativity, it admits
a simple, coinductive definition. The nonlinear extension has
virtually the same expressive power as the propositional,
variable-free fragment of polarized linear logic [15], [6] (see

[3] for the correspondence); this leaves us a possibility to
apply our ideas to game semantics [13] in future.

We first recall (the identity-free fragment of) the nonlinear
extension of ludics [3] and then we relativize the notion of
orthogonality so that we can deal with not just the standard
orthogonality as termination but also the new orthogonality
as safety.

A. Designs

Designs are built over a given signature A = (A, ar),
where A is a set of names a, b, c, . . . and ar : A −→ N is a
function which assigns to each name a its arity ar(a). Let
V be a countable set of variables V = {x, y, z, . . .}.

Over a fixed signature A, a positive action is a with a ∈
A, and a negative action is a(x1, . . . , xn) where variables
x1, . . . , xn are distinct and ar(a) = n. In the sequel, we
assume that an expression of the form a(~x) always stands
for a negative action.

Definition II.1 (Designs). For a fixed signature A, the class
of positive designs P,Q, . . ., that of predesigns S, T, . . ., and
that of negative designs N,M, . . . are coinductively defined
as follows:

P ::= Ω (syntactical error)∣∣ ∧
{Si : i ∈ I} (nondeterministic conjunction)

S ::= x|a〈N1, . . . , Nn〉 (head normal form)∣∣ N |a〈N1, . . . , Nn〉 (cut)

N ::=
∑
a(~x).Pa (abstraction)

where:

• ar(a) = n;

• ~x = x1, . . . , xn and the formal sum
∑
a(~x).Pa is built

from |A| many components {a(~x).Pa}a∈A;

•
∧
{Si : i ∈ I} is built from a set {Si : i ∈ I} of

predesigns with I an arbitrary index set.

Intuitively, designs may be considered as infinitary λ-
terms with named applications, superimposed abstractions
and a (universal) nondeterministic “choice” operator

∧
.

Specifically, a predesign X|a〈N1, . . . , Nn〉, where X is
either a variable x or a negative design N , can be thought
of as iterated application XN1 · · ·Nn of name a ∈ A.

For negative designs, one can think of a(~x).Pa as iterated
abstraction λ~x.Pa of name a ∈ A. A family {a(~x).Pa}a∈A
of abstractions indexed by A is then superimposed to form
a negative design

∑
a(~x).Pa.

Now the cut (
∑
a(~x).Pa) |b〈N1, . . . , Nn〉 reduces as fol-

lows: since the application is of name b, the abstraction
b(~x).Pb of name b is chosen from the family {a(~x).Pa}a∈A.
Then the whole design reduces by “β-reduction” to Pb[~N/~x]
(see below).

So far the system is deterministic. However, our calculus
is also equipped with the conjunction operator

∧
that allows

to express a certain sort of universal nondeterminism at the

level of the syntax. It is needed to maintain completeness in
the nonlinear setting [3] (see also [2]), for the same reason
as strategies in the Hyland-Ong games need to take into
account noninnocent behaviour of Opponent [13] to get full
completeness in the nonlinear case.

We write z (daimon [12]) for the empty conjunction
∧
∅.

A unary conjunction
∧
{S} is simply written as S. This

allows us to treat a predesign as a positive design. If P =∧
{Si : i ∈ I}, each Si is called a conjunct of P .
Finally, the positive design Ω is a special design which

denotes “syntactical error”. It is also useful to encode partial
sums: given a set α = {a(~x), b(~y), . . .} of negative actions
with distinct names a, b, . . ., we write

∑
α a(~x).Pa to denote

the negative design
∑
a(~x).Ra, where Ra = Pa if a(~x) ∈

α, and Ra = Ω otherwise.
We denote arbitrary designs by D,E,
A design D may contain free and bound variables. An

occurrence of subterm a(~x).Pa binds the free variables ~x in
Pa. Variables which are not under the scope of the binder
a(~x) are free. We denote by fv(D) the set of free variables
occurring in D.

In analogy with λ-calculus, we always consider designs
up to α-equivalence, i.e., up to renaming of bound variables
(see [21], [3] for more detail).

The conjunction operator can be extended to positive and
negative designs:∧
{Si : i ∈ I} ∧

∧
{Sj : j ∈ J} =

∧
{Sk : k ∈ I ∪ J},

Ω ∧ P = Ω,∑
a(~x).Pa ∧

∑
a(~x).Qa =

∑
a(~x).(Pa ∧Qa).

In particular, we have P ∧z = P .
A design D is said:

• closed, if it does not contain any free variable;
• cut-free, if it does not contain a cut as subdesign.

B. Reduction and Orthogonality

In ludics, designs interact together via the following
notion of reduction.

We use the standard notation D[~N/~x] to denote the design
obtained by the simultaneous and capture-free substitution
of negative designs ~N = N1, . . . , Nn for free variables ~x =
x1, . . . , xn in D.

Definition II.2 (Reduction relation −→). Given positive
designs P,Q, we write P −→ Q if P has a conjunct∑
a(~x).Pa | b〈 ~N〉 and Q = Pb[~N/~x].

Notice that Ω and z do not reduce to anything, and that
−→ is nondeterministic as the following example illustrates.

Example II.3. Let us consider

P = (a(x).z) |a〈N〉 ∧ (b(y).Ω) |b〈M〉 ∧ (c(z).Q) |c〈K〉.

We have that P −→ z, P −→ Ω, and P −→ Q[K/z].

We now focus on positive and closed designs. Every such
design P has one of the following forms: z, Ω or

∧
{Si : i ∈

I}, where each conjunct Si is a cut. In the third case, P −→
Q and Q is again a positive and closed design. Hence, any
sequence of reductions from P eventually ends with z, or Ω
or diverges. While we always think of z as “win of Prover”
and Ω as “win of Refuter” according to the intuition given
in the introduction, there are various possibilities to interpret
divergence. It is reflected in the definition of orthogonality
below.

We write r(P) for the set of immediate reducts of P , i.e.,
r(P) = {Q : P −→ Q}, and D0 for the set of positive and
closed designs other than Ω.

Definition II.4 (Orthogonality). An orthogonality ⊥ is a
subset of D0 such that:

(O1) (Reduction) : P ∈ ⊥ =⇒ r(P) ⊆ ⊥;

(O2) (Expansion) : r(P) ⊆ ⊥ =⇒ P ∈ ⊥.

The definition implies that z ∈ ⊥ and Ω 6∈ ⊥ as intended.
Any orthogonality ⊥ is completely determined by its

predesign members:

Proposition II.5.
∧
{Si : i ∈ I} ∈ ⊥ if and only if {Si :

i ∈ I} ⊆ ⊥. In particular, z ∈ ⊥.

Proof: Suppose {Si : i ∈ I} ⊆ ⊥. By (O1) we have⋃
i∈I r(Si) ⊆ ⊥. Since r (

∧
{Si : i ∈ I}) =

⋃
i∈I r(Si), we

conclude
∧
{Si : i ∈ I} ∈ ⊥ by (O2). The converse is

similar.
The above proposition also shows the universal (rather

than existential) nature of our nondeterministic operator
∧

.
We end this section introducing some orthogonalities

relevant for our work. The following two are canonical.

Termination: the least orthogonality is
⊥L =

{
P ∈ D0 : every reduction sequence starting

from P terminates with z
}

.
In fact, it is the least among those subsets of D0 satisfying
(O2). It corresponds to the original orthogonality of
ludics in the sense that “P ∈ ⊥L” corresponds, in the
terminology of [12], to “JRK = Dai” for a closed cut-net R.

Safety: the greatest orthogonality is
⊥G =

{
P ∈ D0 : no reduction sequence starting

from P terminates with Ω
}

.
In fact, it is the greatest among those subsets of D0 satisfying
(O1). It correspond to safety (see e.g., [17], [23]).

Since ⊥G is defined to be the greatest, it supports proof
by coinduction: to prove that a design P belongs to ⊥G, it
is sufficient to find a subset of D0 which contains P and
satisfies (O1).

Example II.6. Let P and Q be the positive and closed
designs mutually defined by corecursion as follows:

P := (a(x).Q) |a〈0〉, Q := (b(y).P) |b〈0〉,
where 0 :=

∑
a(~x).Ω. To prove that P and Q are safe,

consider the set X = {P,Q}. Since P −→ Q and Q −→ P
(and these are the only possible reductions), we have r(P) =
{Q} ⊆ X and r(Q) = {P} ⊆ X . Hence, X satisfies (O1)
and by coinduction, we conclude P,Q ∈ ⊥G.

There is another family of orthogonalities that are
interesting in view of the automata theoretic aspect of
ludics.

Büchi orthogonality: given B ⊆ D0, we define ⊥B as
the subset of D0 such that any sequence starting from ⊥B
either terminates with z or visits a design Q ∈ B infinitely
many times i.e.,

P = P0 −→ P1 −→ P2 −→ · · ·
is such that Q = Pn for infinitely many n. Notice that ⊥∅ =
⊥L.

Example II.7. Let P,Q be as in Example II.6. If we take
B = {P}, we have that P,Q ∈ ⊥B. Notice that P,Q /∈ ⊥L.

In [21] it is illustrated how words and deterministic finite
automata (DFA) are represented by deterministic designs
in ludics. Roughly, a word w is represented by a negative
design w? and a DFA A by a positive design A?. It
is shown that A accepts a finite word w if and only if
A?[w?/x0] ∈ ⊥L. Thus the orthogonality ⊥L expresses
the usual acceptance condition of DFA: A accepts w if
the run from the initial state terminates in an accepting
state. The conjunction operator further allows us to express
deterministic tree automata, as illustrated in [3]. With this
parallelism in mind, Büchi orthogonality ⊥B is related to the
Büchi acceptance condition for automata (either on words
or on trees): any run starting from the initial state visits an
accepting state infinitely many times. We postpone a detailed
study of automata theoretic aspects of ludics to a subsequent
work.

III. LOGICAL BEHAVIOURS

In this section we briefly recall from [3] the notions of
behaviour and logical connective. After that, we introduce
the concept of (coinductively defined) logical behaviour,
which is a novelty of this paper.

Definition III.1 (Behaviour). Let ⊥ be an orthogonality.
A positive design P is atomic if it is cut-free, P 6= Ω and

fv(P) ⊆ {x0} for a certain fixed variable x0. A negative
design N is atomic if it is cut-free and fv(N) = ∅.

Two atomic designs P,N of opposite polarities yield a
design P [N/x0] ∈ D0. P and N are said orthogonal w.r.t.
⊥, (written P⊥N) if P [N/x0] ∈ ⊥.

Given a set X of atomic designs of the same polarity, we
define define X⊥ := {E : ∀D ∈ X, D⊥E}.

A behaviour is a set X of atomic designs of the same
polarity such that X = X⊥⊥.

A behaviour is positive or negative according to the
polarity of its designs. We use letters P,Q, . . . for positive
behaviours, N,M, . . . for negative behaviours and D,E, . . .
for arbitrary ones respectively.

We now describe how behaviours can be built by means
of logical connectives in ludics. Let us assume that the set
of variables V is equipped with a linear order z1, z2,

Definition III.2 (Logical connectives). An n-ary logical
connective α is a set α = {a1(~x1), . . . , ak(~xk)} of negative
actions such that the names a1, . . . , ak are pairwise distinct
and {~xi} ⊆ {z1, . . . , zn} for every 1 ≤ i ≤ k.

The intuition is as follows. The variables z1, . . . , zn
stand for placeholders for subformulas D1, . . . ,Dn and the
names a1, . . . , ak for the logical inference rules associated
to α. For any a(~x) ∈ α, the indices i1, . . . , im given by
~x = zi1 , . . . , zim indicate which subformulas Di1 , . . . ,Dim

among D1, . . . ,Dn the rule a manipulates.
Formally, given an m-ary name a and negative behaviours

N1, . . . ,Nm, we define:

a〈N1, . . . ,Nm〉 :=
{
x0|a〈N1, . . . , Nm〉 :
N1 ∈ N1, . . . , Nm ∈ Nm

}
.

Given an n-ary logical connective α and behaviours
N1, . . . ,Nn, P1, . . . ,Pn, we define:

α(N1, . . . ,Nn) :=
(⋃

a(~x)∈α a〈Ni1 , . . . ,Nim〉
)⊥⊥

,

α(P1, . . . ,Pn) :=
(
α(P1

⊥, . . . ,Pn
⊥)
)⊥,

where the indices i1, . . . , im ∈ {1, . . . , n} are given by ~x =
zi1 , . . . , zim , for each a(~x) ∈ α.

We use the expression α(D1, . . . ,Dn) as a neutral no-
tation for behaviours generated by logical connectives: it
stands for either a positive behaviour α(D1, . . .Dn) or a
negative behaviour α(D1, . . .Dn). This presupposes that the
behaviours D1, . . .Dn are of the right polarity.

One can easily observe that logical connectives are mono-
tone with respect to the inclusion order: if D1 ⊆ E1, . . . ,
Dn ⊆ En, then α(D1, . . . ,Dn) ⊆ α(E1, . . . ,En).

Example III.3. Usual connectives of linear logic can be
defined if the signature A contains a 0-ary name ∗, unary
names ↑, π1, π2 and a binary name ℘.

α := {℘(z1, z2)}, ⊗ := α,

&

:= α, • := ℘,

β := {π1(z1), π2(z2)}, ⊕ := β, & := β, ιi := πi,

γ := {↑(z1)}, ↓↓ := γ, ↑↑ := γ ↓ := ↑,
δ := {∗}, 1 := δ, ⊥⊥ := δ,

∅, 0 := ∅, >> := ∅.

Notations •, ιi, ↓ are employed below. These logical connec-

tives yield intended behaviours:

N⊗M = •〈N,M〉⊥⊥,
P

&

Q = •〈P⊥,Q⊥〉⊥,
N⊕M = (ι1〈N〉 ∪ ι2〈M〉)⊥⊥,
P & Q = ι1〈P⊥〉⊥ ∩ ι2〈Q⊥〉⊥,

↓↓ N = ↓〈N〉⊥⊥, ↑↑ P = ↓〈P⊥〉⊥,
1 = {x0|∗}⊥⊥, ⊥⊥ = 1⊥,

0 = ∅⊥⊥, >> = ∅⊥.

Using logical connectives we can finally define logical
behaviours:

Definition III.4 (Logical behaviour). Given an orthogo-
nality ⊥, we define LB(⊥) to be the greatest set X of
behaviours with respect to ⊥ such that:

(L) if D ∈ X , then D = α(D1, . . . ,Dn) for some n-ary
connective α and D1, . . . ,Dn ∈ X .

We call D ∈ LB(⊥) a logical behaviour with respect to ⊥.

The class LB(⊥) is well defined. However, as typical of
coinductive definitions, it is not immediate to see what kind
of behaviours reside in it. For instance, the definition does
not tell us whether there is a logical behaviour such that
D = α(D⊥). Our purpose now is to explore the universe
LB(⊥) for a given ⊥.

First of all, one can inductively build behaviours by:

P ::= α(N1, . . . ,Nn), N ::= α(P1, . . . ,Pn).

Proposition III.5. For any choice of ⊥:

(1) Inductively built logical behaviours belong to LB(⊥).

(2) If D ∈ LB(⊥), then D⊥ ∈ LB(⊥).

Proof: As for (1), let X be the class of inductively
defined logical behaviours. As for (2), let X = {D⊥ : D ∈
LB(⊥)}. In both cases, X satisfies the condition (L). By
coinduction, X ⊆ LB(⊥).

In particular, LB(⊥) has the least positive behaviour 0 =
∅⊥⊥ = {z} and the greatest negative one > = 0⊥ =
{atomic negative designs}, for any signature A and any ⊥.

We have all inductively built behaviours whatever the
orthogonality is. On the other hand, there is a fundamental
limitation on noninductive ones when the orthogonality is
⊥L. It is related to Russell’s antinomy:

Proposition III.6. There is no behaviour P with respect to
⊥L such that P =↓↓ P⊥.

Proof: We first need to recall the followings facts.
(a) Any behaviour of the form ↑↑Q consists of negative

designs
∑
↑ (x0).Q↑ where Q↑ ∈ Q and the other

additive components a(~x).Pa can be arbitrary (see [3]).
(b) Let X be an atomic negative design or a vari-

able. We call “infinitary η-expansion of X”, and
write η(X), the design corecursively defined by
η(X) :=

∑
a(y1, . . . , yn).X|a〈η(y1), . . . , η(yn)〉. We

then have the following property. For P and N atomic:
P⊥LN =⇒ P [η(N)/x0] ∈ ⊥L (see [21]).

Assume now that there is P such that P =↓↓P⊥. Let P :=
x0|↓〈η(x0)〉. For any N =

∑
↑(x0).Q↑ ∈ P⊥, we have:

P [N/x0] = N | ↓ 〈η(N)〉 −→ Q↑[η(N)/x0].

Since P⊥ =↑↑P, by (a) we have Q↑ ∈ P. In particular,
Q↑⊥LN . Using (b), we get Q↑[η(N)/x0] ∈ ⊥L. From
the fact that P is atomic and by (O2) we have P⊥LN .
In particular, P ∈ (↑↑P)⊥ = P. By using (a) again, we also
have M :=↑(x0).P ∈ ↑↑P = P⊥. However:

P [M/x0] = M | ↓ 〈η(M)〉
−→ η(M) | ↓ 〈η(η(M))〉
−→ M | ↓ 〈η(η(η(M)))〉 −→ · · ·

which clearly diverges. This shows a contradiction.
Notice that there is no contradiction in the above argument

when the orthogonality is ⊥G.

IV. CAUCHY SEQUENCES AND LIMITS

Proposition III.5 ensures that in our setting we have
all standard “types/formalas” of logical interest which are
inductively defined, for any choice of orthogonality. We now
show that if we choose the greatest one ⊥G, we obtain a
richer class of types which include all the limits of Cauchy
sequences. Thus we are given a powerful way to obtain
a type by exhibiting a Cauchy sequence converging to it.
In particular, all recursive equations have solutions in the
universe of logical behaviours with respect to ⊥G.

In this section we deal with sequences (Dn)n∈N =
D0,D1, · · · of logical behaviours of the same polarity.
We use letters D,E, . . .P,Q, . . .N,M . . . for sequences of
logical behaviours.

Definition IV.1. Let D = (Dn)n∈N, E1 = (E1,n)n∈N,. . . ,
Em = (Em,n)n∈N be sequences of logical behaviours
and let α be a m-ary logical connective. We write D �

α(E1, . . . ,Em) if:

(�) there exists some n0 ∈ N such that for every n ∈ N,
Dn0+n is of the form α(E1,n, . . . ,Em,n).

In words, D � α(E1, . . . ,Em) holds if Dn begins with
α for all sufficiently large n (n ≥ n0) and E1, . . . ,Em are
sequences of “sub-behaviours” extracted from (Dn0+n)n∈N
by removing the topmost connective α.

Definition IV.2 (Cauchy sequences). We define the set
Cauchy of Cauchy sequences as the greatest set X of
sequences of logical behaviours such that:

(C) if D ∈ X then D � α(E1, . . . ,Em) for some m-ary
connective α and E1, . . . ,Em ∈ X .

We also define Cauchy⇑ (resp. Cauchy⇓) to be the set
of Cauchy sequences that are monotone increasing (resp.
decreasing) with respect to the inclusion order.

Finally, let ≈ be the greatest binary relation R on Cauchy
sequences such that:

(≈) D R D′ implies D � α(E1, . . . ,Em),
D′ � α(E′1, . . . ,E

′
m) and E1 R E′1, . . . , Em R E′m.

Given a sequence D = (Dn)n∈N we denote by D⊥ its
dual sequence (D⊥n)n∈N. It is not hard to see that:

• if D ∈ Cauchy (resp. Cauchy⇓, resp. Cauchy⇑) then
D⊥ ∈ Cauchy (resp. Cauchy⇑, resp. Cauchy⇓);

• if D ≈ E, then D⊥ ≈ E⊥.

Example IV.3. Let P = (Pn)n∈N be the positive sequence
given by P0 := 0 and Pn+1 :=↓↓Pn

⊥. Let us also consider
the dual sequence P⊥. They have the following shape:

P = 0, ↓↓>, ↓↓↑↑0, ↓↓↑↑↓↓>, ↓↓↑↑↓↓↑↑0, · · ·
P⊥ = >, ↑↑0, ↑↑↓↓>, ↑↑↓↓↑↑0, ↑↑↓↓↑↑↓↓>, · · ·

Since P� ↓↓P⊥ and P⊥� ↑↑P, the set {P,P⊥} satisfies the
condition (C) above. By coinduction, P ∈ Cauchy.

Remark IV.4. As in [16], it is possible to define a metric
d on the set of logical behaviours. Define a binary relation
∼n by induction on n as follows:

• D ∼0 D′ always holds;

• D ∼n+1 D′ if D = α(E1, . . . ,Em), D′ =
α(E′1, . . . ,E

′
m) and E1 ∼n E′1,. . . , Em ∼n E′m.

Given two logical behaviours D,E, let d(D,E) = 2−k

where k = sup{n : D ∼n E} (with 2−∞ = 0 by
convention). The above definition of Cauchy sequences
precisely corresponds to the standard one in this metric
space. Nevertheless, we prefer our coinductive approach
since it provides a more direct way to reason about infinite
sequences.

Any Cauchy sequence can be “approximated” by mono-
tone increasing and decreasing ones as follows:

Lemma IV.5. To every D ∈ Cauchy we can associate
D⇑ ∈ Cauchy⇑ and D⇓ ∈ Cauchy⇓ with the following
properties:

(1) D⇑ ≈ D ≈ D⇓.

(2) For every E ∈ Cauchy⇑ such that E ≈ D,
(
⋃

D⇑)
⊥⊥ ⊆ (

⋃
E)
⊥⊥ ⊆

⋂
D⇓.

(3) For every F ∈ Cauchy⇓ such that F ≈ D,
(
⋃

D⇑)
⊥⊥ ⊆

⋂
F ⊆

⋂
D⇓.

Here the union and the intersection are taken over mem-
bers of the sequences: given D = (Dn)n∈N, we write

⋃
D

for
⋃
n∈N Dn and

⋂
D for

⋂
n∈N Dn respectively.

Proof: Given D = (Dn)n∈N with D � α(E1, . . . ,Em),
let n0 ∈ N be the natural number given by the definition of
�. Consider then the sequence D⇑ = (D⇑n)n∈N corecursively

given by:

D⇑0 = · · · = D⇑n0−1 := Dα,

D⇑n0+n := α(E⇑1,n, . . .E
⇑
m,n),

where Dα = 0 (resp. Dα = α(0, . . . ,0)) if D is a positive
(resp. negative) sequence.

It is then easy to check that D⇑ ∈ Cauchy⇑. To show that
D ≈ D⇑, consider the binary relation on Cauchy sequences
R = {(D,D⇑) : D ∈ Cauchy} and verify that R satisfies
condition (≈) above. We define D⇓ = ((D⊥)⇑)

⊥.
For the first inclusion of (2), observe that for every

member D of D⇑ there is a member E of E such that
D ⊆ E. For the second inclusion, assume for simplicity
that logical connectives used to build D are all unary and
E = (En)n∈N. Then by definition every member D of D⇓
is of the form α1(· · ·αn(>) · · ·) for some n ∈ N. On the
other hand, since E ≈ D ≈ D⇓, one can find k0 such that
Ek is of the form α1(· · ·αn(Gk) · · ·) for every k ≥ k0. We
therefore have Ek ⊆ D for k ≥ k0 because Gk ⊆ > and
logical connectives are monotone. We also have Ek ⊆ D
for k < k0 because Ek ⊆ Ek0 . This proves

⋃
E ⊆

⋂
D⇓,

so (
⋃

E)
⊥⊥ ⊆

⋂
D⇓.

Claim (3) is dual to (2).
Intuitively, the behaviour (

⋃
D⇑)

⊥⊥ may be considered
the “limit inferior” lim inf D of the sequence D, while

⋂
D⇓

gives the “limit superior” lim sup D. While we always have
lim inf D ⊆ lim sup D, it is not ensured in general that they
coincide. The following theorem ensures coincidence when
the orthogonality is ⊥G.

Theorem IV.6 (Coincidence). Let the orthogonality be ⊥G
and E ∈ Cauchy⇑, F ∈ Cauchy⇓ such that E ≈ F. Then:

(
⋃

E)
⊥⊥

=
⋂

F.

This property is indeed the essence of various works
on recursive types [19], [22], [17]. We will prove it as a
consequence of the completeness theorem in Section VI.
Hereafter, in the rest of the paper we assume that the
orthogonality is ⊥G.

Definition IV.7 (Limit). Given D ∈ Cauchy, we define

lim D = (
⋃

D⇑)
⊥⊥

=
⋂

D⇓,

where D⇑ and D⇓ are given by Lemma IV.5.

By Lemma IV.5 (2), (3), we have lim D = (
⋃

E)
⊥⊥

=⋂
F for every E ∈ Cauchy⇑ and F ∈ Cauchy⇓.
The following proposition shows that negation and logical

connectives are “continuous” operations.

Proposition IV.8. Let D be a Cauchy sequence such that
D � α(E1, . . . ,Em). We have:

(1) (lim D)⊥ = lim(D⊥).

(2) lim D = α(lim E1, . . . , lim Em).

Proof: (1) (lim D)⊥ = (
⋃

D⇑)
⊥

=
⋂

(D⇑)
⊥. Since

(D⇑)
⊥ ∈ Cauchy⇓ and (D⇑)

⊥ ≈ D⊥, we have lim D⊥ =⋂
(D⇑)

⊥ = (lim D)⊥.
(2) Assume for simplicity that α is unary. We then

have D⇑ � α(E⇑), D⇓ � α(E⇓). Since α is monotone, we
obtain

lim D = (
⋃

D⇑)
⊥⊥ ⊆ α

(
(
⋃

E⇑)
⊥⊥
)

= α(lim E),

α(lim E) = α (
⋂

E⇓) ⊆
⋂

D⇓ = lim D.

Hence, lim D = α(lim E).
Proposition IV.8 (2) immediately implies the Cauchy

completeness of LB(⊥G).

Theorem IV.9 (Cauchy completeness). For every Cauchy
sequence D, lim D is a logical behaviour with respect to
⊥G. Moreover, if D ≈ E, then lim D = lim E.

Proof: Let X be the set of all limits of Cauchy
sequences. Then it satisfies (L) of Definition III.4 thanks
to Proposition IV.8 (2), so that X ⊆ LB(⊥G).

As a consequence, all nontrivial recursive equations,
including mixed variance ones, have unique solutions in
LB(⊥G).

Theorem IV.10 (Unique solution). Let Φ(X,X⊥) be an
expression which is inductively built from formal variables
X,X⊥ by means of logical connectives. We assume that
Φ(X,X⊥) has the same polarity as X and is not identical
with X nor X⊥ (i.e., it contains at least one logical
connective). Then there exists a unique behaviour D in
LB(⊥G) such that D = Φ(D,D⊥).

Proof: Define a Cauchy sequence D = (Dn)n∈N by
setting D0 = 0 (resp. D0 = >) if Φ(X,X⊥) is a posi-
tive (resp. negative) expression and Dn+1 = Φ(Dn,D

⊥
n).

Then we have D �∗ Φ(D,D⊥), where �∗ is an obvious
extension of � to clusters Φ of logical connectives. By
applying Proposition IV.8 repeatedly, we eventually obtain
lim D = Φ(lim D, lim D⊥) = Φ(lim D, (lim D)⊥).

To show uniqueness, suppose that a logical behaviour E
satisfies E = Φ(E,E⊥). Then we can show D ≈ E, where E
is the constant sequence E,E, · · · . Hence by Theorem IV.9
we conclude lim D = lim E = E.

V. PROOF SYSTEM AND FULL COMPLETENESS

In this section we introduce an infinitary (coinductive)
proof system and show interactive completeness.

A. Proof System

The logical system we introduce is an infinitary extension
of the one given in [3]. The main novelty, w.r.t. the finitary
version, is the notion of derivability of sequents which is
here taken in its coinductive interpretation.

A positive context Γ is of the form x1 : P1, . . . , xn :
Pn, where x1, . . . , xn are distinct variables and P1, . . . ,Pn

are positive logical behaviours. We denote by fv(Γ) the set

{x1, . . . , xn}. A positive sequent is a pair of the form P ` Γ
where P is a positive design with fv(P) ⊆ fv(Γ).

A negative context Γ,N is a positive context Γ enriched
with a negative logical behaviour N, to which no variable
is associated. A negative sequent is a pair of the form N `
Γ,N where N is a negative design with fv(N) ⊆ fv(Γ).

We write D ` Λ for a generic sequent.
We let S, T , . . . range over sequents and X,Y, . . . over

sets of sequents. We denote by S the set of all sequents.
Our proof system has three sorts of inference rules:

• A positive rule:

N1 ` Γ, z : P,Ni1 . . . Nm ` Γ, z : P,Nim

z|a〈N1, . . . , Nm〉 ` Γ, z : P
(α, a)

where P = α(N1, . . . ,Nn), a(~x) ∈ α and the be-
haviours Ni1 , . . . ,Nim ∈ {N1, . . . ,Nn} are determined
by ~x = zi1 , . . . , zim (cf. Definition III.2).

• A negative rule:

{Pa ` Γ, ~x : ~Pa}a(~x)∈α∑
a(~x).Pa ` Γ,N

(α)

where N = α(P1, . . . ,Pn) and ~x : ~Pa stands for zi1 :
Pi1 , . . . , zim : Pim . The behaviours Pi1 , . . . ,Pim ∈
{P1, . . . ,Pn} are determined by ~x = zi1 , . . . , zim . We
assume that fv(Γ) and ~x consist of distinct variables.
If b(~y) 6∈ α, the subdesign Pb of

∑
a(~x).Pa can be

arbitrary.
• A conjunction rule:

{Si ` Γ}i∈I∧
{Si : i ∈ I} ` Γ

(conj)

where I is an arbitrary index set and each Si is a
predesign.

Example V.1. For connectives ⊗ and ` (as given in
Example III.3), our inference rules specialize as follows:

N ` Γ, z : N⊗M,N M ` Γ, z : N⊗M,M

z|a〈N,M〉 ` Γ, z : N⊗M
(⊗, •)

P ` Γ, x1 : P, x2 : Q

℘(x1, x2).P + · · · ` Γ,P

&

Q
(

&

)
,

where the irrelevant components of the sum are suppressed
by “+ · · · .”

We now define the notion of derivability as a fixpoint of
an operator defined on sets of sequents. Let Dv : P(S) −→
P(S) (derivability) be the operator defined as follows:

Dv(X) := {S : the sequent S can be inferred from some
sequents in X using an instance of an inference rule }.

The operator Dv is obviously monotone and hence it admits
the least and the greatest fixpoints:

SL =
⋂
{X ⊆ S : Dv(X) ⊆ X},

SG =
⋃
{X ⊆ S : X ⊆ Dv(X)}.

In this paper, we adopt the coinductive interpretation of
derivability:

Definition V.2 (Derivability). A sequent D ` Λ is said
derivable if D ` Λ ∈ SG.

Namely, a sequent is derivable if it admits an infinitary
derivation tree. Since SG is the greatest fixpoint, it supports
proof by coinduction: to prove that a sequent S is derivable,
it suffices to find X ⊆ S such that S ∈ X and X ⊆ Dv(X).

We have structural rules as derived rules:

Proposition V.3 (Structural rules).

(1) Weakening : If D ` Λ ∈ SG, then for any positive
context Γ we have D ` Λ,Γ ∈ SG;

(2) Contraction : If D ` Λ, x : P, y : P ∈ SG, then we
have D[z/x, z/y] ` Λ, z : P ∈ SG

(provided the variables in fv(Γ) and z are fresh).

Notice that in our proof system sequents like P ` z : P
and N ` P⊥ can be both derivable. We would like to relate
them, via a suitable cut rule.

Definition V.4 (Cut-derivability). We say that a sequent S
is cut-derivable if there is a finite set X ⊆ SG from which
we can derive S using finitely many times the following cut-
rule:

P ` Γ, z : P N ` Γ,P⊥

P [N/z] ` Γ
(cut)

By using cut, one can derive a “contradiction” P `.
A natural question would be whether such a contradictory
proof system would give us any useful information. The
following theorem gives an answer.

Theorem V.5 (Safety). If P ` is cut-derivable, then P ∈
⊥G. Hence P never leads to Ω.

Proof sketch: Define X = {P : P ` is cut-derivable}
and show that X satisfies (O1) i.e., if P ∈ X and P −→ P ′

then P ′ ∈ X . It is just a special case of the subject reduction
property.

B. Interactive Completeness

Let us now switch to the “semantical” side. Corresponding
to derivability of sequents in the “syntactical” side, we have
a relation |= of semantical entailment. It is a natural exten-
sion of the notion of behaviour to contexts of behaviours.
In particular, it is defined via orthogonality.

Given a positive context Γ = x1 : P1, . . . , xn : Pn and a

negative context Γ,N we define the relation |= as follows:

P |= Γ iff P cut-free , fv(P) ⊆ fv(Γ)
and P [N1/x1, . . . , Nn/xn] ∈ ⊥

for any N1 ∈ P⊥1 , . . . , Nn ∈ P⊥n ;

N |= Γ,N iff N cut-free , fv(N) ⊆ fv(Γ)
and P [N [N1/x1, . . . , Nn/xn]/x0] ∈ ⊥

for any N1 ∈ P⊥1 , . . . , Nn ∈ P⊥n , P ∈ N⊥.

By the definition, it immediately follows that P |= x0 : P
if and only if P ∈ P and N |= N if and only if N ∈ N.

As for sequents, we use the generic notation D |= Λ.
The semantical entailment enjoys the following properties.

With the same notation of the inference rules above:

Proposition V.6.
(1) z|a〈N1, . . . , Nm〉 |= Γ, z : P if and only if a(~x) ∈ α

and N1 |= Γ,Ni1 , z : P,. . . , Nm |= Γ,Nim , z : P.

(2)
∑
a(~x).Pa |= Γ,N if and only if for every a(~x) ∈ α,

Pa |= Γ, ~x : ~Pa.

(3) For any index set I ,
∧
{Si : i ∈ I} |= Γ if and only if

Si |= Γ for every i ∈ I . In particular, z |= Γ.

Proof: The “left to right” implications of (1) and (2)
follow by (O1) and further properties of logical connectives
studied in [3]. The converse implications follow by (O2).

(3) is a consequence of Proposition II.5.
We are now ready to prove the interactive completeness

theorem. In [3], a completeness theorem for finite deriv-
ability SL, least orthogonality ⊥L and inductively defined
logical behaviours has been proved. The statement below is
its infinitary counterpart.

Theorem V.7 (Interactive completeness). Let Λ be a context
of logical behaviours with respect to ⊥G and D a cut-free
design. We have:

D |= Λ ⇐⇒ D ` Λ ∈ SG.

It follows from the two lemmas below.

Lemma V.8 (Completeness). If D |= Λ, then D ` Λ ∈ SG.

Proof: Define X = {D ` Λ : D |= Λ} and verify
X ⊆ Dv(X) using Proposition V.6 (1) if D is a predesign,
(2) if D is negative, (3) if D is a conjunction respectively.

Lemma V.9 (Soundness). If D ` Λ ∈ SG, then D |= Λ.

Proof: Consider a positive sequent P ` x : P, y : Q ∈
SG. We have to show that for any N ∈ P⊥ and M ∈ Q⊥,
P [N/x,M/y] ∈ ⊥G. By Lemma V.8, N ` P⊥ ∈ SG
and M ` Q⊥ ∈ SG. Using these sequents we can easily
find (thanks to Proposition V.3 (1)) a cut-derivation of
P [N/x,M/y] `. By Safety (Theorem V.5) we conclude
P [N/x,M/y] ∈ ⊥G. The negative case is similar.

VI. COINCIDENCE

Interestingly, the infinitary completeness theorem can be
used to derive Coincidence (Theorem IV.6), which is left in
Section IV. Thus denotational completeness helps interpret
recursive types. For this purpose, we consider contexts and
sequents of Cauchy sequences (of logical behaviours).

In analogy to the previous section, a positive contexts
Γ is of the form x1 : P1, . . . , xm : Pm, where each
Pi = (Pi,n)n∈N is a Cauchy sequence of positive logical
behaviours. A negative context is of the form Γ,N where
Γ is a positive context and N = (Nn)n∈N is a Cauchy
sequence of negative logical behaviours. We write Λ for a
generic context of Cauchy sequences. A sequent of Cauchy
sequences is a pair of the form D ` Λ where D is a
design and Λ a context of Cauchy sequences (with the same
conditions on D we gave for sequents of logical behaviours).

We say that a sequent D ` Λ is derivable if D ` Λn ∈ SG
for every n ∈ N, where:
• Λn = x1 : P1,n, . . . , xm : Pm,n, if Λ = Γ;
• Λn = x1 : P1,n, . . . , xm : Pm,n,Nn, if Λ = Γ,N.

While the above notion of derivability is defined elemen-
twise, we may consider global inference rules that directly
manipulate sequents of Cauchy sequences.

N1 ` Γ′,Ni1 , z : P′ . . . Nm ` Γ′,Nim , z : P′

z|a〈N1, . . . , Nm〉 ` Γ, z : P
(α, a)C

where P ≈ α(N1, . . . ,Nn) ≈ P′ and Γ ≈ Γ′ (the binary
relation ≈ is naturally extended to contexts);

{Pa ` Γ′, ~x : ~Pa}a(~x)∈α∑
a(~x).Pa ` Γ,N

(α)C

where N ≈ α(P1, . . . ,Pn) and Γ ≈ Γ′;

{Si ` Γ′}i∈I∧
{Si : i ∈ I} ` Γ

(conj)C

where Γ ≈ Γ′.
Now we have the following “generation lemma” as the

crucial step; although the derivability of D ` Λ is defined
elementwise, i.e., from the derivability of D ` Λn for each
n ∈ N, a “common last rule” can be found for all sufficiently
large n.

Lemma VI.1. If D ` Λ is derivable, then it is a conclusion
of an instance of the rules (α, a)C , (α)C , (conj)C above.

In analogy with the previous section, we say that a sequent
of Cauchy sequences is cut-derivable if there is a finite set
of derivable sequents (of Cauchy sequences) from which we
can derive it using finitely many times the following cut-rule:

P ` Γ′, z : P N ` Γ′,N

P [N/z] ` Γ
(cut)C

where P⊥ ≈ N and Γ ≈ Γ′.

Thanks to the previous “generation lemma,” we can
naturally extend the safety theorem to Cauchy sequences.

Theorem VI.2 (Cauchy safety). If P ` is cut-derivable in
the proof system of Cauchy sequences, then P ∈ ⊥G.

We can finally give a proof of Theorem IV.6.
Thanks to Lemma IV.5 (2), (3), it is sufficient to show

that
⋂

D⇓ ⊆ (
⋃

D⇑)
⊥⊥ for D ∈ Cauchy. Suppose that

D is positive, D⇑ = (Pm)m∈N and D⇓ = (Qn)n∈N. Let
Q ∈

⋂
D⇓ and N ∈ (

⋃
D⇑)

⊥
=
⋂

(D⇑)
⊥. By interactive

completeness (Theorem V.7), we have Q ` x0 : Qn and
N ` P⊥m for every n,m, so Q ` x0 : D⇓ and N ` (D⇑)

⊥.
Since D⇓ ≈ ((D⇑)

⊥)⊥, we may apply Theorem VI.2 to
obtain Q[N/x0] ∈ ⊥G. This proves

⋂
D⇓ ⊆ (

⋃
D⇑)

⊥⊥.

VII. RELATED WORK AND CONCLUSION

Our work is built upon vast amount of work on recursive
types. Due to lack of space, we cannot do an exhaustive
survey here. Below, we just mention three influential works,
referring to [22], [17] for a more global perspective on the
literature.

1. In domain theory, domains for recursive types are obtained
by simply solving domain equations. To reason about prop-
erties of programs, however, one further wishes to interpret
types more strictly as subsets of (or relations on) suitable
domains. It is this line of research that our work is related
to (since the universal “domain” of designs is already given).

In [16], MacQueen, Plotkin and Sethi consider a universal
domain V that arises as the canonical solution of the
equation

V ∼= Bool+Nat+(V→ V)+(V×V)+(V+V)+{error}⊥

and then interpret types by ideals of V. The key observation
is that V is the limit of its “approximations”

V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ V,

so that each (finite) element d of V is endowed with a rank,
that is the first number n such that d appears in Vn. This
notion of rank “stratifies” V, inducing a complete metric
over the set of ideals. Banach’s fixpoint theorem then yields
a solution to every suitable recursive equation. A similar
metric argument is employed in many of subsequent works.

2. Following Freyd [10], Pitts [19] identifies a key property
of the domains that arises as the canonical solution
of a domain equation, that is the minimal invariant
property. As above, it yields stratification, i.e., endows each
element d of the domain with a uniform expression as the
least upper bound of its “approximations” (projections):
d =

⊔
n∈N πn(d). This property is then used to give a quite

general, flexible method to interpret recursive types as sets
(or relations) on suitable domains.

3. Finally, two papers of Melliès and Vouillon [22], [17]
are most influential to our work. They interpret types as
sets of lambda terms closed under biorthogonality, where
orthogonality is defined in terms of safety. Their first paper
[22] considers syntactically defined approximation operators
()n such that a term t belongs to a closed set D if and
only if all its approximations (t)n belongs to it. Again,
it is this stratified structure that allows to solve recursive
equations. The same idea also underlies [17], though
this time approximation operations are “type-driven,” i.e.,
associated to (interval) types.

Now we find the following common pattern:
(1) Interpret types as sets of elements of a domain or terms

that satisfy certain closure properties.
(2) Stratify elements or terms (e.g., by the minimal invariant

property or the approximation operator).
(3) Using the stratified structure, one proves that a sequence

of “semantic types” converges, either by defining a
complete metric, or more directly by taking the limits
of lower and upper approximations and then showing
that they coincide.

Our work also follows this pattern. A conceptual novelty
is an observation that derivations in the proof system serve
as the required stratification. Indeed, our intuition is that,
given Q = (Qn)n∈N ∈ Cauchy⇓ and Q ∈

⋂
Qn, derivations

for Q ` x0 : Qn (that may be considered approximations)
should “converge” to a derivation for Q ` x0 : lim Q. Hence
interpreting recursive types should be easy once derivations
are assigned to designs by the completeness theorem. Thus,
denotational completeness yields interpretations of recursive
types.

Another feature of our work is an emphasis on the use
of coinduction. A traditional approach to infinity is to think
of an infinite object as the limit of its finite approximations.
Such a view of infinity prevails in the literature of recursive
types. On the other hand, we have tried as much as possible
to directly deal with infinite objects by coinduction, as most
typically seen in the direct, coinductive definition of Cauchy
sequences rather than the metric one (see Remark IV.4).

Turning on to the technical side, we have achieved in-
teractive (denotational) completeness and interpretations of
recursive types in the polarized setting with tensor product
⊗, sum ⊕, their duals, and more generally all logical connec-
tives in our sense. This certainly contains new connectives
that have not been dealt with in the literature. On the other
hand, our fragment does not include union, intersection, nor
quantifications. These are left to the future considerations.

An obvious disadvantage of our work is the little flexibil-
ity. Indeed, denotational completeness is a hard requirement
to achieve. Nevertheless, ludics based on safety is close to
game semantics (especially to the polarized games [15]),
for which some infinitary completeness results have been

established. We plan to apply our insights to game semantics,
revisiting some existing works on recursive types [1], [4],
[5], to establish a coinductive approach to recursive games.

REFERENCES

[1] Abramsky, S., McCusker, G.: Games for Recursive Types.
Theory and Formal Methods (1994) 1–20.

[2] Basaldella, M., Faggian, C.: Ludics with Repetitions (Expo-
nentials, Interactive types and Completeness). LICS (2009)
375–384.

[3] Basaldella, M., Terui, K.: On the meaning of logical complete-
ness. TLCA (2009) 50–64. Extended version available at the
homepage of the authors.

[4] Chroboczek, J.: Subtyping Recursive Games. TLCA (2001)
61–75.

[5] Clairambault, P.: Least and Greatest Fixpoints in Game
Semantics. FoSSaCS (2009) 16–31.

[6] Curien, P.-L.: Introduction to linear logic and ludics, part II.
Advances in Mathematics (China) 35(1) (2006) 1–44.

[7] Curien, P.-L., Herbelin, H.: Abstract machines for dialogue
games. Panoramas et Synthèses 27 (2008).

[8] Faggian, C.: Interactive observability in ludics: The geometry
of tests. Theor. Comput. Sci. 350(2) (2006) 213–233.

[9] Faggian, C., Piccolo, M.: Ludics is a model for the finitary
linear pi-calculus. TLCA (2007) 148–162.

[10] Freyd, P. J.: Algebraically complete categories. Proc. Conf.
Category Theory, Como 1990, LNM 1488 (1991) 131–156.

[11] Girard, J.-Y.: Linear Logic. Theor. Comput. Sci. 11 (1987)
1–102.

[12] Girard, J.-Y.: Locus solum: From the rules of logic to the
logic of rules. Math. Struct. in Comp. Sci. 11(3) (2001) 301–
506.

[13] Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF: I,
II, and III. Inf. Comput. 163(2) (2000) 285–408.

[14] Krivine, J.-L.: Realizability in classical logic. Panoramas et
Synthèses 27 (2008).

[15] Laurent, O.: Polarized games. Ann. Pure Appl. Logic 130
(2004) 79–123.

[16] MacQueen, D., Plotkin, G., Sethi. R.: An ideal model for
recursive polymorphic types. Information and Control 71(1-2)
(1986) 95–130.

[17] Melliès, P.-A., Vouillon, J.: Recursive Polymorphic Types
and Parametricity in an Operational Framework. LICS (2005)
82–91.

[18] Paolini, L.: Parametric λ-Theories. Theor. Comput. Sci.
398(1-3) (2008) 51–62.

[19] Pitts, A.M.: Relational properties of domains. Inform. and
Comput. 127(2) (1996) 66–90.

[20] Pitts, A.M.: Parametric polymorphism and operational equiv-
alence. Math. Struct. in Comp. Sci. 10(3) (2000) 321–359.

[21] Terui, K.: Computational ludics (2008) To appear in Theor.
Comp. Sci.

[22] Vouillon, J., Melliès, P.-A.: Semantic types: a fresh look at
the ideal model for types. POPL (2004) 52–63.

[23] Zeilberger, N.: Refinement types and computational duality.
PLPV (2009) 15–26.

