
April 26, 2006

April 26, 2006

CENTER FOR THE STUDY
OF LANGUAGE
AND INFORMATION

April 26, 2006

April 26, 2006

1

The Insufficiency of

Paper-and-Pencil Linguistics: the

Case of Finnish Prosody
Lauri Karttunen

1.1 Introduction

It is a basic scientific practice to examine a limited amount of data
in the light of some theoretical framework and to develop an analysis
that accounts for the primary facts and extends to unseen data. If the
predictions are correct, the analysis stands and lends further support
for the framework in which it is conceived.

This paper focuses on a case where the analysis turns out to be
wrong. It highlights the need for the formalization and computational
implementation of linguistic theories. Paper-and-pencil methods are in-
sufficient to test a theory with real data. The problem is particulary
acute for optimality theory (Prince and Smolensky, 1993, Kager,
1999, McCarthy, 2002). The ot framework assumes two levels of rep-
resentation, a set of inputs and, for each input, a possibly infinite set
of outputs. The mapping between the two levels is subject to a set of
ranked constraints. It is typically the case that no output candidate sat-
isfies all the constraints. A winning candidate is the one that incurs the
fewest violations of the most highly ranked constraint still in play that
cannot be satisfied by any of the other surviving output candidates.

We consider two closely related ot analyses of Finnish prosody by
Elenbaas (1999) and Kiparsky (2003). In both cases the input consists
of a sequence of phonemes and the outputs are sequences of metrical

3

.

.

April 26, 2006

4 / Lauri Karttunen

feet that consist of syllables with stress marks, as shown in (1) for the
input opiskelijakin.

(1) (ó.pis).(kè.li).(jà.kin) ‘even the student’ (Sg. Nom.)

Here the acute accent indicates primary stress and the two grave accents
mark secondary stress. Periods mark syllable boundaries and feet are
enclosed in parentheses.

In general, Finnish prosody is trochaic with the main stress on the
first syllable and a secondary stress on every other following syllable.
Finnish also has a ternary stress pattern that surfaces in words where
the stress would fall on a light syllable that is followed by a heavy
syllable. A light syllable ends with a short vowel (ta); a heavy syllable
ends with a coda consonant (jat, an) or a long vowel (kuu, aa) or a
diphthong (voi, ei). Example (2a) shows the correct ternary prosody
for the input rakastajattarenako ‘mistress’ (Sg. Ela., QP).

(2) a. (rá.kas).ta.(jàt.ta).(rè.na).ko
b. *(rá.kas).(tà.jat).(tà.re).(nà.ko)

(2b) shows the binary stress pattern that is incorrect because of the
(tà.jat) foot where the stress falls on a light syllable followed by a heavy
syllable. The initial (rá.kas) syllable in (2a) is actually a violation of
the same stress constraint but it is allowed by a more highly ranked
constraint, specific to Finnish, that requires the main stress on the
initial syllable.1

It has been claimed that the ternary prosodic pattern arises natu-
rally, in the context of Optimality Theory (ot), from the interaction
of independently motivated optimality constraints such as *Lapse and
StressToWeight. The idea has its origins in Hanson and Kiparsky
(1996). It has been explored in depth in the Ph.D. thesis of Nine Elen-
baas (1999) and summarized in the articles by Elenbaas and Kager
(1999) and Kiparsky (2003).

This paper formalizes the Elenbaas and Kiparsky analyses in finite-
state terms using lenient composition (Karttunen, 1998) to prune
the candidate set. It shows that the two ot analyses yield incorrect
results in cases such as (3).

(3) *(ká.las).te.(lè.mi).nen ‘fishing’ (Sg. Nom.)

The specific conclusion is that the explanation for the ternary meter
offered by Elenbaas and Kiparsky fails systematically for certain input
patterns, but a more general point is that ot phonology badly needs

1Kiparsky and Elenbaas treat the third syllable of a dactyl as extrametrical, that
is, (rá.kas).ta. instead of (rá.kas.ta). This decision of not recognizing a ternary foot
as a primitive is of no consequence as far as the topic of this paper is concerned.

The Insufficiency of Paper-and-Pencil Linguistics / 5

April 26, 2006

computational support. It is difficult to get globally correct results from
a handful of examples with the traditional tableau method.

1.2 OT Constraints for Finnish Prosody
Under Kiparsky’s analysis (p. 111), the prosody of Finnish is charac-
terized by the system in (4). The constraints are listed in the order of
their priority.

(4) a. *Clash: No stresses on adjacent syllables.
b. Left-handedness: The stressed syllable is initial in the foot.
c. Main Stress: The primary stress in Finnish is on the first

syllable.
d. FootBin: Feet are minimally bimoraic and maximally disyl-

labic.
e. *Lapse: Every unstressed syllable must be adjacent to a

stressed syllable or to the word edge.
f. Non-Final: The final syllable is not stressed.
g. Stress-To-Weight: Stressed syllables are heavy.
h. License-σ: Syllables are parsed into feet.
i. All-Ft-Left: The left edge of every foot coincides with the

left edge of some prosodic word.

Elenbaas (1999) and Elenbaas and Kager (1999) give essentially the
same analysis except that they replace Kiparsky’s Stress-To-Weight
constraint with the more specific one in (5).

(5) *(L̀H): If the second syllable of a foot is heavy, the stressed syl-
lable should not be light.

Kiparsky, Elenbaas and Kager construct the ranking of these con-
straints by considering all possible output candidates for a fair number
of multisyllabic words. They show that only the ordering in (4) yields
the right outcome. For example, the fact that (2a) is preferred over
(2b) indicates that License-σ is dominated by Stress-To-Weight
(or *(L̀H)). The contrast between (6a) and (6b) indicates that Stress-
To-Weight in turn is dominated by *Lapse.

(6) a. (rá.vin).(tò.lat) ‘restaurant’ (Pl. Nom.)
b. *(rá.vin).to.lat

1.3 Finite-State Approximation of OT
As we will see shortly, classical ot constraints such as those in (4) and
(5) are regular (= rational) in power. They can be implemented
by finite-state networks. Nevertheless, it has been known for a long

April 26, 2006

6 / Lauri Karttunen

time (Frank and Satta, 1998, Karttunen, 1998, Eisner, 2000) that ot
as a whole is not a finite-state system. Although the official ot rhetoric
suggests otherwise, ot is fundamentally more complex than finite-state
models of phonology such as classical Chomsky-Halle phonology (Ka-
plan and Kay, 1994) and Koskenniemi’s two-level model (Koskenniemi,
1983). The reason is that ot takes into account not just the ranking
of the constraints but the number of constraint violations. For exam-
ple, (7a) and (7b) win over (7c) because (7c) contains two violations of
*Lapse whereas (7a) and (7b) have no violations.2

(7) a. (ér.go).(nò.mi).a ‘ergonomics’ (Nom. Sg.)
b. (ér.go).no.(mı̀.a)
c. (ér.go).no.mi.a

Furthermore, for gradient constraints such as All-Ft-Left, it is not
just the number of instances of non-compliance that counts but the
severity of the offense. Candidates (7a) and (7b) both contain one
foot that is not at the left edge of the word. But they are not equally
optimal. In (7a) the foot not conforming to All-Ft-Left, (nò.mi), is
two syllables away from the left edge whereas in (7b) the noncompliant
(mı̀.a) is three syllables away from the beginning. Consequently, (7b)
with three violations of All-Ft-Left loses to (7a) that only has two
violations of that constraint.

If the number of constraint violations is bounded, the classical ot
theory of Prince and Smolensky (1993) can be approximated by a finite-
state cascade where the input is first composed with a transducer, gen,
that maps the input to a set of output candidates (possibly infinite)
and the resulting input/output transducer is then “leniently” composed
with constraint automata starting with the most highly ranked con-
straint. We will use this technique, first described in Karttunen (1998),
to implement the two ot descriptions of Finnish prosody. The key oper-
ation, lenient composition, is a combination of ordinary composition
and priority union (Kaplan and Newman, 1997).

The basic idea of lenient composition can be explained as follows.
Assume that R is a relation, a mapping that assigns to each input form
some number of outputs, and that C is a constraint that prohibits some
of the output forms. The lenient composition of R and C, denoted as
R .O. C, is the relation that eliminates all the output candidates of
a given input that do not conform to C, provided that the input has
at least one output that meets the constraint. If none of the output
candidates of a given input meet the constraint, lenient composition

2It is important to keep in mind that the actual scores, 0 vs. 2, are not relevant.
What matters is that (7a) and (7b) have fewer violations than (7c).

The Insufficiency of Paper-and-Pencil Linguistics / 7

April 26, 2006

spares all of them. Consequently, every input will have at least one
output, no matter how many violations it incurs.3

In order to be able to give preference to output forms that incur the
fewest violations of a constraint C, we first mark the violations and then
select the best candidates using lenient composition. We set a limit n, an
upper bound for the number of violations that the system will consider,
and employ a set of auxiliary constraints, Vn−1, Vn−2, . . . , V0, where
Vi accepts the output candidates that violate the constraint at most
i times. The most stringent enforcer, V0, allows no violations. Given
a relation R, a mapping from the inputs to the current set of output
candidates, we mark all the violations of C and then prune the resulting
R’ with lenient composition: R’ .O. Vn−1 .O. Vn−2O. V0. If
an input form has output candidates that are accepted by Vi, where n
> i ≥ 0, all the ones that are rejected by Vi are eliminated; otherwise
the set of output candidates is not reduced. The details of this strategy
are explained in section 1.4.2.

For the sake of efficiency, we may compose all the inputs with the
gen relation and leniently compose the result with all the constraints
into a single finite-state transducer that maps each input form directly
into its optimal surface realizations, and vice versa.

1.4 Finite-State OT Prosody
In this section, we will show in as much detail as space allows how
the two ot descriptions of Finnish prosody in Section 1.2 can be im-
plemented in a finite-state system. The regular expression formalism
in this section and the xfst application used for computation are de-
scribed in the book Finite State Morphology (Beesley and Karttunen,
2003). This technology is the result of a long line of research started by
Ronald M. Kaplan and Martin Kay in the early 1980s.

1.4.1 The GEN Function

The task of the gen function is to provide each input with all con-
ceivable output candidates. In keeping with the hallmark ot thesis
of “freedom of analysis”, every candidate, however bizarre, should be
available for evaluation by the constraints.

A gen function for prosody must accomplish three tasks: (1) parse
the input into syllables, (2) assign optional stress, and (3) combine
syllables optionally into metrical feet. Each of these tasks can be per-
formed by a finite-state transducer. The gen function for Finnish
prosody can thus be defined as the composition of the three compo-

3Frank and Satta (1998, pp. 8–9) call this operation “conditional intersection.”

April 26, 2006

8 / Lauri Karttunen

nents:4 Syllabify .o. Stress .o. Scan, where .o. represents or-
dinary composition, as opposed to .O. for lenient composition. With
the help of this regular expression, we can define the gen function for
Finnish prosody as in (8)

(8) define GEN(X) [X .o. Syllabify .o. Stress .o. Scan]

where X can be a single input form or a symbol representing a set of
input forms or an entire language. The result of evaluating GEN(X) is a
transducer that maps each input form in X into all of its possible output
forms.

The initial task, syllabification, is non-trivial in Finnish because the
nucleus of a syllable may consist of a short vowel, a long vowel, or a
diphthong. Adjacent vowels that cannot constitute a diphthong must
be separated by a syllable boundary. For example, the first vowel pair
in the input kielien ‘tongue’ (Pl. Gen.) constitutes a diphthong but the
second pair does not because of its position in the word. The correct
syllabification is kie.li.en.5

Because stress assignment and foot assembly are optional, gen pro-
duces a large number of alternative prosodic structures for even short
inputs. For example, for the input kala ‘fish’ (Sg. Nom.), GEN({kala})
produces the 33 output forms shown in (9).

(9) kà.là, kà.lá, kà.la, kà.(lá), kà.(là), ká.là, ká.lá, ká.la, ká.(lá),
ká.(là), ka.là, ka.lá, ka.la, ka.(lá), ka.(là), (ká).là, (ká).lá, (ká).la,
(ká).(lá), (ká).(là), (ká.la), (ká.lá), (ká.là), (kà).là, (kà).lá, (kà).la,
(kà).(lá), (kà).(là), (kà.la), (kà.lá), (kà.là), (ka.lá), (ka.là)

As the analyses by Elenbaas and Kiparsky predict, the correct output
is (ká.la).

1.4.2 The Constraints
There are two types of violable ot constraints. For categorical con-
straints, the penalty is the same no matter where the violation occurs.
For gradient constraints, the site of violation matters. For example,
All-Feet-Left assigns to non-initial feet a penalty that increases
with the distance from the beginning of the word.6

4For details, see the xfst script in
http://www.stanford.edu/~laurik/fsmbook/examples/FinnishOTProsody.html.

5Instead of providing the syllabification directly as part of gen, it would of course
be possible to generate a set of possible syllabification candidates from which the
winners would emerge through an interaction with ot constraints such as HaveOn-
set, FillNucleus, NoCoda, etc.

6The current status of gradient constraints is controversial. McCarthy (2003)
argues that gradient constraints are unnecessary and harmful. According to him,
alignment constraints such as (4i) should be categorical. See also Eisner (2000).

The Insufficiency of Paper-and-Pencil Linguistics / 9

April 26, 2006

Our general strategy is as follows. We first define an evaluation
template for the two constraint types and then define the constraints
themselves with the help of the templates. We use asterisks as violation
marks and use lenient composition to select the output candidates with
the fewest violation marks. Categorical constraints mark each violation
with an asterisk. Gradient constraints mark violations with sequences
of asterisks starting from one and increasing with the distance from the
word edge.

The initial set of output candidates is obtained by composing the
input with gen. As the constraints are evaluated in the order of their
ranking, the number of output forms is successively reduced. At the
end of the evaluation, each input form typically should have just one
correct output form.

An evaluation template for categorical constraints, shown in (10),
needs four arguments: the current output mapping, a regular expression
pattern describing what counts as a violation, a left context, and a right
context.7

(10) define Cat(Candidates, Violation, Left, Right) [
Candidates .o. Violation -> ... "*" || Left Right
.O. Viol3 .O. Viol2 .O. Viol1 .O. Viol0
.o. Pardon];

The first part of the definition composes the candidate set with a rule
transducer that inserts an asterisk whenever it sees a violation that
occurs in the specified context.8 The second part of the definition is a
sequence of lenient compositions. The first one eliminates all candidates
with more than three violations, provided that some candidates have
only three or fewer violations. Finally, we try to eliminate all candidates
with even one violation. This will succeed only if there are some output
strings with no asterisks. The auxiliary terms Viol3, Viol2, Viol1,
Viol0 limit the number of asterisks. For example, Viol1, is defined as
∼[$"*"]^2. It prohibits having two or more violation marks. The third
part, Pardon, is defined as "*" -> 0. It removes any remaining viola-
tion marks from the output strings. Because we are counting violations
only up to three, we cannot distinguish strings that have four violations
from strings with more than four violations. It turns out that three is
an empirically sufficient limit for our categorical prosody constraints.

The evaluation template for gradient constraints counts up to 14
violations and each violation incurs more and more asterisks as we

7Some constraints can be specified without referring to a particular left or right
context. The expression ?* stands for any unspecified context.

8The formalism is explained in Chapter 2 of Beesley and Karttunen (2003).

April 26, 2006

10 / Lauri Karttunen

count instances of the left context. The definition is given in (11).

(11) define GradLeft(Candidates, Violation, Left, Right) [
Candidates
.o. Violation -> "*" ... ||.#. Left Right
.o. Violation -> "*"^2 ... ||.#. Left^2 Right
.o. Violation -> "*"^3 ... ||.#. Left^3 Right
.o. Violation -> "*"^4 ... ||.#. Left^4 Right
.o. Violation -> "*"^5 ... ||.#. Left^5 Right
.o. Violation -> "*"^6 ... ||.#. Left^6 Right
.o. Violation -> "*"^7 ... ||.#. Left^7 Right
.o. Violation -> "*"^8 ... ||.#. Left^8 Right
.o. Violation -> "*"^9 ... ||.#. Left^9 Right
.o. Violation -> "*"^10 ... ||.#. Left^10 Right
.o. Violation -> "*"^11 ... ||.#. Left^11 Right
.o. Violation -> "*"^12... || .#. Left^12 Right
.o. Violation -> "*"^13 ... ||.#. Left^13 Right
.o. Violation -> "*"^14 ... ||.#. Left^14 Right
.O. Viol14 .O. Viol13 .O. Viol12 .O.Viol11 .O. Viol10
.O. Viol9 .O. Viol8 .O. Viol7 .O. Viol6 .O. Viol5
.O. Viol4 .O. Viol3 .O. Viol2 .O. Viol1 .O. Viol0
.o. Pardon];

Using the two templates in (10) and (11), we can now give very
simple definitions for Kiparsky’s nine constraints in (4). We only need
a few auxiliary concepts listed in (12). We omit the simple definitions
here.

(12) a. Light: Light Syllable (A syllable with a short vowel and with-
out a coda)

b. MSS: Syllable with Main Stress
c. SV: Stressed Vowel
d. SS: Stressed Syllable
e. US: Unstressed Syllable
f. S: Syllable
g. E: Edge: Syllable Boundary or Word Edge.
h. B: Boundary (Edge or Foot Boundary)

The constraints are defined in (13).

(13) a. *Clash: No stress on adjacent syllables.
define Clash(X) Cat(X, SS, SS B, ?*);

b. Left-handedness: The stressed syllable is initial in the foot.
define AlignLeft(X) Cat(X, SS, ".", ?*);

The Insufficiency of Paper-and-Pencil Linguistics / 11

April 26, 2006

c. Main Stress: The primary stress in Finnish is on the first
syllable.
define MainStress(X)
Cat(X, ∼[B MSS ∼$MSS], .#., .#.);

d. Foot-Bin: Feet are minimally bimoraic and maximally bisyl-
labic.
define FootBin(X)
Cat(X, "(" Light ")" | "(" S ["." S]^>1, ?*, ?*);

e. Lapse: Every unstressed syllable must be adjacent to a
stressed syllable or to the word edge.
define Lapse(X) Cat(X, US, [B US B], [B US B]);

f. Non-Final: The final syllable is not stressed.
define NonFinal(X) Cat(X, SS, ?*, ∼$S .#.);

g. Stress-To-Weight: Stressed syllables are heavy.
define StressToWeight(X) Cat(X, SS & Light, ?*, B);

h. License-σ: Syllables are parsed into feet.
define Parse(X) Cat(X, S, E, E);

i. All-Ft-Left: The left edge of every foot coincides with the
left edge of some prosodic word.
define AllFeetFirst(X)
GradLeft(X, "(", ∼$"." "." ∼$".", ?*);

To take just one example, let us consider the StressToWeight func-
tion. The violation part of the definition, SS & Light, picks out sylla-
bles such as t́ı and t̀ı that are light and contain a stressed vowel. The
left context is irrelevant, represented as ?*. The right context matters.
It must be some kind of boundary; otherwise perfectly well-formed
outputs such as (má.te).ma.(t̀ıik.ka) would get two violation marks:
(má*.te).ma.(t̀ı*ik.ka). That is because t̀ı by itself is a stressed light
syllable but t̀ıik is not. The violation mark on the initial syllable má is
correct but has no consequence because the higher-ranked MainStress
constraint has removed all competing output candidates for matemati-
ikka ‘mathematics’ (Sg. Nom.) that started with a secondary stress,
mà, or without any stress, ma.

1.4.3 Combining GEN with the Constraints

Having defined both the gen function and Kiparsky’s nine prosody
constraints, we can now put it all together creating a single function,
FinnishProsody, that should map any Finnish input into its correct
prosodic form. The definition is given in (14).

April 26, 2006

12 / Lauri Karttunen

(14) define FinnishProsody(Input) [AllFeetFirst(Parse(
StressToWeight(NonFinal(Lapse(FootBin(MainStress(
AlignLeft(Clash(GEN(Input))))))))))];

A regular expression of the form FinnishProsody(X) is computed
“inside-out.” First the gen function defined in (8) maps each of the
input forms in X into all of its possible output forms. Then the con-
straints defined in Section 1.4.2 are applied in the order of their ranking
to eliminate violators, making sure that at least one output form re-
mains for all the inputs that have at least one output form that does
not run afoul of some unviolable constraint.

Applying FinnishProsody to the input opettamassa ‘teaching’ (Sg.
Ine.) results in the input/output relation shown in (15) that correctly
represents the ternary prosodic pattern of the word. The incorrect
trochaic output competitor, (ó.pet).(tà.mas).sa, has been eliminated.

(15) o p e t t a m a s s a
(ó . p e t) . t a . (m à s . s a)

Getting the right result for one input is of course no guarantee that
all possible inputs get the desired output. To provide a quick test for
the correctness of the analysis we defined FinnWords as the set of 25
input words collected from Kiparsky and Elenbaas illustrating various
patterns of light and heavy syllables. It is by no means a complete inven-
tory, but it is sufficient to reveal that both analyses are flawed. The com-
pilation of the regular expression FinnishProsody(FinnWords) with
Kiparsky’s constraints produces the output forms shown in (16).

(16) (ér.go).(nò.mi).a, (́ıl.moit).(tàu.tu).mi.(sès.ta), (́ıl.moit).(tàu.tu).
(mı̀.nen), (ón.nit).(tè.le).(mà.ni).kin, (ó.pis).(kè.li).ja, (ó.pet).ta.
(màs.sa), (vói.mis).te.(lùt.te).le.(màs.ta), (strúk.tu).ra.(l̀ıs.mi),
(rá.vin).(tò.lat), (rá.kas).ta.(jàt.ta).(rè.na).ko, (ré.pe).(`̈a.mä),
(pé.ri).jä, (pú.he).li.(mèl.la).ni, (pú.he).li.(mı̀s.ta).ni, (m´̈a.ki),
(má.te).ma.(t̀ıik.ka), (mér.ko).(nò.min), (kái.nos).(tè.li).jat,
(ká.las).te.(lèm.me), (ká.las).te.(lè.mi).nen, (ká.las).(tè.let),
(kú.nin).gas, (j´̈ar.jes).tel.(m`̈al.li).syy.(dèl.lä).ni, (j´̈ar.jes).
(tèl.mät).tö.(mỳy.des).(t`̈an.sä), (j´̈ar.jes).(tèl.mäl).(l̀ıs.tä).mä.
(t`̈on.tä)

For a native speaker of Finnish, it is immediately obvious that the
two bold-faced outputs in (16) are incorrect. The correct outputs are
(ká.las).(tè.le).(mı̀.nen) and (j´̈ar.jes).(tèl.mäl).li.(sỳy.del).(l`̈a.ni). Why
are the rightful winners losing to undeserving competitors?

The Insufficiency of Paper-and-Pencil Linguistics / 13

April 26, 2006

1.5 Error Analysis
The gen function produces 70,653 output candidates for kalastele-
minen ‘fishing’ (Nom. Sg.). The six most highly ranked constraints,
Clash, AlignLeft, MainStress, FootBin, Lapse and NonFinal, elimi-
nate nearly all of them, leaving just two candidates to be evaluated
by the next constraint, StressToWeight: (ká.las).te.(lè.mi).nen and
(ká.las).(tè.le).(mı̀.nen). As shown in (17), the desired winner, (17b),
has one StressToWeight violation more than its competitor (17a).

(17) a. (ká*.las).te.(lè*.mi).nen
b. (ká*.las).(tè*.le).(mı̀*.nen)

Consequently, the incorrect (17a) is left as the sole survivor.
The same problem arises in the case of järjestelmällisyydelläni ‘with

my systematicity’ (Sg. Ade.). After the six most highly ranked con-
straints have been applied, out of the initial set of 21,767,579 output
candidates, 36 candidates are left. As shown in (18), the desired winner,
(18b), contains one StressToWeight violation whereas 8 others, includ-
ing the actual winner (18a), satisfy the StressToWeight constraint.

(18) a. (j´̈ar.jes).tel.(m`̈al.li).syy.(dèl.lä).ni
b. (j´̈ar.jes).(tèl.mäl).li.(sỳy.del).(l`̈a*.ni)

In these two cases, the desired result could be obtained by switching
the ranking of Parse and StressToWeight. However, the new ranking
would have undesirable consequences elsewhere. In particular, it would
produce the wrong result in the case of rakastajattarenako ‘mistress’
(Sg. Ess., QP) and voimisteluttelemasta ‘having someone do gymnas-
tics’ (Sg. Ela.). Instead of the correct result shown in (16), they would
surface with an unwanted trochaic pattern as in (19).

(19) a. *(rá.kas).(tà.jat).(tà.re).(nà.ko)
b. *(vói.mis).(tè.lut).(tè.le).(màs.ta)

Replacing Kiparsky’s Stress-To-Weight by the more specific
*(L̀H) constraint proposed in Elenbaas (1999) and in Elenbaas and
Kager (1999) yields the correct result in the case of järjestelmällisyy-
delläni because (l`̈a.ni) in the last foot of (18b) is not a violation of
*(L̀H). However, this switch does not help in the case of kalastele-
minen. Instead of (17), we now get (20). The correct output, (20b), is
still eliminated because it has one violation more than its competitor.

(20) a. (ká*.las).te.(lè.mi).nen
b. (ká*.las).(tè.le).(mı̀*.nen)

The specter of an unexpected competitor suddenly emerging to elimi-
nate the desired winner is the bane of ot analyses.

April 26, 2006

14 / Lauri Karttunen

The appendix of Elenbaas (1999) contains an extensive list of Finnish
syllable patterns and a sample output or outputs for each pattern, e.g.
XXLHLL (má.te).ma.(t̀ıik.ka).ni. Here L and H stand for light and heavy
syllable, respectively, and X can be either L or H. Although the list ap-
pears complete, there are gaps. The missing patterns include at least
four where the Elenbaas analysis in fact gives an incorrect result: XXL-

LLH *(ká.las).te.(lè.mi).nen, XXHHLH *(há.pa).roi.(tùt.ta).vaa, XXL-

HHLH *(pú.hu).(tè.tuim).(mı̀s.ta).kin and XXHLLH *(kú.ti).tet.(tù.ja).
kin. Kiparsky’s analysis also fails with the XXLLLH, XXHHLH and XXL-

HHLH patterns but succeeds with (kú.ti).(tèt.tu).(jà.kin).
In the case of the XXHHLH pattern, the input haparoituttavaa ‘of

the kind that causes one to fumble’ (Sg. Par.) has four remaining out-
put candidates at the point where Kiparsky’s Stress-To-Weight and
Elenbaas’ *(L̀H) constraints come into play. As shown in (21), the de-
sired winner, (21d), loses to (21a) and (21b), which have no violations.

(21) a. (há.pa).roi.(tùt).ta.vaa

b. (há.pa).roi.(tùt.ta).vaa

c. (há.pa).(roi).tut.(tà*.vaa)

d. (há.pa).(ròi.tut).(tà*.vaa)

At the next step, the contest between the remaining two incorrect out-
puts, (21a) and (21b), is decided in favor of (21b) because it has fewer
violations of the Parse constraint (Kiparsky’s License-σ, Elenbaas’
Parse-Syl) than (21a). As in the case of (17) and (18), giving Parse
a higher rank would give us the right result for the XXHHLH pattern.
But, as we have already seen in (19), it would lead to errors elsewhere.

In the case of the XXLHHLH input puhutetuimmistakin ‘even those
who have been made to talk the most’ (Pl. Ela.), the desired winner,
(22b), loses at the end because it has more violations of the All-Ft-
Left constraint than its only remaining competitor, (22a).

(22) a. (pú.hu).**(tè.tuim).****(mı̀s.ta).kin

b. (pú.hu).te.***(tùim.mis).*****(tà.kin)

In the case of the XXHLLH input kutitettujakin ‘even the ones that
have been tickled’ (Pl. Par.), the expected winner, (23c), is eliminated
under the Elenbaas analysis because it violates the *(L̀H) constraint,
whereas one of its two competitors, (23a), has no *(L̀H) violation.

(23) a. (kú.ti).tet.(tù.ja).kin

b. (kú.ti).(tèt).tu.(jà*.kin)

c. (kú.ti).(tèt.tu).(jà*.kin)

The Insufficiency of Paper-and-Pencil Linguistics / 15

April 26, 2006

Kiparsky’s analysis does better in this case because the (tù.ja) foot
in (23a) is a violation of his more general Stress-To-Weight con-
straint. Thus all three candidates in (23) tie on Stress-To-Weight,
and License-σ gets to pick (23c) as the rightful winner.

As far as we can see, there is no ranking of the nine constraints
in (4) that would produce the right outcome in all the cases we have
discussed. Replacing Stress-To-Weight by *(L̀H) does not help.

1.6 Conclusion
The assumption that is common to Kiparsky, Elenbaas and Kager is
that the alternation between binary and ternary patterns in Finnish
arises in a natural way from the interaction of independently motivated
universal constraints. The ranking of the constraints can presumably
be discovered by examining a limited set of examples. It may ultimately
turn out to be the right assumption for some set of constraints. But it
is not true for the constraints that have been proposed so far.

Optimality Prosody is a difficult enterprise. There are computational
tools such as OTSoft9 and Praat10 that can select the most optimal
output candidate provided that the user has explicitly specified the
competing output forms and has manually marked up the violations.11

These tools presuppose that (1) all the relevant input types are cov-
ered and (2) all the possible output candidates are included. Neither
condition is met in the Elenbaas and Kiparsky studies. Without a gen
function to enumerate all the possible outputs, it is easy to miss the
actual winner even if one is a native speaker of the language and an
expert in the field.12

A finite-state approximation of ot guards against some errors made
by a human gen and eval. Instead of working with individual words
one-by-one, the phonologist can collect a set of possible inputs of all
the different types and apply the constraint system to the whole corpus
at once to see the global effect of any change. But even with the xfst
techniques described in this paper, debugging ot constraints is a very
hard problem.

Acknowledgments
Thanks to Arto Tapani Anttila, Kenneth R. Beesley, Mary Dalrymple,
Tracy King, Paul Kiparsky, Annie Zaenen and an anonymous reviewer
for their helpful comments on earlier versions of this paper.

9http://www.linguistics.ucla.edu/people/hayes/otsoft/
10http://www.fon.hum.uva.nl/praat/
11OTSoft can mark some types of simple violations automatically but not others.
12Quandoque bonus dormitat Homerus.

April 26, 2006

16 / Lauri Karttunen

References
Beesley, Kenneth R. and Lauri Karttunen. 2003. Finite State Morphology .

Stanford, CA: CSLI Publications.

Eisner, Jason. 2000. Directional constraint evaluation in Optimality Theory.
In Proceedings of the 18th International Conference on Computational Lin-
guistics (COLING 2000), pages 257–263. Saarbrücken, Germany.

Elenbaas, Nine. 1999. A Unified Account of Binary and Ternary Stress.
Utrecht, Netherlands: Graduate School of Linguistics.

Elenbaas, Nine and René Kager. 1999. Ternary rhythm and the lapse con-
straint. Phonology 16:273–329.

Frank, Robert and Giorgio Satta. 1998. Optimality theory and the generative
complexity of constraint violability. Computational Linguistics 24(2):307–
316.

Hanson, Kristin and Paul Kiparsky. 1996. A theory of metrical choice. Lan-
guage 72:287–436.

Kager, René. 1999. Optimality Theory . Cambridge, England: Cambridge
University Press.

Kaplan, Ronald M. and Martin Kay. 1994. Regular models of phonological
rule systems. Computational Linguistics 20(3):331–378.

Kaplan, Ronald M. and Paula S. Newman. 1997. Lexical resource reconcili-
ation in the Xerox Linguistic Environment. In ACL/EACL’98 Workshop
on Computational Environments for Grammar Development and Linguis-
tic Engineering , pages 54–61. Madrid, Spain.

Karttunen, Lauri. 1998. The proper treatment of optimality in computational
phonology. In FSMNLP’98.. Ankara, Turkey: Bilkent University. cmp-
lg/9804002.

Kiparsky, Paul. 2003. Finnish noun inflection. In D. Nelson and S. Manni-
nen, eds., Generative Approaches to Finnic and Saami Linguistics: Case,
Features and Constraints, pages 109–161. Stanford, California: CSLI Pub-
lications.

Koskenniemi, Kimmo. 1983. Two-level morphology. Publication 11, Univer-
sity of Helsinki, Department of General Linguistics, Helsinki.

McCarthy, John J. 2002. The Foundations of Optimality Theory . Cambridge,
England: Cambridge University Press.

McCarthy, John J. 2003. OT constraints are categorical. Phonology 20(1):75–
138.

Prince, Alan and Paul Smolensky. 1993. Optimality Theory: Constraint In-
teraction in Generative Grammar . Rutgers, New Jersey: Cognitive Science
Center. ROA Version, 8/2002.

