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Isolines Topology Design (ITD) is an iterative algorithm for the topological design of two-dimensional
continuum structures using isolines. This paper presents an extension to this algorithm for topology
design of three-dimensional continuum structures. The topology and the shape of the design depend
on an iterative algorithm, which continually adds and removes material depending on the shape and dis-
tribution of the contour isosurfaces for the required structural behaviour. In this study the von Mises
stress was investigated. Several examples are presented to show the effectiveness of the algorithm, which
produces final designs with very detailed surfaces without the need for interpretation. The results dem-
onstrate how the ITD algorithm can produce realistic designs by using the design criteria contour
isosurface.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In the design of some structures, a two-dimensional (2D) repre-
sentation may be sufficient to capture the loading and supports
and so, a 2D representation for the optimization is sufficient. There
are instances, however, when a structure may need to be modelled
and optimised in three-dimensions (3D) due to perhaps the loads
not being symmetric, the supports not being regularly spaced or
due to the complexity of the environment itself. Most examples
presented in the literature on topology optimization are of 2D
problems, with relatively few papers which have either extended
topology optimization methods to 3D or which show 3D results.

The earliest published work which incorporated 3D effects to
topology optimization were those of Bendsøe [1] and Diaz and Lip-
ton [2] working with the Homogenisation method. Olhoff et al. [3]
used optimum 3D microstructures for topology optimization of lin-
early elastic 3D continuum structures subject to a single case of
static loading. In order to visualise the topology designs, a penali-
sation technique was applied. Beckers [4] used a dual method with
discrete variables for topology optimization of continuous struc-
tures in static linear elasticity. The optimization consisted of min-
imising the compliance by distributing a given volume of material
in a domain modelled by a fixed finite element mesh. Céa et al. [5]
introduced a topological shape optimization algorithm based on a
Fixed-Point method. The topological gradient concept [6] provides
a mathematical justification of Céa’s powerful method. The aim of
the topological gradient is to compute the sensitivity of a cost func-
ll rights reserved.
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tion when a cavity is made in the domain. Borrvall and Petersson
[7] considered large-scale topology optimization of elastic con-
tinua in 3D using the regularised intermediate density control. In
order to deal with large-sized problems, parallel computing was
used in combination with domain decomposition. Allaire et al.
[8] proposed a new numerical method based on a combination of
the classical shape derivative and of the Level Set Method (LSM)
for front propagation. This method was implemented in 2D and
3D, linear and nonlinear elasticity. The cost of the numerical algo-
rithm was moderate since the shape is captured on a fixed Eulerian
mesh. Hsu and Hsu [9] presented an automated process for inter-
preting 3D topology optimization results into a smooth Computer
Aided Design (CAD) model, using the Solid Isotropic Microstructure
(or Material) with Penalization (SIMP) method of topology optimi-
zation. On each cross-section, a density redistribution algorithm
transfers the black-and-white optimization result into a smooth
density contour represented by B-splines curves. A 3D CAD model
is obtained by sweeping through these cross-sections. Koguchi and
Kikuchi [10] developed a surface reconstruction algorithm, which
consisted of three parts: (1) an enclosed isosurface geometry from
which the topologically optimised model was generated; (2) fea-
tures detected; and (3) the parametric CAD solid model recon-
structed as bi-quartic surfaces splines.

This paper is an extension of the Isolines Topology Design (ITD)
algorithm (Victoria et al. [11]). The novelty of this work is in intro-
ducing into ITD the capability of designing 3D structures. The
method of determining the isosurfaces is given, together with sev-
eral examples to show the effectiveness of the algorithm. The re-
sults show the usefulness of ITD to provide quality solutions
with very detailed contours, without the need to interpret the
topology.
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Fig. 1. Structural boundary is defined by the intersection of the MCL with the criteria distribution.

Fig. 2. Look-up table for the MC algorithm showing the 16 different topologic states.
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2. Design with isosurfaces

The ITD is an iterative algorithm which redistributes (adds and
removes) material inside a design domain until a desired volume
fraction is reached. The redistribution process consists of four
steps: (1) obtain the design criteria distribution within the design
domain; (2) determine the Minimum Criteria Level (MCL), where
its intersection with the design criteria distribution produces the
new structural boundary, Fig. 1; (3) eliminate all regions from
the design domain where the criteria distribution is lower than
the MCL; (4) re-evaluate the remaining structure in order to recal-
culate the design criteria distribution.

The criterion used by ITD, [11] is loosely based on that of the
ESO method [12–16]. In the ESO method, a structure evolves



Fig. 3. Flow chart showing the ITD process.

Table 1
ITD parameters.

Example ni
Vf

V0

DV(%)

Cube with roller supports 50 0.05 1.0
Embedded beam 50 0.05 0.1
Electric mast 50 0.05 1.0
Sphere 200 0.05 0.1

Fig. 4. Cube with roller supports.
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towards a fully stressed design by slowly removing the lightly
stressed elements. In ITD, the isolines (or isosurface for 3D struc-
tures) which represents the minimum stress (or driving criteria)
of the structure are generated, where all material with a lower
stress is removed. The boundary formed by the isolines (or isosur-
face) then defines the new boundary of the structure.

The Level Set Method (LSM) [17–22] appears to be similar to
ITD in that it uses a curve or surface. However, whereas in ITD,
the isolines/isosurfaces represent the stress (or driving criterion)
of the structure; in LSM, the curve/surface represent the structural
boundary in an implicit form, as the zero level set of a high-dimen-
sional function. The method then traces the deformation of the
curve/surface by means of the deformation of this embedding
function [22], which is used to both to represent and evolve the
interface or boundary. For structure topology optimization, the
curves/surfaces which depict the structure boundaries are de-
formed to, for example, minimize the elastic deformation energy.

The objective of this work was to extend the ITD algorithm [11]
to allow the topology design of three-dimensional continuum
structures using the isosurfaces of the structural behaviour desired
of that structure.



Fig. 5. Cube with roller supports. Final design: (a) Front view. (b) Isometric view.
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2.1. Criterion selection

The design criterion used in this work was the von Mises stress,
which for a three-dimensional continuum is given by (1).

rVM ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1 � r2Þ2 þ ðr2 � r3Þ2 þ ðr1 � r3Þ2

q
ð1Þ

where, r1, r2, and r3 are the principal stresses.

2.2. Determination of the criteria distribution

When a new structural boundary has been generated by the ITD
algorithm, the new structural domain needs evaluation. An accu-
rate, but time consuming way to do this, would involve generating
an unstructured finite element mesh (FEM) every time the bound-
ary changed, followed by a finite element analysis (FEA). The use of
an approximate method of FEA with an unchanging regular sized
FEM where only the material properties of each FE are modified
significantly reduces the computational cost of obtaining a design.

The Fictitious Domain Method (FDM), Hyman [23] and Saul’ev
[24], has been applied to problems requiring the solution of partial
differential equations, where the domain of the problem is
complex. FDM is capable of simplifying the domain of the problem
by using a regular fixed domain. This method has been in existence
since the early 1950s and has been extensively used to solve prob-
lems such as: particle flow, heat transfer, fluid flow, shape and
topology optimization, to name but a few [25–33]. In 1999 Garcia
and Steven [34], were amongst the first to applied FDM for struc-
tural shape optimization, calling the method Fixed-Grid Finite Ele-
ments Analysis (FG-FEA). The approximate method of FEA used in
this work was FG-FEA as it had been previously researched by one
of the authors [35,36]. However any other approximate method
can be used.
2.3. Definition of minimum criteria level

The MCL is calculated in each iteration and depends on both the
distribution of the design criterion and the volume of the design
domain in that iteration, given by (2).

Vi ¼ V0
ni � i

ni

� �
þ Vf

i
ni

ð2Þ

where i is the ith iteration; V0 is the initial volume of the design do-
main; Vf is the final volume desired for the design; ni is the total
number of iterations to use for the ITD to design the structure.

Once the criterion has been calculated for each element in the
design domain, these are arranged in decreasing order of criterion
value. An element by element volume summation of the ordered
list is carried out until a volume is reached which is as close as pos-
sible to the target volume given by (2), where the level of error be-
tween the summed and target volume depends on the size of the
elements. The criteria value of the next element in the ordered list
is then used as the value for the MCL.
2.4. Minimum criteria level extraction

There are several approaches to the generation of a 3D surface,
e.g. Keppel [37], Herman and Udupa [38], Farrell [39], Shen and
Jhonson [40], Koguchi and Kikuchi [10].

The procedure to generate the structural boundary in 3D de-
signs depends on the determination of the MCL isosurface. In order
to determine the line segments which produce the profile of the
boundary, the contouring algorithm called Marching Cubes (MC)
[41] was implemented.

The MC method uses a divide and conquer approach, treating
each finite element independently as a cube cell. The basic
assumption of this algorithm is that a contour (MCL isosurface)
can only pass through a finite element in a limited number of ways.
This algorithm requires the value of the MCL as well as the value of
the criteria at each node, and consists of two basic steps:

1. Identify from Fig. 2 the topological state of each element;
2. Determine the shape of the contour of the MCL isosurface

through each element.

The interaction of an isosurface through a cubic element can
have a maximum of 256 different topological states. Since a cube
has double symmetry, the maximum number of states can be re-
duced to 16, Fig. 2. This shows all different states where a black cir-
cle at a node means that the value of the criteria at that node is less
than the MCL (i.e. outside the design).

When only one of the nodes in an edge of an element is marked
with a black circle it indicates that the MCL isosurface intersects
that edge, which is the case for topological states 2–15. To find that
intersection point, linear interpolation can be used. To construct
facets from the intersection points, Delanauy triangulation [42]



Fig. 6. Embedded cantilever beam.

Fig. 7. Embedded beam. Final design: (a) Front view. (b) Isometric view.
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Fig. 8. Electric mast.

Fig. 9. Electric mast. Final design: (a) Front view. (b) Isometric view.
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can be used. The shape of the MCL isosurface through the element
is then obtained by connecting these facets as shown in Fig. 2.

2.5. Structural boundary stabilisation

When the MCL is modified, the structural boundary changes
and this affects the criterion distribution. Therefore, before the
new iteration is started, an iterative process of reanalysis and
material redistribution is carried out until the change in the do-
main volume between successive boundary adjustments is less
than a minimum volume change limit (DV). Typical value are
DV(%) = 0.1–1%.

DVð%Þ ¼ Vi � Vi�1

Vi�1
� 100 ð3Þ

This iterative process only requires a few iterations, although
the exact number depends on the value of the volume of design do-
main at the ith iteration (Vi) determined by (2).

3. The isosurface topology design algorithm

The procedure for extending the ITD method for three-dimen-
sional designs, using the FG-FEA as the approximate method of
structural analysis is as follows:

1. Define the design and non-design domains, supports, loads
and material properties.

2. Specify the size of fixed-grid mesh.



Fig. 10. Sphere. (a) Design domain. (b) Loads. (c) Boundary conditions.
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3. Specify the final design volume Vf, the total number of iter-
ations ni and the minimum volume change limit DV%.

4. Specify the design criterion to use: von Mises stress, etc.
5. Carry out a FG-FEA of the design domain.
6. Determine the target volume and calculate the MCL.
7. Extract the shape for the design.
8. If the percentage volume change is greater than the mini-

mum volume change limit (DV%), go to step 9, otherwise
go to step 10.

9. Carry out a FG-FEA of the design domain. Go to step 7.
10. If the total number of iterations ni has been reached, go to

step 11, otherwise, update design volume and increment
the iteration number i by 1 and go to step 5.

11. Stop the design process.

This process can be viewed in the flow chart of Fig. 3.
Fig. 11. Sphere. Final design: Isometric view.
4. Examples

To illustrate the ITD algorithm, four structures were studied and
are presented here: (1) a cube with roller supports, (2) the embed-
ded beam, (3) an electric mast, and (4) Michell’s sphere.

For all the examples the elastic modulus is 210 GPa and the
Poisson’s ratio is 0.3. Since FG-FEA was used to analyse the struc-
ture, the elastic modulus of out elements was set to 0.021 MPa.
The FE used for the examples is the eight-node isoparametric ele-
ment with eight Gauss integration points [43]. The design criterion
used was the von Mises stress. Table 1 shows the ITD parameters
used.
4.1. Cube with roller supports

The design domain is a cube. The length of each side of the cube
is L = 1 m. The domain was subdivided into 50 � 50 � 50 elements,
of which only a quarter was used for the design process. Fig. 4
shows a cubic design domain which is subjected to a point load
P = 1 kN on the centre of the upper surface. The four corners of
the lower surface can slide in the horizontal plane.
Fig. 5 illustrates the resulting design to this first problem which
is a quadropod consisting of four legs [6]. If the four supports are
clamped, the horizontal lattice located between the four supports
is not required. The solution required 50 iterations with a total of
161 FEA. The time to carry out step 7 of the ITD algorithm was
approximately equal to 10% of a FEA. So the total solution time
could be estimated as being equivalent to 166 FEA.
4.2. Embedded beam

The length of the embedded beam is L = 5 m, height h = 1 m, and
thickness t = 1 m. The domain was subdivided into 50 � 50 � 250
elements, of which only a quarter was used for the design process,
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see Fig. 6. The oblong hexahedral design domain is clamped at the
two vertical sides. A concentrated bending moment M = 1 kNm is
applied at the centre of the domain.

The resulting final design (Fig. 7) agrees with the solutions ob-
tained by other authors [3,4,44]. In general, when the final volume
fraction is small, the topology design process produces truss-like
structures (although, in truss models, bars cannot have bending).
In fact, if we observe Fig. 7 the design bears a resemblance to
shapes found in nature. The solution required 50 iterations with
a total of 382 FEA. So the total solution time could be estimated
as being equivalent to 387 FEA.
4.3. Electric mast

The design domain is the T-shaped box of Fig. 8. Two symmetric
vertical loads P = 10 kN are applied in the middle of the lower
edges of the horizontal part of the T-section and represent the
loads exerted by the wires on the mast. Simply supported bound-
ary conditions are imposed at the corners of the base of the T-
shape box. Due to symmetry conditions only a quarter of the de-
sign domain was used to generate the design.

Fig. 9 shows the design obtained. The ITD algorithm produces a
truss-like design that evolves the design of real electric masts. The
number of truss elements which emerge depends on the mesh
density. A full-scale real industrial application would require a
much finer mesh, and a larger design domain in the vertical direc-
tion. The solution required 50 iterations with a total of 160 FEA. So
the total solution time could be estimated as being equivalent to
165 FEA.
4.4. Michell’s sphere

In this last example, the ITD algorithm is used to study Michell’s
sphere which is the only known-well formulated and solved exam-
ple of a spatial Michell structure [45]. The design domain is a cube.
The length of each side of the cube is L = 1 m. The domain design is
subdivided using 75 � 75 � 75 elements (Fig. 10a). Boundary con-
ditions and load applied are shown in Fig. 10b and c.

Fig. 11 presents the final design for Michell’s sphere, compro-
mising two families of 45� truss-like structures around the spher-
ical surface for the transmission of the torque moment. The
solution required 184 iterations with a total of 187 FEA. So the total
solution time could be estimated as being equivalent to 206 FEA.
5. Conclusions

This paper presents an enhancement to the ITD algorithm
which allows it to obtain three-dimensional designs. The ITD is
an iterative process, where the generation of new contours allow
the removal and redistribution of material. It allows for important
topology changes during the design process.

The use of the isosurfaces of the desired structural performance
has a number of major benefits: (1) although the design criteria
can be local (such as the von Mises stress), by using the MCL iso-
surface to define the shape/topology of the domain, the process
works globally; (2) the generated designs have smooth boundaries
and need no further interpretation, enhancement or processing.

Four examples of topology design of 3D continuum structures
were presented to demonstrate the applicability and effectiveness
of the ITD algorithm. The main conclusion of this work is that the
ITD algorithm is a useful design method for 2D/3D structures.
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