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0. Summary

The detection of Cumulonimbi (Cb) and towering cumuli (Tcu) is relevant for aviation as 
they are associated with hazardous flight conditions. Their detection is  therefore a 
requirement by ICAO. Since 1-8-2007 an operational algorithm, referred to as algorithm-
2007, is used at the airports EHBK and EHGG to detect Cb and Tcu. It uses the radar 
reflection observations and lightning observations as input. The performance of the 
algorithm-2007 is poor in terms of probability of detection (POD) and false alarm ratio 
(FAR). At KNMI this study was initiated to develop an improved algorithm.

An automated Cb-Tcu detection algorithm based on the synergy between radar and 
satellite observations is developed. The algorithm uses logistic regression to determine the 
probability of Cb-Tcu occurrence. Within logistic regression a forward stepwise approach is 
applied. The predictors selected by the forward stepwise regression method are related to 
the highest radar contour occurring in the 15 and 30 km radii collocation area, and to the 
satellite observations, reflection range of the high resolution visible channel, the cloud 
temperature and its standard deviation. The latter three all in the 15 km radius collocation 
area.

The obtained results show in general an improvement in performance of the developed 
algorithm in comparison to the algorithm2007 results. 
The performance of the developed algorithm is dependent on season and day-night 
conditions. The best performance is achieved in the Summer day category followed by the 
winter day category, with the summer defined from April till October. Surprisingly the 
summer night category shows the worst performance. 

Although the algorithm is developed for EHBK and EHGG no year round evaluation of the 
performance of the newly developed algorithm was possible for those airports because of 
the lack of sufficient Cb occurrences, which are required for a statistical analysis. 
Especially for the EHBK airport data was lacking. This hampers a successful operational 
application  of the developed algorithm for EHBK. 

Note that since there is no other observation which covers both the required spatial and 
time dimensions a future assessment of the performance of the algorithm is disabled. The 
METARs are the most reliable source of Cb and Tcu observation, but they are terminated 
at EHGG and EHBK. At EHAM and EHRD they are still continued.
 
Based on the results an improved operational algorithm can be defined. The probability 
threshold selection will determine the performance of the developed algorithm. For the 
daytime categories a POD of 65 % and a FAR of 35 % appears feasible in the summer 
and winter day categories. For the night time a POD of 55 % and a FAR of 45 % appears 
achievable.

During the study it became clear that in the algorithm-2007 the evaluation area with a 
radius of 30 km on June 30, 2008 is decreased to an area with a radius of 15 km. The 
decrease in area leads to a lower FAR, but also to a more significant loss in POD when 
compared to the METAR. It is recommendable to evaluate the effect on the results of this 
radius change for the algorithm-2007 with a data set covering an area with a radius of 15 
km.
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1. Introduction
 
The occurrence of strong turbulence forms a hazard for aviation. Observations of 
turbulence are a prerequisite for safe aviation conditions, especially around airports. Here 
an unexpected  vertical movement of an aircraft can have serious consequences. 
Direct observations of turbulence are not common in meteorology. There are indirect 
methods using for example the radiosondes to determine the stability and the likelihood of 
turbulence. The radiosonde network, however, has a drawback: it is too coarse in spatial - 
temporal resolution.

Another indicator of turbulence though indirect is the occurrence of convective clouds, 
towering cumuli and Cumulonimbi hereafter referred to as Tcu and Cb. 
Convective clouds may vary from fair weather cumuli or cumuli humulis, to tornado 
generating super cells. Embedded cumulus can grow from stratocumulus. For aviation at 
aerodromes in the Netherlands the embedded cumuli, the towering cumuli and 
Cumulonimbi are relevant. Not only the turbulence associated with these clouds can form 
a hazard to aviation, but also the associated precipitation, super cooled water occurrence 
and lightning can be a threat.
It is therefore a primary requirement by ICAO to include  the occurrence of Cb or Tcu in 
the METAR (Meteorological Aerodrome Report or MÉTéorologique Aviation Régulière) of 
an airport to limit the risks for aviation. The METAR report is predominantly given by an 
observer. 

In 2007 an automated Cb/Tcu detection system, hereafter referred to as the operational 
algorithm-2007, replaced the observers at two smaller airports in the Netherlands: 
Groningen airport  and Maastricht Aachen airport. The algorithm-2007 uses radar and 
lightning observations. Its performance is not optimal, a study by The ( 2006), showed a 
probability of detection of 50 % and a False Alarm ratio of 70 % as averaged values over 
the whole year.

This report describes a study initiated at KNMI to develop an automated detection 
algorithm that will have a better performance than the algorithm-2007. The presently 
proposed algorithm is based on a synergy of both radar and satellite observations. The 
satellite information is provided by the SEVIRI imager on the Meteosat satellites operated 
by EUMETSAT. The radar information stems from the two operational radars used at 
KNMI.
The goal of the study is an algorithm that detects Cb/Tcu in all seasons with a relatively 
low false alarm and high probability of detection at four different airfields.
A master thesis study performed in the same period as this study within the weather 
research department overlaps with this work, (Carbajal-Henken et al.,2009). Carbajal-
Henken studied the summer season for one airfield but for four years. The thesis study 
indicated logistic regression to be  a successful approach in the  classification of Cb-Tcu.

This report describes the background theory on convection, observation methods and 
verification methods. In the third section the Cb detection methods are described including 
the operational one, methods applied in the literature, and the developed algorithm based 
on logistic regression. The fourth section describes the data used in the algorithm 
development and the fifth section the obtained results. The last section gives the 
conclusion and considerations for future research.
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2. Theory 

This chapter describes the process of convection and the observation methods of 
convection. The chapter finalises with the verification scores to assess the performance of 
the detection methods.   

2.1 Convective clouds.

Convection in fluid dynamics refers to the transport of heat and momentum. There is a 
wealth of literature on this subject, indicating its importance. For further reading we refer to 
S Petterssen (2008) or Mcintosh and Thom (1969).

Convection in the atmosphere occurs when a parcel of air is distorted or displaced. This 
can have an impact on the temperature of the parcel. The parcel has a temperature and a 
moisture content. The surrounding air may have a different  temperature and moisture 
content. When the parcel becomes positively buoyant, it will accelerate upwards. The 
movement will initiate a number of processes. The rise of the parcel will lead to an 
expansion of the parcel due to the decreasing pressure. The expansion will cause a 
temperature decrease. The temperature decrease will continue until the moment that the 
moisture in the parcel experiences a phase change: condensation of moisture to droplets 
occurs. The condensation of moisture will produce heat, increasing the temperature of the 
parcel. The released heat is referred to as latent heat. This will contribute to the buoyancy 
of the parcel. A further drop in temperature may introduce another phase change: water to 
ice, again with the release of latent heat. The extent of the rise of the parcel is restricted by 
the amount of latent heat release and the temperature profile of the surrounding air.
The rise of the parcel will produce an exchange of air with the surrounding air. This 
exchange is referred to as either entrainment or detrainment. The amount of exchange will 
impact the energy content and temperature of the whole parcel. 
The formation of rain is mainly due to (auto)coalescence when the temperature of the air 
parcel is higher than 273.15 K. When the temperature drops below 273.15 K mixed phase 
hydrometeors can occur where the Wegener Begeron Findeisen(WBF), Pruppacher and 
Klett, (1980) process dominates the precipitation formation. In the WBF process ice 
crystals grow at the expense of liquid droplets due to the difference in saturation pressure 
of water vapour above ice and water surfaces. The difference in fall velocity enables an 
aggregation process resulting in growing hydrometeors.
When the fall velocity of hydrometeors is larger than the up-draft motion precipitation will 
start. The drag velocity of the hydrometeors will impact the energy content of the air 
parcel. 
When ice particles become present  in the air parcel, a process of charging can occur. 
This may lead to lightning. Lightning is also regarded as a hazard for aviation.

The spatial horizontal dimension of this process can vary from small scales (~100 m) to 
extensive scales of multi cells or squall lines(~ 10-100 km).  The vertical scales at the 
latitude of the Netherlands vary from fair weather cumuli (~ 1km ) to mature Cb rising up to 
the tropopause at 12~13 km. The micro-physical scales involved vary from nanometre, 
smallest activated cloud condensation nuclei, to centimetres, hail stones, Pruppacher and 
Klett (1980). The life cycle of the process can vary from 20~30 minutes, for  single cell 
thunderstorms to circa 6 hours for organised multi cell storms or squall lines. The whole 
process is non-hydrostatic, and includes non steady turbulence, Holton (1975). A 
description would require a full three-dimensional representation of all processes at all 
relevant scales. The complexity of the process is hard to capture in numerical weather 
prediction (NWP) models. The grid on which the NWP models perform the calculations to 
forecast the weather is (still) too coarse to capture all scales of convection.
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NWP may describe the vertical temperature and humidity profile adequate, and NWP 
could forecast favourable conditions for convection but it will most likely fail to forecast the 

correct location of convection initiation; see for example Zbyněk Sokol and Petr Pešice, 

(2009).

NWP may however provide valuable information for the algorithm of the level at which 
condensation occurs (the lifting condensation level: LCL). This LCL can not be observed 
from satellite or radar observations.  In an algorithm development the LCL could be used 
as an estimation of cloud base height, there were ceilometer observations fail to observe 
the cloud base height. 

2.2 Cb/Tcu detection

METAR
The METAR (Meteorological Aerodrome Report) is produced every thirty minutes. It is 
issued at 25 and 55 minutes past the hour. The METAR reflects the weather conditions in 
the vicinity of the airport ten minutes previous to the moment of reporting. 
The AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) 
February 2010 states that:” VCTS Thunderstorm in the vicinity are a “Primary requirement (thunderstorm) 
(ICAO Standard), but requires remote sensing to provide this in automated reports, requiring substantial work 
from many States to comply.”
It is recognized by this group that it is a challenge to automate the detection of Cb/Tcu.

ICAO prescribes the format and the content of the METAR, see for details the appendix 2. 
The clouds part includes the vertical visibility, the coverage at several layers, when 
observable, and the cloud base height. Relevant and mandatory to report is the 
occurrence of Tcu or Cb. When a Tcu and a Cb occur at the same cloud level the observer 
shall report only Cb. 
The time required to develop from a Tcu to a Cb is relatively short in comparison to the 
total life cycle of a Cb. The observation frequency of Tcu is therefore considerably lower 
compared to the Cb occurrence.

Radar (Radio detection and ranging)
In the Netherlands two Doppler radars are operated primarily for precipitation detection. 
The C-band radar emits and receives pulsed 6 Ghz radio waves with a wave length of 
around 5 cm. The lowest inclination of the radar beam is 1 degree. Therefore the part of 
the atmosphere not  observed by the radar increases with the distance to the radar 
position. 
The observed reflections are obtained from a distance from the Radar site (varying from 0-
320 km) and at moderate altitude (0.8-3 km) above surface of the earth. The reflection 
signal is proportional to the sixth power of  hydrometeor diameter, when the particles are 
smaller than the wavelength, Holleman (2000). Due to the sixth power the variance of the 
reflectivity value is huge. Therefore a decibel or logarithmic unit is used to represent the 
signal. The radar reflections are projected on a grid with grid cells of 2.5 by 2.5 km. 

Z [dBZ] 7 15 23 31 39 47

R [mm/h] 0.1 0.3 1 3 10 30

Table 2.1 Relation between radar signal and rain rate

In the  table 2.1 a few examples of reflectivity Z values and corresponding precipitation 
rates R are given.

The KNMI uses the following equation to relate reflections to rain rate:
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Z=200∗R1.6

with R in mm/hr.

It is relevant to note some considerations about radar observations in relation to Cb/Tcu 
detection:
– the operational radars are sensitive to precipitation and not to cloud occurrence. 

Therefore developing convection without precipitation can not be observed by the 
radar. Hence the probability is small that the radar will observe Tcu correctly.

– Additionally  the radar cannot distinguish between heavy non convective precipitation 
or convective precipitation. This may lead to false alarms when for example strong 
frontal related precipitation occurs.

Satellites
Meteorological  satellites provide an instantaneous view of the atmospheric state. The 
geostationary satellites are an invaluable source of information for nowcasting. The latest 
generation of operational geostationary satellites provides an image each 15 minutes over 
Western Europe. They are operated by EUMETSAT.  The Spinning Enhanced Visible and 
Infrared Imager (SEVIRI) on board the METEOSAT 8 and its follow-on observes the world 
since January 2004. SEVIRI is a passive instrument, it does not emit a signal, opposite to 
the radar. SEVIRI observes the reflection of the earth in spectral bands from 0.5 μm to 3.9 
μm and the emission from the earth in spectral bands ranging from 3.9 μm to 13.4μm . 
Next to the eleven spectral bands, there is a high resolution visible (HRV) channel, 0.4 μm 
- 1.1μm . The sampling grid distance in the nadir point of the satellite is 3 km for the eleven 
channels and 1 km for the HRV channel.
The observation cycle consists of a 12.5 minutes scan of the earth from south to north. 
Then the scan mirror returns to its starting position and calibration occurs in 2.5 minutes 
remaining from the 15 minutes cycle.

Further details on the satellite platform and the SEVIRI instrument can be found at 
www.eumetsat.int. 

It is relevant to note here some consideration about satellite observations in relation to 
Cb/Tcu detection:
-Satellite view is obscured when higher cloud layers block the view to the lower 
atmosphere. Cirrus may hamper a correct interpretation of the satellite data.
-The lack of the HRV and other reflection channels in the night period, when there is no in-
solation, affects the detection of clouds.
-The satellite only observes the top layer of the cloud.
-The horizontal spatial resolution degrades when moving away from the nadir point. At the 
latitude of the Netherlands, the spatial resolution is approximately  3.5 km West East and 6 
km North South, for the 11 channels and 1.2 by 2 km2  for the HRV channel. Clouds 
smaller than the pixel size can not be classified correctly.
-One should correct for the slanted view of the satellite to collocate radar and satellite 
signals when both are used. A correction requires shifts up to several radar pixels.

Other observation methods

Due to the strong discontinuity in appearance of convective clouds, point measurements 
will not contribute to  a successful detection. However one could consider additional 
observations to obtain certain cloud properties, not observable by radar or from satellite 
platforms. 
The ceilometer, based on lidar technology, provides information about cloud base height 
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and vertical visibility. But it can not classify clouds as convective or not. Hence the 
observed cloud base height does not always relate to the convection occurrence in a 
mixed cloud situation.
The 2 meter air temperature can give information for a threshold for cloud masking when 
using the brightness temperatures of the satellite observation.
The  2 meter air temperature combined with the dew point temperature can give an 
estimation of cloud base height.

The so called SAFIR network provides information about lightning. The lightning detection 
was shown to be a non significant contributor to Cb detection in the evaluation study done 
over 2005 on the operational algorithm-2007, The (2006).  Lightning is also associated 
with significant convection, where this study also aims to detect  early stages of 
convection.

2.3 Verification

Cb/Tcu occurrence is a dichotomous phenomenon. The frequency of Cb/Tcu occurrence is 
relatively low in comparison to the total number of METARs. The value of a forecast or 
classification can be assessed by comparison to an observation. Frequently used for 
assessment is the contingency table, table 2.2  (Wilks 1995). Here the occurrences of 
forecast/classification in comparison to observations are represented.

observed yes observed no

classified yes hits false alarms

classified no misses correct negatives

Table 2.2. Contingency table,( Wilks 1995). Relationship between the number of observed and 
classified cases of a dichotomous phenomenon. The sample size is the sum of the hits, misses, false 
alarms and correct negatives.

From the table a number of scores can be calculated. Given the large number of correct 
negatives for this specific Cb-Tcu classificationthis number is not incorporated in any of the 
scores used in this report. It may lead to an incorrect interpretation of the results.
Considered are, the Probability of Detection (POD), The False Alarm Ratio  (FAR) the 
Critical success index (CSI) or threat score, and the BIAS. 

POD = Hits/ (Hits + Misses) 

FAR = False Alarms / (Hits +  False Alarms) 

CSI = Hits/ (Hits + Misses +  False Alarms)

BIAS= (Hits +  False Alarms) / (Hits + Misses) 

The BIAS is a ratio of the observed events and the classified events. The bias is not an 
accuracy measure. It states whether the event is classified more ( bias >1)  or less (bias < 
1) than observed. Bias is 1 only states that Hits and Misses are in balance with Hits and 
False Alarms.

Brier Score

To assess  the performance of probabilistic forecasts it is convenient to capture it in a 
scalar number Wilks, (1995). The most commonly used is the Brier score (BS). The score 
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is the average of the squared differences between the forecast probability c and the 
dichotomous observable o.

BS=
1
n
∑
k=1

n

ck−ok 
2

with n the sample size and k the index.
The Brier score is negatively oriented. The  performance of an algorithm improves when 
the BS decreases. 
From the Brier score a skill score BSS can be computed.

BSS=1−
BS
BS ref

with BSref the reference BS, usually the climatological occurrence frequency. When the 
BSS becomes negative the BS is worse than the climatological BSref. A BSS close to 1 
indicates a very good performance. A BSS equal to 0 indicates that the BS and  BSref have 
an equal score, so that the forecast does not contribute significantly relative to the 
climatological BSref .
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3 Convection detection algorithms   

This chapter describes the operational algorithm-2007 as developed in 2005 and 
implemented in 2007, the evaluation of  its performance and the requirements by the end 
users. The second part summarises a literature study on Cb detection in applied 
algorithms. Based on the gained knowledge from the first two parts an algorithm is 
developed in this study that is described in the last two parts of  this chapter. 

3.1 operational algorithm-2007 and possible improvements

In 2005  a detection algorithm for Cb/Tcu detection based on radar signals was rapidly 
implemented at KNMI, based on Kucharscki 2005. The algorithm should detect the Cb and 
Tcu occurrences around the airport reference point (ARP) with a performance as good as 
the reports of the observers.
A decision table 3.1 is defined for a Cb/Tcu classification from a single image. In the 
applied algorithm two consecutive images are evaluated to come to a classification.

radar reflectivity in dBZ sfr1>0 sfr2>0 no safir

41 Cb Cb Cb

33 Cb Cb Tcu

29 Cb Cb 0

0 Cb Cb 0

no significant signal Cb Cb ///

Table 3.1 The decision table to come to a Cb/Tcu Classification. Radar signal should occur in a 
radius of 15 km around the station and at least at two connected radar pixels. Sfr1 denotes a safir 
lightning signal within the 15 km collocation area, sfr 2 is at a distance of 15-20 km to the station 
location. No safir means no lightning information near the station location.

The implementation of the algorithm is correctly done in accordance with the thresholds 
given by Kucharski (2005). Both Kucharski and the KNMI algorithm obtain for Cb detection 
similar probability of detection (POD) and false alarm ratios (FAR) of 50 and 70 % 
respectively. For Tcu the scores were POD 25 % and FAR 99%. The latter scores are in 
line with the in section 2.2  described inability of radar to observe non precipitating clouds. 
Additional studies done to improve the algorithm did not lead to acceptable POD and FAR 
values, see The (2006) in Dutch in appendix 5.
During this study described here it became apparent that the applied algorithm in the 2005 
version used a radius of 30 km for the collocation area. The radius was changed on June 
30, 2008 to 15 km. No evaluation has been done on the performance of the algorithm-
2007 with the new radius.

Interviews 

Internal interviews were held at KNMI to elucidate the problem. The requirements of the 
end users is relevant. In the paper “Nota XAVW-L beoordeling Cb-Tcu in autometar-3”, 
(2006), included in the appendix 6 (in Dutch) indicates that for safety a CSI of 90%  would 
be desirable. A more realistic achievable CSI of 66 % related to a POD of 80 % and a FAR 
of 20 %  as thresholds for an acceptable implementation is mentioned as a goal. 
The internal interviews revealed that even looser thresholds would also be acceptable. 
Given the present performance of the operational Cb/Tcu autometar algorithm-2007 any 
significant improvement would be welcomed by the end user.
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3.2 Convective cloud in satellite imagery

Cloud detection in satellites imagery is one of the major applications of satellite data 
interpretation. Tracking the motions of clouds from consecutive images arose as soon as 
such images became available, Fujita (1969). A significant number of studies is dedicated 
to cloud detection and identification, cloud work shop in Locarno, Thoss, (2009). The 
Satellite Application Facility on Now Casting (SAF-NWC, 2000) provides a cloud mask and 
cloud identification. The cloud masking is based on threshold technique applied to a 
selection of SEVIRI channels.
SAF-NWC also provides a Rapid Developing Thunderstorm (RDT,2000) product. Based 
on  temporal analyses of the decrease rate of brightness temperatures, thresholds of the 
temperature and spatial growth of a cluster of cool pixels a thunder storm classification can 
be made. Lightning observations can be used to increase the discrimination between 
thunderstorms and other developing cloud systems. The RDT tracks the thunderstorms 
and predicts their  future development and location.

Unfortunately no archived data of the SAFNWC products were available for 2005. 
Therefore the SAFNWC products were not included in this study, but they can be 
considered in future updates.

Severe or intense convection is a topic of many studies. V shaped patterns in well 
developed convective clouds were already discriminated in the imagery of the MVIRI the 
predecessor of SEVIRI, Levizzani V., Setvák M. (1996). The specific behaviour of the 3.7 
μm channel on the polar orbiter platform NOAA, AVHRR and its relation to convection and 
micro-physical processes was also described, Setvak (1989) .

Mecikalski and Bedka (2006) studied the precursor signals of convective initiation in day 
time imagery over the United States. They applied thresholds on the GOES (Geostationary 
Satellite) channels, on the difference between various channels and on the temporal 
development or trend of some channels. For three case studies a comparison to a radar 
network showed a  correlation of 60-70 % in accuracy with radar signals larger than 35 
dBZ.
Their method is only applied on day time imagery. For night time different methodologies 
are required which were not considered in their study. 
For the next generation of geostationary satellites Mecicalsky (2007) wrote a report on 
expected performances with the observations. The next generation of satellites will 
become operational in 2017, so for the present autometar improvement it is not an option 
to look into the improved performances of this satellite generation. 

Zinner et al. (2008) published a Cumulonimbus tracking and monitoring (Cb-TRAM) 
algorithm.
Their method identifies intense convection. It is based on thresholding the 6.2 and 10.8 μm 
channels of SEVIRI. They also incorporate  significant changes in reflection of the HRV 
channel into their analysis. The tracking algorithm determines the motion vectors on 
coarse pixel resolution. In an iterative process the pixel resolution is then stepwise 
increased improving the accuracy of the motion vector. They find an acceptable correlation 
with radar observations and recognize the ability of satellite observations to detect Tcu and 
Cb even before the precipitation formation process occurs.

Pattern recognition using neural networks requires for every specific study a well trained 
data set. The training of the dataset requires human supervision. It has been applied at the 
meteorological service in the UK, Pankiewicz (2001). As there are various atmospheric 
conditions in which Cb-Tcu convection occurs it is not straightforward to create a dataset 
for training and validation. 
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For more detailed background information on convection detection algorithms we refer to 
the master thesis of Carbajal-Henken (2009).

3.3 Algorithm development

Interviews with the KNMI R&D department of instrumentation revealed that there is no 
knowledge of instrumentation with proven ability to detect Cb/Tcu at time of writing 
available which can detect Cb/Tcu with a similar spatial coverage as an observer and at 
acceptable costs. The exploration into other instrumentation is therefore not pursued in 
this study. The consequence of this choice is that only radar and satellite observations can 
be used in this algorithm development.

The satellite based methods given in the literature all require at least a significant number 
of pixels to come to reliable statements on convection. Most of the discussed articles focus 
on severe or intense convection occurring frequently in the USA, Mecikalsk (2004), and 
mountainous areas in Europe, Zinner (2008). The early stages of convection are not 
captured by these algorithms. 
The goal of this study is to detect both early and mature convection. The early convection 
will occur in a small number of pixels, with a low or no intensity in the radar signal. The 
detection of the early convection category is a larger challenge, in comparison to 
developed severe convection detection. 
The algorithm presented here to meet this challenge, uses the synergy between radar and 
satellite information to come to classification between Cb/Tcu and non- Cb/Tcu cases. This 
implies  that the radar information can not be used as a source for validation studies as 
done by others, e.g. Zinner (2008) and Mecikalski (2004). This a point of consideration for 
future evaluation.

The developed algorithm to detect the Cb/Tcu clouds is expected to be implemented in an 
operational environment. A direct interpretation of available observations from satellite and 
radar is preferred as it facilitates the communication to the end users on the behaviour of 
the classification algorithm. 
This is in contrast with the work of Carbajal-Henken et al (2009) where  a physical model is 
introduced which calculates cloud products from the observed SEVIRI radiances. These 
cloud products are used as predictors in her study.
The inclusion of cloud products can improve the detection performance but it also requires 
knowledge on the applied algorithm by the end user to interpret the classification. 

As radar nor satellite observations can discriminate between Cb and Tcu both cloud types 
are treated as one category Cb/Tcu further used as the predictand in the algorithm 
development. 
As the vicinity of the aerodrome is not uniquely interpreted two radii of collocation areas 
are considered, 15 and 30 km radii around the aerodrome point of reference. The data of 
both radar and satellite observations within the collocation areas are used in the algorithm.

Partly based on the literature studies a large number of predictors were determined from 
the original data. The data involved :

The original radar reflection given in dBZ
The satellite radiances expressed in reflection and brightness temperatures.

For two different radii 15 and 30 km of the collocation area the following variables were 
calculated as predictors:
-radar contours varying from 14 dBZ to 56 dBZ ( in 16  steps of 2.5 dBZ) 
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-satellite 10.8 μm channel brightness temperature contours varying from 213 K to 258 K 
-satellite high resolution visible reflection contours corrected for the solar zenith angle 
varying from 59 % to 100 %.
From these distributions also the sum of the pixels, mean, median, minimum, and 
maximum values were determined, next to the maximum occurring contour, sum and a 
weighted sum of the occurring contours. The weighted sum here consists of the sum of the 
occurring contours multiplied by their order number, i.e. 1 x first contour + 2 x second 
contour + ...etc.

Additionally a rudimentary cloud mask was introduced for the smaller area (15 km radius). 
First  the difference between the 12.0 μm and the 10.8 μm channel larger than -3K is 
evaluated to flag those pixels probably containing cirrus. For those pixels with a brightness 
temperature in the 10.8 μm channel lower than the two meter air temperature minus 20 K 
and not flagged as cirrus contaminated the average temperature and its standard deviation 
is determined. 
In a future version the SAF-NWC cloud mask could be implemented here leading to an 
improvement of both cloud mask and cirrus mask.

In the development study of the algorithm also other predictors derived from satellite 
observations were evaluated, e.g. difference between 6.2 μm and 10.8 μm, difference 
between 3.9 and 10.8 μm, difference between 13.4 and 10.8 μm. Also the difference 
between the reflection channels 0.6 μm and 1.6 μm was evaluated. Unfortunately these 
predictors did not show a correlation with the predictand of Cb-Tcu occurrence over the 
time period considered. The precursor signals as given by Mecikalski and Bedka, (2006), 
to study convective initiation were not found to have an explanatory power in this study. 
Presumably because the convection in their study is has a higher intensity than can occur 
in the mid latitude climate studied here. Convection with regular occurrence of super cells 
is a rare phenomenon in the Netherlands. 

At the start of the study a hypothesis was that the rapid growing Tcu-Cb would give a clear 
signal in the development of the 10.8 μm channel. A clear cooling of the cloud top would 
be detectable from consecutive images. Unfortunately this signal did not correlate 
significantly to Cb-Tcu occurrence in the study. Therefore the development of the 10.8 μm 
channel was de scoped as predictor from the present version of the algorithm.
The lack of a clear development signal is possible related to the period in which a Tcu 
develops to a Cb. It is probably too short to be captured by a sampling frequency of 15 
minutes.
Another explanation for the lack of successful classification by either the development or 
the differences as proposed by Mecikalski (2004) could be that the study period is not 
concentrated on the summer months July and  August. The algorithms have to be 
applicable throughout the year, including the modest convection occurring in spring and 
winter. This limits the algorithm in the inclusion of predictors of severe but rare summer 
convection.   

Pattern recognition in a neural network is considered as an applicable method.  It requires 
a dataset for each airfield and each possible climate season. Also the number of Cb 
occurrences must be sufficient in each season.
Given the high dataset requirements of the neural network and the limited amount of data 
available this method is not pursued here in the development of this algorithm.

3.4 Logistic regression
 
Nearly two hundred potential predictors are determined to classify the binary predictand: 
Cb/Tcu or non Cb/Tcu. A successful approach to come to binary results is the Logistic 
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regression, Wilks (1995) and Carbajal-Henken et al (2009). Logistic regression models 
result to a classification or prediction of a binary predictand while the predictor variables 
can be of any type. A non-linear equation can fit the predictand c using a multiple number 
of predictors x.

P c=
1

1exp−b0b1 x1b2 x2...bn xn

With P(c)  the probability that c occurs, bi the regression parameters and xi the predictor 
variables.  The function is bounded between 0 and 1 due to its mathematical form allowing 
only for properly bounded probability estimates. The function drawn will always result in a 
S- shape curve.
Logistic regression is well known in social and medical sciences. In meteorological 
research it is commonly applied, e.g. for severe thunderstorm occurrence Schmeits et al 
(2008), or for contrail occurrence, Duda and Minnis (2009).

It is not possible a priori to indicate which predictors will lead to the best result in the 
desired classification. The dependencies and correlations between them are too complex. 
Commonly used is the forward stepwise regression, Wilks (1995). In each step a predictor 
is added to the equation and based on the statistical scores it is decided if the additional 
predictor contributes to the overall performance. It is up to the user to decide how many 
steps or predictors contribute significantly to the classification performance. Using all 
predictors may lead to an over-fit regression, Wilks (1995). In an over-fit regression too 
many predictors are used in the equation to describe the observations. The regression will 
fit to the used observations but the equation may fail to describe other observations not 
used for its determination.

To assess the performance of the obtained equation it is recommendable to split the data 
set in two parts: one part  is referred to as dependent set, the other part is the independent 
set. By logistic regression predictor variables and regression parameters, also called 
coefficients, are determined on the dependent part. The performance of the derived 
predictors and coefficients are tested and evaluated on the independent set.

There are numerous statistical scores which can be determined to assess the overall 
goodness of fit. The Nagelkerke R2 is explained here, but there are more tests available: 
the Wald test, likelihood ratio test and the Hosmer-Lemeshow test for example
Wilks (1995), Carbajal-Henken, (2009).

Nagelkerke  R2  (NR2)    

 In linear regression models the NR2  indicates the explained variance fraction. The NR2 is 
a modified Cox and Schnell coefficient and can be applied in the multiple regression used 
here. It indicates the proportion of the variance explained by the model (Nagelkerke, 
1991). The  NR2 coefficient can vary from 0 to 1. A higher value indicates a better 
performance.

Testing the continuous predictors

After selection of a limited set of predictors with explanatory power an extra test can be 
applied on the continuous variables. The continuous variables should have a linearity in 
the exponential coefficient of equation, Hosmer and Lemeshow, (2000). To check this, the 
variables should be split into equal parts distributed over the value range of the variable, 
preferably evenly populated. The lowest value part serves as a reference state. For the 
other parts dummy variables equal to zero are introduced. The dummy variable will 
assume the value of one if the value of the independent variable (predictor)  lies within the 
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range of the part of the associated dummy variable. The regression coefficients are 
determined for the dummy variables and plotted against the midpoints of the value parts. 
When the coefficients show a linear behaviour this is conform the theory that the values of 
the predictor have a linear explanatory power. The significance of the coefficient should be 
low. If the significance  is  too high the coefficient is not applicable. This may lead to 
coefficients only valid in a limited  value range, e.g. a cloud top temperature can only be 
used as an predictor in the 240 to 270 K range.  For non linear behaviour one may 
reconsider the relation of the predictor to the predictand: a square or root function of the 
predictor could give a linear behaviour. It is possible to expand this evaluation to 
combinations of predictors by multiplication.
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4 Data use and predictor selection

This chapter describes the data and its limitations. The method used to come to an 
independent and dependent set is explained. From the data the predictors are derived 
and the obtained predictors are evaluated and discussed.

4.1 Dataset Choices and restrictions

To evaluate the classification of a relatively rare event a large dataset is preferable. In 
such a data set frequent sampling of different seasons occur. Previous evaluations of the 
autometar results for Cb detection, however, were based on data gathered in 2005. To 
enable a comparison to this evaluation it was decided to limit the dataset to 2005. At the 
end of the study the results of the algorithm-2007 had to be recalculated, so the 
comparison could have be done for a longer period. A comparison over a longer period, 
however, would require a substantial effort, for which the time was simply unavailable. 
Hence the studied period was kept to 2005 only.
As described in the algorithm development part the choice for a synergy of radar and 
satellite data as a classification method rules out the possibility to use the radar data as a 
information source for validation. Various sources for information applicable for verification 
were explored. This included METAR, NWP information, lightning, and soundings. For 
various reasons given below the METAR appeared as the best verification data set.  E.g. 
NWP can only state that the conditions are favourable for convection but it can not 
forecast the location where the convection actually will occur. Lightning information was 
shown not to contribute significantly to classification results in the previous studies,The 
(2006), Carbajal-Henken (2009). Additionally lightning is mostly related to deep mature 
convection. Sounding information similar to NWP information, informs over the favourable 
conditions, and over the possible vertical extent of the convection but not over the actual 
position of the Cb. The actual position is important for aviation warnings.

METAR
For 2005 the METAR of four airfields were available. Amsterdam, EHAM, Rotterdam 
EHRD, Groningen EHGG, and Maastricht-Aachen EHBK, Unfortunately the night shifts at 
airport EHGG and EHBK were already automated and therefore no METAR was available 
from 23:00 till 07:00 GMT. 
A study of years before 2005, to overcome this data gap,  was disregarded as there was 
no complete SEVIRI data set available. In August 2007 all the METAR of EHGG and 
EHBK were replaced by automatic observations.
For a more extended evaluation of EHGG and EHBK  between autometar and METAR 
only 2006 and a part of 2007 is additionally available, with the limitation that there are no 
night time METARs.
Vicinity is not uni-vocally interpreted by observers. It can range from a circle of 15 km 
radius around the airport to a range where both cloud top and cloud base can be 
observed. The latter is reported when the observed cloud is moving towards the 
aerodrome area. The distance to the observer varies with the height of the observer, and 
the height of cloud base. 

Radar.
In early 2008 the resolution on which the radar data becomes available has been 
increased. The former radar signals were distributed on 2.5 x 2.5 km2 grid. In early 2008 
1x1 km2  gridded data became available. The radar signals given in reflections were easily 
obtainable. Other radar observations like the echo top height were not readily available. 
In this study only the readily available data, the radar reflections were considered.
For the operational adaption of the algorithm to the 1x1 km2  gridded information the 
coefficients may need to be re-evaluated. But it is foreseen that the 2.5 x 2.5 km2  gridded 
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products remain available in the future.

Satellite
The SEVIRI observations are operationally available since January 2004 and are properly 
archived at KNMI since August 2004 onwards. As the satellite pixels are larger than the 
radar pixel size it was decided to project the satellite information on the radar grid using 
nearest neighbour method to facilitate comparisons and calculations. In this version no 
direct comparison is made between radar and satellite pixel values. Should this occur in 
the future than the slanted view of the satellite has to be accounted for.

4.2 Dependent and independent data

A first evaluation of the data indicated that there are differences between summer and 
wintertime. Obviously there is also a difference for the satellite data between day and 
night, as during daytime the reflection channels and the HRV channel are available.
It was therefore decided to subdivide the data set in four groups: winter day, winter night, 
summer day, summer night. Summer is defined as the months April till October, winter 
from October till April. Night is defined as those time slots where the maximum HRV 
reflection value within the studied area is less than 4% (summer) and 6% (winter). Day is 
defined as the remaining time slots. The difference in day-night threshold between the 
summer and winter night is introduced as the results for night time conditions showed a 
correlation between the HRV channel and the predictand of Cb occurrence when higher 
values of maximum HRV were used as day-night discriminator. Apparently the relation 
between HRV channel and Cb occurrence is so strong that even in weak twilight 
conditions they correlate.

All the data for the available time slots are distributed over three nearly equal parts in the 
following method. At the start the first three days with Cb/Tcu occurrence are distributed 
over the three parts. The next Cb/Tcu occurrences of one day are put into that part 
containing the lowest number of Cb/Tcu reports. This procedure is iterated until all Cb/Tcu 
occurrences are contained in three parts. All time slots per day containing non Cb/Tcu 
reports are evenly distributed added to the three parts. With this distribution method it is 
aimed to avoid dependencies which may occur when all time slots are randomly 
distributed over the three parts. This could result in a distribution of a day with many Cb 
reports over all three parts, which would introduce an undesired dependency between the 
three parts.
Although the distribution ensures the splitting of Cb situation during daytime, it may fail in 
night time conditions, where a Cb case may last long enough to pass the date 
denominator. This case will then be split over two parts. This should be considered when 
interpreting the results.
The chosen distribution can be redone, ensuring that the same data will end up in the 
same part. This would not occur with a random distribution.

In the study two of the obtained three parts will serve as the dependent data set while the 
remaining part serves as the independent part. Cycling between the three parts enables 
an assessment on the data to evaluate if there are other dependencies.

Given the data available and the distribution chosen a total number of 36 data set parts 
need to be evaluated summarised in table.4.1. Note that the datasets for EHGG and 
EHBK are not complete. EHGG and EHBK lack METAR information from 23:00 till 7:00 
GMT. In the summer night this leaves hardly any data to perform a statistically  analysis. 
Due to its climatology EHBK has a too low Cb number occurrence in winter time for a 
statistical interpretation.  So wintertime will not be evaluated for EHBK with the 2005 data 
set.
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Winter day Winter night Summer day Summer night

EHAM 3 3 3 3

EHRD 3 3 3 3

EHGG * 3 3 3

EHBK * 3

Table 4.1 The number of dataset parts with a significant amount of Cb occurrence for an evaluation. 
* Note that for EHBK and EHGG the night time METAR is missing from 23:00 till 7:00. Some 65,000 
METAR observations distributed over a total number of 36 data sets are evaluated. 

  
4.3 Predictor selection

For predictor selection the Statistical Package for the Social Sciences SPSS package is 
applied. All 36 data sets are used in the package. 
A forward stepwise regression selection method is applied. Starting with a constant-only 
model at each step a predictor is selected with the largest statistical score (likelihood ratio 
based) and a significance less than 0.05. The selection and inclusion is stopped when the 
significance  of the remaining predictors is more than 0.05. Should during the inclusion a 
predictor obtain a significance of more than 0.10 then this predictor is excluded from the 
further steps of the evaluation. Forward stepwise regression selects the predictors purely 
on statistical criteria. The regression is capable to identify groups of predictors which 
individually contribute only weakly to moderately to the explanatory power but as a group 
contribute significantly.
It is unlikely that a unique set of predictors will be found describing all the occurrences in a 
perfect model. As the method does no physical interpretation the predictors should be 
scrutinized for their physical relation to the predictand. This could lead to the removal of 
predictors which have a high statistical correlation with the predictand but lack a physical 
explanation.

42 Different predictors were found to contribute to the Cb detection. Given that there could 
have been 180 predictors (5 x 36), one can conclude that  there is a big overlap in the 
selected predictors. There were differences between seasons, day versus night, and 
stations. Frequently these different predictors have a similar information content, e.g. the 
range of the HRV value was selected for EHAM, and EHRD, where the maximum and 
minimum HRV value appeared for EHBK and EHGG for the summer day season. As the 
minimum HRV value always had a negative coefficient, the information content of the 
combined HRV maximum minus the HRV minimum is similar to the HRV range predictor. 
The hypothesis was that the combination of  HRV maximum and the HRV minimum can be 
applied at all stations and can replace the HRV range as a predictor.
In other cases a single contour value of satellite or radar was selected as predictor. The 
predictors summarising the contour information can capture the single value information. 
The predictors summarising the contour information were expected to wrap up the 
information of a number of the single value contours. Therefore the contour summarising 
predictors were applied there were a single value contour appeared as a predictor.

By careful examination of the set of predictors the number could be reduced. To facilitate 
the interpretation and communication over the predictors for the different stations it is 
expected that a high degree of uniformity is beneficial both for the development and for the 
end-use. It facilitates the interpretation by the end-user.
Where it was acceptable the remaining set of predictors were reduced to comply with 
uniformity. 
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For the summer day uniformity was achieved. In table 4.2 the chosen predictors are 
summarised for each station and category. For the summer night the lack of sufficient data 
enabled uniformity only for EHAM and EHRD. In wintertime the EHGG predictors differ 
slightly from the EHAM and EHRD predictors. This may be due to a difference in climate or 
lack of sufficient night time data, please note the METAR from EHGG does not cover the 
full night. 
It is remarkable that:
 -the contours summarising the radar reflections are frequently selected as first by SPSS, 
although not apparent from table 4.2. 
 -in the winter night the weighted summation of contours is selected, where in the other 
categories the maximum radar contour is selected.
 -for all cases the radar reflection within the 30 km radius area is selected as predictor.
 -for daytime in winter and summer the difference between HRV maximum and HRV 
minimum (the HRV minimum always has a negative coefficient) is a selected predictor
-the average of the brightness temperature contributes significantly in the summer night.
-the standard deviation of the brightness temperature contributes significantly in the winter.

Winter day Winter night Summer day Summer night

EHAM a,b,c,d,f b,f,g a,b,c,d a,b,e

EHRD a,b,c,d,f b,f,g a,b,c,d a,b,e

EHGG * b,c,d,f b,f,g a,b,c,d

EHBK *  a,b,c,d

Table 4.2 Used predictors for each category with a) the maximum radar contour within the 15 km 
radius, b) the maximum radar contour within the 30 km radius, c) the minimum value of  HRV within 
15 km, d) the maximum value of  HRV within 15 km radius e) the averaged brightness temperature 
with in the cloud inside the 15 km radius, f) the standard deviation of the brightness temperature 
within the cloud inside the 15 km radius, g) the weighted sum of radar contours, which is related to 
the maximum radar contour within the 15 km radius. *For EHGG and EHBK there was not sufficient 
data to make a statistical  analysis for all the cases.

To elucidate the relationship, linear or otherwise, between the predictors and the 
predictand a subsequent study is performed. The variable range of each predictor is 
subdivided. This subdivision should be done carefully. A simple subdivision in four 
quartiles each containing 25 percent of the data was not possible. Due to the highly 
uneven distribution of the data bins contained more than 25 percent of the data. Adding to 
the complexity of subdivision is that the data of some variables are affected by non Cb 
related influences. E.g. the high values of HRV maximum can be affected by the 
correction for the solar zenith angle, which can introduce artefacts at high solar zenith 
angles, occurring in the twilight period. The standard deviation of the brightness 
temperature within a cloud can be affected by cloud edges. Cloud edges may lead to high 
standard deviations, whereas high deviations may also be related to Cb occurrence. The 
averaged brightness temperature of clouds may be affected by surface temperatures, 
again as the cloud edge is a fuzzy defined entity. So too high values of HRV,  of averaged 
cloud brightness temperature, and of standard deviation of brightness temperature should 
be excluded from the analysis on the relationship between predictors and predictands.

In Figures 4.1 to 4.5 the regression coefficients of the most frequently used predictors are 
given as function of their binned values. 
The HRV range coefficients are shown in figure 4.1 as a function of the values of HRV 
bins. The value of the coefficient first bin is set as a reference point equal to zero. The 
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coefficient for the summer case shows a linear behaviour with increasing HRV range 
value. This is in accordance with the results of Carbajal-Henken et al (2009). For the 
winter case the linearity is apparent after the second bin. The significance of the coefficient 
of the second HRV bin is  0.055. This could indicate a limited applicability of the HRV 
range as a predictor to values lower than 70 in the winter day time. 
The coefficients based on the radar signals, in figure 4.2 and 4.3 both from the 15 and 30 
km collocation area show an increase with increasing dBZ. The variation in behaviour in 
winter time is relatively small. In summer there is a steep increase in the coefficients for 
the 30 km radius collocation area when radar signal is over 24 dBZ. 
The coefficients for the averaged cloud top temperature have a different behaviour 
between summer and winter, figure 4.4. In summer both night and day time coefficients 
show a decrease with increasing cloud top temperatures, please note the first bin with the 
to zero  set coefficient is at the right side of the figure, at 270 K. Whereas in the winter 
there is an increase with increasing temperatures. However the significance of the winter 
coefficients is too high. The summer coefficient behaviour is in agreement with the results 
of Carbajal-Henken et al (2009). It corresponds to an increase of Cb occurrence with 
decreasing cloud top temperature. The behaviour of the cloud top temperature in the 
winter is possibly related to a different type of Cb occurrences in winter in comparison to 
the summer. In winter the Cb do not have a high cloud top height and therefore relatively 
high cloud top temperatures. The cloud top temperature is not considered as a reliable 
predictor in the wintertime. It is only used in the summer night category.

The standard deviation from the cloud 
top temperature in figure 4.5 the only 
one with non linear distributed  bins. 
High standard deviations occur 
relatively seldom, so to come to equally 
distributed population over all bins the 
highest bin had to be larger in 
comparison to the other bins. Most 
likely the high standard deviations are 
related to cloud edges and not to Cb 
occurrence. This limits the applicability 
of this predictor to moderate standard 
deviation values.

All the discussed predictors have a 
clear relationship to the predictand. 
Apart from the exclusion of the cloud 
top temperature as a predictor in the 
wintertime no other choices were made 
for the relationship between predictors 
and predictand.

Figure 4.1. Check on behaviour of the 
predictors with respect to the regression 
coefficients of the defined bins for HRV 
difference range for EHAM. Summer day in 
dashed blue and winter in red line.
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Figure 4.2 As Figure 4.1 but for radar dBZ for 
EHAM 15 km collocation area. Winter night in 
dashed blue and winter day in red line, summer 
day in  dashed blue with bullets and  summer 
night in  red line with bullets.

Figure 4.4 As Figure 4.2 but for Cloud top 
brightness temperature EHAM 15 km 
collocation area.  Note that the bins are from 
high to low temperatures. The first bin is at  
270 K.

Figure 4.5 As Figure 4.1 but for Cloud top 
brightness temperature standard deviation for 
EHAM 15 km collocation area. Winter night in 
dashed blue and winter day in red line.

Figure 4.3  As Figure 4.1 but for radar dBZ for 
EHAM 30 km collocation area. Winter night in 
dashed blue and winter day in red line, summer 
day in  dashed blue with bullets and  summer 
night in  red line with bullets.



4.4 Conclusions from predictor selection

The maximum radar contour or weighted sum of contours is very frequently selected by 
logistic regression indicating that these are significant predictors for Cb occurrence.
The maximum occurring contour value will vary with atmospheric conditions. A Cb 
occurrence can therefore not be linked to a fixed threshold in radar reflectivity observation 
as is done in the present operational algorithm-2007. 
This result corresponds to the frequently reported  experience of users of failure of the 
operational algorithm-2007 to detect Cb. The user recognises a pattern of Cb occurrence 
in the radar image which could be missed by the autometar, because the threshold value 
was not reached. The user will only focus on the pattern and not on the maximum 
occurring value. Therefore the user will recognize the Cb occurrence despite the fact that 
the threshold value is not reached and he will conclude that the operational algorithm-2007 
results are poor. 

The appearance of 30 km based predictors from the radar observations within the 
selection can be an indicator that the METAR includes information outside the 15 km 
target area. An algorithm neglecting the signals outside the 15 km radius collocation area 
will never be able to account for all the METAR reports and hence will always have a 
poorer performance when compared to the METAR.

The occurrence of HRV difference range as indicator is presumably linked to illumination 
of convective clouds with high reflective sides and tops and sharp shadows. Especially in 
the winter with a lower solar elevation angle the difference range will be more apparent.

The averaged and standard deviation of the brightness temperature become significant in 
the night as no reflection information is available. In the summer the Cb tops can reach 
high altitudes resulting in low cloud top temperatures. In the winter the relation between 
cloud top temperature and Cb occurrence is less clear in order to distinguish Cb.
Within a cloud a large variation in cloud top temperature in winter and a low average cloud 
top temperature in the summer may be indicative for Cb, but it depends very much on the 
scale of the cloud relative to the area under study. The cloud top temperature variation has 
less explanatory power compared to the HRV range and cloud top temperature. But it 
becomes relevant when the signal of the latter two is weak or non existing.
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5 Detection results and evaluation

The selected predictors, described in the previous section, and their coefficients form the 
basis to a probability of Cb occurrence.
The results are discussed and summarised. This chapter describes the statistical results 
and shows a selection of figures. More results and figures are given in the appendix 3.

5. 1 Results

The contribution of each predictor can be assessed by performing logistic regression in a 
forward stepwise selection method and study the impact on NR2 . Creating nested models 
shows that adding predictors will lead to an increase in the explained variance reflected in 
the NR2 score (Nagelkerke, 1990).

In tables 5.1 two examples are given of the development of NR2 scores.
In a number of categories the radar contour predictor causes the largest  increase in the 
NR2 score. The subsequent predictor causing the second largest reduction in the forward 
stepwise selection is different for each station and category. It can even change if a 
different part of the data is chosen to be the independent data. For example for EHAM in 
the summer day category and EHRD in the winter night both show different orders for 
predictors. The increase of NR2 with the addition of predictors is clearly visible. 

NR2 (1)  NR2 (2) NR2 (3)

0.470 [a] 0.472 [a] 0.460 [a]

0.519 [b] 0.496 [b] 0.490 [d]

0.561 [c] 0.527 [d] 0.514 [c]

0.584 [d] 0.552 [c] 0.550 [b]

NR2 (1)  NR2 (2) NR2 (3)

0.293[d] 0.458 [a] 0.433 [a]

0.397[a] 0.505 [e] 0.486 [e]

0.430[e] 0.512 [d] 0.493 [d]

Table 5.1 Example the increase of NR2  with increasing number of included predictors for  
left: EHAM summer day and right : EHRD winter night. The number in brackets in the top 
line indicate the data set used as independent data set. The variation visible is due to 
cycling of the independent part between the three data parts where the two remaining data 
sets serve as dependent data set. When the cycling causes a change in the selection 
order of the predictors this is reflected in the letter order in the square brackets, which 
denote the used predictors a: Contour radar 30 km radius b: HRV minimum, c:  HRV 
maximum d: Contour radar 15 km  radius, e: Standard deviation T. 

For a comparison between the various categories the final results obtained are shown in 
the table 5.2 here below. The cycling between the three datasets has been applied, 
leading to three numbers for each category.

The scores are summarised in a table given the BSS with the sample climatology as 
reference as well as the Nagelkerke  NR2 score. An attempt to determine the BSS with the 
persistence as reference was less successful as persistence of the observation 30 minutes 
earlier is a predictor with a high performance.

From the table one can conclude that for the summer night cases the performance 
expressed in BSS is lower than the summer day cases. 
EHGG has a small BSS value in the winter night indicating that the climatological 
performance is only slightly worse, but this dataset is not complete as it partly lacks 
METARS during the night.
The variation occurring due to the cycling of data parts as independent data is probably 
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caused by differences in Cb occurrence within the three parts.
At all aerodromes the summer day time scores are good. The summer night has on 
average the lowest BSS values, when excluding the EHGG WN from the comparison.

NR2 SD NR2 (1) NR2 (2) NR2 (3) BSS(1) BSS(2) BSS(3)

EHAM 0.58 0.55 0.55 0.36 0.44 0.43

EHRD 0.56 0.46 0.53 0.22 0.51 0.34

EHGG 0.55 0.56 0.58 0.44 0.44 0.43

EHBK 0.54 0.52 0.54 0.36 0.45 0.38

SN NR2 (1) NR2 (2) NR2 (3) BSS(1) BSS(2) BSS(3)

EHAM 0.41 0.48 0.49 0.41 0.29 0.21

EHRD 0.39 0.47 0.53 0.42 0.29 0.14

WD NR2 (1) NR2 (2) NR2 (3) BSS(1) BSS(2) BSS(3)

EHAM 0.65 0.64 0.61 0.45 0.49 0.54

EHRD 0.43 0.51 0.49 0.59 0.25 0.56

EHGG 0.43 0.42 0.33 0.37 0.17 0.30

WN NR2  (1) NR2 (2) NR2 (3) BSS(1) BSS(2) BSS(3)

EHAM 0.51 0.51 0.51 0.32 0.33 0.34

EHRD 0.43 0.51 0.49 0.40 0.23 0.23

EHGG* 0.41 0.38 0.31 0.22 0.04 0.27

Table 5.2 Summarising all the results of NR2 and BSS for all the categories and airports,  
summer day (SD) summer night (SN) winter day (WD) winter night (WN) for the three 
possible independent datasets, indicated by 1,2,3 in the NR2 columns. 
* EHGG WN is not a complete dataset as part of the night METAR is lacking.

Please note that there are no EHBK results for winter season. The difference in 
climatological conditions between EHBK and the other airports disables a meaningful 
application of the predictor coefficients at EHBK.  

The results are evaluated per category: summer, winter, day, night per aerodrome. For 
each case a set of three graphs are determined from the independent data:  the POD, 
FAR, CSI, and BIAS, as function of the probability threshold, summarised in one figure, the 
histogram distribution,and  the attributes diagram both as function of the predicted 
probability. A graph of one of the better and one of the worser obtained results is included 
in this section to illustrate the variation in the results.

From the POD, FAR, BIAS and CSI diagrams a threshold can be determined on which the 
classification can be based. The wide variety occurring within the graphs shows that one 
fixed value of threshold for all categories cannot be determined. For each season and 
day/night situation a threshold can be derived. 
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Figure 5.1 Scores for  EHAM summer day (left) and EHRD summer night (right). POD 
(open squares), FAR (black squares), CSI (pluses) and BIAS (dashed lines) as a function 
of the probability threshold.  

Figure 5.2 Frequency histogram of Cb distribution for probability threshold ten percent bins 
for EHAM summer day (left) and EHRD Summer night (right). In the top of the figure the 
number of cases in the bin are given. The light grey indicates the non-events, the black 
bars indicate the observed Cb occurrences. Note the large population of the first bin, out 
of the scale of the figure.

In figure 5.1 the POD, FAR, CSI and BIAS are given for a summer day at EHAM and for a 
summer night at EHRD. The detection during day light conditions is more successful than 
in the night. This is reflected in the relative high CSI scores of the shown EHAM case 
versus the EHRD case.

Where the CSI for the EHAM case peaks to 0.5 at a probability threshold of 0.2, the CSI at 
EHRD remains more or less constant from probability threshold 0.1 to 0.6.  For EHRD the 
FAR score exceeds the POD. 

The distribution given in Figure 5.2 shows the lower population for the EHRD case in 
comparison to EHAM in all the bins. Also the Cb occurrence is less at EHRD night case  in 
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comparison to the day time EHAM case. At EHAM the higher value bins have a high 
percentage of correct Cb detections. At EHAM the highest occurrence ratio of Cb is in the 
last bin. 

The attributes diagram compares the predicted probability to observed relative frequency. 
The  predicted values are binned into 10 percent bins, the occurrence number is given in 
the diagram and also in the histogram. The no-resolution line relates to the climatology, in 
this study the number of Cb occurrences compared to all reported METARS in the 
category. The no-skill line is halfway the no-resolution line and the perfect reliability line, 
which is represented by the diagonal.

Figure 5.3 The attributes diagrams for EHAM summer day (left) and EHRD summer night  
(right) as a function of the predicted probability. The numbers in the figure indicate the 
number of cases per 10 percent bin. The no resolution line relates to the climatological Cb 
occurrence, different for each station and season. The perfect reliability line is the 
diagonal. The no skill line is halfway the diagonal and the no resolution line.

In Figure 5.3 for EHAM a significant number of the results contribute to the skill of the 
model. Points to the left of the perfect reliability line indicate a too low predicted probability 
in comparison to the observed relative frequency. And vice versa for the points to the right 
of the diagonal. For EHRD a significant number of points have a large distance to the 
perfect reliability line, and are closer to the no-resolution line. These points contribute 
marginally to the skill of the model.

In the appendix 3 all attributes diagrams and histograms of 36 categories are given.
 
The attributes diagrams show that the majority of the results show a good performance. 
The summer night performances at EHAM and EHRD are relatively poor in comparison to 
other performances in the other categories. A significant number of cases of the EHRD 
show a relative poor performance with results close to the no-skill line. Also in winter time 
for EHGG there are number of cases with limited skill. For the night time at EHGG the 
dataset, however, is limited, as METARs are lacking. The lack of sufficient data in the night 
causes a spiky behaviour in the attributes diagram as is also visible in the figure above for 
EHRD.

Most summer day cases resemble the given summer case, only one of the EHRD cases 
has a score close to the no-skill line, see appendix 3.
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Night cases have a relative poorer performance in comparison to the day cases. The 
example of EHRD given here above is one of the worser cases.

Another way of presenting the information of POD, FAR, CSI and BIAS given in Figure 5.1 
is given in Figure 5.4. Here the CSI values, obtained for the probability thresholds ranging 
from 0.2 to 0.5, are shown as a function of FAR and POD. The chosen representation 
facilitates the interpretation, but the results have to be related to the attribute diagrams 
described above and given in appendix 3 to come to balanced conclusions.

Figure 5.4 The lines with bullets indicate the variation in performance due to the variation 
of the probability thresholds of the three cycling independent data sets for EHAM summer 
day. Left part: applied predictors are made uniform for all three sets. Right part: the first  
five selected predictors by the forward method for each set. Note that there will be 
different predictors used for each coloured line in the right side figure. The red bullet line is 
by coincidence in both figures based on the same predictors. 
The performance curves are given for probability threshold values ranging from 0.2, upper 
right, to 0.5, lower left, in steps of 0.05 as a function of FAR and POD. Note that an 
increase of probability threshold will result in a lower POD and a lower FAR.  Isolines of 
CSI in dotted black varying in steps of 0.1 from 0.9, the values of 0.1, 0.5, and 0.9 are 
indicated in the top of the figure. The red line denotes the BIAS is 1, right to this line are 
higher values of bias, left lower values. 

The chosen presentation allows for an evaluation of the impact of the choice of uniform 
predictors in comparison to the predictors selected by the forward stepwise regression 
method. Three examples are shown in figures 5.4 and 5.5 for summer day at EHAM and 
for summer night and winter day at EHRD.
The predictors chosen to accomplish uniformity might cover a broader spectrum of 
possible Cb/Tcu occurrences, because the choice is based on a good performance at 
different locations, therefore capturing more different Cb occurrences.

The uniformity choice impact on the scores for the summer day at EHAM are marginal in 
terms of variation in POD and FAR. The uniformity choice impact for the summer night at 
EHRD are relatively more significant. The difference in performance can partly be 
attributed to the difference in applied predictors.  

25



Figure 5.5  As figure 5.4 but for the summer night (upper row) and winter day (lower row) 
at EHRD with uniform applied predictors (left), and for the first five selected predictors 
(right). Note that there might be different predictors used for each coloured line in the right  
part of the figure. 

Occasionally the selection directly derived from the forward method is better, e.g. for 
EHRD winter day. But in the majority of the cases the uniformly applied predictors lead to 
a better performance, i.e. in the figures closer to the upper left corner where POD equals 1 
and FAR equals 0 and lesser variation between the results of the three datasets, than the 
performance of the first five selected predictors by the forward stepwise regression 
method. This justifies partly the approach of selecting uniform predictors. An additional 
benefit is that the approach facilitates the interpretation and communication both by 
developers and users at the different airports. 

5.2 Summary of results

The final results are summarised in Figure 5.6 to 5.9 for the uniform applied predictors. 
Here the difference between the performance curves of three datasets is relatively larger 
for the EHRD and EHGG categories in comparison to the EHAM category.
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Figure 5.6 As Figure 5.4 for all cases at EHAM summer day (upper left), summer night  
(upper right), winter day (lower left) and winter night (lower right). The black square 
represents the autometar score for Cb-Tcu for a 30 km radius of the collocation area, the 
triangle gives the autometar result for a 15 km radius of the collocation area.

Figure 5.7 as Figure 5.6  for EHBK (left ) and EHGG (right) summer day.
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Figure 5.8  As Figure 5.4 for all cases at EHRD summer day  (upper left), summer night  
(upper right), winter day (lower left) and winter night (lower right).

Figure  5.9 As Figure 5.6 for all cases at EHGG winter day (left) and winter night (right).
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In winter the results show less variation in the FAR dimension compared to the summer 
cases. The results show the smallest variation in the POD dimension in the winter day 
category. The variation in the results may vary with a different distribution of the Cb over 
the three subsets. Also a variation in METAR reports could explain the difference in 
variability at the different airports. 
Also for the complete datasets, consisting of the three parts together,  the coefficients are 
determined. These coefficients are used for the developed operational algorithm. The 
curves based on these coefficients are given in appendix 4.

The majority of the obtained results show a (much) better performance both in POD and 
FAR compared to the results of the present operational algorithm-2007 denoted by the 
black squares in the figures. Depending on the probability threshold some performance 
curves of the developed algorithm show lower POD and higher FAR values in comparison 
the performance of the  algorithm-2007. But the developed algorithm results have far 
better CSI values compared to the Cb/Tcu results of the operational algorithm-2007. 
Depending on the choice of the probability threshold there are cases which have a CSI in 
the order of the 0.60 for the developed algorithm. Next to a high CSI a BIAS of close to 1 is 
preferable in the results.

The presented evaluation can not be considered as complete. What is excluded from the 
present evaluation is the cases of embedded Cbs which will not always be included in the 
METAR. Here both the operational and the developed algorithms may detect correctly Cbs 
but this can not be assessed on the used METAR dataset. The METAR has been used as 
a reference set. It is based on human observations, so mistakes remain possible.
There is only a modest exchange of personnel between the various aerodrome locations. 
The observers are all trained in a similar way. Still it may occur that subtle differences in 
METAR reports can occur between the various locations. A new shift will certainly be 
aware of the previous METARS and may take them into account. The new shift will be less 
interested to what other locations report. These subtle differences will have an impact on 
METARS of the various airports.
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6 Conclusions and future.

The chapter summarises the conclusions and gives an outlook on future research.

6.1 Conclusions.

Since 1-8-2007 an operational algorithm-2007 is implemented at the airports EHBK and 
EHGG to detect Cb and Tcu. It uses the radar reflection observations and lightning 
observations as input. The detection of Cb Tcu is relevant for aviation and therefore a 
requirement by ICAO. The performance of the algorithm-2007 is evaluated and considered 
as poor in terms of POD and FAR. This study was initiated to develop an improved 
algorithm.

An automated Cb-Tcu detection algorithm based on the synergy between radar and 
satellite observations is developed. The algorithm uses logistic regression to determine the 
probability of Cb-Tcu occurrence. Within logistic regression a forward stepwise approach is 
applied. The predictors selected by the forward stepwise regression method are related to 
the highest radar contour occurring in the 15 and 30 km radii collocation area, and to the 
satellite observations, reflection range of the high resolution visible channel, the averaged 
cloud temperature and its standard deviation. The latter three all in the 15 km radius 
collocation area.

The obtained results show in general an improvement in performance of the developed 
algorithm in comparison to the operational  algorithm results. 
The performance of the developed algorithm is dependent on season and day-night 
conditions. The best performance is achieved in the Summer day category followed by the 
winter day category, with the summer defined from April till October. Surprisingly the 
summer night category shows the worst performance, not significantly better than the 
operational algorithm-2007, see appendix 4.

Although the algorithm is developed for EHBK and EHGG no year round evaluation was 
possible for those airports because of the lack of sufficient Cb occurrences, required for a 
statistical analysis. Especially for the EHBK airport data was lacking. This hampers an 
operational application for EHBK. 

Note that since there is no other observation which covers both the required spatial and 
time dimensions a future assessment of the performance of the algorithm is not possible. 
The METARs are the most reliable and continuous source of Cb and Tcu observation, but 
they are terminated at EHGG and EHBK. However at EHAM and EHRD they are still 
continued.
 
Based on the results of this study an improved operational algorithm can be defined. The 
probability threshold selection will determine the performance of the algorithm. For the 
daytime categories a POD of 65 % and a FAR of 35 % appears feasible in the summer 
and winter day categories. For the night time a POD of 55 % and a FAR of 45 % appears 
achievable.
In appendix 1 some recommendations are given towards an operational implementation.

6.2 Future

Although the POD and FAR are improved to maximum values of 65 percent and 35 
percent, respectively, they still do not comply with the values of 80 % POD and 20 % FAR 
mentioned in the NOTA from HWA of July 2006, included in appendix 6 (in Dutch).
Due to a lack of time, a number of improvements could not be explored in detail to study 
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their impact upon the results. It is recommended to consider them in a study.

During the study it became clear that the evaluation area with a radius of 30 km on June 
30, 2008 is decreased to an area with a radius of 15 km. The impact of the decrease in 
area is given in Figures 5.6 to 5.9 denoted by the blue triangles. It leads to a lower FAR, 
but also to a more significant loss in POD when compared to the METAR. It is 
recommended to evaluate the impact of this radius change on a dataset based on the 
same area.
In January 2008 the radar spatial resolution has been improved from 2.5x2.5 to 1x1 km. 
The operational algorithm-2007 requires al least three spatially connected pixels to come 
to a classification. This number should be reconsidered with the introduction of higher 
spatial resolution, as there is a factor of 6.25 in spatial resolution between the previous 
and present radar resolution. It will cause a better detection of smaller convective clouds 
but will also increase the noise. The spatial resolution improvement comes with a 
significant increase in clutter. The increase in clutter combined with the smaller radar 
pixels can cause an increase in false alarms. The operational algorithm-2007 and 
developed algorithm will be affected by clutter leading to a decrease in performance. 

Suggestions  to improve the autometar:
-possible predictors are not exhaustively explored: e.g. radar echo top height 
development, 3.9 and 1.6 microphysical satellite information. In individual summer months 
the predictor related to 3.9 micrometer channel was regularly selected by SPSS, it may be 
linked to intense summer convection, probably missed in the present predictor model set. 
-collocation area scanned by the observer can show a variation: It may be different for 
night versus day, summer versus winter. Research should be done on this subject.
-Independent evaluation study of the data set on Cb occurrence and unobserved Cb 
occurrence to explore the caveats of both METAR and the algorithm.
-Explore the persistence of the probability as an predictor.
-Explore if there are reliable other sources for instability information: NWP, SAFIR, 
AMDAR, soundings
-The predictor selection appears to be applicable for all the airports. There is agreement 
for the summer day and winter day and night. So despite the lack of data predictors for 
EHBK and EHGG  could be selected. As the necessity for an independent dataset is then 
no longer required it could be possible to determine coefficients despite limited data.
-The back-up MSG satellite, which will replace the operational one in case of maintenance 
or failure, is available for “rapid scan”. It observes western Europe with an observation 
cycle of 5 minutes. The higher observation frequency makes it interesting for Cb detection. 
It is however not continuous. Two days a month it is certainly not available, next to the 
other moments when the spare satellite replaces the operational one.
-Air mass classification from the satellite: This gives an indication whether the air mass 
over the airport is potentially unstable or stable. 
-SAFNWC (satellite application facility on Nowcasting , an EUMETSAT initiative)  has 
products like Rapid Developing Thunderstorm (RDT) product, and a cloud mask. The 
cloud mask can be used to determine cloud top temperature and its standard deviation. 
The RDT product could be a significant indicator of Cb, but it only recognizes mature Cbs 
of several pixels. It does however give a forecast of the Cb occurrence upto two hours.
-Evaluate 2009 for EHAM and EHRD as an extra independent data set. Here the radar has 
a higher spatial resolution. Both the high and the low resolution radar are available for a 
comparison study.
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Appendix 1 

Recommendations towards application 

The following steps have to be considered and/or implemented:
1.Applications: for the radar data notice the difference in resolution, the 2.5 km resolution 
radar product is still produced in 2010. This means that the coefficients determined in this 
study can be applied.
2.Satellite data need to be projected on the used radar resolution.
3.Predictors selection: Only 45 variables are proven to contribute positively to a Cb 
detection; 20 radar contours on 15 and 30 km; HRV maximum; HRV minimum; cloud 
average temperature; standard deviation of cloud top temperature, need to be calculated.
4.Concern question: What to do with the categories without coefficients for EHBK and 
EHGG? See above for the future plans.
5.Considerations for the newly developed Production chain: radar products, satellite 
products are still considered  separately within the collocation area. So there is no problem 
with the pixel shift between radar and satellite observations. When in the future radar and 
satellite pixels are merged for evaluation this problem has to be solved. Project the 
satellite on radar resolution. Take into account the pixel shift (averaged two radar pixels (at 
2.5 x 2.5 km2 resolution) North South) due to satellite viewing geometry. Perform the 
required calculations, make the classification. 
6.Please note that the present algorithms only provide a dichotomous classification of Cb 
occurrence. There is no unique classification of coverage. The predictors vary between 
day, night winter summer. Suggestion to come to a coverage value: the number of pixels 
enclosed by the highest radar contour or when it is exceeded the 33 dBZ contour.
7.The cloud base height of the Cb layer is difficult to assess. Suggestion  to use the lowest 
layer from NWP derived radiosonde data which indicates an instability layer. Or use the 
thumb rule based on Tair and Tdewpoint, both at 2 meter.
8.Detected obscured Cb can occur in a covered situation. The developed autometar 
algorithm can accommodate this.
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 APP 3-15 75/ /1 11 1/0 /08  7
No. 74
 4.5 Clouds
4.5.1 Siting
 Recommendation.― When instrumented systems are used for the measurement of the cloud amount and the 
height of
cloud base, representative observations should be obtained by the use of sensors appropriately sited. For local 
routine and
special reports, in the case of aerodromes with precision approach runways, sensors for cloud amount and 
height of cloud
base should be sited to give the best practicable indications of the height of cloud base and cloud amount at 
the middle
marker site of the instrument landing system or, at aerodromes where a middle marker beacon is not used, at a 
distance of
900 to 1 200 m (3 000 to 4 000 ft) from the landing threshold at the approach end of the runway.
Note.― Specifications concerning the middle marker site of an instrument landing system are given in Annex 
10,
Volume I, Chapter 3 and at Attachment C, Table C-5.
4.5.2 Display
 Recommendation.― When automated equipment is used for the measurement of the height of cloud base, 
height of
cloud base display(s) should be located in the meteorological station with corresponding display(s) in the 
appropriate air
traffic services units. The displays in the meteorological station and in the air traffic services units should relate 
to the same
sensor, and where separate sensors are required as specified in 4.5.1, the displays should clearly identify the 
area monitored
by each sensor.
4.5.3 Reference level
 Recommendation.― The height of cloud base should normally be reported above aerodrome elevation. When a
precision approach runway is in use which has a threshold elevation 15 m (50 ft) or more below the aerodrome 
elevation,
local arrangements should be made in order that the height of cloud bases reported to arriving aircraft should 
refer to the
threshold elevation. In the case of reports from offshore structures, the height of cloud base should be given 
above mean sea
level.
4.5.4 Reporting
4.5.4.1 In local routine and special reports and in METAR and SPECI, the height of cloud base shall be 
reported in
steps of 30 m (100 ft) up to 3 000 m (10 000 ft). Any observed value which does not fit the reporting scale in 
use shall be
rounded down to the nearest lower step in the scale.
4.5.4.2  Recommendation.― In local routine and special reports and in METAR and SPECI:
a) cloud amount should be reported using the abbreviations “FEW” (1 to 2 oktas), “SCT” (3 to 4 oktas), “BKN” 
(5 to
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7 oktas) or “OVC” (8 oktas);
b) cumulonimbus clouds and towering cumulus clouds should be indicated as “Cb” and “TCU”, 
respectively;
c) the vertical visibility should be reported in steps of 30 m (100 ft) up to 600 m (2 000 ft);
d) if there are no clouds of operational significance and no restriction on vertical visibility and the abbreviation
“CAVOK” is not appropriate, the abbreviation “NSC” should be used;
e) when several layers or masses of cloud of operational significance are observed, their amount and height of 
cloud
base should be reported in increasing order of the height of cloud base, and in accordance with the following
criteria:
1) the lowest layer or mass, regardless of amount to be reported as FEW, SCT, BKN or OVC as appropriate;
2) the next layer or mass, covering more than 2/8 to be reported as SCT, BKN or OVC as appropriate;
3) the next higher layer or mass, covering more than 4/8 to be reported as BKN or OVC as appropriate; and
4) cumulonimbus and/or towering cumulus clouds, whenever observed and not reported in 1) to 3);
f) when the cloud base is diffuse or ragged or fluctuating rapidly, the minimum height of cloud base, or cloud
fragments, should be reported; and
g) when an individual layer (mass) of cloud is composed of cumulonimbus and towering cumulus clouds 
with a
common cloud base, the type of cloud should be reported as cumulonimbus only.
Note.― Towering cumulus indicates cumulus congestus clouds of great vertical extent.
4.5.4.3 In local routine and special reports:
a) the units of measurement used for the height of cloud base and vertical visibility shall be indicated; and
b) when there is more than one runway in use and the heights of cloud bases are observed by instruments for 
these
runways, the available heights of cloud bases for each runway shall be reported and the runways to which the 
values
refer shall be indicated.
4.5.4.4  Recommendation.― In automated METAR and SPECI:
a) when the cloud type cannot be observed by the automatic observing system, the cloud type in each cloud 
group
should be replaced by “///”;
b) when no clouds are detected by the automatic observing system, it should be indicated by using the 
abbreviation
“NCD”; and
c) when cumulonimbus clouds or towering cumulus clouds are detected by the automatic observing system 
and the
cloud amount and the height of cloud base cannot be observed, the cloud amount and the height of cloud base
should be replaced by “//////”.
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Appendix 3: attributes diagrams and 
histograms

EHAM winter night attributes diagram for the 
three permutations of dependent and 
independent data parts.

EHAM winter night histogram distribution  for 
the three permutations of dependent and 
independent data parts. Grey all metar 
reports, black Cb-Tcu observations. Note 
that the first bin is out of scale.
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EHAM winter day attributes diagram for the 
three permutations of dependent and 
independent data parts.

EHAM winter day histogram distribution  for 
the three permutations of dependent and 
independent data parts. Grey all metar 
reports, black Cb-Tcu observations. Note 
that the first bin is out of scale.
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EHAM summer night attributes diagram for 
the three permutations of dependent and 
independent data parts.

EHAM summer night histogram distribu-tion 
for the three permutations of dependent and 
independent data parts. Grey all metar 
reports, black Cb-Tcu observations. Note 
that the first bin is out of scale.
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EHAM summer day attributes diagram for 
the three permutations of dependent and 
independent data parts.

EHAM summer day histogram distribution for 
the three permutations of dependent and 
independent data parts. Grey all metar 
reports, black Cb-Tcu observations. Note 
that the first bin is out of scale.
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EHRD winter night attributes diagram for the 
three permutations of dependent and 
independent data parts.

EHRD winter night histogram distribution for 
the three permutations of dependent and 
independent data parts. Grey all metar 
reports, black Cb-Tcu observations. Note 
that the first bin is out of scale.
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EHRD winter day attributes diagram for the 
three permutations of dependent and 
independent data parts.

EHRD winter day histogram distribution for  
the three permutations of dependent and 
independent data parts. Grey all metar 
reports, black Cb-Tcu observations. Note 
that the first bin is out of scale.
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EHRD summer night attributes diagram for 
the three permutations of dependent and 
independent data parts.

EHRD summer night histogram distribu-tion 
for the three permutations of dependent and 
independent data parts. Grey all metar 
reports, black Cb-Tcu observations. Note 
that the first bin is out of scale.
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EHRD summer day attributes diagram for 
the three permutations of dependent and 
independent data parts.

EHRD summer day histogram distribution for  
the three permutations of dependent and 
independent data parts. Grey all metar 
reports, black Cb-Tcu observations. Note 
that the first bin is out of scale.
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EHGG winter night attributes diagram for the 
three permutations of dependent and 
independent data parts.

EHGG winter night histogram distribution for  
the three permutations of dependent and 
independent data parts. Grey all metar 
reports, black Cb-Tcu observations. Note 
that the first bin is out of scale.
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EHGG winter day attributes diagram for the 
three permutations of dependent and 
independent data parts.

EHGG winter day histogram distribution for 
the three permutations of dependent and 
independent data parts. Grey all metar 
reports, black Cb-Tcu observations. Note 
that the first bin is out of scale.
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EHGG summer day attributes diagram for 
the three permutations of dependent and 
independent data parts.

EHGG summer day histogram distribution for 
the three permutations of dependent and 
independent data parts. Grey all metar 
reports, black Cb-Tcu observations. Note 
that the first bin is out of scale.
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EHBK summer day attributes diagram for the 
three permutations of dependent and 
independent data parts.

EHBK summer day histogram distribution for  
the three permutations of dependent and 
independent data parts. Grey all metar 
reports, black Cb-Tcu observations. Note 
that the first bin is out of scale.
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Appendix 4  POD FAR diagrams for the 
complete 2005 data set. No independent 
data are used here.

EHAM summer day BSS 0.44

EHAM winter day BSS 0.52

EHBK summer day BSS 0.41

Black square operational algorithm-2007 at 
30 km, blue triangle operational algorithm-
2007 at 15 km.

EHAM summer night BSS 0.39

EHAM winter night BSS 0.34

EHGG summer day BSS 0.44
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EHRD summer day BSS 0.38

EHRD winter day BSS 0.51

EHGG winter day BSS 0.28

EHRD summer night BSS 0.19

EHRD winter night BSS 0.31

EHGG winter night BSS 0.20 (not complete 
dataset)
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The applied predictors and their coefficients 
and significance

#ams wd
       Rad Cont 15 km     .190   .000
        Rad Cont 30 km     .399  .000
Std dev T cloud average 15 km .254 .000
        HRV min 15 km   -.023 .000
        HRV max 15 km   .009  .000
        Constant        -4.439 .000
#ams wn
       Rad cont sum 15 km     .022 .000
        Rad Cont 30 km     .343    .000
Std dev T cloud average 15 km.316  .000
        Constant        -4.809 .000
#ams sd
       Rad Cont 15 km    .246 .000
        Rad Cont 30 km     .301  .000
        HRV min 15 km    -.026  .000
        HRV max 15 km    .013   .000
        Constant        -5.622 .000
#ams sn
       Rad Cont 15 km     .160   .000
        Rad Cont 30 km     .259  .000
T cloud average 15 km    .004 .001
        Constant        -5.265  .000
#beek wd
       Rad Cont 30 km     .309   .000
        HRV min 15 km    -.022  .000
        HRV max 15 km    .008  .001
Std dev T cloud average 15 km .251  .000
        Constant        -4.512 .000
#beek w
       Rad Cont 30 km     .394 .000
Std dev T cloud average 15 km  .213 .003
        Constant        -6.134 .000
#beek sd
       Rad Cont 15 km     .145  .000
        Rad Cont 30 km     .291 .000
        HRV min 15 km    -.029  .000
        HRV max 15 km    .013   .000
        Constant        -4.906 .000
# beek sn
       Rad Cont 15 km     .143 .027
        Rad Cont 30 km     .254   .000
        Constant        -4.596 .000

# eelde wd
       Rad Cont 30 km     .357 .000
Std dev T cloud average 15 km .271  .000
        HRV min 15 km    -.026  .000
        HRV max 15 km    .014   .000
        Constant        -5.112 .000
#eelde wn
       Rad cont sum 15 km     .028 .000
        Rad Cont 30 km     . 319   .000
Std dev T cloud average 15 km  .279 .000
        Constant        -4.878 .000
# eelde sd
       Rad Cont 15 km     .136 .000
        Rad Cont 30 km     .224 .000
        HRV min 15 km    -.049  .000
        HRV max 15 km    .022   .000
        Constant        -6.133 .000
#eelde sn
       Rad Cont 15 km     .128   .027
        Rad Cont 30 km     .235  .000
        Constant        -4.285 .000
# rot wd
       Rad Cont 15 km     .206 .000
        Rad Cont 30 km     .324 .000
Std dev T cloud average 15 km .332  .000
        HRV min 15 km    -.025  .000
        HRV max 15 km    .012  .000
        Constant        -4.424 .000
#rot wn
       Rad cont sum 15 km     .019 .000
        Rad Cont 30 km     .356   .000
Std dev T cloud average 15 km  .275 .000
        Constant        -4.764 .000
#rot sd
       Rad Cont 15 km     .272 .000
        Rad Cont 30 km     .217 .000
        HRV min 15 km    -.022 .000
        HRV max 15 km    .014  .000
        Constant        -5.688 .000
# rot sn
      Rad Cont 15 km     .130  .000
        Rad Cont 30 km     .277 .000
T cloud average 15 km    .007   .000
        Constant        -6.143 .000

51



Appendix 5

Verificatie AUTOMETAR CB/TCU-detectie (herziene versie)

Han The 2 november 2006

Het algoritme voor Cb/TCu-detectie in AUTOMETAR is gebaseerd op een koppeling van het vóórkomen van 
Cb's aan de radar signaalsterkte. Dit is equivalent met het gelijkstellen van de kans op het voorkomen van Cb's 
aan  een  bepaalde  neerslagintensiteit.  De  drempelwaarden  voor  de  signaalsterkte  voor  Cb-detectie  zijn 
opgenomen in tabel 1. Op basis van deze drempelwaarden is een beslistabel opgesteld (tabel 2 en 3).

niveau 1 29.0 dBz
niveau 2 33.0 dBz
niveau 3 41.0 dBz
Tabel 1. De drie niveaus op basis waarvan tabel 2 is samengesteld.

dBz-klasse sfr1 > 0 sfr 2 > 0 sfr 1 en sfr 2: 0 of 
ongeldig

3 Cb Cb Cb
2 Cb Cb TCu
1 Cb Cb 0
0 Cb Cb 0
afwezig Cb Cb ///
Tabel 2. Beslistabel op basis waarvan een enkel radarbeeld wordt geclassificeerd. Signaalsterkte moet 
voorkomen binnen een straal van 30 km rond de locatie. sfr1 en sfr2 zijn twee niveaus van safirwaarnemingen: 
<15 km en 15-20 km tot waarneemlocatie.

Beeld 2
Beeld 1 Cb TCu 0 ///
Cb Cb Cb Cb Cb
TCu Cb TCu TCu TCu
0 Cb TCu 0 ///
/// Cb TCu /// ///
Tabel 3. Beslistabel op basis van twee opeenvolgende radarbeelden (5 minuten-basis).

Tabel 4 geeft een overzicht van het voorkomen van ontlading gecombineerd met het voorkomen van Cb/TCu. 
Gezien het  geringe aantal  waargenomen ontladingen zal  dit  criterium een geringe  rol  spelen.  Dit  wordt 
bevestigd door de verificatie. Het onderscheid tussen sfr1 en sfr2 (tabel 2) is hypothetisch en niet opgenomen 
in de verificatie.

Safir Alle 
waarnemingen

geen 
Cb/TCu

TCu Cb Cb

EHAM 346 7 906 6059
EHRD 154 31 853 5417
EHGG 84 42 532 3306
EHBK 363 21 220 1992
Tabel 4. Voorkomen van ontladingen binnen een straal van 20 km van de locatie bij waargenomen wolkentype 
(aantal bins van 5 minuten. Cb/TCu voorkomen op basis van METAR, geïnterpoleerd naar 5 minuten. Periode 
2005).

Tabel 5 geeft het aantal waargenomen TCu in vergelijking tot het aantal Cb. Op EHAM en EHRD wordt relatief 
het minste TCu in vergelijking met Cb waargenomen.

TCu Cb
EHAM 26 253
EHRD 40 196
EHGG 70 190
EHBK 35 100
Tabel 5. Voorkomen van TCu in vergelijking tot Cb (totaal aantal events in 20051).

1  Een event is een reeks van één of meerdere opeenvolgende METAR-meldingen.
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De verificatie is weergegeven in drie cijfers:  de  hit rate,  de  miss rate en de  false alarm ratio.  Deze zijn 
uitgaande van de volgende contingentietabel als volgt gedefinieerd:

METAR
AUTMETAR Cb No Cb
Cb hit (a) false alarm (b)
No Cb miss (c) correct  rejection 

(d)

Hit Rate (HR) = a/(a+c)
Miss Rate (MR) = c/(a+c)
False Alarm Ratio (FAR) =  b/(a+b)

De hit rate geeft aan welke fractie van de waargenomen Cb's (METAR) correct zijn gedetecteerd. De miss rate 
is de fractie waarbij dit niet is gebeurd. De som van hit rate en miss rate is 1.
De false alarm ratio is de fractie vermeende Cb-detecties (AUTOMETAR) waarbij geen Cb is waargenomen. 
Bij de analyse van zeldzame gebeurtenissen wordt d (correct rejection) buiten beschouwing gelaten.

Om een volledig beeld te krijgen van de kwaliteit van de methodiek en de toegepaste verfijningen zijn de 
resultaten voor een aantal configuraties doorgerekend. Deze zijn:

• analyse op basis van een enkel beeld (alleen tijdstippen overeenkomstig METAR), gemiddeld per 
kwartaal en over het gehele jaar en per locatie;

• invloed van Safir op de kwaliteit van de analyse (jaargemiddelde);
• TCu-detectie.

De resultaten worden gepresenteerd in een contingentietabel met daarnaast de berekende HR, MR en FAR.
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Resultaten

Algemene instructies voor het interpreteren van de tabellen
De linker tabel geeft een frequentieverdeling overeenkomstig de contingentietabel hierboven weer, voor de 
signaalniveau's uit tabel 1. Het aantal hits neemt altijd af bij  verhoging van het niveau; het aantal missers 
neemt toe bij verhoging van het niveau; het aantal false alarm neemt af bij verhoging van het niveau. Deze 
regels gelden altijd. Indien de false alarm ratio groter is dan 0,5 betekent dit dat van het aantal detecties er 
meer false alarms zijn dan hits. De hit rate kan worden verhoogd door de drempel te verlagen, maar dit zal ten 
koste gaan van de  false alarm ratio. De cijfers voor Schiphol en Rotterdam zijn gedifferentieerd tussen de 
dagperiode (d.w.z. tussen zonsopkomst en zonsondergang) en 's nachts. Dit onderscheid komt voor Beek en 
Groningen te vervallen, omdat er 's nachts geen visuele waarnemingen beschikbaar zijn. De verificatie beperkt 
zich dan ook alleen tot de dagperiode voor zover beschikbaar, dat will zeggen tussen 06.00 en 23.00 uur 
lokale tijd.

EHAM
Analyse op basis van een enkel beeld overdag (vergelijking tijdstippen METAR)

Jan/Feb/Dec 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.627 0.800 0.982

41 81 22 64 2 9
false alarm 
ratio 0.664 0.744 0.818

69 – 88 – 108 – hit rate 0.373 0.200 0.018

Maa/Apr/Mei 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.590 0.663 0.976

34 114 28 93 2 24
false alarm 
ratio 0.770 0.769 0.923

49 – 55 – 81 – hit rate 0.410 0.337 0.024

Jun/Jul/Aug 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.351 0.391 0.668

131 120 123 97 67 52
false alarm 
ratio 0.478 0.441 0.437

71 – 79 – 135 – hit rate 0.649 0.609 0.332

Sep/Okt/Nov 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.257 0.308 0.766

159 113 148 84 50 28
false alarm 
ratio 0.415 0.362 0.359

55 – 66 – 164 – hit rate 0.743 0.692 0.234

2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.401 0.473 0.801

365 428 321 338 121 113
false alarm 
ratio 0.540 0.513 0.483

244 – 288 – 488 – hit rate 0.599 0.527 0.199
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Analyse op basis van een enkel beeld 's nachts (vergelijking tijdstippen METAR)

Jan/Feb/Dec 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.679 0.754 0.955

43 186 33 131 6 20
false alarm 
ratio 0.812 0.799 0.769

91 – 101 – 128 – hit rate 0.321 0.246 0.045

Maa/Apr/Mei 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.468 0.532 0.79

33 128 29 100 13 43
false alarm 
ratio 0.795 0.775 0.768

29 – 33 – 49 – hit rate 0.532 0.468 0.21

Jun/Jul/Aug 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.297 0.392 0.662

52 82 45 65 25 32
false alarm 
ratio 0.612 0.591 0.561

22 – 29 – 49 – hit rate 0.703 0.608 0.338

Sep/Okt/Nov 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.204 0.292 0.715

109 158 97 123 39 47
false alarm 
ratio 0.592 0.559 0.547

28 – 40 – 98 – hit rate 0.796 0.708 0.285

2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.418 0.499 0.796

237 554 204 419 83 142
false alarm 
ratio 0.700 0.673 0.631

170 – 203 – 324 – hit rate 0.582 0.501 0.204

Totaaloverzicht (etmaalgemiddelde)

Totaaloverzicht 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.407 0.483 0.799
602 949 525 724 204 213 false alarm 

ratio
0.612 0.580 0.511

414 – 491 – 812 – hit rate 0.593 0.517 0.201

Analyse in combinatie met Safir (etmaalgemiddelde)

Totaaloverzicht 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.407 0.483 0.799
602 103

6
525 812 204 313 false alarm 

ratio
0.632 0.607 0.605

414 – 491 – 812 – hit rate 0.593 0.517 0.201

Analyse TCu (etmaalgemiddelde)

Totaaloverzicht 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.741 0.759 0.815
14 157

0
13 126

9
10 false alarm 

ratio
0.991 0.990 0.978

40 – 41 – 44 – hit rate 0.259 0.241 0.185
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EHRD
Analyse op basis van een enkel beeld overdag (vergelijking tijdstippen METAR)

Jan/Feb/Dec 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.747 0.808 0.980

25 77 19 48 2 5
false alarm 
ratio 0.755 0.716 0.714

74 – 80 – 97 – hit rate 0.253 0.192 0.02

Maa/Apr/Mei 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.534 0.630 0.932

34 129 27 97 5 24
false alarm 
ratio 0.791 0.782 0.828

39 – 46 – 68 – hit rate 0.466 0.370 0.068

Jun/Jul/Aug 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.295 0.377 0.664

103 179 91 152 49 74
false alarm 
ratio 0.635 0.626 0.602

43 – 55 – 97 – hit rate 0.705 0.623 0.336

Sep/Okt/Nov 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.307 0.386 0.798

158 111 140 81 46 29
false alarm 
ratio 0.413 0.367 0.387

70 – 88 – 182 – hit rate 0.693 0.614 0.202

2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.414 0.493 0.813

320 496 277 378 102 132
false alarm 
ratio 0.608 0.577 0.564

226 – 269 – 444 – hit rate 0.586 0.507 0.187

Analyse op basis van een enkel beeld 's nachts (vergelijking tijdstippen METAR)
Jan/Feb/Dec 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.644 0.763 0.966

42 178 28 123 4 17
false alarm 
ratio 0.809 0.815 0.810

76 – 90 – 114 – hit rate 0.356 0.237 0.034

Maa/Apr/Mei 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.600 0.650 0.875

16 127 14 93 5 27
false alarm 
ratio 0.888 0.869 0.844

24 – 26 – 35 – hit rate 0.400 0.350 0.125

Jun/Jul/Aug 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.344 0.422 0.688

42 104 37 89 20 43
false alarm 
ratio 0.712 0.706 0.683

22 – 27 – 44 – hit rate 0.656 0.578 0.312

Sep/Okt/Nov 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.197 0.261 0.803

114 141 105 115 28 28
false alarm 
ratio 0.553 0.523 0.500

28 – 37 – 114 – hit rate 0.803 0.739 0.197

2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.412 0.495 0.843

214 550 184 420 57 115
false alarm 
ratio 0.720 0.695 0.669

150 – 180 – 307 – hit rate 0.588 0.505 0.157
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Totaaloverzicht (etmaalgemiddelde)

Totaaloverzicht 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.413 0.493 0.825
534 102

9
461 778 159 227 false alarm 

ratio
0.658 0.628 0.588

376 – 449 – 751 – hit rate 0.587 0.507 0.175

Analyse in combinatie met Safir (etmaalgemiddelde)

Totaaloverzicht 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.413 0.493 0.825
534 1064 461 816 159 751 false alarm 

ratio
0.666 0.639 0.631

376 – 449 – 272 – hit rate 0.587 0.507 0.175

Analyse TCu (etmaalgemiddelde)

Totaaloverzicht 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.617 0.670 0.904
36 154

4
31 122

8
9 397 false alarm 

ratio
0.977 0.975 0.978

58 – 63 – 85 – hit rate 0.383 0.330 0.096
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EHGG
Analyse op basis van een enkel beeld (vergelijking tijdstippen METAR overdag)

Jan/Feb/Dec 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.744 0.821 0.974

20 90 14 71 2 12
false alarm 
ratio 0.818 0.835 0.857

58 – 64 – 76 – hit rate 0.256 0.179 0.026

Maa/Apr/Mei 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.283 0.394 0.737

71 120 60 94 26 28
false alarm 
ratio 0.628 0.610 0.519

28 – 39 – 73 – hit rate 0.717 0.606 0.263

Jun/Jul/Aug 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.214 0.248 0.497

114 256 109 217 73 86
false alarm 
ratio 0.692 0.666 0.541

31 – 36 – 72 – hit rate 0.786 0.752 0.503

Sep/Okt/Nov 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.368 0.425 0.802

67 112 61 85 21 28
false alarm 
ratio 0.626 0.582 0.571

39 – 45 – 85 – hit rate 0.632 0.575 0.198

2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.364 0.430 0.715

272 578 244 467 122 154
false alarm 
ratio 0.680 0.657 0.558

156 – 184 – 306 – hit rate 0.636 0.570 0.285

Analyse in combinatie met Safir (overdag)

Totaaloverzicht 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.369 0.433 0.716

275 575 247 464 124 152
false alarm 
ratio 0.676 0.653 0.551

161 – 189 – 312 – hit rate 0.631 0.567 0.284

Analyse TCu (overdag)

Totaaloverzicht 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.698 0.745 0.887

32 818 27 684 12 264
false alarm 
ratio 0.962 0.962 0.957

74 – 79 – 94 – hit rate 0.302 0.255 0.113
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EHBK
Analyse op basis van een enkel beeld (vergelijking tijdstippen METAR overdag)

Jan/Feb/Dec 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.714 0.786 0.929

8 33 6 29 2 19
false alarm 
ratio 0.805 0.829 0.905

20 – 22 – 26 – hit rate 0.286 0.214 0.071

Maa/Apr/Mei 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.444 0.500 0.856

50 101 45 76 13 26
false alarm 
ratio 0.669 0.628 0.667

40 – 45 – 77 – hit rate 0.556 0.500 0.144

Jun/Jul/Aug 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.265 0.310 0.568

114 125 107 101 67 45
false alarm 
ratio 0.523 0.486 0.402

41 – 48 – 88 – hit rate 0.735 0.690 0.432

Sep/Okt/Nov 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.667 0.704 0.815

9 90 8 75 5 23
false alarm 
ratio 0.909 0.904 0.821

18 – 19 – 22 – hit rate 0.333 0.296 0.185

2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.397 0.447 0.710

181 349 166 281 87 113
false alarm 
ratio 0.658 0.629 0.565

119 – 134 – 213 – hit rate 0.603 0.553 0.290

Analyse in combinatie met Safir (overdag)

Totaaloverzicht 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.439 0.491 0.733

185 345 168 279 88 112
false alarm 
ratio 0.651 0.624 0.560

145 – 162 – 242 – hit rate 0.561 0.509 0.267

Analyse TCu (overdag)

Totaaloverzicht 2005 lev 1 lev 2 lev 3
level 1 level 2 level 3 miss rate 0.800 0.817 0.900

12 518 11 436 6 194
false alarm 
ratio 0.977 0.975 0.970

48 – 49 – 54 – hit rate 0.200 0.183 0.100
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Discussie en aanbevelingen

• De resultaten zijn vergelijkbaar met die van het Franse onderzoek2.
• Het systeem werkt gedurende de zomermaanden en het najaar beter dan in het andere halfjaar. In 

vrijwel alle situaties blijft de false alarm ratio echter aan de hoge kant.
• In de wintermaanden is het systeem niet betrouwbaar en is het gebruik ervan niet aangeraden.
• Bij EHAM en EHRD zijn de false alarm ratio overdag structureel gunstiger dan 's nachts. De overige 

twee indicatoren (miss rate en hit rate) zijn vergelijkbaar. Dit wijst in ieder geval op een verschillende 
wijze van waarnemen overdag en 's nachts. Of dit verschil samenhangt met het feit dat er 's nachts 
visueel minder Cb's worden geregistreerd dan overdag of dat de Cb's 's nacht andere karakteristieken   
hebben, valt niet a priori te zeggen. Bepalend voor een juiste conclusie is de verhouding tussen het 
aantal Cb's dat in beide perioden wordt waargenomen. Deze bedraagt voor de visuele waarnemingen 
3:2 (overdag vs. 's nachts) en voor de radardetectie ongeveer 1:1. Deze verhoudingen gelden voor 
beide locaties.

• Voor alle vier de locaties zijn de scores (overdag) vergelijkbaar en kan volstaan worden met een 
enkele set van drempelwaarden. Het zij opgemerkt dat de winterperiode voor EHBK weinig data bevat 
hetgeen mogelijkerwijze de kwaliteit van de statistiek heeft kunnen beïnvloeden.

• Onder alle omstandigheden is het gebruik van de hoogste drempelwaarde (41 dBz) te hoog en leidt dit 
tot een veel te lage detectiegraad (hit rate).

• Het gebruik van Safir voor Cb-detectie leidt niet tot een verbetering. Dit hangt samen met de 
aanwezigheid van valse waarnemingen (zie tabel 4) waardoor de false alarm ratio omhoog gaat. 
Daarentegen wordt het aantal hits niet verhoogd omdat de ondergrens van de radar-echo's waarbij 
ontladingen worden waargenomen3 min of meer samen blijkt te vallen met level 1 (tabel 1).

• Het gebruik van drie niveau's in combinatie met de beslistabellen 1 en 2 is niet wezenlijk en kan 
vervallen. Het is voldoende om één drempelwaarde te kiezen.

• Het is onmogelijk om met behulp van het systeem TCu waar te nemen omdat dit type bewolking niet 
gecorrelleerd kan worden met een bepaalde neerslagintensiteit (false alarm ratio tegen de 100%). 
Gebruik van radar om TCu te detecteren wordt afgeraden.

• Wezenlijke verbetering van het systeem is waarschijnlijk alleen te verwachten indien deze methodiek 
wordt gecombineerd met andere vormen van detectie. Te denken valt aan wolkentoppenecho's 
(eveneens een radarproduct), satellietinformatie of een stabiliteitsparameter voor de atmosfeer die kan 
helpen bij de discriminatie convectieve en frontale neerslag. Deze stabiliteitsparameter zou gehaald 
kunnen worden uit de radiosondewaarnemingen en de korte-termijn modelverwachtingen, en zou met 
name de false alarm ratio kunnen verbeteren.

2  Anonymous, …., Meteo France. Tabel 26 e.v.: 50% miss rate; 70% false alarm ratio
3  Saskia Noteboom, Processing, validatie en analyse van bliksemdata uit het SAFIR/FLITS-systeem, KNMI intern 
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