
Web-based Closed-Domain Data Extraction on Online

Advertisements

Maria S. Pera Rani Qumsiyeh Yiu-Kai Ng∗

Computer Science Department
Brigham Young University

Provo, Utah 84602, U.S.A.

Abstract

Taking advantage of the popularity of the web, online marketplaces such as Ebay
(.com), advertisements (ads for short) websites such as Craigslist(.org), and commer-
cial websites such as Carmax(.com) (allow users to) post ads on a variety of products
and services. Instead of browsing through numerous websites to locate ads of interest,
web users would benefit from the existence of a single, fully integrated database (DB)
with ads in multiple domains, such as Cars-for-Sale and Job-Postings, populated from
various online sources so that ads of interest could be retrieved at a centralized site.
Since existing ads websites impose their own structures and formats for storing and
accessing ads, generating a uniform, integrated ads repository is not a trivial task.
The challenges include (i) identifying ads domains, (ii) dealing with the diversity in
structures of ads in various ads domains, and (iii) analyzing data with different mean-
ings in each ads domain. To handle these problems, we introduce ADEx, a tool that
relies on various machine learning approaches to automate the process of extracting
(un-/semi-/fully-structured) data from online ads to create ads records archived in
an underlying DB through domain classification, keyword tagging, and identification

of valid attribute values. Experimental results generated using a dataset of 18,000
online ads originated from Craigslist, Ebay, and KSL(.com) show that ADEx is supe-
rior in performance compared with existing text classification, keyword labeling, and
data extraction approaches. Further evaluations verify that ADEx either outper-
forms or performs at least as good as current state-of-the-art information extractors
in mapping data from unstructured or (semi-)structured sources into DB records.

Keywords: Data extraction, classification, keyword tagging, advertisement

1 Introduction

The web is a perfect publication forum for advertisements (ads for short), since ads websites
(allow sellers to) post ads for potential buyers worldwide who can freely access archived
and newly-created ads anytime and anywhere, which cannot be provided by any traditional

∗Corresponding Author; Contact Email: ng@compsci.byu.edu

1

publication media. According to a report from eMarketer(.com), online advertising sur-
passed newspaper marketing in 2010 and the margin is widened in 2011, which indicates
that online ads are popular and proliferating. Even though these days (online) information
access has gone through evolutionary changes, most of the tools employed for accessing
ads information still rely on an underlying database (DB) to maintain ads records. We
recognize that existing ads information providers employ their own ads structures and for-
mats for information processing. As a result, web users are forced to access ads archived
at individual websites using a variety of searching tools provided by each website to look
for ads of interest. A unified framework that integrates online ads available from various
sources into a single underlying DB should facilitate the process of querying, question an-
swering, and performing various data mining tasks on ads data. Creating an underlying
DB from multiple sources, however, is a non-trivial task due to the diversity in the formats
and contents of ads in various domains, a problem that we address and solve in this paper.

We introduce ADEx, a machine learning-based tool that automatically extracts and
populates ads available at various sources into a unified DB. During the extraction process,
ADEx employs effective supervised learning approaches to (i) categorize ads according to
their domains, (ii) label non-stop keywords1 in classified ads based on their types such that
the essential keywords are either (a) unique identifiers of a product/service P in an ad, (b)
properties of P , or (c) qualitative values associated with P , which facilitates the process
of identifying valid attribute values in each ad, and (iii) populate the tagged keywords as
attribute values in an underlying DB. To populate various ads regardless of their struc-
tures/formats and ads domains to which they belong, ADEx analyzes, filters, and extracts
(ir)relevant data from online ads using easy-to-implement algorithms to generate a single,
unified source of information on ads data.

ADEx advances the current data extraction techniques. Unlike most of the existing
information extraction approaches, it extracts data from un-/semi-/fully-structured ads
data sources without altering its design. ADEx generalizes the data extraction process
by labeling keywords in ads based on their types, as opposed to relying on domain-specific
vocabularies or ontologies to identify keywords associated with DB attributes which are
only applicable to the respective domains. Conducted empirical studies (see Section 4)
have verified that ADEx is highly effective in automating the process of populating a DB
with online ads from multiple sources.

ADEx is unique, since it (i) provides a unified tagging framework using its own type
definitions on ads, (ii) develops an elegant set of empirically-verified features to distin-
guish essential from useless data in ads, and (iii) introduces an optimal and effective ap-
proach which combines the tagging and extraction mechanisms (based on support vector
machines and decision trees, respectively) to accurately populate the underlying DB. More-
over, ADEx either outperforms or is comparable with the current state-of-the-art data
extraction tools.

The remaining of this paper is organized as follows. In Section 2, we discuss previous
work on data extraction, a task performed by ADEx. In Section 3, we detail the design of

1Stopwords are words with little meaning, such as articles, prepositions, and conjunctions, which often
do not represent the content of an ad.

2

ADEx. In Section 4, we present the empirical study conducted for verifying the effectiveness
of ADEx in populating ads and compare its performance with other state-of-the-art data
extraction approaches. In Section 5, we give a conclusion and discuss future work.

2 Related Work

In this section, we discuss recently proposed methodologies for extracting unstructured or
(semi-)structured data from online data sources that are closely related to the design of
ADEx.

A number of supervised learning approaches [14, 15, 22] have been developed for
extracting data from online sources. The machine learning approach in [14] extracts labeled
attributes from web form interfaces. It matches a form element, which is an identified value
type in our case, with its corresponding textual description, which is a keyword in an ad in
our case, by using classifiers that label form elements through learned structural patterns
on the form. ADEx, which relies solely on pre-defined features that are independent of ads
domains, avoids learning structural patterns for identifying attribute values in ads to be
extracted. Similar to ADEx, which first labels keywords in online ads and then extracts
labeled data, the tool proposed by Zhu et al. [22] captures the contents of web pages as
semantic trees, labels attributes in the trees, and then extracts attribute values using the
semantics provided by attribute labels and a Dynamic Hierarchical Conditional Random
Field model. Raeymaekers et al. [15] also represent the content of a web page in a tree
structure and use the (k, l)-contextual tree languages to (i) decompose a tree into sub-trees,
each of which contains at most k children with a maximal depth of l, and (ii) induce domain-
specific wrappers for identifying and extracting information from the tree structure. Unlike
[15, 22], ADEx does not impose an overhead on structuring the contents of web pages
(online ads in our case) as trees for data extraction.

Ontologies, along with various probabilistic models, have been constructed for extract-
ing data from online data sources. Khare and An [7] rely on a Hidden Markov Model (HMM)
to label major components of a web interface, such as text-labels, text-boxes, and selection
lists, and extract information from the interface. The authors in [7] train different HMMs,
one for each available template of a web page, using training data that are grouped accord-
ing to the templates. This approach is similar to ADEx, since ADEx constructs a decision
tree classifier for extracting data from ads in a particular domain D using training ads data
belonged to D. Even though HMM is effective for data extraction, it is slower than existing
supervised algorithms, including the decision tree employed by ADEx. Rajput and Haider
[16] apply ontologies, various information extraction techniques, and Bayesian Networks to
extract and predict missing information from unstructured, ungrammatical, and incoherent
data sources, such as online ads at Craigslist(.org). Although effective, the model has been
verified only for extracting data from a single ads domain.

Instead of relying on supervised learning methodologies, probabilistic models, and/or
ontologies, some of the data extraction tools [11, 18] depend on the HTML structure of
web pages to perform the information extraction task. Miao et al. [11] represent each web

3

page as a sequence of binary visual signals, which capture the patterns of HTML tag paths2

so that paths that satisfy the structure of data records of interest are extracted. Unlike
ADEx which analyzes the contents of ads to identify attribute values to be extracted, the
information extraction methodology in [11] relies solely on web page structures and thus can
only be applied for extracting data from structured web pages. Song et al. [18] introduce
MiBAT (Mining data records Based on Anchor Tree), an information extraction tool that
automatically creates data records from semi-structured (HTML) web pages that include
free-format, user-generated content such as posts, comments, or reviews. MiBAT considers
domain constraints of web data records and anchor points (enclosed in HTML structures)
to identify the structured part of a semi-structured web page, which contains DB attributes
and values (embedded in XML/HTML tags) to be extracted. Although MiBAT has been
evaluated only on forums, the authors claim that it can also be employed to extract data
from other semi-structured web sources.

Wrappers have also been commonly employed for extracting information from online
documents. Phoebus [12] creates data records from unstructured and ungrammatical online
ads based on extractors constructed using labeled information in documents. In performing
the extraction task, Phoebus automatically creates “reference sets” using trained wrappers.
Reference sets, which are collections of known (DB) attributes with their values, serve as
a source of supervised assistance in creating the information extractor. Phoebus aligns
a car, hotel, or restaurant ad to a reference set to determine the schema for the ad and
then extracts attribute values in the ad. Dalvi et al. [5], on the other hand, develop
a generic noise-tolerant framework (NTW), which facilitates the process of constructing
wrappers in an unsupervised manner using automatically acquired training data. The
proposed framework combines (i) supervised learning wrapper induction techniques, (ii)
domain knowledge, i.e., dictionaries, and (iii) unsupervised grammar induction methods,
i.e., regular expressions, to perform the wrapper induction task.

Unlike MiBAT, Phoebus, and NTW, ADEx does not require any manually-created reg-
ular expressions and/or ontologies for mapping text from un-/semi-structured data sources
into data records. In addition, ADEx defines features applicable to any ads domains, which
is not applicable to wrappers, reference sets, and domain constraints on which NTW, Phoe-
bus, and MiBAT rely, respectively.

3 ADEx

In this section, we present the overall process of ADEx, as shown in Figure 1. We describe
the three major, automated, consecutive tasks performed by ADEx during the process of
extracting online ads data to populate a DB: (i) classifying online ads into their respective
domains (as detailed in Section 3.1), (ii) tagging keywords in classified ads according to their
types (as presented in Section 3.2), and (iii) extracting the tagged keywords of different
types in ads and populating them as attribute values of the corresponding DB records (as
discussed in Section 3.3).

2A tag path is a path from the root to a leaf in a Document Object Model (DOM) representation of a
web page.

4

Figure 1: The overall process of ADEx in extracting data from an online ad with unknown
domain to create a DB record

3.1 Advertisements Classification

Given an online ad, ADEx first classifies the ad according to its domain, since it is assumed
that the domains of ads from multiple online sources are not always known in advance.

3.1.1 Keyword Selection

As claimed by Yang and Pedersen [21], one of the major problems in document classification
is the high dimensionality of the feature space, i.e., the large number of unique keywords
in documents, which affects the performance of classifiers in terms of computational time.
In solving this problem, we first identify and select the set of most representative keywords,
denoted MRs, in ads belonged to different ads domains based on a set of randomly-selected
ads S (which yields the dataset used for keyword selection described in Section 4.3). This
set of keywords captures the contents of the ads in S. Using the keywords in MRs to
represent (the contents of) ads for classification, the processing time is minimized without
affecting the accuracy of the classifier.

During the keyword selection process, we start with removing stopwords3 and numerical
values from the ads in S and then apply information gain (as defined in Equation 1) to
determine the “suitability” of a keyword for classification.

G(w) = −
m
∑

i=1

P (ci)logP (ci) + P (w)
m
∑

i=1

P (ci|w)logP (ci|w) + P (w̄)
m
∑

i=1

P (ci|w̄)logP (ci|w̄)

(1)
where w is a keyword in S, m is the number of distinct natural classes, i.e., ads domains in
our case, P (ci) is the probability of class ci (an ads domain in our case), which is computed
as the number of ads belonged to ci over the total number of ads in S, P (w) (P (w̄),
respectively) is the percentage of ads in S in which w occurs (does not occur, respectively),
and P (ci | w) (P (ci | w̄), respectively) is the probability of assigning class ci to an ad in S,
given that w is present (absent, respectively) in the ad.

After computing the information gain of each distinct keyword in S, we select the top
2,500 keywords that have the highest information gain for representing ads to be classified
by ADEx. (See Section 4.3 for details.)

3We compiled our own list of 531 stopwords using multiple stopword lists posted online. Online stopword
lists are widely available on the web these days.

5

3.1.2 Naive Bayes Classifier

In classifying online ads that are represented using the selected keywords, we adopt a Naive
Bayes classifier, which is simple, easy to implement, robust, highly scalable, and domain
independent. The classifier relies on the probability of assigning the natural class c to a
given document d, which is the well-known Bayes’ Theorem.

P (c | d) =
P (c)P (d | c)

P (d)
(2)

where P (d) is the probability of a given document d, P (c) is the probability of a particular
natural class c, and P (d | c) is the probability of d given c. From now on, unless stated
otherwise, d and c in Equation 2 denote an online ad and ads domain, respectively.

In choosing the domain to which an ad d should be assigned, we compute the condi-
tional probability P (ci | d) as defined in Equation 2 for each one of the possible ads domains
ci (1 ≤ i ≤ m). We assign to d the ads domain ci that yields the highest P (ci | d) among
all the ads domains c1, . . ., cm (as shown in Equation 3).

Class(d) = argmaxci∈C P (ci | d) (3)

where C is the set of ads domains c1, . . ., cm.

3.1.3 Joint Beta-Binomial Sampling Model

In estimating P (d | c) in Equation 2, we have chosen the Joint Beta-Binomial Sampling
Model (JBBSM) introduced in [1], which considers the “burstiness” of a (representative)
keyword in d, i.e., a keyword is more likely to occur again in d if it has already appeared
once in d. JBBSM represents d as a vector of count-valued variables and computes P (d |
c) as a sequence of probabilities of the form P (dj | c), which is the probability of the jth

(1 ≤ j ≤ n) keyword in d, i.e., dj, given a particular class c as shown in Equation 4.

Pbb(dj | αj, βj) =

(

n

dj

)

B(dj + αj, n− dj + βj)

B(αj , βj)
(4)

where n is the total number of keywords in d, B is the Beta function of JBBSM, and
αj and βj are the parameters of B which estimate the presence and absence of dj in d

belonged to c, respectively. (Detailed discussion on B and the estimation of parameters αj

and βj in JBBSM, which are numerical values empirically determined, can be found in [1].
As previously stated, these parameters vary depending on the class c to which d belongs.
In other words, the parameter distributions for dj in d, i.e., αj and βj , affect the values
computed by using Equations 4 and 5, which differ depending on the class c assigned to d.)

Using JBBSM, the probability P (d | c) is computed as

P (d | α, β) =
∏

j

Pbb(dj | αj , βj) (5)

where α and β are parameters of the Beta-Binomial distribution of d (in c) as defined in
[1], and Pbb(dj |αj, βj) is as defined in Equation 4.

6

3.2 Keyword Tagging Based on Types

Ads in different domains include various attributes and their corresponding values. In
designing ADEx, we (i) define a number of attribute types for keywords (in ads) which
capture or indicate valid attribute values, and (ii) develop a domain independent tool to
identify attribute values in different ads (domains).

Regardless of its domain, each ad showcases a particular product or service PS, which
can be recognized by its unique identifier in the ad. In addition, each ad often includes (i)
a number of properties that describe PS and/or (ii) quantitative values that identify the
measurable substances of PS. With that in mind, we have defined the following ads data
types, of which the corresponding data items are alpha-numerical strings.

• A Type I attribute value in an ad (a DB record, respectively) is a single, unique
identifier of PS, which is not a numerical value (as some of the Type III attribute
values are). A sample Type I attribute in the Jewelry ads domain is “Category”, and
“necklace” is one of its values.

• Type II attribute values describe the properties of PS in an ad (a DB record, respec-
tively). “Features” is a Type II attribute in the Houses-for-Sale ads domain, and
“central air” is one of its possible values.

• Type III attribute values are the quantitative values of PS in an ad (a DB record,
respectively). A sample Type III attribute is “Salary” in the Jobs ads domain, and
$50,000 is one of its values. In addition, “usd” is also a Type III attribute value, which
identifies the unit of “Price” (a Type III attribute) in the Cars-for-Sale ads domain.

• Type IV attribute values are non-essential, cosmetic keywords included in ads, such
as “large,” which are non-attribute values in any ad.

Keyword/Attribute value types yield a universal tagging mechanism that allows ADEx

to handle any types of ad data regardless of its domain and source. The tagging mechanism
(i) minimizes the overhead and time required to identify different data included in each
ad domain, (ii) allows for training and testing to be conducted on completely separate
domains while maintaining a high tagging accuracy on test results, and (iii) avoids manual
intervention required to identify the data in each separate ad domain during the data
extraction/training process.

By default, ADEx assigns a Type III tag to each numerical value in an online ad d,
which are potential attribute values to be included in the DB record generated for d. To tag
each of the non-stop, non-numerical keywords in the ads according to their types, we rely on
SVM, which is a robust classifier. In describing SVMs, we adopt the notations used in [17],
which define a set S of training instances as a collection of N (= |S|) labeled input vectors
of the form {(x1, y1), . . ., (xN , yN)}, where xi (1 ≤ i ≤ N) is an input vector of features
(which are introduced in Section 3.2.1) used for describing a given keyword i in an ad, and
yi ∈ {-1, 1} is the (binary) class label of xi, i.e., a keyword type in our case. Furthermore,
ϕ(xi) is the kernel mapping that generates the corresponding vector xi in the feature space,
and K(xi, xj) = ϕ(xi).ϕ(xj) is the kernel function that computes the dot/scalar product

7

between ϕ(xi) and ϕ(xj) to determine the distance between the two vectors in the feature
space. To identify the support vectors of the (soft-margin) SVM, i.e., the points that lie
close to the decision boundary, which are employed during the classification process of a
new instance, the following optimization problem must first be solved4:

maxα{
N
∑

i=1

αi −
1

2

N
∑

i,j=1

αiαjyiyjK(xi, xj) }, 0 ≤ αi ≤ C,

N
∑

i

αiyi = 0 (6)

where C is a regularization parameter controlling the penalty for misclassification which
we have empirically established as 1.0, αi (αj, respectively) is the Lagrange multiplier
associated with (i.e., the weight of) xi (xj , respectively), and yi (yj, respectively) is the
corresponding class of xi (xj, respectively). The goal of solving Equation 6 is to identify
all the input vectors with coefficients αi > 0 (1 ≤ i ≤ N), which yield the support vectors
of the SVM.

We have adopted the Radial Basis Function (RBF) kernel in Equation 7, which is one
of the most typical kernels [19], as the kernel function K in Equations 6 and 8 for the SVM.

K(xi, xj) = exp(−
||xi − xj ||

2

σ2
) (7)

where ||xi − xj || is the Euclidean distance computed between vectors xi and xj
5, and σ is

the parameter that determines the area of influence of the corresponding support vector.
A large σ yields a smoother decision surface, since an RBF with a large σ allows a support
vector to have a larger area of influence. We have experimentally determined σ to be 500.

3.2.1 Feature Representation

To train our SVM, each training instance is a feature-vector with a sequence of “0” and
“1” assigned to a particular non-stop, non-numerical keyword w in an ad, such that a ‘1’
is given to the corresponding feature f (defined as follows) if f applies to, i.e., describes, w
and is given a ‘0’, otherwise.

• Is-Plural: This feature is set to ‘1’ if w is in plural form and is ‘0’, otherwise. Types I
and II attribute values tend to be expressed in the singular form.

• Is-Capitalized: The first character in w that is a Type I attribute value is often
capitalized, and this feature is assigned ‘1’ if the first letter of w is capitalized and is
‘0’, otherwise.

• Is-Style: This feature is set to ‘1’ if w is either bold or italicized in an ad and is ‘0’,
otherwise. Types I and II attribute values in an ad tend to be either bold or italicized.

4As stated in [20], in solving constraint optimization problems it is a common practice to adopt the
Lagrange multiplier method, since the method reduces a problem complexity with a minimal impact on its
optimality.

5In ADEx, each vector represents the heuristics, i.e., features, of a keyword in an ad.

8

• In-Text: Since the most descriptive, i.e., Types I and II, attribute values of an ad
d often appear in the title or first sentence of d, this feature is assigned a value ‘0’ if
w is in the title or first sentence of d and is given a ‘1’, otherwise, i.e., w appears in
the text of d.

• Is-Adjective: This feature is implemented using Stanford’s Part Of Speech (POS)
tagger6, which assigns parts of speech, such as nouns, verbs, or adjectives, to keywords.
This feature is set to ‘1’ if w is given an “adjective” POS tag and is ‘0’, otherwise.
Most Type II attribute values are adjectives, such as color “blue” in a car ad, which
describe the properties of an ad.

• Is-Measurement: This feature takes on a value of ‘1’ if w is a unit of measurement,
e.g., usd, mile, square feet, or inches, and is ‘0’, otherwise. A set of measurement
terms was extracted from the Electronic Hobby Projects7, a website that lists units
of measurements for different categories, such as length, area, power, and speed. This
feature is a clear indicator of a Type III attribute value.

• Is-Alphanumeric: This feature is assigned a ‘1’ if w contains both numbers and
letters and is assigned a ‘0’, otherwise. This feature assists in identifying a Type III
attribute value.

• Is-Location: This feature depends on a set of locations. If w is a location, i.e., a
Type IV attribute value which is non-essential in ADEx, the feature is set to ‘1’ and
is ‘0’, otherwise. The list of locations, i.e., US cities, was extracted from Wikipedia8.

• Is-Acronym: This feature is set to ‘1’ if w is an acronym and is ‘0’, otherwise. In
determining an acronym, we adapt the approach in Chieu and Ng [2] which looks for
sequences of capitalized words in a document d, i.e., sequence of words in which the
first letter of each word is capitalized, that match (potential) acronyms in d. If the
concatenation of the first capitalized letter of each word in a sequence of words in d

matches w (in d), then we treat w as an acronym. Acronyms in general are Type I
attribute values.

To verify that the chosen features listed above are accurate in identifying different types
of keywords in ads, we conducted an empirical study using a newly-created dataset, denoted
Feature-DS, which does not overlap with the dataset used in Section 4.1 for analyzing the
performance of ADEx. Feature-DS consists of 15,000 ads, out of which 5,000 ads are
extracted from each one of three ads websites, Craigslist, Ebay(.com), and KSL(.com), and
are evenly distributed over the eight distinct ads domains defined in Section 4.1.

Figure 2 shows the percentages of keywords (in Feature-DS) of each type that are
recognized by each feature, which is designed to identify its corresponding type and ac-
curately do so (as shown in bold in Figure 2). For example, 83% (87% respectively) of
Type III keywords are identified by “Is-Alphanumeric” (“Is-Measurement”, respectively),

6nlp.stanford.edu/software/tagger.shtml
7hobbyprojects.com/dictionary of units.html
8en.wikipedia.org/wiki/List of cities, towns, and villages in the United States

9

Figure 2: Percentages of keywords (grouped by types) in Feature-DS identified by each of
the nine features defined by ADEx for its SVM

whereas the percentage of Type III keywords identified by the remaining features are at or
below 31%, which implies that “Is-Alphanumeric” and “Is-Measurement” are indeed fea-
tures indicative of Type III keywords in ads. The same applies to the remaining keyword
types. This empirical study validates that the chosen features used by the SVM of ADEx

adequately identify the types of keywords for which they are intended.

3.2.2 Multiclass-SVM

In tagging keywords based on their types, using a single binary SVM is insufficient, since
the adopted SVM must handle more than two types of attribute values. We apply the one-
against-all strategy [8] to solve the multi-class problem using a number of binary SVMs.

Given j (> 2) different classes, the one-against-all approach constructs j binary SVM
classifiers, each of which separates one class from the rest. The jth SVM is trained using the
training instances in which the ones belonged to the jth class are given positive labels and
the remaining instances negative ones [8]. Using the multi-class SVM, the classification of
a new instance v, which is represented as a feature-vector associated with a keyword in an
ad, is a task to determine among each of the pre-defined attribute types t (i.e., Type I-IV)
the one for which the corresponding ft(v) is the highest, as shown in Equation 8.

argmax t∈T ft(v) =
N ′

∑

i=1

αiyiK(xi, v) + b (8)

where ft(v) is the predicted score for v computed for attribute type t, T is the set of all
the possible attribute types, b is the bias term9 defined during the training of the SVM,
N

′

(≤ N) is the number of support vectors of the SVM, and N , αi, yi, and K(xi, v) are as
defined in Equation 6.

9In a soft-margin SVM, the bias term dictates the distance between the origin and hyperplane so that
if the bias term is decreased, the hyperplane moves closer to the origin.

10

3.3 Populating an Underlying DB

Having identified the domain to which an online ad d belongs (as discussed in Section 3.1)
and assigned the corresponding type to each non-stop keyword w in d (as explained in
Section 3.2), ADEx proceeds to extract the data in d and create a DB record10 for d to be
included in the underlying DB11. Extracting information from unstructured data sources is
a classification process, since w is either assigned as a value to its corresponding attribute
in the DB record of d or a “not-valid” label which indicates that w is not included in the
DB record of d.

We apply the C4.5 decision tree algorithm [13] to construct a decision tree, one for each
ads domain, for extracting data from ads of the same domain. The algorithm applies the
divide-and-conquer strategy which recursively partitions the training instances into subsets
according to a splitting criterion (separation test), i.e., the feature (as defined below) with
the highest information gain (as defined in Equation 9).

1. Keyword-Type is the type of a keyword w.

2. Previous-Keyword-Type is the type of the non-stop keyword immediately preced-
ing w in d, if it exists.

3. Post-Keyword-Type is the type of the non-stop keyword immediately following w

in d, if it exists.

4. Previous-Keyword-Attribute is the DB attribute of the non-stop keyword imme-
diately preceding w in d, if it exists.

5. Closest-Type-III is a non-stop keyword of Type III in d, if it exists, that is closest
to w.

The features are defined to accurately identify w as an attribute value, and are based
on the context in which w appears, i.e., based on w and other keywords that appear before
and/or after w, in an online ad d. Moreover, the Closest-Type-III feature identifies
keywords commonly associated with numerical values for data extraction. For example,
given “25 acres” in d, we rely on the keyword “acres”, i.e., the keyword that is closest to
the Type III keyword “25”, in assigning the value 25 to its corresponding attribute in a
DB record. Furthermore, the possible values of Keyword-Type, Previous-Keyword-Type,
and Post-Keyword-Type are either Type I, II, III, or IV, whereas Previous-Keyword-
Attribute is assigned either (i) an attribute in the schema of the domain of d or (ii) the
label “not-valid”.

A training instance in a training set S (used for constructing the decision tree of an
ads domain), which represents a keyword w in an online ad d, is a sextuple of the form <f1,

10Besides data extracted from an ad d, a DB record for d includes an additional attribute LINK that
points to the URL of the original ad and is not an attribute in the DB schema for the domain of d. The
URL provides users other details of d, such as a picture of the product showcased in d.

11The schema of each ads domain is pre-defined, which is based on the schemas provided at various
popular ads websites, such as Ebay, KSL, Carmax, etc., prior to invoking ADEx to classify, tag, and
extract data from online ads of the domain.

11

f2, f3, f4, f5, Att>, where fi (1 ≤ i ≤ 5) is one of the possible values that can be assigned
to the corresponding feature i such that i ∈ Feature-Set = {Keyword-Type, Previous-
Keyword-Type, Post-Keyword-Type, Previous-Keyword-Attribute, Closest-Type-III}, and
Att is either an attribute in the corresponding schema for which w is a valid attribute value
or the label “not-valid” (which implies that w is not a valid attribute value).

One of the major tasks in constructing a decision tree is to establish the criterion used
for identifying the most effective feature (in Feature-Set) in splitting training instances
into different groups. The criterion we adopt is Information Gain defined as

Information Gain(S, F) = Entropy(S) −
∑

f∈V alues(F)

|Sf |

|S|
Entropy(Sf) (9)

where F is a feature in Feature-Set, V alues(F) is the set of all possible values of F , Sf is
the subset of training instances in S in which the value of F is f , |Sf | (|S|, respectively) is
the number of training instances in Sf (S, respectively), and Entropy is defined as

Entropy(Sf) =

|Att|
∑

i=1

−Pi log2 Pi (10)

where Pi is the percentage of instances in Sf such that the value of their corresponding
attribute is an ith attribute value in the DB schema of the respective ads domain, and |Att|
is the total number of DB attributes in the schema of the corresponding ads domain plus
one, i.e., the “not-valid” label. Entropy(S) in Equation 10 is defined accordingly.

Example 1 Figure 3 shows an ad extracted from Craigslist12. Using the Naive Bayes clas-
sifier of ADEx, the ad is correctly identified as an ad in the Cars-for-Sale domain. After
ADEx has removed stopwords and employed the multi-class SVM, each of the remaining
keywords in the ad is tagged according to its type, i.e., Types I-IV. As shown in Table 1,
ADEx correctly assigns to each of the non-stop keywords in the ad their corresponding
types. (Recall that each numerical keyword in an ad is automatically assigned a Type III
tag.) Furthermore, ADEx uses the decision tree of the Cars-for-Sale ads domain to deter-
mine the DB attribute (in the schema of the Cars-for-Sale domain) to which each of the
Types I, II, and III keywords in the ad should be assigned. Table 2 shows a portion of the
DB record created by ADEx for the ad in Figure 3, with each non-stop keyword in the ad
correctly assigned as attribute value in the created DB record13. �

Example 2 An ad HS downloaded from KSL is shown in Figure 4, with all the contact
information in HS again suppressed. Unlike the ad shown in Figure 3, which is a plain
(unstructured) text, HS is organized according to descriptive terms pertinent to Houses-
for-Sale ads, such as “Acres” and “Year Built”, a format which is commonly used by KSL
for Houses-for-Sale ads. ADEx correctly identifies HS as a Houses-for-Sale ad. Table 3

12To protect the privacy of the creator of the ad, we have omitted the contact information of the creator
by replacing them with “. . .” in Figure 3.

13Since the decision tree of ADEx can assign the value “not-valid” to some of the Types I-III tagged
keywords, not all the Types I-III keywords as shown in Table 1 are attribute values in the DB record of
the ad as shown in Table 2.

12

Figure 3: A Cars-for-Sale ad from Craigslist

Keyword
Type in Ad

Type I Toyota, Scion
Type II xD, front, wheel, drive, sporty, hatch
Type III 2008, $, 13000, 31k, miles, 13k, seats, 32, mpg, ’08, 5, door
Type IV price, bluebook, value, owe, car, blizzard, year, gas, mileage, fun, bought,

brand, brent, brown, warranty, coverage, contact, phone, call, text,
questions, . . .

Table 1: Types assigned by ADEx to non-stop keywords in the ad shown in Figure 3

displays the types assigned by ADEx to the non-stop keywords in HS, whereas Table 4
shows the tagged Types I-III keywords assigned to their corresponding DB attributes (in
the Houses-for-Sale schema as partially shown in the table). Note that all the keywords in
HS, except “500k” and “garage”, are correctly tagged. ADEx incorrectly assigns “500k”
as Price, which should be excluded, whereas “garage” should not be tagged as a Type II
keyword, since in the original ad it states “Garage: None”. Even though the DB record of
HS includes incorrectly assigned DB attribute values, the quality of the created record is
not significantly affected, since the majority of the ad data inHS are correctly populated. �

4 Experimental Results

In this section, we assess the overall performance of ADEx. In Sections 4.1 and 4.2, we
introduce the dataset and metrics employed for performance evaluation, respectively. In
Section 4.3, we determine the ideal number of keywords, i.e., the size of the vocabulary,
for capturing the content of ads in their respective domains for classification. Hereafter,
we evaluate the effectiveness of each major task of ADEx, which include classifying ads
(in Section 4.4), tagging keywords (in Section 4.5), and extracting ads data to populate
the underlying DB (in Section 4.6). We also assess the overall performance of ADEx

(in Section 4.7) and compare (the performance of) ADEx with existing state-of-the-art
information extractors (in Section 4.8).

13

DB Attribute Attribute Values

Make Toyota
Model Scion
Price 13000
Mileage 31K
Year 2008
Number of Doors 5
Number of Seats 5
Mpg 32
Features xD, front, wheel, drive, sporty, hatch
.

Table 2: A portion of the DB record of the ad shown in Figure 3 with previously-tagged
keywords (as shown in Table 1) assigned to their corresponding DB attributes

Figure 4: A Houses-for-Sale ad from KSL

4.1 The Dataset

To the best of our knowledge, there is no dataset available for evaluating classification,
labeling, or data extraction approaches on online ads. For this reason, we have created our
own dataset, denoted EData, for assessing the performance of ADEx.

EData consists of 18,000 online ads, which were extracted from Craigslist, Ebay, and
KSL. The ads in EData are uniformly distributed among the eight chosen domains, which
are Cars-for-Sale, Computer Science (CS) Jobs, Food Coupons, Furniture, Houses-for-Sale,
Jewelry, Motorcycles-for-Sale, and Musical Instruments, and there are 750 ads in each of
the eight ads domains extracted from each of the three ads websites. The ads domains in
EData vary in terms of their (i) diversity, which include ads in jobs, transportation, food,
housing, and entertainment that are essential to our daily lives, (ii) ads sizes, from arbitrary
long ads (such as Houses-for-Sale ads) to relatively short ones (such as Jewelry ads), and

14

Keyword
Type in Ad

Type I 9-Plex
Type II cooling, heating, radiant, heat, garage, capitol, hill, insulated, energy,

efficient, clean, boiler
Type III $, 959,900, sq., feet, 8400, ft, year, 1920, acres, 0.00, bedrooms, 18,

bathrooms, 9, 500k
Type IV property, details, built, beautiful, location, completely, restored, remodel,

interiors, appliances, insulated, roof, place, investment, . . .

Table 3: Keyword types assigned by ADEx to non-stop keywords in the ad shown in
Figure 4

DB Attribute Attribute Values

Category 9-Plex
Price 959,900, 500k
Lot Size 0.00
House Size 8400
Year Built 1920
Number of Bedrooms 18
Number of Bathrooms 9
Features cooling, heating, radiant, heat, garage, capitol, hill, insulated,

energy, efficient, boiler, clean
.

Table 4: A portion of the DB record of the ad shown in Figure 4 with previously-tagged
keywords (as shown in Table 3) assigned to their corresponding DB attributes

(iii) word distribution, i.e., different word usage in closely-related ads which are similar in
contents and nature, such as Cars- and Motorcycles-for-Sale that are two different means
of transportation. Moreover, ads in EData were extracted from various online sources
with different structures and formats, which further shows that the dataset is generic for
assessing ADEx.

4.2 Evaluation Measures

To evaluate the effectiveness of ADEx in classifying ads, tagging keywords, and extracting
ads data, we rely on Precision (P), Recall (R), and F-Measure (= 2×P×R

P+R
), which are popular

metrics for analyzing the performance of information retrieval tools.

To perform an unbiased evaluation, we adopted the five-fold cross-validation approach
[10] so that in each of the five repetitions, 80% of the instances in EData were used for
training and the remaining 20% for testing. From now on, whenever we refer to Precision,
Recall, or F-Measure, we mean the averaged Precision, Recall, or F-Measure, respectively

15

Figure 5: The F-Measure ratios, along with the processing time, achieved by ADEx using
different vocabulary sizes for classification on 3,000 ads

generated by the five repetitions of the validation.

4.3 Keyword Selection

Prior to performing the classification task, the keyword-selection process discussed in Sec-
tion 3.1.1 is applied to reduce the size of the vocabulary, i.e., the number of distinct keywords
in EData, so that the top n (≥ 1) keywords, which are neither stopwords nor numerical
values, are chosen for representing ads in various domains. To determine the appropriate n,
we conducted an empirical study using a total of 3,000 randomly-selected online ads (not
included in EData), which were extracted from Craigslist, Ebay, and KSL and belong to
the eight domains introduced in Section 4.1. We considered alternative values of n, such
that n ∈ {50, 100, 200, 500, 1000, 1500, 2000, 2500, 3000}, and set n to be 2,500. As shown
in Figure 5, using 2,500 keywords on the 3,000 ads, we achieve the highest F-Measure for
classification and still maintain the classification processing time just slightly over a minute.

4.4 Classification of Ads

In this section, we detail the empirical study we have conducted to assess the effectiveness of
ADEx in classifying ads and compare its performance with other classification approaches.

4.4.1 Classification Effectiveness

To verify the effectiveness of the proposed classifier of ADEx, we computed the precision
and recall achieved by ADEx for classifying ads in EData to their corresponding domains.
As illustrated in Figure 6, ADEx achieves high precision and recall in classifying ads, and
most of the classification errors occur when two ads domains share very similar probability
distribution on a considerable number of keywords, such as in Motorcycles- and Cars-for-
Sale. Even though the precision and recall ratios for car and motorcycle ads are the lowest

16

Figure 6: Precision, Recall, and F-Measure achieved by ADEx on ads classification using
EData

among all the eight domains, they are still in the ninety percentile.

Figure 6 also shows the F-Measure of classifying EData ads into each one of the eight
ads domains previously introduced, as well as the overall F-Measure achieved by ADEx for
the classification, which are in the (upper) ninety percentile. Among the eight ads domains
in EData, ADEx achieves the highest F-Measure for classification on Food (Coupons),
Jewelry, CS Jobs, and Music(al Instruments), and the lowest F-Measure on Cars(-for-Sale)
and Motorcycles(-for-Sale). Based on the conducted empirical study, we conclude that a
domain in which its word usage is similar to the one used in another domain tends to
yield lower F-Measure for classification than the ones dissimilar in word usage due to the
existence of common keywords, as anticipated.

4.4.2 Comparison of Classifiers

We have further verified the effectiveness of the classifier of ADEx to a greater extent by
comparing the classification performance of ADEx with two other well-known classifiers:
the Multinomial Naive Bayes classifier, denoted MNB, and the (implementation of the one-
against-all) SVM extracted from RapidMiner14, which are two widely-used text classification
approaches.

MNB follows the premises of the Naive Bayes classifier (as discussed in Section 3.1.2) in
assigning a given document to its class. As opposed to JBBSM introduced in Section 3.1.3,
MNB determines the probability of a keyword w in a natural class cj, denoted P (w | cj),
using Equation 11, which is based on the frequency of keyword occurrence.

P (w|cj) =
1 +

∑|D|
i=1Ni,wP (cj|di)

|V |+
∑|V |

s=1

∑|D|
i=1Ni,sP (cj|di)

(11)

where |D| is the number of labeled documents in a collection D, which is the number of
training instances in EData in our empirical study, |V | is the number of distinct keywords

14RapidMiner (sourceforge.net/projects/yale/) is an open-source system that implements a wide variety
of machine learning and data mining algorithms.

17

Figure 7: Precision, Recall, and F-Measure scores for ads classification achieved by MNB,
SVM, and the JBBSM-based classifier of ADEx on EData, respectively

Classification Approach F-Measure

MNB 88.7 +/- 0.6
SVM 90.9 +/- 1.0
ADEx 97.4 +/- 0.8

Table 5: Averaged F-Measure for ADEx, as well as for the classification approaches MNB
and SVM, used for the comparison purpose

in D, Ni,w (Ni,s, respectively) denotes the frequency of occurrence of keyword w (ws, re-
spectively) in a labeled document (i.e., online ad in our case) di, and P (cj | di) is ‘1’ if cj
is the class label of di and ‘0’, otherwise.

Using Equation 2, the probability of assigning a class cj (i.e., c in Equation 2) to a
given document d is computed. In MNB, P (d | cj) is calculated as

P (d|cj) = P (|d|)|d|!

|V |
∏

s=1

P (ws|cj)
Ns,d

Ns,d!
(12)

where |d| denotes the number of keywords in d, Ns,d is the frequency of occurrence of
keyword ws in d, and P (ws|cj) and |V | are as defined in Equation 11.

The SVM classifier, on the other hand, is a vector-space-based method as introduced
in Section 3.2, which determines a decision boundary between classes for classification [9].

As shown in Figure 7, the classifier of ADEx outperforms both MNB and SVM, in
terms of F-Measure, in assigning online ads in EData to their corresponding ads domains.
To further validate the accuracy of the F-Measure achieved by ADEx in ads classification,
we repeated the conducted experiments two more times, using two new, disjoint subsets of
5,000 ads each extracted from Craigslist, Ebay, and KSL, which are uniformly distributed
among the eight ads domains. The overall F-Measure achieved by ADEx’s classifier, as
well as MNB and SVM, is shown in Table 5, which yield F-Measure ratios consistent with
the ratios displayed in Figure 7.

18

Figure 8: Precision, Recall, and F-Measure achieved by ADEx on tagging non-stop, non-
numerical keywords in EData

4.5 Type-Based Keyword Tagging

To assess the accuracy of the multi-class SVM (introduced in Section 3.2.2) in tagging
keywords in ads according to their respective types, we first created training and test
instances using the ads in EData. Hereafter, for each non-stop keyword w in each ad in
EData, we determined the features (as defined in Section 3.2.1) that apply to w, which
yielded a set of 173,541 instances. Using the five-fold, cross-validation strategy (as discussed
in Section 4.2), 80% of the instances were reserved for training the SVM, whereas the
remaining 20% were employed as test instances in each validation step.

4.5.1 Tagging Accuracy

As shown in Figure 8, the overall Precision, Recall, and F-Measures of assigning Types I-IV
tags to keywords in ads are in the ninety percentile. We have observed that most of the
misclassification errors occur when attribute values that should be assigned a Type I tag
are incorrectly labeled as Type II. It is because if none of the keywords in an ad is in bold or
italicized, or is capitalized, the values assigned to features such as Is-Style or Is-capitalized
are the same for keywords representing Type I or Type II attribute values, which causes the
misclassification. Moreover, Type II attributes values are sometimes mislabeled as Type IV
due to their relative positions in online ads and their proximity, and thus tagging Type II
attribute values yields the lowest F-Measure.

4.5.2 Comparison of Taggers

To further validate the effectiveness of the keyword tagger of ADEx, we have compared its
performance with two other well-known approaches, the C4.5 decision tree classifier and an
artificial neural network, since as mentioned in [13], decision trees and neural networks are
two frequently-adopted approaches in solving the labeling problem.

As defined in [13], a decision tree classifier categorizes instances, i.e., feature-vectors
associated with a particular keyword in our case, by organizing them down the tree from

19

Figure 9: Performance evaluation on the multi-class SVM of ADEx, as well as other
alternative machine learning approaches, for tagging keywords

the root to a leaf node, which provides the label of the instance, i.e., type associated
with a keyword in our case. Neural network, on the other hand, is a robust approach
that approximates real-, discrete-, or vector-valued target functions [13]. The training of
a neural network invokes an iterative process in which for each training instance, i.e., a
feature-vector representing a particular keyword in our case, the correct class, i.e., keyword
type in our case, is known and thus it is possible to compare the output predicted by the
network with the “known” one. The Neural Network proceeds to adjust the weights of the
internal nodes of the network so that during the subsequent iteration process, the predicted
output classes are closer to the “known” classes. We employed the implementations of the
aforementioned taggers provided by WEKA15 for comparing the effectiveness of ADEx’s
multi-class SVM with the decision tree and neural network classifiers.

As shown in Figure 9, the multi-class SVM of ADEx outperforms the alternative
approaches used for tagging keywords in ads according to their types.

4.6 Populating the DB

We have verified the effectiveness of the decision-tree-based approach of ADEx (introduced
in Section 3.3) which assigns non-stop keywords in ads that are valid attribute values to
their corresponding DB attributes using the ads in EData as training and test instances. In
constructing the instances, we considered (i) the domain assigned to each ad in EData, (ii)
the type of each non-stop keyword in the ads, and (iii) the features defined in Section 3.3.
The set of training and test instances includes 173,541 feature-vectors, one for each non-
stop keyword in EData ads (as mentioned in Section 4.5). As stated in Section 4.2, for each
iteration in the cross-validation strategy, 80% of the instances were reserved for training
the decision tree of ADEx and the remaining 20% for testing.

15WEKA (cs.waikato.ac.nz/ml/weka/) is another open source collection of implemented machine learning
algorithms.

20

Figure 10: Precision, Recall, and F-Measure achieved by ADEx in extracting data on ads
belonged to the eight ads domains in our empirical study

4.6.1 Extraction Accuracy

Figure 10 shows the accuracy of ADEx in assigning valid attribute values to their corre-
sponding DB attributes in different ads domains. On the average, the F-Measure of the
decision-tree-based approach is 0.956. Based on the conducted empirical study, we have
observed that the F-Measure on data extraction for an ads domain that contains a large

number of attributes in its schema is lower compared with others with smaller number of
attributes. This is due to the fact that the larger the number of DB attributes, propor-
tionally the lower the number of available instances in any training set of the same size
compared with other ads domains with a smaller number of attributes to train the decision
tree. This translates into lower precision and recall, which yield a lower F-Measure ratio,
in correctly assigning values to the attributes. Moreover, (i) keywords of Types I and II
in the Cars- and Motorcycles-for-Sale ads domains are often correctly assigned to their
corresponding DB attributes, and (ii) keywords of Type IV are not assigned to any DB
attribute, as anticipated. However, the overall F-Measure of Cars-for-Sale (Motorcycle-for-
Sale, respectively) domain is among the lowest of the eight ads domains. This is caused
by the common (numerical) Type III attribute values which are assigned to incorrect DB
attributes with the same or compatible attribute domain values. For example, in Cars-
for-Sale ads, ‘2009’ is assigned to the attribute ‘Mileage’, instead of the correct attribute
‘Year’.

4.6.2 Comparison of Extractors

We have compared the performance of ADEx, in terms of extracting data from online ads
to populate the DB, with the WEKA implementation of two machine learning approaches
commonly employed for defining classification rules: the Decision Tables Naive Bayes ap-
proach (DTNB) in [6] and the Rule Induction approach in [3], denoted JRIP. DTNB is
a hybrid method that combines two well-established extraction strategies: decision tables,
which define rules that determine to which DB attribute a particular keyword should be
assigned, and Naive Bayes classifiers, which determine the probability of occurrence of a
particular rule given a particular DB attribute. Given a keyword w in an ad, DTNB applies
the rule with the highest probability in assigning the DB attribute for which w is its value.

21

Figure 11: Performance evaluation on the decision tree of ADEx, as well as alternative
machine learning approaches, for extracting data from online ads to create DB records

Figure 12: Training and Testing time of DTNB, JRIP, and ADEx achieved by using the
instances created for non-stop keywords in EData for data extraction, respectively

JRIP, on the other hand, discovers rules that cover or partition the training examples, i.e.,
the set of feature vectors discussed in Section 3.3 in our case. JRIP is a bottom-up method
such that for a given class, i.e., a DB attribute in our case, it finds the set of rules that
cover all the members of that class, i.e., all the training instances associated with the given
DB attribute in our case. Thereafter, JRIP repeats the process of defining rules for each
class until all possible classes have been covered, i.e., until rules for each of the possible DB
attributes are created in our case.

As shown in Figure 11, the decision tree-based extractor of ADEx outperforms the
alternative approaches for extracting data from online ads in terms of Precision, Recall,
and F-Measure. Even though the difference in F-Measure between JRIP and ADEx is less
than 2%, ADEx is simpler to implement, which has been verified. As shown in Figure 12,
by using ADEx, compared with DTNB and JRIP, for extracting ads data to populate the
underlying DB, the training (testing, respectively) time on EData is reduced on an average
by 58% (50%, respectively).

22

Figure 13: Overall precision on (i) correctly created DB records and (ii) DB attribute values
correctly assigned to DB records by ADEx based on ads in TData

4.7 Overall Evaluation of ADEx

To assess the overall performance of ADEx, in terms of its effectiveness in classifying,
labeling, and extracting data to be populated into an underlying DB using online ads data,
we first created a new collection of online ads, denoted TData, which is disjointed from
EData (as introduced in Section 4.1). TData consist of 3,000 ads uniformly extracted from
Craigslist, Ebay, and KSL, which are evenly distributed among the same eight ads domains
previously introduced in Section 4.1.

4.7.1 Record Level Precision

The overall performance evaluation of ADEx is based on the assumption that a DB record
D created by ADEx is treated as incorrect if (i) at least one valid attribute value in the
corresponding ad from which D was created was assigned to the wrong DB attribute in,
or not assigned to, D, or (ii) a Type IV attribute value, i.e., an invalid attribute value,
in the corresponding ad was assigned to an attribute in D. We computed the precision
on generating correct DB records, i.e., the proportion of ads for which correct records are
created by ADEx among all the ads in TData. The conducted empirical study shows that
ADEx achieves a precision ratio of 70.3% (see Figure 13).

4.7.2 Attribute Level Precision

Besides measuring the precision ratio at the record level, we conducted the same evaluation
at the DB attribute level. In doing so, we determined the portion of attribute values that
were correctly assigned to their designated DB attributes. The experimental results show
that ADEx correctly assigned close to 94% of the attribute values in TData, as shown in
Figure 13. Furthermore, as shown in Figure 14, most of the incorrect DB records (528 =
225 + 303 in total) include a low percentage, i.e., between 10% and 15%, of incorrectly
assigned attribute values16.

16If the percentage of incorrect attribute values in a record R falls in between the interval of any two
percentages, the error percentage is rounded to the nearest percentage point P , and R is assigned to the

23

Figure 14: Error distribution in terms of percentages of attribute values incorrectly assigned
to DB attributes in the 891 incorrectly created records out of 3,000 ads (records)

4.7.3 Records with Incorrectly Assigned Attribute Values

Based on the conducted experiments, we draw the conclusion that ADEx is highly effective
in assigning keywords in an ad d to its corresponding attributes in the DB record of d
(according to the pre-defined schema of the ads domain to which d belongs). Our claim is
supported by the fact that close to 88% of the DB records are either correctly created (i.e.,
70.3% as shown in Figure 13) or have at most 15% of invalid attribute values in their DB
attributes (i.e., 225+303

3000
= 17.6% as shown in Figure 14).

4.8 Comparing ADEx with Other Data Extraction Approaches

To further assess the overall data-extraction method of ADEx, we compare its performance
with other existing state-of-the-art data-extraction approaches. We have conducted two
separate evaluations, one on unstructured data (in Section 4.8.1) and another one on semi-
structured data (in Section 4.8.2), since ADEx is capable of extracting data from both
data sources.

4.8.1 Evaluations on Unstructured Data

To extend the evaluation on the efficiency of ADEx in extracting data from unstructured
data sources, we have compared the performance of ADEx with Phoebus [12] and ON-
DUX [4]. While Phoebus was introduced in Section 2, ONDUX is an information-extraction
tool based on an unsupervised probabilistic model that segments text. ONDUX first de-
fines a reference set, i.e., domain-specific knowledge base, for each domain based on which
ONDUX is applied to extract data. Each reference set consists of sets of attribute values ex-
tracted from pre-determined data sources. To extract attribute values from a textual source
in domain D, ONDUX relies on the knowledge base of D and employs generic matching

incorrect DB record with P% error.

24

Figure 15: (Average) F-Measure achieved by Phoebus, ONDUX, and ADEx, respectively
on identifying attribute values using the 1,444 unstructured ads in TData

functions to compute a score that determines the likelihood of a text segment as a value of
a DB attribute. Thereafter, ONDUX applies a “reinforcement” step to verify and correct,
if necessary, the assignment of a particular DB attribute label to a text segment, i.e., an
attribute value.

In comparing the performance of ADEx, Phoebus, and ONDUX, we selected the
portion of TData (as introduced in Section 4.7) that consists of unstructured ads, which
yields a set of 1,444 ads extracted from Craigslist, Ebay, and KSL. As shown in Figure 15,
for most of the ads domains the F-Measures of ADEx are higher than the one achieved
by Phoebus and ONDUX, respectively. For the remaining ads domains, the F-Measures
of ADEx are comparable to the ones of Phoebus and ONDUX, with the exception of ads
in the House(-for-Sale) and CS Jobs, for which the F-Measures of ADEx are in the eighty
percentile. Overall, ADEx outperforms Phoebus, in terms of averaged F-measure, and
the difference in averaged F-Measure between ADEx and ONDUX is 0.6%, which is not
significant.

4.8.2 Evaluations on Semi-Structured Data

Besides evaluating the performance of ADEx against information-extraction tools on un-
structured data sources, we have also compared the performance of ADEx in extracting
ads records from semi-structured sources with the two information extraction approaches,
MiBAT [18] and NTW [5], respectively, which have previously been introduced in Section 2.

In comparing the performance of ADEx, MiBAT, and NTW, we gathered semi-
structured ads in TData, which yields a set of 1,556 ads extracted from Ebay and KSL.
Even though MiBAT (NTW, respectively) achieves higher F-Measure than ADEx in 2 (3,
respectively) out of the eight ads domains, i.e., Cars and CS Jobs (Cars, Furniture, and
Houses, respectively), the overall F-Measure of ADEx is higher than MiBAT and NTW,
respectively, as shown in Figure 16.

25

Figure 16: (Average) F-Measure achieved by MiBAT, NTW, and ADEx, respectively on
identifying attribute values using the 1,556 semi-structured ads in TData

5 Conclusions

With the rise in popularity on online advertising, more web users turn to online sources to
locate advertisements (ads for short) of interest. Since these web sources are independently
operated and structured using different ads formats on various ads domains tailored for
specific information processing, web users are required to access ads archived at different
sites by employing a wide variety of searching tools individually. The existence of a unified
database (DB), which integrates ads in multiple domains extracted from various online
sources, should greatly simplify the process of inquiring ads data. To create such a unified
DB, we have developed ADEx, a tool that automatically extracts data from online ads to
generate ads records which are populated to an underlying ads DB. ADEx is implemented
using well-established and easy-to-use machine learning algorithms and combines the tasks
of classifying ads, tagging keywords in ads data, and extracting data in ads into a single
process.

ADEx is unique, since it analyzes, filters, and extracts (ir)relevant data from online
ads with different structures in a simple manner. As part of the extraction process, ADEx

(i) categorizes ads according to their domains, since the domain to which an ad belongs
is not always known in advance, and (ii) labels keywords in ads according to a set of pre-
defined types, which generalizes and facilitates the process of identifying essential keywords,
which are valid attribute values, in ads. More importantly, ADEx handles ads originated
from unstructured, as well as (semi-)structured, sources without modifying its core design,
which differs from existing information extraction approaches.

Empirical studies conducted on a set of 18,000 online ads, which belong to eight differ-
ent ads domains retrieved from multiple web sources, show that ADEx is highly effective
in classifying ads, as well as labeling and extracting their data, with F-Measure ratios in
the ninety percentile. We have compared the performance of the various machine learning
approaches adopted by ADEx with other existing machine learning approaches, which in-
clude using the Naive Bayes classifier based on JBBSM versus Multinomial Naive Bayes

26

and SVM for text classification, SVM versus C4.5 Decision Tree and Neural Networks for
keyword labeling, and Decision Tree versus Decision Tables Naive Bayes and Rule Infer-
ence for data extraction. The results of the empirical study show that ADEx outperforms
other machine learning approaches in accomplishing the same task. We have further as-
sessed the overall performance of ADEx using other sets of online ads. The experimental
results indicate that ADEx is consistent in performance or outperforms existing state-of-
the-art information extractors that were designed solely for unstructured (semi-structured,
respectively) data sources, in extracting attribute values from un-/semi-structured ads.

ADEx is currently designed to extract data from ads that include a single prod-
uct/service in an ad. As part of our future work, we intent to enhance ADEx so that
it can handle any online ads that include multiple products, such as in video games ads.
Furthermore, even though ADEx currently handles ads from various domains, it is less
accurate in distinguishing ads in closely-related domains, such as ads on different means of
transportation, or ads that advertise professional jobs that cross multiple disciplines, such
as Bioinformatics. We intent to improve ADEx so that it can discern ads with closely-
related domains.

References

[1] B. Allison. An Improved Hierarchical Bayesian Model of Language for Document
Classification. In Proc. of COLING, pages 25–32, 2008.

[2] H. Chieu and H. Ng. Named Entity Recognition with a Maximum Entropy Approach.
In Proc. of Conf. on Natural Language Learning, pages 160–163, 2003.

[3] W. Cohen. Fast and Effective Rule Induction. In Proc. of ICML, pages 115–123, 1995.

[4] E. Cortez, A. da Silva, M Goncalves, and E. de Moura. ONDUX: On-Demand Unsu-
pervised Learning for Information Extraction. In Proc. of SIGMOD, pages 807–818,
2010.

[5] N. Dalvi, R. Kumar, and M. Soliman. Automatic Wrappers for Large Scale Web
Extraction. VLDB Endowment, 4(4):219–230, 2011.

[6] M. Hall and E. Frank. Combining Naive Bayes and Decision Tables. In Proc. of Florida
Artificial Intelligence Research Society Conf., 2008.

[7] R. Khare and Y. An. An Empirical Study on Using Hidden Markov Model for Search
Interface Segmentation. In Proc. of ACM CIKM, pages 17–26, 2009.

[8] Y. Liu and Y. Zheng. One-Against-All Multi-Class SVM Classification Using Reliabil-
ity Measures. In Proc. of IJCNN, pages 849–854, 2005.

[9] C. Manning, P. Raghavan, and H. Schutze. Introduction to Information Retrieval.
Cambridge University, 2008.

27

[10] C. Manning and H. Schutze. Foundations of Statistical Natural Language Processing.
The MIT Press, 2003.

[11] G. Miao, J. Tatemura, W. Hsiung, A. Sawires, and L. Moser. Extracting Data Records
from the Web Using Tag Path Clustering. In Proc. of WWW, pages 981–990, 2009.

[12] M. Michelson and C. Knoblock. Creating Relational Data from Unstructured and
Ungrammatical Data Sources. Journal of Artificial Intelligence Research, 31(1):543–
590, 2008.

[13] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[14] H. Nguyen, E. Kang, and J. Freire. Automatically Extracting Form Labels. In Proc.
of IEEE ICDE, pages 1498–1500, 2008.

[15] S. Raeymaekers, M. Bruynooghe, and J. Bussche. Learning (k, l)-Contextual Tree Lan-
guages for Information Extraction from Web Pages. Machine Learning, 71(2-3):155–
183, 2008.

[16] Q. Rajput and S. Haider. Use of Bayesian Network in Information Extraction from
Unstructured Data Sources. World Academy of Science, Engineering and Technology
(WASET), 52:325–331, 2009.

[17] D. Sculley and G. Wachman. Relaxed Online SVMs for Spam Filtering. In Proc. of
ACM SIGIR, pages 415–422, 2007.

[18] X. Song, J. Liu, Y. Cao, C.-Y. Lin, and H.-W. Hon. Automatic Extraction of Web
Data Records Containing User-Generated Content. In Proc. of ACM CIKM, pages
39–48, 2010.

[19] B. Tang and D. Mazzoni. Multiclass Reduced-Set Support Vector Machines. In Proc.
of ICML, pages 921–928, 2006.

[20] W. Xu, X. Liu, and Y. Gong. Document Clustering Based on Non-negative Matrix
Factorization. In Proc. of ACM SIGIR, pages 267–273, 2003.

[21] Y. Yang and J. Pedersen. A Comparative Study on Feature Selection in Text Catego-
rization. In Proc. of ICML, pages 412–420, 1997.

[22] J. Zhu, Z. Nie, B. Zhang, and J. Wen. Dynamic Hierarchical Markov Random Fields
for Integrated Web Data Extraction. Machine Learning Research, 9:1583–1614, 2008.

28

