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ABSTRACT
Linked Data (LD) provides principles for publishing data
that underpin the development of an emerging web of data.
LD follows the web in providing low barriers to entry: pub-
lishers can make their data available using a small set of
standard technologies, and consumers can search for and
browse published data using generic tools. Like the web,
consumers frequently consume data in broadly the form in
which it was published; this will be satisfactory in some
cases, but the diversity of publishers means that the data
required to support a task may be stored in many different
sources, and described in many different ways. As such, al-
though RDF provides a syntactically homogeneous language
for describing data, sources typically manifest a wide range
of heterogeneities, in terms of how data on a concept is rep-
resented. This paper makes the case that many aspects of
both publication and consumption of LD stand to benefit
from a pay-as-you-go approach to data integration. Specif-
ically, the paper: (i) identifies a collection of opportunities
for applying pay-as-you-go techniques to LD; (ii) describes
some preliminary experiences applying a pay-as-you-go data
integration system to LD; and (iii) presents some open is-
sues that need to be addressed to enable the full benefits of
pay-as-you go integration to be realised.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed databases; H.3.5
[Online Information Services]: Data sharing; H.3.5 [Online
Information Services]: Web-based services
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1. INTRODUCTION
Linked Data (LD) seeks to do for data what the web did

for documents. In essence, Linked Data [4] involves publica-
tion of data according to a collection of principles, namely
that: (i) all items are identified using URIs; (ii) all URIs
are dereferenceable; (iii) when dereferenced a URI leads to
useful information represented using RDF; and (iv) links to
other URIs are included to allow further navigation. In this
setting, publishers make data available following the prin-
ciples, and users access or process the resulting data using
either generic tools or bespoke applications.

The LD activity therefore supports the publication and
sharing of data building on technologies developed by the
web and semantic web communities. LD follows the web
in providing low barriers to entry: publishers can make
data available using a small set of standard technologies,
and consumers can search for and browse published data
using generic tools. This is fine in principle: the low cost of
publishing encourages the creation of new resources, indexes
constructed by crawlers over these resources allow the data
to be discovered, and the well established browser model
provides related data by following links. However, in cur-
rent practice, what users typically obtain when consuming
LD is essentially what was published. Thus if the publisher
has followed best practice (e.g., by making effective use of
standard vocabularies in describing their data, has included
links of relevance to the user, and has kept these links up-to-
date with respect to available resources), then the resource
referenced by a URI may well be useful to both human and
software consumers. Thus, while we assume that current
tools and techniques can be valuable, we argue that the po-
tential exists for adding significant value to the basic model.

The role of LD as the foundation for an open web of data
encourages the creation of numerous diverse publishers: any-
one can publish into the web of data. While this creates an
opportunity, it also creates challenges for consumers. For ex-
ample, if a user is interested in data on Manchester Univer-
sity, the Sig.ma [38] browser combines results on the univer-
sity, on Manchester Grammar School, and on a nearby rail-
way station, and in so doing brings together lots of correct,
valuable information with a fair amount of misleading or in-



correct data. This is not a criticism of Sig.ma – automatic
integration is clearly a challenging business, and forming a
clear picture of what is said about Manchester University
in the LD cloud is not straightforward. Indeed, providing
a coherent and integrated view of data from LD resources
retains classical challenges for data integration (e.g. iden-
tification and resolution of format inconsistencies in value
representation, handling of inconsistent structural represen-
tations for related concepts, entity resolution), and poses
these on a grand scale. In addition, a collection of issues
faced by users of LD has been identified by a study of data
sets obtained by crawling a portion of the LD cloud. The
study reveals that LD gives rise to various challenges of its
own that stand as significant obstacles to the straightforward
consumption of LD [25], including dangling references, lack
of structured data, incorrect use of RDF constructs, data in-
consistent with declared types, inconsistent use of ontologies
by different resources, etc.

In the database community, the challenge of providing
cost-effective data integration has given rise to ongoing re-
search in pay-as-you-go data integration, proposals for which
are often referred to as Dataspaces [18]. The vision is that
various of the benefits of manual, resource-intensive data in-
tegration could be obtained over time at lower cost, whereby
an initial integration is produced automatically that is sub-
sequently refined to support user requirements. We see these
strands of activity in linked data and pay-as-you-go data in-
tegration as highly complementary; this paper outlines how
they might be brought together to support pay-as-you-go
data access and publishing for linked data.

To support pay-as-you-go integration, dataspaces have a
lifecycle [21] that involves: initialisation, i.e., automatic in-
ference of the relationships between the resources, which
typically provides unsatisfactory query results; usage, i.e.,
evaluation of requests over the dataspace, to yield struc-
tured and potentially ranked results; and improvement, i.e.,
the collection of feedback, typically in the light of usage,
which refines the understanding of the integrated resources
and their relationships, and thus enables the integration to
better correspond to user requirements. The forms of pay-
ment may be diverse, but typically involve some form of
feedback that incrementally refines the initial integration.
For example, feedback on the result of a request (specifically
to indicate if individual results are true or false positives, or
to provide false negatives) can be used to choose between
mappings or to derive refined versions of existing mappings
that better meet user requirements [2].

This paper discusses the opportunities that result from
applying pay-as-you-go data integration principles and tech-
niques to LD, and argues that many different tasks associ-
ated with linked data stand to benefit from a pay-as-you-go
approach. In so doing, it follows the following structure. In
Section 2, we introduce some terminology and techniques
associated with classical manual and pay-as-you-go data in-
tegration. In Section 3, we discuss how linked data pro-
cessing, specifically including publishing, searching, query-
ing and browsing, stand to benefit from more integrated rep-
resentations of data on the web, and how these benefits may
be derived in a pay-as-you-go manner. To make things more
concrete, in Section 4, we describe some initial results inte-
grating linked data resources using the DSToolkit Dataspace
Management System [22]. Building on this experience, we
discuss the current state-of-the-art, open issues and chal-

lenges in Section 5, before presenting some conclusions in
Section 6.

2. DATASPACES
In the database community, the objective of data integra-

tion has typically been to provide the illusion that data ob-
tained from multiple distributed data sources stems in fact
from a single, well managed resource. In such a setting, a
global schema1 is defined that represents the data require-
ments of the users, and mappings (expressed using a query
language) describe how to populate the global schema from
the sources. The development of such mappings is challeng-
ing in practice because the required data may be distributed
across multiple independently developed databases, where
the structures and terminologies used to represent the data
are inconsistent. The classical data integration lifecycle pro-
ceeds as follows:

• Matching: to enable the similarities between the avail-
able sources and the global schema to be quantified,
matchers are run over the schemas (and perhaps sam-
ples from the instances). Matchers typically carry out
tasks such as string comparisons and dictionary lookups,
to identify associations between (assuming relational
terminology) tables and attributes in different sources.
There are many proposals for matching algorithms and
tools for databases and ontologies in the literature (e.g.
[31, 16]).

• Mapping: as the results of matching algorithms typi-
cally contain both false positives and false negatives,
schema mapping tools are used, in which a skilled user
refines the collection of matchings in use, and creates
mappings that describe how to translate data from one
representation to another. The mapping tools support
users by proposing candidate mappings given collec-
tions of matches (e.g. [17]).

The challenges associated with the construction of mappings
are reflected in ongoing research into mapping debugging [9]
and verification [6]. The labour-intensive nature of such a
development process means that classical data integration is
best suited for use in high-value integrations that are of man-
ageable size and relatively stable. As LD is associated with
numerous, rapidly changing resources, and diverse and un-
predictable user requirements, classical approaches to data
integration seem inappropriate.

The vision of pay-as-you-go data integration in Datas-
paces [18] is that certain of the benefits of classical data in-
tegration can be obtained at reduced cost, and that the cost
and quality of integrations can be traded-off to reflect spe-
cific requirements and constraints. As surveyed by Hedeler
et al. [21], there are a significant number of proposals for
pay-as-you-go techniques or systems, and pay-as-you-go in-
tegration is the subject of ongoing investigation. Although
there is considerable variety, in terms of scope and methodol-
ogy, individual proposals can often be characterised by their
approaches to:

1The name global schema is potentially misleading, as there
may be many, and there is certainly no requirement that this
should subsume the schemas of the participating sources.



• Initialisation: Initialisation involves automatic creation
of mappings between a global schema and data sources
that may be able to be used to populate the former. A
global schema may, for example be obtained by union-
ing source schemas, i.e., there is effectively no initial in-
tegration and the user accesses the underlying sources
through a uniform interface but in terms of their orig-
inal models (e.g. [33]), or by merging the schemas
from the sources to produce a single model that rep-
resents concepts that may appear in multiple sources
(e.g. [34]). Where initialisation seeks to provide an in-
tegrated representation of data from multiple sources,
the associated mappings are likely to be of low quality
because they build on imperfect matches between the
sources to be intergrated.

• Improvement: As the integration from bootstrapping
is put to use, feedback is obtained from users and used
to revise different aspects of the integration. This feed-
back may be explicit, e.g., on mappings [7] or on query
results [2], or implicit, e.g., using information from
query logs [14]. The feedback can then be used in dif-
ferent ways to revise the integration, e.g., by identify-
ing missing matches [14], selecting between mappings
[2, 36] or creating new mappings [2].

While pay-as-you-go data integration techniques can be ap-
plied, as above, to insulate users from the diversity of rep-
resentations used in their domain of interest, we envisage
several different application contexts in LD, as discussed in
the next session.

3. OPPORTUNITIES
This section discusses how enhanced data integration, brought

about in a pay-as-you-go manner, might support both pub-
lishers and consumers of LD.

Publication – sharing structure.
Publishing onto the web of data typically includes [20]:

(i) identifying existing terminologies that can be used to de-
scribe the data to be published, potentially in combination
with each other or with some new types; and (ii) translat-
ing the data to be published from its current form into the
chosen RDF representation.

How might pay-as-you-go data integration techniques help
with structure sharing? Given the data to be published, for
example from a relational database or an XML document, it
would be possible to match this data with resources in the
linked data cloud or with ontologies. Automatic mapping
generation could then be used to generate RDF representa-
tions of the data to be published using identified candidate
representations. Such automatically generated mappings are
likely to be of low quality, so feedback on these could then
be provided by the publisher, for example to indicate where
values have been mapped correctly or incorrectly, enabling
the generation of revised mappings and thus new examples
for inspection. The publisher could also modify the target
representation, and request that new mappings be generated
to populate the revised version. Thus the automatic gener-
ation of matchings and mappings could be used to identify
and evaluate candidate ontologies, and feedback following
the pay-as-you-go approach could be used to refine default
mappings that automate the translation of the existing data
into the form for publication.

Publication – linking.
It is one of the principles of LD that published resources

should include links to related data [4]. Publication of links
from a published resource typically involves [20]: (i) iden-
tifying places in the resource representation where there is
value to be obtained from external links; (ii) deciding what
predicates to use with which to make such links; and (iii)
identifying the URLs of suitable link targets.

How might pay-as-you-go data integration techniques help
with linking? Given the data to be published, there seems
to be value in the creation of queries that can retrieve the
URLs that refer out from a published resource. We note
that many LD resources contain few external links, suggest-
ing that the manual creation and maintenance of links is
imposing a cost on publishers that they may be reluctant
to bear. We observe that identifying links between sources
has much in common with mapping – in essence, it is nec-
essary to identify resources that contain related data from
within which suitable URIs can be identified, along with the
conditions that characterise suitable links. Techniques for
entity resolution [13], which often have a significant amount
in common with matching, can be used to identify candidate
link targets for feedback. Publishers or users could be asked
to provide feedback on the suitability of the automatically
generated links, thus potentially supporting changes to the
queries that generated the link targets in ways that improve
their precision and recall (e.g. as investigated previously for
mappings [2, 36]). There is recent work on inferring linkage
rules [26], although opportunities for feedback informing re-
visions to such rules seem to be largely unexplored.

Searching and Browsing – result alignment.
Searching and browsing are central to the web of doc-

uments, and are likely to remain so for the web of data.
However, where both tasks take place over LD rather than
over documents, there are clearly opportunities for present-
ing users with representations of the data that are more in-
tegrated than those that are published. For example, when
search results are displayed in Sig.ma [38], data from multi-
ple sources are brought together in a single report, and pay-
as-you-go refinement of such reports is supported because
users can provide feedback on the sources and domains that
are contributing to a report, for example by accepting or
rejecting specific sources.

How might pay-as-you-go data integration techniques help
with result alignment? The capabilities provided with Sig.ma
for tailoring reports already provide a form of pay-as-you-
go result integration. However, there are circumstances in
which the default behaviour of a system like Sig.ma will not
be close to the required behaviour. For example, assume
that we are interested in visiting Brussels; a search using
Sig.ma for Brussels Hotels produces a report that includes
links to hotels in Brussels, but does not directly provide the
sort of information a potential visitor seems likely to want
about hotels. Instead, the user could format a table that
they would like to have populated, for example, including
the hotel name, street name, star rating, number of rooms
and photo. Populating such a table from multiple sources
involves matching the table description with the data from
different sources, and developing mappings to populate the
table. In pay-as-you-go integration, complete rows in the ta-
ble, or specific attribute values are likely to be unsatisfactory
in the absence of feedback. Feedback of the type already ob-



tained by Sig.ma could be used to refine the matchings used
and the mappings generated to better reflect the user’s re-
quirements.

Querying – rewriting to different structures.
A web of data described using RDF seems to provide the

opportunity to move beyond keyword search, to more pre-
cise question answering, using queries. However, compos-
ing queries over LD directly is a tricky business. SPARQL
queries express their requirements using graph patterns in
which predicates must be known to allow precise requests
to be constructed. However, in LD, sources that describe
data of interest to a user may not only need to be queried
using different predicates, but may also have completely dif-
ferent overall graph structures, and may partition the data
of interest in different ways. Existing proposals for querying
linked data typically (implicitly) assume homogeneous and
known representations across source boundaries (e.g. [19]).

How might pay-as-you-go data integration techniques help
with querying? Following the goal of data integration from
the database community, we assume that authors querying
LD should be able to write their queries on the assumption
that the data they require is represented using a consistent
set of structures and terminologies (whereas in practice it
may be physically stored using diverse structures and ter-
minologies). To achieve this, it is necessary to know how
data is described across the web of data, and to understand
how the different representations relate to each other. In this
setting, pay-as-you-go data integration proceeds broadly as
described in Section 2, and is illustrated for the DSToolkit
dataspace management system in the following section.

4. ARCHITECTURE
There is no single architecture or context for pay-as-you-

go data integration; indeed the principles and techniques
can be applied in different ways and settings. For example,
in Sig.ma [38], pay-as-you-go integration of search results
is integrated with a searching and browsing platform. In
contrast, the Silk link discovery framework [40] is a free-
standing tool that provides a link specification language for
describing how to populate and maintain links; such a plat-
form could be extended to take into account different types
of feedback. For example, implicit feedback might be ob-
tained when the links generated by a link specification were
rarely traversed, and if traversed were rarely used for addi-
tional navigation. This might suggest that the links were of
limited interest or quality, and thus that an alternative link
specification should be considered.

In this section we describe how a dataspace management
system (DSMS), DSToolkit [22], can be adapted for use with
linked data, to support querying over sources with different
structures, one of the opportunities discussed in Section 3.
As DSToolkit is essentially a library of data integration com-
ponents, it can be used to support a range of different styles
of integration, so the approach followed here should be seen
as illustrative rather than prescriptive.

In describing DSToolkit, we use a music case study involv-
ing the Jamendo and Magnatune sources from dbtune.org. In
the case study, access is provided to the sources by way of a
user-supplied global schema over which queries can be writ-
ten that insulate the user from the differences in the repre-
sentations used in the sources. The following steps are taken
to initialise the dataspace using DSToolkit, as illustrated for
the case study in Figure 1.

Structure inference.
The data stored in an RDF source does not conform to

any specific structure analogous to the schema of a rela-
tional database. However, query processing requires an un-
derstanding of how concepts are represented (e.g. for dis-
tributed query processing in SPARQL, Quilitz and Leser
assume that sources provide structural summaries [30]). To
obtain such an understanding, we run a hierarchical agglom-
erative clustering algorithm [32] over resources in a source,
to identify recurring structural patterns. For the case study,
Figure 1(a) illustrates the data stored in Jamendo and Mag-
natune using Turtle, for which the structure inference pro-
cess generates the models illustrated in Figure 1(b) as ER
diagrams. These structural summaries of the data in the
RDF sources are read by DSToolkit, for internal storage us-
ing a supermodel – a data model that subsumes the data
models of typical sources, and which allows many of the
capabilities of a data integration system to be developed
in a way that is agnostic to the types of source being inte-
grated [1]. The same supermodel has been used in with RDF
by De Virgilio, et al. [10, 11], in research into architectures
for storing and querying RDF data. In terms of implementa-
tion, to integrate RDF sources using DSToolkit, a wrapper
has been produced that can import structural summaries,
and that can translate queries expressed over the structural
summaries into SPARQL.

Matching.
In the case study, the objective is to use a given global

schema, which is shown in the middle of Figure 1(c), for
querying the underlying sources. Thus we need to make
explicit how this global schema relates to the underlying
sources. To start this process, we have run a schema match-
ing algorithm (specifically, an n-gram matcher2) between the
global schema and each of the inferred source schemas, which
identifies the matches depicted in Figure 1(c). As is com-
monly the case with matching, many associations are iden-
tified that require selection and grouping to inform mapping
generation.

Correspondence inference.
The correspondence inference step uses an evolutionary

search over the matches to identify a collection of commonly
occurring correspondences between schemas, from the classi-
fication of Kim et al. [27]. These correspondences include 1-
to-1, 1-to-many and many-to-many entity correspondences.
Where many entity types are identified as participating to-
gether in a correspondence, they are considered to be either
horizontally or vertically partitioned; these forms of parti-
tioning effectively construct a new entity type by applying
a union or join operator to their participants, respectively.
Figure 1(d) shows the most highly ranked collection of corre-
spondences between the global and the local schemas. In the
figure, DNSC represents Different Name for the Same Con-
cept, and VP represents Vertical Partitioning. For example,
the inferred correspondences consider Record in the global
schema to be vertically partitioned into Magnatune.Record
and Magnatune.Track; this is because attributes of Record in
the global schema are spread across both Magnatune.Record

2We use this type of matcher more for illustrative purposes
than because we claim it is particularly suitable in this set-
ting.



Figure 1: Initialisation for music sources using DSToolkit.



Figure 2: Obtaining feedback on mapping results.

and Magnatune.Track.

Mapping generation.
The correspondences inferred in the previous step include

sufficient information to allow mappings to be generated
from them algorithmically [29]. In DSToolkit, these map-
pings are expressed internally using SMQL, a query lan-
guage for the supermodel that non-expert users need not be
aware of. Figure 1(e) illustrates some mappings expressed
in SMQL, including examples of those generated from both
1-to-1 and 1-to-many correspondences in Figure 1(d). In
the mappings, s1 represents Magnatune, s2 represents Ja-
mendo and Sgs represents the global schema. Queries ex-
pressed over the supermodel in SMQL can be algorithmically
rewritten to the query languages of the underlying sources,
as described in [23]; the SPARQL generated from the map-
pings in Figure 1(e) for Jamendo and Magnatune data in
Figure 1(a) is given in Figure 1(f). In terms of implementa-
tion, DSToolkit compiles and optimizes SMQL queries that
may require access to data from many sources, translates the
source-specific subqueries into the source-specific languages
for local evaluation, and combines the results using its own
query evaluator.

Mapping selection.
Both matching and correspondence inference can give rise

to multiple overlapping mappings, which provide different
ways of obtaining values in the global schema. Such candi-
date mappings can be expected to include some mappings
that are complementary, some that are alternatives that es-
sentially produce the same data, and many that are incorrect
in some way or other. Thus the feedback phase seeks to ob-
tain additional information from users that can guide the
improvement of the dataspace. As an example, DSToolkit
collects feedback in the form of true positive, false positive
and false negative annotations on tuples in the results of
queries. These annotations allow estimates to be formed as
to the precision and recall of different mappings, which in
turn support both mapping selection and mapping refine-
ment [2]. In mapping selection, given a collection of map-
pings annotated with estimates of precision and recall, it is
an optimization problem to identify the set of mappings that
will produce the maximum recall for a target precision, or
the maximum precision for a target recall. As such, users are
able to trade off precision and recall by indicating a target
for one, which the system will then seek to meet while max-
imising the other. Figure 2 illustrates results obtained for a
quey over Record in the global schema, using the mappings
map3, map4 and map5 from Figure 1(e), along with user
feedback that indicates which result values were expected
and which were not. From these annotations, the precision3

3The precision of a mapping is estimated from user feedback

of map3 and map4 can be estimated as 1.0, and the precision
of map5 can be estimated to be 0. Thus mapping selection
is then able to avoid map5, which incorrectly populates the
track and track title with identical values.

This section has described the initialisation and improve-
ment phases of a DSMS, for querying data sources from the
LD cloud that describe overlapping types of data in some-
what different ways. Thus this section has presented an
approach to addressing one of the opportunities from Sec-
tion 3, although significant challenges remain, as discussed
in the next section.

5. CHALLENGES
In Section 3 we made a case that pay-as-you-go data inte-

gration techniques could play an important role supporting
recurring requirements for publishing and consuming LD. In
Section 4 we provided a concrete example of a DSMS, sup-
porting querying in a way that insulated users from certain
heterogeneities in the structures used by sources. However,
overall, it is early days for pay-as-you-go data integration
in general, and for LD in particular. This section discusses
some of the research challenges that need to be addressed if
the opportunities from Section 3 are to be fully realised.

• Source description: Data integration involves obtain-
ing an understanding of the relationships between data
sources, which tends to build on information about
source structures. In LD, although good publication
practice will lead to recurring use of terminologies,
there will inevitably be terminologies with overlapping
domains, and different sources will combine them in
different ways when representing data. As such, there
is a need for research into techniques that infer the
structures found in sources in ways that support down-
stream tasks, such as matching, mapping and query
routing. There is ongoing research on summarising
linked data sources to support different tasks, such
as query routing, which certainly have overlapping re-
quirements with data integration (see Umbrich, et al.
for a survey [39]).

• Matching: There is a considerable body of work on
schema and ontology matching [31, 16]. However, the
devil is often in the detail for matching strategies, and
LD has certain features (such as shared terminolo-
gies, a large number of instance stores, global iden-
tifiers in the form of URLs, and links across indepen-
dent sources) that present both challenges and oppor-
tunities for matchers. Although there are some results

as precision = tp
tp+fp

, where tp is the number of tuples an-

notated as expected returned by the mapping, and fp is the
number of tuples annotated as unexpected.



specifically associated with RDF data (e.g. [28]), and
RDF matching features in the instance matching com-
ponent of the Ontology Alignment Evaluation Initia-
tive [15], there still seem to be significant opportuni-
ties for exploring matching that addresses the specific
features of LD. For example, open issues include the
expressiveness of the output produced by matching,
where associations often simply denote the fact that
some matcher has identified similarity of some form,
whereas others have sought to produce richer descrip-
tions of relationships within matching (e.g. [35]).

• Mapping: Research into schema mapping has produced
a large body of work that seeks to generate, validate
and debug mappings that are consistent with known
matches and constraints (e.g. [17, 6, 9]). Such results
frequently build on properties of the data representa-
tions used (e.g. [24]), and there seems be potential for
combining such results with insights from graph iso-
morphisms (e.g. [8]) to identify patterns within and
across LD sources for which mappings can be gener-
ated automatically in the context of data from match-
ing.

• Feedback: For the most part, pay-as-you-go data in-
tegration proposals that use feedback collect a single
type of feedback that is used for a small number of
tasks. As argued in a recent paper [3], in fact there
may be a rich collection of different kinds of feedback
that not only can be used for a variety of purposes, but
also that may be subject to a collection of common op-
erations, e.g. for validation of feedback or clustering of
users. In LD, there seems to be considerable potential
for user communities to provide feedback that informs
the integration of resources in their domains of inter-
est, and there are several examples of the construc-
tion and maintenance of data resources using mass
collaboration (e.g. Freebase [5]). Mass collaboration
can take various forms [12]; for example, contributors
might indicate explicitly that two results represent the
same real-world object, that a single result conflates
two real-world objects, or that specific properties of
a result fail to meet their expectations. By contrast,
contributors might implicitly indicate their interests
through their search terms or the items that they click
through. Such feedback could be used to cluster con-
tributors into related groups, and could either be con-
solidated and applied automatically (e.g., by using dif-
ferent mapping rankings for different groups of con-
tributors), or used to identify potential priorities for
curators.

6. CONCLUSIONS
By building on a standardised technical platform, and

adopting a number of principles informed by the success of
the web, the LD cloud is rapidly developing into a valuable
global data resource. However, although this resource bene-
fits from the consistency provided by the use of a standard-
ized platform for describing data, vocabularies and links, the
proliferation of publishers and sources means that obtaining
an integrated view of the data in an area of interest is often
far from straightforward.

This paper has described how techniques from pay-as-you-
go data integration may be able to contribute to the grow-

ing body of work that seeks to support LD publication and
consumption. We are not the first to identify that pay-as-
you-go integration might be relevant to linked data. For
example, in Hermes [37] keyword queries are translated to
SPARQL queries over LD in a setting where there is signif-
icant automatic initialisation of structures that support the
translation, and in Sig.ma [38], users can provide feedback
that refines their experience when browsing. However, our
contention in this paper is that the space of opportunities
for applying the pay-as-you-go approach is far from fully ex-
plored, and that the opportunities for increasing the collec-
tion and application of feedback to improve integrations are
significant. We have identified several of the opportunities,
and described the use of the DSToolkit DSMS to demon-
strate how the initialisation and improvement stages of pay-
as-you-go data integration can be used to address one of
the opportunities, namely query processing over structurally
heterogeneous RDF sources.
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