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Abstract: Given two distributions F and G on the nonnegative integers we propose an algorithm to
construct in- and out-degree sequences from samples of i.i.d. observations from F and G, respectively,
that with high probability will be graphical, that is, from which a simple directed graph can be drawn.
We then analyze a directed version of the configuration model and show that, provided that F and
G have finite variance, the probability of obtaining a simple graph is bounded away from zero as the
number of nodes grows. We show that conditional on the resulting graph being simple, the in- and
out-degree distributions are (approximately) F and G for large size graphs. Moreover, when the degree
distributions have only finite mean we show that the elimination of self-loops and multiple edges does
not significantly change the degree distributions in the resulting simple graph.

AMS 2000 subject classifications: Primary 05C80; secondary 60C05.

Keywords and phrases: Directed random graphs, simple graphs, configuration model, prescribed
degree distributions.

1. Introduction

In order to study complex systems such as the World Wide Web (WWW) we propose a model for generating a
simple directed random graph with prescribed degree distributions. The ability to match degree distributions
to real graphs is perhaps the first characteristic one would desire from a model, and although several models
that accomplish this for undirected graphs have been proposed in the recent literature [8, 10, 11, 19], not
much has been done for the directed case. In the WWW example that motivates this work, vertices represent
webpages and the edges represent the links between them. Empirical studies (e.g., [9, 14]) suggest that both
the in-degree and out-degree, number of links pointing to a page and the number of outbound links of a page,
respectively, follow a power-law distribution, a characteristic often referred to as the scale-free property.

The model we propose in this paper is closely related to the work in [8] for undirected graphs, where given
a probability distribution F , the goal is to provide an algorithm to generate a simple random graph whose
degree distribution is approximately F . Two of the models presented in [8], as well as the model in [24],
are in turn related to the well-known configuration model [6, 25], where vertices are given stubs or half-
edges according to a degree sequence {di} and these stubs are then randomly paired to form edges. To
obtain a prescribed degree distribution, the degree sequence {di} is chosen as i.i.d. random variables having
distribution F . This method allows great flexibility in terms of the generality of F , which is very important
in the applications we have in mind. The most general of the results presented here require only that the
degree distributions have finite (1+ε)th moment, and are therefore applicable to a great variety of examples,
including the WWW.

For a directed random graph there are two distributions that need to be chosen, the in-degree and out-
degree distributions, denoted respectively F = {fk : k ≥ 0} and G = {gk : k ≥ 0}. The in-degree of a node
corresponds to the number of edges pointing to it, while the out-degree is the number of edges pointing
out. To follow the ideas from [8, 24], we propose to draw the in-degree and out-degree sequences as i.i.d.
observations from distributions F and G. Unlike the undirected case where the only main problem with
this approach is that the sum of the degrees might not be even, which is necessary to draw an undirected
graph, in the directed case the corresponding condition is that the sum of the in-degrees and the sum of
the out-degrees be the same. Since the probability that two i.i.d. sequences will have the same sum, even if
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their means are equal, converges to zero as the number of nodes grows to infinity, the first part of the paper
focuses on how to construct valid degree sequences without significantly destroying their i.i.d. properties.
Once we have valid degree sequences the problem is how to obtain a simple graph, since the random pairing
may produce self-loops and multiple edges in the same direction. This problem is addressed in two ways, the
first of which consists in showing sufficient conditions under which the probability of generating a simple
graph through random pairing is strictly positive, which in turn suggests repeating the pairing process until
a simple graph is obtained. The second approach is to simply erase the self-loops and multiple edges of the
resulting graph. In both cases, one must show that the degree distributions in the final simple graph remain

essentially unchanged. In particular, if we let f
(n)
k be the probability that a randomly chosen node from a

graph of size n has in-degree k, and let g
(n)
k be the corresponding probability for the out-degree, then we

will show that,

f
(n)
k → fk and g

(n)
k → gk,

as n→∞. We also prove a similar result for the empirical distributions.

The question of whether a given pair of in- and out-degree sequences ({mi}, {di}) is graphical, i.e., from
which it is possible to draw a simple directed graph, has been recently studied in [13, 17], where algorithms
to realize such graphs have also been analyzed. Random directed graphs with arbitrary degree distributions
have been studied in [21] via generating functions, which can be used to formalize concepts such as “in-
components” and “out-components” as well as to estimate their average size. Models of growing networks
that can be calibrated to mimic the power-law behavior of the WWW have been analyzed using statistical
physics techniques in [15, 16]. The approach followed in this paper focuses on one hand on the generation
of in- and out-degree sequences that are close to being i.i.d. and that are graphical with high probability,
and on the other hand on providing conditions under which a simple graph can be obtained through random
pairing. The directed configuration model with (close to) i.i.d. degree sequences, although not a growing
network model, has the advantage of being analytically tractable and easy to simulate.

The rest of the paper is organized as follows. In Section 2 we introduce a model to construct in- and out-
degree sequences that are very close to being two independent sequences of i.i.d. random variables having
distributions F and G, respectively, but whose sums are the same; in the same spirit as the results in [1] we
also show that the suggested method produces with high probability a graphical pair of degree sequences.
In Subsection 3.1 we prove sufficient conditions under which the probability that the directed configuration
model will produce a simple graph will be bounded away from zero, and show that conditional on the resulting
graph being simple, the degree sequences have asymptotically the correct distributions. In Subsection 3.2 we
show that under very mild conditions, the process of simply erasing self-loops and multiple edges results in
a graph whose degree distributions are still asymptotically F and G.

2. Graphs and degree sequences

As mentioned in the introduction, the goal of this paper is to provide an algorithm for generating a random
directed graph with n nodes with the property that its in-degrees and out-degrees have some prespecified
distributions F and G, respectively. Moreover, we would like the resulting graph to be simple, that is, it
should not contain self-loops or multiple edges in the same direction. The two models that we propose are
based on the so-called configuration or pairing model, which produces a random undirected graph from a
degree sequence {d1, d2, . . . , dn}. In [8, 24] the prescribed degree distribution is obtained by drawing the
degree sequence {di} as i.i.d. random variables from that distribution. More details about the configuration
model can be found in Section 3.

Following the same idea of using a sequence of i.i.d. random variables to generate the degree sequence of an
undirected graph, the natural extension to the directed case would be to draw two i.i.d. sequences from given
distributions F and G. We note that in the undirected setting the two main problems with this approach
are: 1) that the sum of the degrees may be odd, in which case it is impossible to draw a graph, and 2)
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that there may not exist a simple graph having the prescribed degree sequence. The first problem is easily
fixed by either sampling the i.i.d. sequence until its sum is even (which will happen with probability 1/2
asymptotically), or simply adding one to the last random number in the sequence. The second problem,
although related to the verification of graphicality criteria (e.g., the Erdös-Gallai criterion [12]), turns out
to be negligible as the number of nodes goes to infinity, as the work in [1] shows. For directed graphs a
graphicality criterion also exists, and the second problem turns out to be negligible for large graphs just as
in the undirected case. Nonetheless, the equivalent of the first problem is now that the potential in-degree
and out-degree sequences must have the same sum, which is considerably harder to fix. Before proceeding
with the formulation of our proposed algorithm we give some basic definitions which will be used throughout
the paper.

Definition 2.1. We denote by ~G(V, ~E) a directed graph on n nodes or vertices, V = {v1, v2, . . . , vn},
connected via the set of directed edges ~E.

Definition 2.2. We say that ~G(V, ~E) is simple if any pair of nodes are connected by at most one edge in
each direction, and if there are no edges in between a node and itself.

Definition 2.3. The in-degree mi, respectively, out-degree di, of node vi ∈ V is the total number of edges from
other nodes to vi, respectively, from vi to other nodes. The pair of sequences (m,d) = ({m1,m2, . . . ,mn},
{d1, d2, . . . , dn}) of nonnegative integers is called a bi-degree-sequence if mi and di correspond to the in-degree
and out-degree, respectively, of node vi.

Definition 2.4. A bi-degree-sequence (m,d) is said to be graphical if there exists a simple directed graph
~G(V, ~E) on the set of nodes V such that the in-degree and out-degree sequences together form (m,d). In this

case we say that ~G realizes the bi-degree-sequence.

In view of these definitions our goal is to generate the sequences {mi} and {di} from i.i.d. samples of
given distributions F = {fk : k ≥ 0} and G = {gk : k ≥ 0}, respectively. Both F and G are assumed to
be probability distributions with support on the nonnegative integers with a finite common mean µ. Note
that although the Strong Law of Large Numbers (SLLN) guarantees that if we simply sample i.i.d. random
variables {γ1, . . . , γn} from F and, independently, i.i.d. random variables {ξ1, . . . , ξn} from G, then

P

(
lim
n→∞

1

n

n∑
i=1

γi = lim
n→∞

1

n

n∑
i=1

ξi

)
= 1,

it is also true that in general

lim
n→∞

P

(
n∑
i=1

γi −
n∑
i=1

ξi = 0

)
= 0.

One potential idea to fix the problem is to sample one of the two sequences, say the in-degrees, as i.i.d.
observations {γ1, . . . , γn} from F and then sample the second sequence from the conditional distribution G
given that its sum is Γn =

∑n
i=1 γi. This approach has the major drawback that this conditional distribution

may be ill-behaved, in the sense that the probability of the conditioning event, the sum being equal to
Γn, converges to zero in most cases. It follows that we need a different mechanism to sample the degree
sequences. The precise algorithm we propose is described below; we focus on first sampling two independent
i.i.d. sequences and then add in- or out-degrees as needed to match their sums.

The following definition will be needed throughout the rest of the paper.

Definition 2.5. We say that a function L(·) is slowly varying at infinity if limx→∞ L(tx)/L(x) = 1 for
all fixed t > 0. A distribution function F is said to be regularly varying with index α > 0, F ∈ R−α, if
F (x) = 1− F (x) = x−αL(x) with L(·) slowly varying.

We will also use the notation ⇒ to denote convergence in distribution,
P−→ to denote convergence in proba-

bility, and N = {1, 2, 3, . . . } to refer to the positive integers.
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2.1. The Algorithm

We assume that the target degree distributions F and G have support on the nonnegative integers and have
common mean µ > 0. Moreover, suppose that there exist slowly varying functions LF (·) and LG(·) such that

F (x) =
∑
k>x

fk ≤ x−αLF (x) and G(x) =
∑
k>x

gk ≤ x−βLG(x), (2.1)

for all x ≥ 0, where α, β > 1.

We refer the reader to [4] for all the properties of slowly varying functions that will be used in the proofs.
However, we do point out here that the tail conditions in (2.1) ensure that F has finite moments of order s
for all 0 < s < α, and G has finite moments of order s for all 0 < s < β. The constant

κ = min{1− α−1, 1− β−1, 1/2},

will play an important role throughout the paper. The algorithm is given below.

1. Fix 0 < δ0 < κ.
2. Sample an i.i.d. sequence {γ1, . . . , γn} from distribution F ; let Γn =

∑n
i=1 γi.

3. Sample an i.i.d. sequence {ξ1, . . . , ξn} from distribution G; let Ξn =
∑n
i=1 ξi.

4. Define ∆n = Γn − Ξn. If |∆n| ≤ n1−κ+δ0 proceed to step 5; otherwise repeat from step 2.
5. Choose randomly |∆n| nodes {i1, i2, . . . , i|∆n|} without remplacement and let

Ni = γi + τi, Di = ξi + χi, i = 1, 2, . . . , n,

where

χi =

{
1 if ∆n ≥ 0 and i ∈ {i1, i2, . . . , i∆n

},
0 otherwise,

and

τi =

{
1 if ∆n < 0 and i ∈ {i1, i2, . . . , i|∆n|},
0 otherwise.

Remark 2.6. (i) This algorithm constructs a bi-degree-sequence (N,D) having the property that Ln =∑n
i=1Ni =

∑n
i=1Di. (ii) Note that we have used the capital letters Ni and Di to denote the in-degree

and out-degree, respectively, of node i, as opposed to using the notation mi and di from Definition 2.4; we
do this to emphasize the randomness of the bi-degree-sequence itself. (iii) Clearly, neither {N1, . . . , Nn} nor
{D1, . . . , Dn} are i.i.d. sequences, nor are they independent of each other, but we will show in the next section
that asymptotically as n grows to infinity they have the same joint distribution as ({γi}, {ξi}). (iv) We will
also show that the condition in step 4 has probability converging to one. (v) Note that we always choose to
add degrees, rather than fixing one sequence and always adjust the other one, to avoid having problems with
nodes with in- or out-degree zero.

2.2. Asymptotic behavior of the degree sequence

We now provide some results about the asymptotic behavior of the bi-degree-sequence obtained from the
algorithm we propose. The first thing we need to prove is that the algorithm will always end in finite time,
and the only step where we need to be careful is in Step 4, since it may not be obvious that we can always
draw two independent i.i.d. sequences satisfying |∆n| ≤ n1−κ+δ0 in a reasonable amount of time. The first
lemma we give establishes that this is indeed the case by showing that the probability of satisfying condition
|∆n| ≤ n1−κ+δ0 converges to one as the size of the graph grows. All the proofs in this section can be found
in Subsection 4.1.
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Lemma 2.7. Define Dn = {|∆n| ≤ n1−κ+δ0}, then

lim
n→∞

P (Dn) = 1.

Since the sums of the in-degrees and out-degrees are the same, we can always draw a graph, but this is not
enough to guarantee that we can draw a simple graph. In other words, we need to determine with what
probability will the the bi-degree-sequence (N,D) be graphical, and to do this we first need a appropriate
criterion, e.g., a directed version of the Erdös-Gallai criterion for undirected graphs. The following result
(Corollary 1 on p. 110 in [3]) gives necessary and sufficient conditions for a bi-degree-sequence to be graphical;
the original statement is for more general p-graphs, where up to p parallel edges in the same direction are
allowed. The notation |A| denotes the cardinality of set A.

Theorem 2.8. Given a set of n vertices V = {v1, . . . , vn}, having bi-degree-sequence (m,d) =
({m1, . . . ,mn}, {d1, . . . , dn}), a necessary and sufficient condition for (m,d) to be graphical is

a)

n∑
i=1

mi =

n∑
i=1

di, and

b)
n∑
i=1

min{di, |A− {vi}|} ≥
∑
vi∈A

mi for any A ⊆ V .

We now state a result that shows that for large n, the bi-degree-sequence (N,D) constructed in Subsection
2.1 is with high probability graphical. Related results for undirected graphs can be found in [1], which
includes the case when the degree distribution has infinite mean.

Theorem 2.9. For the bi-degree-sequence (N,D) constructed in Section 2.1 we have

lim
n→∞

P ((N,D) is graphical) = 1.

The second property of (N,D) that we want to show is that despite the fact that the sequences {Ni} and
{Di} are no longer independent nor individually i.i.d., they are still asymptotically so as the number of
vertices n goes to infinity. The intuition behind this result is that the number of degrees that need to be
added to one of the i.i.d. sequences {γi} or {ξi} to match their sum is small compared to n, and therefore the
sequences {Ni} and {Di} are almost i.i.d. and independent of each other. This feature makes the bi-degree-
sequence (N,D) we propose an approximate equivalent of the i.i.d. degree sequence considered in [1, 8, 24]
for undirected graphs.

Theorem 2.10. The bi-degree-sequence (N,D) constructed in Subsection 2.1 satisfies that for any fixed
r, s ∈ N,

(Ni1 , . . . , Nir , Dj1 , . . . , Djs)⇒ (γ1, . . . , γr, ξ1, . . . , ξs)

as n→∞, where {γi} and {ξi} are independent sequences of i.i.d. random variables having distributions F
and G, respectively.

To end this section, we give a result that establishes regularity conditions of the bi-degree-sequence (N,D)
which will be important in the sequel.

Proposition 2.11. The bi-degree-sequence (N,D) constructed in Subsection 2.1 satisfies

1

n

n∑
k=1

1(Nk = i,Dk = j)
P−→ figj , for all i, j ∈ N ∪ {0},

1

n

n∑
i=1

Ni
P−→ E[γ1],

1

n

n∑
i=1

Di
P−→ E[ξ1], and

1

n

n∑
i=1

NiDi
P−→ E[γ1ξ1],
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as n→∞, and provided E[γ2
1 + ξ2

1 ] <∞,

1

n

n∑
i=1

N2
i

P−→ E[γ2
1 ], and

1

n

n∑
i=1

D2
i

P−→ E[ξ2
1 ],

as n→∞.

3. The configuration model

In the previous section we introduced a model for the generation of a bi-degree-sequence (N,D) that is
close to being a pair of independent sequences of i.i.d. random variables, but yet has the property of being
graphical with probability close to one as the size of the graph goes to infinity. We now turn our attention
to the problem of obtaining a realization of such sequence, in particular, of drawing a simple graph having
(N,D) as its bi-degree-sequence.

The approach that we follow is a directed version of the configuration model. The configuration, or pairing
model, was introduced in [6] and [25], although earlier related ideas based on symmetric matrices with {0, 1}
entries go back to the early 70’s; see [7, 26] for a survey of the history as well as additional references. The
configuration model is based on the following idea: given a degree sequence d = {d1, . . . , dn}, to each node vi,
1 ≤ i ≤ n, assign di stubs or half-edges, and then pair half-edges to form an edge in the graph by randomly
selecting with equal probability from the remaining set of unpaired half-edges. This procedure results in a
multigraph on n nodes having d as its degree sequence, where the term multigraph refers to the possibility
of self-loops and multiple edges. Although this algorithm does not produce a multigraph uniformly chosen at
random from the set of all multigraphs having degree sequence d, a simple graph uniformly chosen at random
can be obtained by choosing a pairing uniformly at random and discarding the outcome if it has self-loops
or multiple edges [26]. The question that becomes important then is to estimate the probability with which
the pairing model will produce a simple graph. For the undirected graph setting we have described, such
results were given in [2, 6, 20, 22, 25] for regular d-graphs (graphs where each node has exactly degree d),
and in [18, 20, 23] for general graphical degree sequences.

From the previous discussion, it should be clear that it is important to determine conditions under which
the probability of obtaining a simple graph in the pairing model is bounded away from zero as n → ∞.
Such conditions are essentially bounds on the rate of growth of the maximum (minimum) degree and/or the
existence of certain limits (see, e.g., [18, 20, 23]). The set of conditions given below is taken from [23], and
we include it here as a reference for the directed version discussed in this paper.

Condition 3.1. Given a degree sequence d = {d1, . . . , dn}, let D[n] be the degree of a randomly chosen node,
i.e.,

P (D[n] = k) =
1

n

n∑
i=1

1(di = k).

a) Weak convergence. There exists a finite random variable D taking values on the positive integers such
that

D[n] ⇒ D, n→∞.

b) Convergence of the first moment.
lim
n→∞

E[D[n]] = E[D].

c) Convergence of the second moment.

lim
n→∞

E[(D[n])2] = E[D2].
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Remark 3.2. It is straightforward to verify that if the degree sequence is chosen as an i.i.d. sample
{D1, . . . , Dn} from some distribution F on the positive integers having finite first moment, then parts (a)
and (b) of Condition 3.1 are satisfied, and if F has finite second moment then also part (c) is satisfied; the
adjustment made to ensure that the sum of the degrees is even, if needed, can be shown to be negligible.

Condition 3.1 guarantees that the probability of obtaining a simple graph in the pairing model is bounded
away from zero (see, e.g., [23]), in which case we can obtain a uniformly simple realization of the (graphical)
degree sequence {di} by repeating the random pairing until a simple graph is obtained. When part (c)
of Condition 3.1 fails, then an alternative is to simply erase the self-loops and multiple edges. These two
approaches give rise to the repeated an erased configuration models, respectively.

Having given a brief description of the configuration model for undirected graphs, we will now discuss how to
adapt it to draw directed graphs. The idea is basically the same, given a bi-degree-sequence (m,d), to each
node vi assign mi inbound half-edges and di outbound half-edges; then, proceed to match inbound half-edges
to outbound half-edges to form directed edges. To be more precise, for each unpaired inbound half-edge of
node vi choose randomly from all the available unpaired outbound half-edges, and if the selected outbound
half-edge belongs to node, say, vj , then add a directed edge from vj to vi to the graph; proceed in this way
until all unpaired inbound half-edges are matched. The following result shows that conditional on the graph
being simple, it is uniformly chosen among all simple directed graphs having bi-degree-sequence (m,d). All
the proofs of Section 3 can be found in Subsection 4.2.

Proposition 3.3. Given a graphical bi-degree-sequence (m,d), generate a directed graph according to the
directed configuration model. Then, conditional on the obtained graph being simple, it is uniformly distributed
among all simple directed graphs having bi-degree-sequence (m,d).

The question is now under what conditions will the probability of obtaining a simple graph be bounded
away from zero as the number of nodes, n, goes to infinity. When this probability is bounded away from
zero we can repeat the random pairing until we draw a simple graph: the repeated model; otherwise, we can
always erase the self-loops and multiple edges in the same direction to obtain a simple graph: the erased
model. These two models are discussed in more detail in the following two subsections, where we also provide
sufficient conditions under which the the probability of obtaining a simple graph will be bounded away from
zero.

We end this section by mentioning that another important line of problems related to the drawing of simple
graphs (directed or undirected) is the development of efficient simulation algorithms, see for example the
recent work in [5] using importance sampling techniques for drawing a simple graph with prescribed degree
sequence {di}; similar ideas should also be applicable to the directed model.

3.1. Repeated Directed Configuration Model

In this section we analyze the directed configuration model using the bi-degree-sequence (N,D) constructed
in Subsection 2.1. In order to do so we will first need to establish sufficient conditions under which the
probability that the directed configuration model produces a simple graph is bounded away from zero as
the number of nodes goes to infinity. Since this property does not directly depend on the specific bi-degree-
sequence (N,D), we will prove the result for general bi-degree-sequences (m,d) satisfying an analogue of
Condition 3.1. As one may expect, we will require the existence of certain limits related to the (joint)
distribution of the in-degree and out-degree of a randomly chosen node. Also, since the sequences {mi} and
{di} need to have the same sum, we prefer to consider a sequence of bi-degree-sequences, i.e., {(mn,dn)}n∈N
where (mn,dn) = ({mn1, . . . ,mnn}, {dn1, . . . , dnn}), since otherwise the equal sum constraint would greatly
restrict the type of sequences we can use (e.g., mi = di for all i ∈ N). The corresponding version of
Condition 3.1 is given below.



N. Chen and M. Olvera-Cravioto/Directed Random Graphs 8

Condition 3.4. Given a sequence of bi-degree-sequences {(mn,dn)}n∈N satisfying

n∑
i=1

mni =

n∑
i=1

dni for all n,

let (N [n], D[n]) denote the in-degree and out-degree of a randomly chosen node, i.e.,

P ((N [n], D[n]) = (i, j)) =
1

n

n∑
k=1

1(mnk = i, dnk = j).

a) Weak convergence. There exist finite random variables γ and ξ taking values on the nonnegative integers
and satisfying E[γ] = E[ξ] > 0 such that

(N [n], D[n])⇒ (γ, ξ), n→∞.

b) Convergence of the first moments.

lim
n→∞

E[N [n]] = E[γ] and lim
n→∞

E[D[n]] = E[ξ].

c) Convergence of the covariance.
lim
n→∞

E[N [n]D[n]] = E[γξ].

d) Convergence of the second moments.

lim
n→∞

E[(N [n])2] = E[γ2] and lim
n→∞

E[(D[n])2] = E[ξ2].

We now state a result that says that the number of self-loops and the number of multiple edges produced
by the random pairing converge jointly, as n→∞, to a pair of independent Poisson random variables. As a
corollary we obtain that the probability of the resulting graph being simple converges to a positive number,
and is therefore bounded away from zero. The proof is an adaptation of the proof of Proposition 7.9 in [23].

Consider the multigraph obtained through the directed configuration model from the bi-degree-sequence
(mn,dn), and let Sn be the number of self-loops and Mn be the number of multiple edges in the same
direction, that is, if there are k ≥ 2 (directed) edges from node vi to node vj , they contribute (k− 1) to Mn.

Proposition 3.5. (Poisson limit of self-loops and multiple edges) If {(mn,dn)}n∈N satisfies Condition 3.4
with E[γ] = E[ξ] = µ > 0, then

(Sn,Mn)⇒ (S,M)

as n→∞, where S and M are two independent Poisson random variables with means

λ1 =
E[γξ]

µ
and λ2 =

E[γ(γ − 1)]E[ξ(ξ − 1)]

2µ2
,

respectively.

Since the probability of the graph being simple is P (Sn = 0,Mn = 0), we obtain as a consequence the
following theorem.

Theorem 3.6. Under the assumptions of Proposition 3.5,

lim
n→∞

P (graph obtained from (mn,dn) is simple) = e−λ1−λ2 > 0.
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It is clear from Proposition 2.11 that Condition 3.4 is satisfied by the bi-degree-sequence (N,D) proposed
in Subsection 2.1 whenever F and G have finite variance. This implies that one way of obtaining a simple
directed graph on n nodes is by first sampling the bi-degree-sequence (N,D) according to Subsection 2.1,
then checking if it is graphical, and if it is, use the directed pairing model to draw a graph, discarding any
realizations that are not simple. Alternatively, since the probability of (N,D) being graphical converges to
one, then one could skip the verification of graphicality and re-sample (N,D) each time the pairing needs
to be repeated.

The last thing we show in this section is that the degree distributions of the resulting simple graph will
have with high probability the prescribed degree distributions F and G, as required. More specifically, if we
let (N(r),D(r)) be the bi-degree-sequence of the final simple graph obtained through the repeated directed
configuration model with bi-degree-sequence (N,D), then we will show that the joint distribution

h(n)(i, j) =
1

n

n∑
k=1

P (N
(r)
k = i,D

(r)
k = j) i, j = 0, 1, 2, . . . ,

converges to figj , and the empirical distributions,

f̂k
(n)

=
1

n

n∑
i=1

1(N
(r)
i = k) and ĝk

(n) =
1

n

n∑
i=1

1(D
(r)
i = k) k = 0, 1, 2, . . . ,

converge in probability to fk and gk, respectively. The same result was shown in [8] for the undirected case
with i.i.d. degree sequence {Di}.

Proposition 3.7. For the repeated directed configuration model with bi-degree-sequence (N,D), as con-
structed in Subsection 2.1, we have:

a) h(n)(i, j)→ figj as n→∞, i, j = 0, 1, 2, . . . , and
b) for all k = 0, 1, 2, . . . ,

f̂k
(n) P−→ fk and ĝk

(n) P−→ gk, n→∞.

Remark 3.8. Note that by the continuous mapping theorem, (a) implies that the marginal distributions of
the in-degrees and out-degrees,

f (n)(i) =
1

n

n∑
k=1

P (N
(r)
k = i) and g(n)(j) =

1

n

n∑
k=1

P (D
(r)
k = j),

converge to fi and gj, respectively. The same arguments used in the proof also give that the joint empirical
distribution converges to figj in probability.

3.2. Erased directed configuration model

In this section we consider the erased directed configuration model, which is particularly useful when the
probability of drawing a simple graph converges to zero as the number of nodes increases, which could
happen, for example, when Condition 3.4 (d) fails. Given a bi-degree-sequence (m,d), the erased model
consists in first obtaining a multigraph according to the directed configuration model and then erase all
self-loops and merge multiple edges in the same direction into a single edge, with the result being a simple
graph. Note that the graph obtained through this process no longer has (m,d) as its bi-degree-sequence.

As for the repeated model, let (N(e),D(e)) be the bi-degree-sequence of the simple graph obtained through
the erased directed configuration model with bi-degree-sequence (N,D). Define the joint distribution

h(n)(i, j) =
1

n

n∑
k=1

P (N
(e)
k = i,D

(e)
k = j) i, j = 0, 1, 2, . . . ,
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and the empirical distributions,

f̂k
(n)

=
1

n

n∑
i=1

1(N
(e)
i = k) and ĝk

(n) =
1

n

n∑
i=1

1(D
(e)
i = k) k = 0, 1, 2, . . . .

The following result is the analogue of Proposition 3.7 for the erased model.

Proposition 3.9. For the erased directed configuration model with bi-degree-sequence (N,D), as constructed
in Subsection 2.1, we have:

a) h(n)(i, j)→ figj as n→∞, i, j = 0, 1, 2, . . . , and
b) for all k = 0, 1, 2, . . . ,

f̂k
(n) P−→ fk and ĝk

(n) P−→ gk, n→∞.

4. Proofs

In this section we give the proofs of all the results in the paper. We divide the proofs into two subsections,
one containing those belonging to Section 2 and those belonging to Section 3. Throughout the remainder
of the paper we use the following notation: g(x) ∼ f(x) if limx→∞ g(x)/f(x) = 1, g(x) = O(f(x)) if
lim supx→∞ g(x)/f(x) <∞, and g(x) = o(f(x)) if limx→∞ g(x)/f(x) = 0.

4.1. Degree Sequences

This subsection contains the proofs of Lemma 2.7, Theorems 2.9 and 2.10, and Proposition 2.11.

Proof of Lemma 2.7. Let Zi = γi − ξi and note that the {Zi} are i.i.d. mean zero random variables. If
E[Z2

1 ] <∞, then Chebyshev’s inequality gives

P (Dcn) = P

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ > n1/2+δ0

)
≤ nVar(Z1)

n1+2δ0
= O(n−2δ0) = o(1)

as n→∞.

Suppose now that E[Z2
1 ] =∞, which implies that κ = 1−max{α−1, β−1} ∈ (0, 1/2]. Let θ = max{α−1, β−1},

define tn = nθ+ε, 0 < ε < min{δ0, θ−1 − θ}, and let {Z̃i} be a sequence of i.i.d. random variables having
distribution P (Z̃1 ≤ x) = P (Z1 ≤ x||Z1| ≤ tn). Then,

P

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ > n1−κ+δ0

)

= P

(∣∣∣∣∣
n∑
i=1

Z̃i

∣∣∣∣∣ > n1−κ+δ0

)
P (|Z1| ≤ tn)n + P

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ > n1−κ+δ0 , max
1≤i≤n

|Zi| > tn

)

≤ P

(∣∣∣∣∣
n∑
i=1

Z̃i − nE[Z̃1]

∣∣∣∣∣+ n|E[Z̃1]| > n1−κ+δ0

)
+ P

(
max

1≤i≤n
|Zi| > tn

)
.
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By the union bound,

P

(
max

1≤i≤n
|Zi| > tn

)
≤ nP (|Z1| > tn) ≤ nP (γ1 + ξ1 > tn) ≤ nP (γ1 > tn/2) + nP (ξ1 > tn/2)

≤ n(tn/2)−αLF (tn/2) + n(tn/2)−βLG(tn/2)

= O
(
n1−α(θ+ε)LF (tn) + n1−β(θ+ε)LG(tn)

)
= O

(
n−αεLF (tn) + n−βεLG(tn)

)
as n→∞, which converges to zero by basic properties of slowly varying functions (see, e.g., Proposition 1.3.6
in [4]). Next, note that since E[Z1] = 0,

|E[Z̃1]| = |E[Z11(|Z1| > tn)]|
P (|Z1| ≤ tn)

≤ E[|Z1|1(|Z1| > tn)]

P (|Z1| ≤ tn)
≤ (1 + o(1))

(
tnP (|Z1| > tn) +

∫ ∞
tn

P (|Z1| > z)dz

)
.

To estimate the integral note that∫ ∞
tn

P (|Z1| > z)dz ≤
∫ ∞
tn

(P (γ1 > z/2) + P (ξ1 > z/2))dz

≤ 2

∫ ∞
tn/2

(
u−αLF (u) + u−βLG(u)

)
du

∼ 2
(
(α− 1)−1(tn/2)−α+1LF (tn/2) + (β − 1)−1(tn/2)−β+1LG(tn/2)

)
= O

(
n−(α−1)(θ+ε)LF (tn) + n−(β−1)(θ+ε)LG(tn)

)
,

where in the third step we used Proposition 1.5.10 in [4]. Now note that

min{(α− 1)(θ + ε), (β − 1)(θ + ε)} = (θ−1 − 1)(θ + ε) = κ+ ε(θ−1 − 1),

from where it follows that

|E[Z̃1]| = O
(
n−κ−ε(θ

−1−1)(LF (tn) + LG(tn))
)

= o
(
n−κ+δ0

)
as n→∞. In view of this, we can use Chebyshev’s inequality to obtain

P

(∣∣∣∣∣
n∑
i=1

Z̃i − nE[Z̃1]

∣∣∣∣∣+ n|E[Z̃1]| > n1−κ+δ0

)
≤ Var(Z̃1)

n1−2(κ−δ0)(1 + o(1))
. (4.1)

Finally, to see that this last bound converges to zero note that

Var(Z̃1) ≤ E[Z̃2
1 ] =

1

P (|Z1| ≤ tn)
E[Z2

11(|Z1| ≤ tn)] ≤ (1 + o(1))E
[
|Z1|θ

−1−ε
]
t2−θ

−1+ε
n ,

where E[|Z1|θ
−1−ε] <∞ by the remark following (2.1). We conclude that (4.1) is of order

O
(
t2−θ

−1+ε
n n2(κ−δ0)−1

)
= O

(
n(θ+ε)(2−θ−1+ε)+2(κ−δ0)−1

)
= o

(
n−2(δ0−ε)

)
= o(1)

as n→∞. This completes the proof.

Before giving the proof of Theorem 2.9 we will need the following preliminary lemma.

Lemma 4.1. Let {X1, . . . , Xn} be an i.i.d. sequence of nonnegative random variables having distribution
function V , and let X(i) denote the ith order statistic. Then, for any k ≤ n,

n∑
i=n−k+1

E
[
X(i)

]
≤
∫ ∞

0

min
{
nV (x), k

}
dx.
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Proof. Note that

E
[
X(i)

]
=

∫ ∞
0

P (X(i) > x) dx =

∫ ∞
0

n∑
j=n−i+1

(
n

j

)
V (x)jV (x)n−jdx,

from where it follows

n∑
i=n−k+1

E
[
X(i)

]
=

n∑
i=n−k+1

n∑
j=n−i+1

(
n

j

)∫ ∞
0

V (x)jV (x)n−jdx

=

n∑
j=1

min{j, k}
(
n

j

)∫ ∞
0

V (x)jV (x)n−jdx

=

∫ ∞
0

E
[
min{B(n, V (x)), k}

]
dx,

where B(n, p) is a Binomial(n, p) random variable. Since the function u(t) = min{t, k} is concave, Jensen’s
inequality gives

E
[
min{B(n, V (x)), k}

]
≤ min

{
E[B(n, V (x))], k

}
= min

{
nV (x), k

}
.

Proof of Theorem 2.9. Since by construction
∑n
i=1Ni =

∑n
i=1Di, it follows from Theorem 2.8 that it suffices

to show that

lim
n→∞

P

(
max
A⊆V

(∑
vi∈A

Ni −
n∑
i=1

min{Di, |A− {vi}|}

)
> 0

)
= 0.

Fix 0 < ε < min{β − 1, α− 1, 1/2} and use the union bound to obtain

P

(
max
A⊆V

(∑
vi∈A

Ni −
n∑
i=1

min{Di, |A− {vi}|}

)
> 0

)

≤ P

(
max

A⊆V,|A|≤n(1+ε)/β

(∑
vi∈A

Ni −
n∑
i=1

min{Di, |A− {vi}|}

)
> 0

)
(4.2)

+ P

(
max

A⊆V,|A|>n(1+ε)/β

(∑
vi∈A

Ni −
n∑
i=1

min{Di, |A− {vi}|}

)
> 0

)
. (4.3)

By conditioning on how many of the Di are larger than n(1+ε)/β we obtain that (4.3) is bounded by

P

(
max

A⊆V,|A|>n(1+ε)/β

(∑
vi∈A

Ni −
n∑
i=1

min{Di, |A− {vi}|}

)
> 0, max

1≤i≤n
Di ≤ n(1+ε)/β

)

+ P

(
max

1≤i≤n
Di > n(1+ε)/β

)
≤ P

(
max

A⊆V,|A|>n(1+ε)/β

(∑
vi∈A

Ni −
n∑
i=1

Di

)
> 0

)
+ P

(
max

1≤i≤n
Di > n(1+ε)/β

)
= P

(
max

1≤i≤n
(ξi + χi) > n(1+ε)/β

∣∣∣∣Dn) ,
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where Dn was defined in Lemma 2.7. Now note that by the union bound we have

P

(
max

1≤i≤n
(ξi + χi) > n(1+ε)/β

∣∣∣∣Dn) ≤ 1

P (Dn)
· P
(

max
1≤i≤n

(ξi + χi) > n(1+ε)/β

)
≤ 1

P (Dn)

n∑
i=1

P
(
ξi + χi > n(1+ε)/β

)
≤ 1

P (Dn)
· n
(
n(1+ε)/β − 1

)−β
LG

(
n(1+ε)/β − 1

)
= O

(
n−εLG

(
n(1+ε)/β

))
= o(1),

as n→∞, where the last step follows from Lemma 2.7 and basic properties of slowly varying functions (see,
e.g., Chapter 1 in [4]).

Next, to analyze (4.2) let kn = bn(1+ε)/βc and note that we can write it as

P

(
max

A⊆V,|A|≤kn

(∑
vi∈A

Ni −
n∑
i=1

min{Di, |A− {vi}|}

)
> 0

)

≤ P

(
max

{
max

A⊆V, 2≤|A|≤kn

(∑
vi∈A

Ni −
n∑
i=1

min{Di, 1}

)
, max

1≤j≤n

(
Nj −

n∑
i=1

min{Di, |{vj} − {vi}|}

)}
> 0

)

= P

(
max

{
n∑

i=n−kn+1

N (i), (N +D)(n)

}
−

n∑
i=1

min{Di, 1} > 0

)
,

where x(i) is the ith smallest of {x1, . . . , xn}. Now let a0 = E[min{ξ1, 1}] = G(0) > 0 and split the last
probability as follows

P

(
max

{
n∑

i=n−kn+1

N (i), (N +D)(n)

}
−

n∑
i=1

min{Di, 1} > 0

)

≤ P

(
max

{
n∑

i=n−kn+1

N (i), (N +D)(n)

}
> a0n− n1/2+ε,

n∑
i=1

min{Di, 1} ≥ a0n− n1/2+ε

)
(4.4)

+ P

(
n∑
i=1

min{Di, 1} < a0n− n1/2+ε

)
. (4.5)

To bound (4.5) use Di ≥ ξi for all i = 1, . . . , n and Chebyshev’s inequality to obtain

P

(
n∑
i=1

min{Di, 1} < a0n− n1/2+ε

)
≤ 1

P (Dn)
P

(
n∑
i=1

(a0 −min{ξi, 1}) > n1/2+ε

)

≤ nVar(min{ξ1, 1})
P (Dn)n1+2ε

= O
(
n−2ε

)
,

while the union bound gives that (4.4) is bounded by

P

(
max

{
n∑

i=n−kn+1

N (i), (N +D)(n)

}
> bn

)
≤ P

(
n∑

i=n−kn+1

N (i) > bn

)
+ P

(
(N +D)(n) > bn

)
,
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where bn = a0n− n1/2+ε. For the second probability the union bound again gives

P
(

(N +D)(n) > bn

)
≤ P

(
N (n) > bn/2

)
+ P

(
D(n) > bn/2

)
≤ n

P (Dn)
(P (γ1 + τ1 > bn/2) + P (ξ1 + χ1 > bn/2))

≤ n

P (Dn)

(
(bn/2− 1)−αLF (bn/2− 1) + (bn/2− 1)−βLG(bn/2− 1)

)
= O

(
n−α+1LF (n) + n−β+1LG(n)

)
= o(1)

as n→∞. Finally, by Markov’s inequality and Lemma 4.1,

P

(
n∑

i=n−kn+1

N (i) > bn

)
≤ 1

bn

n∑
i=n−kn+1

E
[
N (i)

]
≤ 1

bnP (Dn)

n∑
i=n−kn+1

E[γ(i) + 1]

≤ 1

bnP (Dn)

(∫ ∞
0

min
{
nF (x), kn

}
dx+ kn

)
= a−1

0 (1 + o(1))

∫ ∞
0

min
{
F (x), n(1+ε)/β−1

}
dx+ o(1)

≤ a−1
0 (1 + o(1))

(
n(1+ε)/β−1 +

∫ ∞
1

min
{
Kx−α+ε, n(1+ε)/β−1

}
dx

)
+ o(1)

= o(1) +O

(∫ ∞
1

min
{
x−α+ε, n(1+ε)/β−1

}
dx

)
as n→∞, where K = supt≥1 t

−εLF (t) <∞. Since∫ ∞
1

min
{
x−α+ε, n(1+ε)/β−1

}
dx = n(1+ε)/β−1(n(β−1−ε)/(β(α−ε)) − 1) +

∫ ∞
n(β−1−ε)/(β(α−ε))

x−α+εdx

= O
(
n−(β−1−ε)(α−1−ε)/(β(α−ε))

)
= o(1),

the proof is complete.

The last two proofs of this section are those of Theorem 2.10 and Proposition 2.11.

Proof of Theorem 2.10. Let u : Nr+s → [−M,M ], M > 0, be a continuous bounded function, and let ∆n,Dn
be defined as in Lemma 2.7. Then,

|E [u(Ni1 , . . . , Nir , Dj1 , . . . , Djs)]− E [u(γ1, . . . , γr, ξ1, . . . , ξs)]|
= |E [u(γi1 + τi1 , . . . , γir + τir , ξj1 + χj1 , . . . , ξjs + χjs)|Dn]− E [u(γi1 , . . . , γir , ξj1 , . . . , ξjs)]|
≤ |E [u(γi1 + τi1 , . . . , γir + τir , ξj1 + χj1 , . . . , ξjs + χjs)− u(γi1 , . . . , γir , ξj1 , . . . , ξjs)|Dn]| (4.6)

+ |E [u(γi1 , . . . , γir , ξj1 , . . . , ξjs)|Dn]− E [u(γ1, . . . , γr, ξ1, . . . , ξs)]| . (4.7)

Let T =
∑r
t=1 τit +

∑s
t=1 χjs . Since u is bounded then (4.6) is smaller than or equal to

E [ |u(γi1 + τi1 , . . . , γir + τir , ξj1 + χj1 , . . . , ξjs + χjs)− u(γi1 , . . . , γir , ξj1 , . . . , ξjs)| 1 (T ≥ 1)| Dn]

≤ 2MP (T ≥ 1| Dn) ≤ 2M

(
r∑
t=1

P (τit = 1|Dn) +

s∑
t=1

P (χjt = 1|Dn)

)

=
2M

P (Dn)

(
r∑
t=1

E[1(τit = 1,Dn)] +

s∑
t=1

E[1(χjt = 1,Dn)]

)
.
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To compute the last expectations let Fn = σ(γ1, . . . , γn, ξ1, . . . , ξn) and note that

E[1(χjt = 1,Dn)] = E[1(Dn)E[1(χjt = 1)|Fn]] = E

[
1(Dn,∆n ≥ 0)

(
n−1

∆n−1

)(
n

∆n

) ] = E

[
1(Dn,∆n ≥ 0)

∆n

n

]
,

and symmetrically,

E[1(τit = 1,Dn)] = E

[
1(Dn,∆n < 0)

|∆n|
n

]
,

from where it follows that (4.6) is bounded by

2M

(
r∑
t=1

E

[
∆n

n
1(∆n ≥ 0)

∣∣∣∣Dn]+

s∑
t=1

E

[
|∆n|
n

1(∆n < 0)

∣∣∣∣Dn]
)
≤ 2M(r + s)n−κ+δ0 = o(1)

as n→∞. To analyze (4.7) we first note that by Lemma 2.7, P (Dn)→ 1 as n→∞, hence

E [u(γi1 , . . . , γir , ξj1 , . . . , ξjs)|Dn] =
1

P (Dn)
E [u(γ1, . . . , γr, ξ1, . . . , ξs)1(Dn)]

= E [u(γ1, . . . , γr, ξ1, . . . , ξs)1(Dn)] + o(1).

Therefore, (4.7) is equal to

|E [u(γ1, . . . , γr, ξ1, . . . , ξs)1(Dcn)] + o(1)| ≤MP (Dcn) + o(1)→ 0

as n→∞, which completes the proof.

Proof of Proposition 2.11. Fix ε > 0 and let Dn = {|∆n| ≤ n1−κ+δ0}. For the first limit fix i, j = 0, 1, 2, . . .
and note that by the union bound,

P

(∣∣∣∣∣ 1n
n∑
k=1

1(Nk = i,Dk = j)− figj

∣∣∣∣∣ > ε

)

≤ P

(∣∣∣∣∣ 1n
n∑
k=1

(1(γk + τk = i, ξk + χk = j)− 1(γk = i, ξk = j))

∣∣∣∣∣ > ε/2

∣∣∣∣∣Dn
)

+ P

(∣∣∣∣∣ 1n
n∑
k=1

1(γk = i, ξk = j)− figj

∣∣∣∣∣ > ε/2

∣∣∣∣∣Dn
)

≤ P

(
1

n

n∑
k=1

|1(γk + τk = i, ξk + χk = j)− 1(γk = i, ξk = j))| > ε/2

∣∣∣∣∣Dn
)

+
1

P (Dn)n(ε/2)2
Var(1(γ1 = i, ξ1 = j)),

where in the last step we used Chebyshev’s inequality. Clearly, Var(1(γ1 = i, ξ1 = j)) = figj(1− figj), and
since by Lemma 2.7 P (Dn) → 1 as n → ∞, then the second term converges to zero. To analyze the first
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term note that at most one of χk or τk can be one, hence,

P

(
1

n

n∑
k=1

|1(γk + τk = i, ξk + χk = j)− 1(γk = i, ξk = j))| > ε/2

∣∣∣∣∣Dn
)

≤ P

(
1

n

n∑
k=1

(|1(ξk + χk = j)− 1(ξk = j)|+ |1(γk + τk = i)− 1(γk = i)|) > ε/2

∣∣∣∣∣Dn
)

≤ P

(
1

n

n∑
k=1

(1(χk = 1) + 1(τk = 1)) > ε/2

∣∣∣∣∣Dn
)

= P

(
|∆n|
n

> ε/2

∣∣∣∣Dn)
≤ 1(n−κ+δ0 > ε/2)→ 0

as n→∞.

Next, for the average degrees we have

P

(∣∣∣∣∣ 1n
n∑
i=1

Ni − E[γ1]

∣∣∣∣∣ > ε

)
= P

(∣∣∣∣∣ 1n
n∑
i=1

(γi + τi)− E[γ1]

∣∣∣∣∣ > ε

∣∣∣∣∣Dn
)

≤ P

(∣∣∣∣∣ 1n
n∑
i=1

γi − E[γ1]

∣∣∣∣∣+
|∆n|
n

> ε

∣∣∣∣∣Dn
)

≤ 1

P (Dn)
P

(∣∣∣∣∣ 1n
n∑
i=1

γi − E[γ1]

∣∣∣∣∣+ n−κ+δ0 > ε

)
, (4.8)

symmetrically,

P

(∣∣∣∣∣ 1n
n∑
i=1

Di − E[ξ1]

∣∣∣∣∣ > ε

)
≤ 1

P (Dn)
P

(∣∣∣∣∣ 1n
n∑
i=1

ξi − E[ξ1]

∣∣∣∣∣+ n−κ+δ0 > ε

)
, (4.9)

and since τiχi = 0 for all 1 ≤ i ≤ n,

P

(∣∣∣∣∣ 1n
n∑
i=1

NiDi − E[γ1ξ1]

∣∣∣∣∣ > ε

)
= P

(∣∣∣∣∣ 1n
n∑
i=1

(γiξi + τiξi + γiχi − E[γ1ξ1]

∣∣∣∣∣ > ε

∣∣∣∣∣Dn
)

≤ P

(∣∣∣∣∣ 1n
n∑
i=1

γiξi − E[γ1ξ1]

∣∣∣∣∣+

n∑
i=1

(τiξi + γiχi) > ε

∣∣∣∣∣Dn
)

≤ 1

P (Dn)
P

(∣∣∣∣∣ 1n
n∑
i=1

γiξi − E[γ1ξ1]

∣∣∣∣∣+ n−κ+δ > ε

)
(4.10)

+ P

(
1

n

n∑
i=1

(τiξi + γiχi) > n−κ+δ

∣∣∣∣∣Dn
)
, (4.11)

for any δ0 < δ < κ. By Lemma 2.7, P (Dn) converges to one, and by the Weak Law of Large Numbers
(WLLN) we have that each of (4.8), (4.9) and (4.10) converges to zero as n → ∞, as required. To see that
(4.11) converges to zero use Markov’s inequality to obtain

P

(
1

n

n∑
i=1

(τiξi + γiχi) > n−κ+δ

∣∣∣∣∣Dn
)
≤ E[τ1ξ1 + γ1χ1|Dn]

n−κ+δ
=
E[(τ1ξ1 + γ1χ1)1(Dn)]

P (Dn)n−κ+δ
. (4.12)
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Now let Fn = σ(γ1, . . . , γn, ξ1, . . . , ξn) to compute

E[(τ1ξ1 + γ1χ1)1(Dn)] = E[(ξ1E[τ1|Fn] + γ1E[χ1|Fn])1(Dn)] ≤ E
[
(ξ1 + γ1)

|∆n|
n

1(Dn)

]
≤ 2µn−κ+δ0 ,

which implies that (4.12) converges to zero.

Finally, provided that E[γ2
1 + ξ2

1 ] <∞, the WLLN combined with the arguments used to bound (4.11) give

P

(∣∣∣∣∣ 1n
n∑
i=1

N2
i − E[γ2

1 ]

∣∣∣∣∣ > ε

)
≤ 1

P (Dn)
P

(∣∣∣∣∣ 1n
n∑
i=1

γ2
i − E[γ2

1 ]

∣∣∣∣∣+
1

n

n∑
i=1

(2γiτi + τ2
i ) > ε,Dn

)

≤ 1

P (Dn)
P

(∣∣∣∣∣ 1n
n∑
i=1

γ2
i − E[γ2

1 ]

∣∣∣∣∣+ n−κ+δ > ε

)

+ P

(
1

n

n∑
i=1

(2γiτi + τ2
i ) > n−κ+δ

∣∣∣∣∣Dn
)

≤ o(1) +
E[(2γ1 + 1)τ1|Dn]

n−κ+δ

≤ o(1) +
E[2γ1 + 1]

P (Dn)nδ−δ0
,

and symmetrically,

P

(∣∣∣∣∣ 1n
n∑
i=1

D2
i − E[ξ2

1 ]

∣∣∣∣∣ > ε

)
→ 0,

as n→∞.

4.2. Configuration Model

This subsection contains the proofs of Proposition 3.3, which establishes the uniformity of simple graphs,
Propositions 3.5 and 3.7, which concern the repeated directed configuration model, and Proposition 3.9 which
refers to the erased directed configuration model.

Proof of Proposition 3.3. Suppose m and d have equal sum ln, and number the inbound and outbound
half-edges by 1, 2, . . . , ln. The process of matching half edges in the configuration model is equivalent to a
permutation (p(1), p(2), . . . , p(ln)) of the numbers (1, 2, . . . , ln) where we pair the ith inbound half-edge to
the p(i)th outbound half-edge, with all ln! permutations being equally likely. Note that different permutations
can actually lead to the same graph, for example, if we switch the position of two outbound half-edges of
the same node, so not all multigraphs have the same probability. Nevertheless, a simple graph can only
be produced by

∏n
i=1 di!mi! different permutations; to see this note that for each node vi, i = 1, . . . , n,

we can permute its mi inbound half-edges and its di outbound half-edges without changing the graph. It
follows that since the number of permutations leading to a simple graph is the same for all simple graphs,
then conditional on the resulting graph being simple, it is uniformly chosen among all simple graphs having
bi-degree-sequence (m,d).

Next, we give the proofs of the results related to the repeated directed configuration model. Before proceeding
with the proof of Proposition 3.5 we give the following preliminary lemma, which will be used to establish
that under Condition 3.4 the maximum in- and out-degrees cannot grow too fast.



N. Chen and M. Olvera-Cravioto/Directed Random Graphs 18

Lemma 4.2. Let {ank : 1 ≤ k ≤ n, n ∈ N} be a triangular array of nonnegative integers, and suppose there
exist nonnegative numbers {pj : j ∈ N ∪ {0}} such that

∑∞
j=0 pj = 1,

lim
n→∞

1

n

n∑
k=1

1(ank = j) = pj , for all j ∈ N ∪ {0} and lim
n→∞

1

n

n∑
k=1

ank =

∞∑
j=0

jpj <∞.

Then,

lim
n→∞

max
1≤k≤n

ank
n

= 0.

Proof. Define

F (x) =

bxc∑
j=0

pj and Fn(x) =
1

n

n∑
k=1

1(ank ≤ x)

and note that F and Fn are both distribution functions with support on the nonnegative integers. Define
the pseudoinverse operator h−1(u) = inf{x ≥ 0 : u ≤ h(x)} and let

Xn = F−1
n (U) and X = F−1(U),

where U is a Uniform(0,1) random variable. It is easy to verify that Xn and X have distributions Fn and
F , respectively. Furthermore, the assumptions imply that

Xn → X a.s.

as n→∞ and

E[Xn] =

∞∑
j=0

j
1

n

n∑
k=1

1(ank = j) =
1

n

n∑
k=1

∞∑
j=0

j1(ank = j) =
1

n

n∑
k=1

ank → E[X]

as n→∞, where the exchange of sums is justified by Fubini’s theorem. Now note that by Fatou’s lemma,

lim inf
n→∞

E[Xn1(Xn ≤
√
n)] ≥ E

[
lim inf
n→∞

Xn1(Xn ≤
√
n)
]

= E[X],

which implies that
lim
n→∞

E[Xn1(Xn >
√
n)] = 0.

Finally,

E[Xn1(Xn ≥ n)] =

∞∑
j=b
√
nc+1

j
1

n

n∑
k=1

1(ank = j) =
1

n

n∑
k=1

∞∑
j=b
√
nc+1

j1(ank = j) =
1

n

n∑
k=1

ank1(ank >
√
n),

from where it follows that

lim
n→∞

max
1≤k≤n

ank1(ank >
√
n)

n
= 0,

which in turn implies that

lim
n→∞

max
1≤k≤n

ank
n
≤ lim
n→∞

(√
n

n
+ max

1≤k≤n

ank1(ank >
√
n)

n

)
= 0.
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Proof of Proposition 3.5. Following the proof of Proposition 7.9 in [23], we define the random variable M̃n

to be the total number of pairs of multiple edges in the same direction, e.g., if from node vi to node vj
there are k ≥ 2 edges, their contribution to M̃n is

(
k
2

)
. Note that Mn ≤ M̃n, with strict inequality whenever

there is at least one pair of nodes having three or more multiple edges in the same direction. We claim that

M̃n −Mn
P−→ 0 as n→∞, which implies that

if (Sn, M̃n)⇒ (S,M), then (Sn,Mn)⇒ (S,M)

as n→∞. To prove the claim start by defining indicator random variables for each of the possible self-loops
and multiple edges in the same direction that the multigraph can have. For the self-loops we use the notation
u = (r, t, i) to define

Iu := 1(self-loop from the rth outbound stub to the tth inbound stub of node vi),

and for the pairs of multiple edges in the same direction we use w = (r1, t1, r2, t2, i, j) to define

Jw := 1(rsth outbound stub of node vi paired to tsth inbound stub of node vj , s = 1, 2).

The sets of possible vectors u and w are given by

I = {(r, t, i) : 1 ≤ i ≤ n, 1 ≤ r ≤ dni, 1 ≤ t ≤ mni}, and

J = {(r1, t1, r2, t2, i, j) : 1 ≤ i 6= j ≤ n, 1 ≤ r1 < r2 ≤ dni, 1 ≤ t1 6= t2 ≤ mnj},

respectively. It follows from this notation that

Sn =
∑
u∈I

Iu and M̃n =
∑
w∈J

Jw.

Next, note that by the union bound,

P
(
M̃n −Mn ≥ 1

)
≤ P (at least two nodes with three or more edges in the same direction)

≤
∑

1≤i6=j≤n

P (three or more edges from node vi to node vj)

≤
∑

1≤i6=j≤n

dni(dni − 1)(dni − 2)mnj(mnj − 1)(mnj − 2)

ln(ln − 1)(ln − 2)

≤
(

1√
n

max
1≤i≤n

dni

)(
1√
n

max
1≤j≤n

mnj

)(
n

ln − 2

)3

· 1

n

n∑
i=1

d2
ni ·

1

n

n∑
j=1

m2
nj

= o(1)

as n→∞, where for the last step we used Condition 3.4 and Lemma 4.2. It follows that M̃n −Mn
P−→ 0 as

claimed.

We now proceed to prove that (Sn, M̃n)⇒ (S,M), where S and M are independent Poisson random variables
with means λ1 and λ2, respectively. To do this we use Theorem 2.6 in [23] which says that if for any p, q ∈ N

lim
n→∞

E
[
(Sn)p(M̃n)q

]
= λp1λ

q
2,

where (X)r = X(X − 1) · · · (X − r + 1), then (Sn, M̃n) ⇒ (S,M) as n → ∞. To compute the expectation
we use Theorem 2.7 in [23], which gives

E
[
(Sn)p(M̃n)q

]
=

∑
u1,...,up∈I

∑
w1,...,wq∈J

P
(
Iu1 = · · · = Iup = Jw1 = · · · = Jwq = 1

)
, (4.13)
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where the sums are taken over all the p-permutations, respectively q-permutations, of the distinct indices in
I, respectively J .

Next, by the fact that all stubs are uniformly paired, we have that

P
(
Iu1 = · · · = Iup = Jw1 = · · · = Jwq = 1

)
,=

1∏p+2q−1
i=0 (ln − i)

unless there is a conflict in the attachment rules, i.e., one stub is required to pair with two or more different
stubs within the indices {u1, . . . ,up} and {w1, . . . ,wq}, in which case

P
(
Iu1

= · · · = Iup = Jw1
= · · · = Jwq = 1

)
= 0. (4.14)

Therefore, from (4.13) we obtain

E[(Sn)p(M̃n)q] ≤
∑

u1,...,up∈I

∑
w1,...,wq∈J

1∏p+2q−1
i=0 (ln − i)

=
|I|(|I| − 1) · · · (|I| − p+ 1)|J |(|J | − 1) · · · (|J | − q + 1)

ln(ln − 1) · · · (ln − (p+ 2q − 1))
, (4.15)

where |A| denotes the cardinality of set A. Now note that

|I| =
n∑
i=1

mnidni, and

|J | =
∑

1≤i6=j≤n

dni(dni − 1)

2
mnj(mnj − 1)

=
1

2

(
n∑
i=1

mni(mni − 1)

)(
n∑
i=1

dni(dni − 1)

)
− 1

2

n∑
i=1

mni(mni − 1)dni(dni − 1).

By Lemma 4.2 and Condition 3.4 we have

n∑
i=1

mni(mni − 1)dni(dni − 1) ≤
(

max
1≤i≤n

mni

)(
max

1≤i≤n
dni

) n∑
i=1

mnidni = o(n2)

as n→∞. Hence, it follows from Condition 3.4 that

|I|
n

= E[γξ] + o(1),

|J |
n2

=
1

2
E[γ(γ − 1)]E[ξ(ξ − 1)] + o(1), and

n

ln
=

1

µ
+ o(1)

as n→∞. Since p and q remain fixed as n→∞, we have

lim sup
n→∞

E[(Sn)p(M̃n)q] =

(
lim
n→∞

|I|
n

)p(
lim
n→∞

|J |
n2

)q (
lim
n→∞

n

ln

)p+2q

= (E[γξ])
p

(
E[γ(γ − 1)]E[ξ(ξ − 1)]

2

)q (
1

µ

)p+2q

= λp1λ
q
2.
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To prove the matching lower bound, we note that (4.14) occurs exactly when there is a conflict in the
attachment rules. Each time a conflict happens, the numerator of (4.15) decreases by one. Therefore,

E
[
(Sn)p(M̃n)q

]
=
|I|(|I| − 1) · · · (|I| − p+ 1)|J |(|J | − 1) · · · (|J | − q + 1)

ln(ln − 1) · · · (ln − (p+ 2q − 1))

−
∑

u1,...,up∈I

∑
w1,...,wq∈J

1(u1, . . . ,up,w1, . . . ,wq have a conflict)∏p+2q−1
i=0 (ln − i)

= λp1λ
q
2 −

1

(µn)p+2q

∑
u1,...,up∈I

∑
w1,...,wq∈J

1(u1, . . . ,up,w1, . . . ,wq have a conflict) + o(1)

as n→∞. To bound the total number of conflicts note that there are three possibilities:

a) a stub is assigned to two different self-loops, or
b) a stub is assigned to a self-loop and a multiple edge, or
c) a stub is assigned to two different multiple edges.

We now discuss each of the cases separately. For conflicts of type (a) suppose there is a conflict between the
self-loops ua and ub; the remaining p− 2 self-loops and q pairs of multiple edges can be chosen freely. Then
the number of such conflicts is bounded by |I|p−2|J |q = O

(
np+2q−2

)
, hence it suffices to show that the total

number of conflicting pairs (ua,ub) is o(n2) as n→∞. Now, to see that this is indeed the case, first choose
the node vi where the conflicting pair is; if the conflict is that an outbound stub is assigned to two different
inbound stubs then we can choose the problematic outbound stub in dni ways and the two inbound stubs in
mni(mni−1) ways, whereas if the conflict is that an inbound stub is assigned to two different outbound stubs
then we can choose the problematic inbound stub in mni ways and the two outbound stubs in dni(dni − 1)
ways. Thus, the total number of conflicting pairs is bounded by

n∑
i=1

(dnim
2
ni +mnid

2
ni) ≤

(
max

1≤i≤n
mni + max

1≤i≤n
dni

)
2

n∑
i=1

mnidni = o(n3/2) = o(n2).

For conflicts of type (b) suppose there is a conflict between the self-loop ua and the pair of multiple edges
wb; choose the remaining p−1 self-loops and q−1 multiple edges freely. Then, the number of such conflicts is
bounded by |I|p−1|J |q−1 = O

(
np+2q−3

)
, and it suffices to show that the number of conflicting pairs (ua,wb)

is o(n3) as n → ∞. Similarly as in case (a), an outbound stub of node vi can be paired to a self-loop and
a multiple edge to node vj in dnimnimnj(dni − 1)(mnj − 1) ways, and an inbound stub of node vi can be
paired to a self-loop and a multiple edge from node vj in mnidnidnj(mni− 1)(dnj − 1) ways, and so the total
number of conflicting pairs is bounded by

n∑
i=1

n∑
j=1

(d2
nimnim

2
nj +m2

nidnid
2
nj) ≤

(
max

1≤i≤n
mni + max

1≤i≤n
dni

)
2

(
n∑
i=1

m2
ni

)(
n∑
i=1

d2
ni

)
= o(n5/2) = o(n3).

Finally, for conflicts of type (c) we first fix wa and wb and choose freely the remaining p self-loops and q− 2
multiple edges, which can be done in less than |I|p|J |q−2 = O

(
np+2q−4

)
ways. It then suffices to show that

the number of conflicting pairs (wa,wb) is o(n4) as n→∞. A similar reasoning to that used in the previous
cases gives that the total number of conflicting pairs is bounded by

2

n∑
i=1

n∑
j=1

n∑
k=1

(d3
nim

2
njm

2
nk +m3

nid
2
njd

2
nk)

≤ 2

(
max

1≤i≤n
mni + max

1≤i≤n
dni

) n∑
i=1

d2
ni

(
n∑
i=1

m2
ni

)2

+

n∑
i=1

m2
ni

(
n∑
i=1

d2
ni

)2


= o(n7/2) = o(n4).
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We conclude that in any of the three cases the number of conflicts is negligible, which completes the proof.

Proof of Proposition 3.7. Let Sn be the event that the resulting graph is simple, and note that the bi-degree-
sequence (N(r),D(r)) is the same as (N,D) given Sn.

To prove part (a) note that for any i, j = 0, 1, 2, . . . ,

h(n)(i, j) =
1

n

n∑
i=1

P (Nk = i,Dk = j|Sn) =
1

P (Sn)
P (N1 = i,D1 = j,Sn),

since the {(Nk, Dk)}nk=1 are identically distributed. Now let Gn = σ(N1, . . . , Nn, D1, . . . , Dn) and condition
on Gn to obtain

P (N1 = i,D1 = j,Sn) = E[1(N1 = i,D1 = j)P (Sn|Gn)],

from where it follows that∣∣∣h(n)(i, j)− figj
∣∣∣ ≤ ∣∣∣∣E[1(N1 = i,D1 = j)(P (Sn|Gn)− P (Sn))]

P (Sn)

∣∣∣∣+ |P (N1 = i,D1 = j)− figj |

≤ E
[∣∣∣∣P (Sn|Gn)

P (Sn)
− 1

∣∣∣∣]+ |P (N1 = i,D1 = j)− figj | .

Theorem 2.10 gives that the second term converges to zero, and for the first term use Theorem 3.6 to obtain
that both P (Sn) and P (Sn|Gn) converge to the same positive limit, so by dominated convergence,

lim
n→∞

E

[∣∣∣∣P (Sn|Gn)

P (Sn)
− 1

∣∣∣∣] ≤ E [ lim
n→∞

∣∣∣∣P (Sn|Gn)

P (Sn)
− 1

∣∣∣∣] = 0.

For part (b) we only show the proof for ĝk
(n) since the proof for f̂k

(n)
is symmetrical. Note that ĝk

(n) is a
quantity defined on Sn. Fix ε > 0 and use the union bound to obtain

P
(∣∣∣ĝk(n) − gk

∣∣∣ > ε
∣∣∣Sn) ≤ 1

P (Sn)
P

(∣∣∣∣∣ 1n
n∑
i=1

1(Di = k)− gk

∣∣∣∣∣ > ε

)

≤ 1

P (Sn)
P

(
1

n

n∑
i=1

|1(ξi + χ1 = k)− 1(ξi = k)| > ε/2

∣∣∣∣∣Dn
)

(4.16)

+
1

P (Sn)P (Dn)
P

(∣∣∣∣∣ 1n
n∑
i=1

1(ξi = k)− gk

∣∣∣∣∣ > ε/2

)
. (4.17)

By Theorem 3.6 and Lemma 2.7, P (Sn) and P (Dn) are bounded away from zero, so we only need to show that
the numerators converge to zero. The arguments are the same as those used in the proof of Proposition 2.11;
for (4.17) use Chebyshev’s inequality to obtain that

P

(∣∣∣∣∣ 1n
n∑
i=1

1(ξi = k)− gk

∣∣∣∣∣ > ε/2

)
≤ Var(1(ξ1 = k))

n(ε/2)2
= O(n−1),

as n→∞, and for (4.16)

P

(
1

n

n∑
i=1

|1(ξi + χi = k)− 1(ξi = k)| > ε/2

∣∣∣∣∣Dn
)
≤ P

(
1

n

n∑
i=1

1(χi = 1) > ε/2

∣∣∣∣∣Dn
)

≤ P
(
|∆n|
n

> ε/2

∣∣∣∣Dn) ≤ 1(n−κ+δ0 > ε/2),

which also converges to zero. This completes the proof.
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Finally, the last result of the paper, which refers to the erased directed configuration model, is given below.
Since the technical part of the proof is to show that the probability that no in-degrees or out-degrees of a
fixed node are removed during the erasing procedure, we split the proof of Proposition 3.9 into two parts.
The following lemma contains the more delicate step.

Lemma 4.3. Consider the graph obtained through the erased directed configuration model using as bi-degree-
sequence (N,D), as constructed in Subsection 2.1. Let E+ and E− be the number of inbound stubs and
outbound stubs, respectively, that have been removed from node v1 during the erasing procedure. Then,

lim
n→∞

P (E+ = 0) = 1 and lim
n→∞

P (E− = 0) = 1.

Proof. We only show the result for E+ since the proof for E− is symmetric. Define the set

P+
n = {(i1, . . . , it) : 2 ≤ i1 6= i2 · · · 6= it ≤ n, 1 ≤ t ≤ n},

and note that in order for all the inbound stubs of node v1 to survive the erasing procedure, it must have
been that they were paired to outbound stubs of N1 different nodes from {v2, . . . , vn}. Before we proceed it
is helpful to recall some definitions from Section 2, Ln =

∑n
i=1Ni =

∑n
i=1Di, Γn =

∑n
i=1 γi, Ξn =

∑n
i=1 ξi,

∆n = Γn − Ξn, and Dn = {|∆n| ≤ ns}, where s = 1 − κ + δ0; also, {γi} and {ξi} are independent
sequences of i.i.d. random variables having distributions F and G, respectively. Now fix 0 < ε < 1 − s and
let Gn = σ(N1, . . . , Nn, D1, . . . , Dn). Then, since Di = ξi + χi ≥ ξi,

P
(
E+ = 0

)
= E

[
P
(
E+ = 0

∣∣Gn)] ≥ E [P (E+ = 0
∣∣Gn) 1(1 ≤ N1 ≤ nε)

]
+ P (N1 = 0)

= E

1(1 ≤ N1 ≤ nε)
Ln!

∑
(i1,i2,...,iN1

)∈P+
n

Di1Di2 · · ·DiN1
(Ln −N1)!

+ P (N1 = 0)

≥ E

 1(1 ≤ γ1 + τ1 ≤ nε)
Ln!

∑
(i1,i2,...,i(γ1+τ1))∈P+

n

ξi1ξi2 · · · ξi(γ1+τ1)
(Ln − γ1 − τ1)!

∣∣∣∣∣∣∣Dn


+ P (N1 = 0)

≥ E

 1(1 ≤ γ1 ≤ nε)1(τ1 = 0)

(Ln)γ1

∑
(i1,i2,...,iγ1 )∈P+

n

ξi1ξi2 · · · ξiξ1

∣∣∣∣∣∣Dn
+ P (N1 = 0). (4.18)

Next, condition on Fn = σ(γ1, . . . , γn, ξ1, . . . , ξn) and note that

P (τ1 = 0|Fn) = 1 (∆n ≥ 0) +
Γn

Γn + |∆n|
1(∆n < 0) ≥ Γn

Γn + |∆n|
.

It follows that the expectation in (4.18) is equal to

E

P (τ1 = 0|Fn)
1(1 ≤ γ1 ≤ nε)

(Ln)γ1

∑
(i1,i2,...,iγ1 )∈P+

n

ξi1ξi2 · · · ξiγ1

∣∣∣∣∣∣Dn


≥ E

 Γn
Γn + |∆n|

· 1(1 ≤ γ1 ≤ nε)
(Γn + |∆n|)γ1

∑
(i1,i2,...,iγ1 )∈P+

n

ξi1ξi2 · · · ξiγ1

∣∣∣∣∣∣Dn


≥ E

 1(1 ≤ γ1 ≤ nε)Γn
(Γn + ns)γ1+1

∑
(i1,i2,...,iγ1 )∈P+

n

ξi1ξi2 · · · ξiγ1

∣∣∣∣∣∣Dn
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=
1

P (Dn)
E

1(1 ≤ γ1 ≤ nε)
∑

(i1,i2,...,iγ1 )∈P+
n

E

[
1(Dn)Γn

(Γn + ns)γ1+1
· ξi1ξi2 · · · ξiγ1

∣∣∣∣ γ1

]
=

1

P (Dn)
E

[
1(1 ≤ γ1 ≤ nε)

(n− 1)!

(n− 1− γ1)!nγ1
E

[
1(Dn)Γnn

γ1

(Γn + ns)γ1+1
· ξ1ξ2 · · · ξγ1

∣∣∣∣ γ1

]]
.

It follows by Fatou’s lemma, Lemma 2.7 and Theorem 2.10 that

lim inf
n→∞

P (E+ = 0) ≥ E
[
1(γ1 ≥ 1) lim inf

n→∞
E

[
1(Dn)Γnn

γ1

(Γn + ns)γ1+1
· ξ1ξ2 · · · ξγ1

∣∣∣∣ γ1

]]
+ P (γ1 = 0).

Next, define the function u+
n : N→ [0,∞) as

u+
n (t) = E

[
1(|Γn−1 + t− Ξn| ≤ ns)(Γn−1 + t)nt

(Γn−1 + t+ ns)t+1
· ξ1ξ2 · · · ξt

]
,

and note that it only remains to prove that for all t ∈ N, lim infn→∞ u+
n (t) = 1.

Now let 0 < a < µ and note that

u+
n (t) ≥ E

[
1(|Γn−1 + t− Ξn| ≤ ns)

µt
· ξ1ξ2 · · · ξt

]
− P (Γn−1 < an)

− E
[
1(Γn−1 ≥ an)

∣∣∣∣ (Γn−1 + t)nt

(Γn−1 + t+ ns)t+1
− 1

µt

∣∣∣∣ ξ1ξ2 · · · ξt] .
The SLLN and bounded convergence give limn→∞ P (Γn−1 < an) = 0 and

lim sup
n→∞

E

[
1(Γn−1 ≥ an)

∣∣∣∣ (Γn−1 + t)nt

(Γn−1 + t+ ns)t+1
− 1

µt

∣∣∣∣ ξ1ξ2 · · · ξt]
≤ E

[
ξ1ξ2 · · · ξt lim sup

n→∞

∣∣∣∣ (Γn−1 + t)nt

(Γn−1 + t+ ns)t+1
− 1

µt

∣∣∣∣] = 0,

from where it follows that

lim inf
n→∞

u+
n (t) ≥ lim inf

n→∞
E

[
1(|Γn−1 + t− Ξn| ≤ ns)

µt
· ξ1ξ2 · · · ξt

]
.

The last step is to condition on ξ1, ξ2 . . . , ξt and use Fatou’s Lemma again to obtain

lim inf
n→∞

E

[
1(|Γn−1 + t− Ξn| ≤ ns)

µt
· ξ1ξ2 · · · ξt

]
= lim inf

n→∞
E

[
ξ1ξ2 · · · ξt

µt
P (|Γn−1 + t− Ξn| ≤ ns|ξ1, . . . , ξt)

]
≥ E

[
ξ1ξ2 · · · ξt

µt
lim inf
n→∞

P (|Γn−1 + t− Ξn| ≤ ns|ξ1, . . . , ξt)
]
.

Finally, by the same reasoning used in the proof of Lemma 2.7, we obtain

lim
n→∞

P (|Γn−1 + t− Ξn| ≤ ns|ξ1, . . . , ξt) = 1 a.s.

Since E[ξ1ξ2 · · · ξt]/µt = 1, this completes the proof.
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Proof of Proposition 3.9. To prove part (a) note that since the {(N (e)
i , D

(e)
i )}ni=1 are identically distributed,

then h(n)(i, j) = P (N
(e)
1 = i,D

(e)
1 = j). It follows that∣∣∣h(n)(i, j)− figj

∣∣∣ ≤ ∣∣∣P (N
(e)
1 = i,D

(e)
1 = j)− P (N1 = i,D1 = j)

∣∣∣+ |P (N1 = i,D1 = j)− figj | .

By Theorem 2.10 we have that |P (N1 = i,D1 = j)− figj | → 0, as n→∞, and for the remaining term note
that ∣∣∣P (N

(e)
1 = i,D

(e)
1 = j)− P (N1 = i,D1 = j)

∣∣∣
≤ E

[∣∣∣1(N
(e)
1 = i,D

(e)
1 = j)− 1(N1 = i,D1 = j)

∣∣∣]
≤ E

[∣∣∣1(D
(e)
1 = j)− 1(D1 = j)

∣∣∣]+ E
[∣∣∣1(N

(e)
1 = i)− 1(N1 = i)

∣∣∣] . (4.19)

To bound the expectations in (4.19) let E+ and E− be the number of inbound stubs and outbound stubs,
respectively, that have been removed from node v1 during the erasing procedure. Then,

E
[∣∣∣1(D

(e)
1 = j)− 1(D1 = j)

∣∣∣] ≤ P (E− ≥ 1
)

and

E
[∣∣∣1(N

(e)
1 = i)− 1(N1 = i)

∣∣∣] ≤ P (E+ ≥ 1
)
.

By Lemma 4.3,
lim
n→∞

P (E− ≥ 1) = 0 and lim
n→∞

P (E+ ≥ 1) = 0,

which completes the proof of part (a).

For part (b) we only show the proof for ĝk
(n), since the proof for f̂k

(n)
is symmetrical. Fix ε > 0 and use the

triangle inequality and the union bound to obtain

P (|ĝk(k)− gk| > ε) ≤ P

(∣∣∣∣∣ĝk(k)− 1

n

n∑
i=1

1(Di = k)

∣∣∣∣∣ > ε/2

)
+ P

(∣∣∣∣∣ 1n
n∑
i=1

1(Di = k)− gk

∣∣∣∣∣ > ε/2

)
.

From the proof of Proposition 3.7, we know that the second probability converges to zero as n → ∞, and
for the first one use Markov’s inequality to obtain

P

(∣∣∣∣∣ĝk(k)− 1

n

n∑
i=1

1(Di = k)

∣∣∣∣∣ > ε/2

)
≤ P

(
1

n

n∑
i=1

∣∣∣1(D
(e)
i = k)− 1(Di = k)

∣∣∣ > ε/2

)

≤ 2

ε
E
[∣∣∣1(D

(e)
1 = k)− 1(D1 = k)

∣∣∣]
≤ 2

ε
P (E− ≥ 1)→ 0,

as n→∞, by Lemma 4.3.
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