
Last revised 3/28/06

LECTURE NOTES ON QUANTUM COMPUTATION

Cornell University, Physics 481-681, CS 483; Spring, 2006

c© 2006, N. David Mermin

III. Breaking RSA Encryption with a Quantum Computer:

Shor’s Factoring Algorithm

In Simon’s problem we are presented with a subroutine which calculates a function

f(x). We are told that f satisfies f(x) = f(y) for distinct x and y if and only if y = x⊕ a,

where ⊕ denotes the bitwise modulo-2 sum of the n-bit integers a and x. The number of

times a classical computer must invoke the subroutine to determine a grows exponentially

with n, but with a quantum computer it grows only linearly.

This is a rather artificial problem, of interest primarily because it gives a simple

demonstration of the remarkable computational power a quantum computer can possess.

Simon’s problem amounts to finding the unknown period of a function on n-bit integers

that is “periodic” under bitwise modulo-2 addition. A much more natural problem is to

find the period r of a function on the integers that is periodic under ordinary addition.

Such a function f satisfies f(x) = f(y) for distinct x and y if and only if x and y differ by

an integral multiple of r. Finding the period of such a periodic function turns out to be

the key to factoring products of large prime numbers, a mathematically natural problem

with quite practical applications.

One might think that finding the period of a periodic function ought to be easy, but

that is only because when one thinks of periodic functions one tends to think of slowly

varying continuous functions (like the sine function) whose structure at a small subset of

points within a period can give powerful clues about what that period might be. A better

kind of periodic function to keep in mind from the beginning is a function on the integers

whose values within a period r are completely random, and therefore give no hint whatever

of the value of r.

The best known classical algorithms for finding the period r of such a periodic function

take a time that grows faster than any power of the number n of bits of r (exponentially

with n1/3). But in 1994 Peter Shor discovered that one can exploit the power of a quantum

computer to learn the period r, with probability arbitrarily close to one, in a time that

scales only a little faster than n3.

Shor’s discovery is of considerable practical interest because the ability to find periods

efficiently, combined with some number-theoretic tricks, enables one to factor efficiently

the product of two large prime numbers. The very great computational effort required

by all known classical factorization techniques underlies the security of the widely used

1

RSA1 method of encryption. Any computer that can efficiently find periods would be an

enormous threat to the security of both military and commercial comunications. This is

why research into the feasibility of quantum computers is a matter of considerable interest

in the worlds of war and business.

A. Number theoretic preliminaries

Although the elementary number-theoretic tricks that underly the RSA method of

encryption have nothing directly to do with how a quantum computer finds periods, they

motivate the problem that Shor’s quantum-computational algorithm so effectively solves.

Furthermore, examining the number-theoretic basis of RSA encryption reveals that Shor’s

period-finding algorithm can be used to decode it directly, without having to take a detour

into factorization. We therefore defer the additional number-theoretic connection between

period finding and factoring to Section H and Appendices A3 and A4. If you are interested

only in applying Shor’s period-finding algorithm to decoding RSA encryption, these can

be skipped. If you are not interested in this application of period-finding to espionage and

commerce, you can also skip the number theory here and in section B, and go directly

to the quantum-computational part of the problem — super-efficient period finding — in

section C.

The basic algebraic entities that underly RSA encryption are finite groups, where the

group operation is multiplication modulo some fixed integer N . In modulo-N arithmetic all

integers that differ by multiples of N are identified, so there are only N distinct quantities

which can be represented by 0, 1, . . . N − 1. For example 5 × 6 ≡ 2 (mod 7) since 5 × 6 =

30 = 4 × 7 + 2. One writes ≡ (mod N) to emphasize that the equality is only up to a

multiple of N , reserving = for strict equality. One can develop the results that follow using

ordinary arithmetic rather than group theory, but the group theoretic approach is simpler

and uses properties of groups so elementary that they can all be derived from the basic

definitions in a single page. This is done in Appendix A1.

Let GN be the set of all positive integers less than N (including 1) that have no factors

in common with N . Since factoring into primes is unique, the product of two numbers

in GN (either the ordinary or the modulo-N product) also has no factors in common

with N , so GN is closed under multiplication modulo N . If a, b, and c are in GN with

ab ≡ ac (mod N), then a(b − c) is a multiple of N , and since a has no factors in common

with N , it must be that b − c is a multiple of N , so b ≡ c (mod N). It follows that

multiplication modulo N by a fixed member a of GN simply permutes all the members of

1 Named for the people who invented it in 1977, Ronald Rivest, Adi Shamir, and

Leonard Adleman. RSA encryption was independently invented by Clifford Cocks four

years earlier, but his discovery was classified top secret by British Intelligence and he was

not allowed to reveal his priority until 1997. For this and other fascinating tales about

cryptography, see Simon Singh, The Code Book , Doubleday, New York, 1999.

2

the finite set GN . Since 1 is a member of GN , there must be some d in GN satisfying ad = 1

— i.e. a must have a multiplicative inverse in GN . Thus GN satisfies the conditions, listed

in Appendix A1, for it to be a group under modulo-N multiplication.

Every member a of a group G is characterized by its order k, the smallest integer for

which (in the case of GN)

ak ≡ 1 (mod N). (3.1)

As shown in Appendix A1, the order of every member of G is a divisor of the number of

members of G, which is called the order of G. If p is a prime number, then the group Gp

contains p − 1 numbers, since no positive integer less than p has factors in common with

p. Since p − 1 is then a multiple of the order k of any a in Gp, it follows from (3.1) that

any integer a less than p satisfies

ap−1 ≡ 1 (mod p). (3.2)

This relation, known as Fermat’s little theorem, extends to arbitrary integers a not divisible

by p, since any such a is of the form a = mp + a′ with m an integer and a′ less than p.

RSA encryption exploits an extension of Fermat’s little theorem to a case characterized

by two distinct primes, p and q. If an integer a is divisible by neither p nor q, then no

power of a is divisible by either p or q. Since, in particular, aq−1 is not divisible by p, we

conclude from (3.2) that

[aq−1]p−1 ≡ 1 (mod p). (3.3)

For the same reason

[ap−1]q−1 ≡ 1 (mod q). (3.4)

The relations (3.3) and (3.4) state that there are integers m and n for which

a(q−1)(p−1) = 1 + mp (3.5)

and

a(q−1)(p−1) = 1 + nq. (3.6)

Taken together (3.5) and (3.6) require that mp = nq, which is possible with p and q distinct

primes only if m is a multiple of q, and n is the same multiple of p. So

a(q−1)(p−1) = 1 + kpq, (3.7)

and therefore

a(q−1)(p−1) ≡ 1 (mod pq), (3.8)

for any integer a divisible by neither of the distinct primes p and q.

As an alternative derivation of (3.8), note that since a is divisible by neither p nor q,

it has no factors in common with pq and is therefore in Gpq. The number of elements of

3

Gpq is pq − 1 − (p − 1) − (q − 1) = (p − 1)(q − 1), since there are pq − 1 integers less than

pq among which are p− 1 multiples of q and another q− 1 multiples of p. Eq. (3.8) follows

because the order (p − 1)(q − 1) of Gpq must be a multiple of the order of a.

We get the version of (3.8) that is the basis for RSA encryption by taking any integral

power s of (3.8) and multiplying both sides by a:

a1+s(q−1)(p−1) ≡ a (mod pq). (3.9)

(An unimportant remark: the relation (3.9), unlike (3.8), holds even for integers a that

are divisible by p or q. It holds trivially when a is a multiple of pq. And if a is divisible

by just one of p or q, let a = kq. Since a is not divisible by p neither is any power of a,

and therefore Fermat’s little theorem tells us that [as(q−1)]p−1 = 1 + np for some integer

n. Multiplying both sides by a we have a1+s(q−1)(p−1) ≡ a + nap ≡ a + nkqp, so (3.9)

continues to hold.)

Note finally that if c is an integer having no factor in common with (p − 1)(q − 1)

then c is in G(p−1)(q−1) and therefore has an inverse in G(p−1)(q−1); i.e. there is a d in

G(p−1)(q−1) satisfying

cd ≡ 1
(

mod (p − 1)(q − 1)
)

. (3.10)

So for some integer s,

cd = 1 + s(p − 1)(q − 1). (3.11)

In view of (3.11) and (3.9), any integer a must satisfy

acd ≡ a (mod pq). (3.12)

So if

b ≡ ac (mod pq), (3.13)

then

bd ≡ a (mod pq). (3.14)

The elementary numerical facts summarized in this single paragraph constitute the entire

arithmetic basis for RSA encryption.

B. RSA encryption

Bob wants to receive a message from Alice encoded so that he alone can read it. To

do this he picks two large (say 200 digit) prime numbers p and q. He gives Alice, through

a public channel, their product, N = pq and a large encoding number c that he has picked

to have no factors in common with 2 (p − 1)(q − 1). He does not , however, reveal the

2 As noted below, the probability that two random numbers have no common factors

is greater than 1
2
, so such c are easily found. Whether two numbers do have any factors

in common (and what their greatest common factor is) can be determined by a simple

algorithm known to Euclid and easily executed by Bob on a classical computer. The

Euclidean algorithm is described in Appendix A2.

4

separate values of p and q and, given the practical impossibility of factoring a 400 digit

number with currently available computers, he is quite confident that neither Alice nor

any eavesdropper Eve will ever be able to calculate p and q knowing only their product

N . Bob, however, because he does know p and q, and therefore (p − 1)(q − 1), can find3

the multiplicative inverse d of c mod (p − 1)(q − 1), satisfying (3.10). He keeps d strictly

to himself for use in decoding.

Alice encodes a message by representing it as a string of fewer than 400 decimal digits

using, for example, some version of ASCII coding. If her message requires more than 400

digits she chops it up into smaller pieces. She interprets each such string as a decimal

number a less than N . Using the coding number c and the value of N = pq she received

from Bob, she then calculates b ≡ ac (mod pq), and sends it on to Bob through a public

channel. With c typically a 200 digit number, you might think that this would itself be a

huge computational task, but it is not, as noted below. When he receives b, Bob exploits

his private knowledge of d to calculate bd (mod pq), which (3.14) assures him is Alice’s

original message a.

Were the eavesdropper Eve able to find the factors p and q of N , she could calculate

(p− 1)(q − 1) and find the decoding integer d from the publicly available coding integer c,

the same way Bob did. But factoring a number as large as N is far beyond her classical

computational powers. Period finding is of interest in this cryptographic setting not only

because it can form the basis for efficient factoring (as described in Appendix A3), but also

because it can lead Eve directly to an alternative way to decode Alice’s message b without

knowing or having to compute the factors p and q of N . Here is how it works:

Eve uses her efficient period finding machine to calculate the order r of Alice’s publicly

available encoded message b = ac in4 Gpq. Since the order of any integer in Gpq divides

the order (p − 1)(q − 1) of Gpq, this gives her a divisor of (p − 1)(q − 1), and it turns out

that knowing such a divisor is just as useful for decoding Alice’s message as is knowing

(p − 1)(q − 1) itself.

To see this note first that the order r of Alice’s encoded message b = ac in Gpq is

the same as the order of a. This is because the subgroup of Gpq generated by a contains

ac = b, and hence it contains the subgroup generated by b; but the subgroup generated by

b contains bd = a, and hence the subgroup generated by a. Since each subroup contains

the other they must be identical. Since the order of a or b is the number of elements in the

3 This can easily be done classically as a straightforward embellishment of the Euclidean

algorithm. See Appendix A2.
4 I assume that Alice’s unencoded message a, and hence her coded message b, is in Gpq

— i.e. that a is not a multiple of p or q. Since p and q are huge numbers the odds against

a being such a multiple are astronomical. But if Eve wants to be insanely careful she can

find the greatest common factor of b and N , using the Euclidean algorithm. In the grossly

improbable case that it turns out not to be 1, Eve will have factored N and can decode

Alice’s message the samed way Bob does.

5

subgroup it generates, their orders are the same. So if Eve can find the order r of Alice’s

code message b, then she has also learned the order of Alice’s original text a.

Since Bob has picked c to have no factors in common with (p− 1)(q − 1), and since r

divides (p − 1)(q − 1), the coding integer c can have no factors in common with r. So c is

congruent modulo r to a member c′ of Gr, which has an inverse d′ in Gr, and d′ is also a

modulo-r inverse of c:

cd′ ≡ 1 (mod r). (3.15)

Therefore given c (which Bob has publicly announced) and r (which Eve can get with

her period-finding program from Alice’s encoded message b and the publicly announced

value of N = pq), it is easy for Eve to calculate d′ with a classical computer, using,

modulo r, the same extension of the Euclidean algorithm that Bob used to find d, modulo

(p − 1)(q − 1). It then follows that for some integer m

bd′ ≡ acd′

= a1+mr = a
(

ar
)m ≡ a (mod pq). (3.16)

Eve has thus used her ability to find periods efficiently to decode Alice’s encoded message

b = ac to reveal Alice’s original message a.

This use of period finding to defeat RSA encryption is summarized in Table 1.

C. Quantum period-finding: setting things up

So we can crack the RSA code if we have a fast way to find the period r of the known

periodic function

f(x) = bx (mod N). (3.17)

As remarked earlier, this might appear to be a simple task, especially since periodic func-

tions of the special form (3.17) have the simplifying feature that f(x+s) = f(x) only if s is

a multiple of the period r. If we can find two different values of x at which f has the same

value, then we have found a multiple of the period r, and given a few random multiples

of r we can, with high probability find r itself.5 But unlike the smooth, uncomplicated

periodic functions one is used to dealing with, the function bx (mod N) looks like random

noise within a period. Its structure over any stretch of integers less than the period offers

no clue about the value of that period. In trying to determine the period with a classical

computer by this direct approach one can do no better than to calculate f repeatedly for

5 Given two random multiples kr and k′r, if k and k′ have no common factors then r is

their greatest common divisor, and is easily extracted using the Euclidean algorithm. The

probability of two random numbers having no common factors is greater than 1/2, for the

probability that they are both divisible by any prime p is 1/p2, and therefore the probability

that they share no prime factors at all is
∏

primes(1− 1/p2) = .6079 . . . (= 6/π2). So with

a fairly small number of random multiples of r one can, with high probability, extract r.

6

BOB KNOWS ALICE KNOWS PUBLIC KNOWS

p and q (primes) a (her message) b (encoded message)
c and d, only c (not d) and only N = pq only c (not d),

cd ≡ 1 (mod (p − 1)(q − 1)) b ≡ ac (mod N) (encoded message) and only N = pq

Decoding: Quantum decoding:

a ≡ bd (mod N) Quantum computer
finds r: br ≡ 1 (mod N);
Classical computer finds

d′: cd′ ≡ 1 (mod r);

a ≡ bd′

(mod N)

Table 1. Summary of RSA encryption and how to break it with a fast period-
finding routine on a quantum computer. Bob has chosen the encoding number c
to have an inverse d modulo (p − 1)(q − 1) so c can have no factors in common
with (p − 1)(q − 1). Since Alice’s encoded message b is in Gpq, its order r is a
factor of the order (p − 1)(q − 1) of Gpq. So c can have no factors in common
with r, and therefore has an inverse d′ modulo r. Because b is a power of a and
vice-versa, each has the same order r in Gpq. Therefore bd′ ≡ acd′ ≡ a1+mr ≡ a
modulo N .

a random collection of integers until one finally gets a value that agrees with one of the

values already calculated.

The scale of the problem is best measured by the number of bits n0 in N = pq;

2n0 is the smallest power of 2 that exceeds N . If N is a 500 digit number — a typical

size for cryptographic applications — n0 will be around 1700. This sets the scale for

the number of bits in N and in the other relevant numbers a, b, and their modulo N

period r. To have an appreciable probability of finding r by random searching requires

a number of evaluations of f that is exponential in n0 (just like the classical situation in

Simon’s problem, described in Chapter 2.) Although there are ways to improve on random

searching, using, for example, Fourier analysis, no classical approach is known that does

not require a time that grows faster than any power of n0. With a quantum computer,

however, quantum parallelism gets us tantalizingly close (but, as in Simon’s problem, not

close enough) to solving the problem with a single application of Uf , and enables us to

solve it completely with probability arbitrarily close to 1 in a time that grows only as a

polynomial in n0.

To deal with values of x and f(x) between 0 and N , both the input and output registers

7

must contain at least n0 Qbits. For reasons that will emerge in Secton E, however, to find

the period r efficiently the input register must actually have n = 2n0 Qbits. Doubling

the number of Qbits in the input register ensures that the range of values of x for which

f(x) is calculated contains at least N full periods of f . This redundancy turns out to be

absolutely essential for a successful determination of the period by Shor’s method. (We

shall see in Section E that if p and q both happen to be primes of the form 2j + 1 then —

and only then — the method works without doubling the size of the input register. Thus

N = 15 can be a highly atypical test case for laboratory attempts to demonstrate Shor’s

algorithm for small p and q with real Qbits.)

We begin by using our quantum computer in the usual way to construct the state

1

2n/2

2n−1
∑

x=0

|x〉n|f(x)〉n0
(3.18)

with a single application of Uf . In Section F we take a closer look at how this might

efficiently be done in the case of interest, f(x) = bx (mod N). Once the state of the registers

has become (3.18), we can measure the n-Qbit output register.6 If the measurement yields

the value f0, then the generalized Born rule tells us that the state of the n-Qbit input

register can be taken to be

|Ψ〉n =
1√
m

m−1
∑

k=0

|x0 + kr〉n. (3.19)

Here x0 is the smallest value of x (0 ≤ x0 < r) at which f(x0) = f0, and m is the smallest

integer for which mr + x0 ≥ 2n, so

m =
[2n

r

]

or m =
[2n

r

]

+ 1, (3.20)

depending on the value of x0 (where [x] is the integral part of x). As in the examples of

Chapter 2, if we could produce a small number of identical copies of the state (3.19) we

would be done, for a measurement in the computational basis would yield a random one

of the values x0 + kr, and the difference between the results of pairs of measurements on

such identical copies would give us a collection of random multiples of r from which r itself

could straightforwardly be extracted, as noted above. But we are again done in by the

6 It is not, in fact, necessary to measure the output register. One can continue to work

with the full state (3.18) in which one breaks down the sum on x into a sum over all the

different values of f and a sum over all the values of x associated with each value of f . The

only function of the measurement is to eliminate a lot of uninteresting additional structure,

coming from the sum on the values of f , that plays no role beyond making many of the

subsequent expressions somewhat lengthier.

8

no-cloning theorem. All we can extract is a single value of x0 + kr for unknown random

x0, which is completely useless for determining r. And, of course, if we ran the whole

algorithm again, we would end up with a state of the form (3.19) for another random value

of x0, which would permit no useful comparison with what we had learned from the first

run.

But, as with Simon’s problem, we can do something more clever to the state (3.19)

before making our final measurement. The problem is the displacement by the unknown

random x0, which prevents any information about r from being extracted in a single

measurement. We need a unitary transformation that transforms the x0 dependence into a

harmless overall phase factor. This is accomplished with the Quantum Fourier Transform.

D. The Quantum Fourier Transform

The heart of Shor’s algorithm is a superfast quantum Fourier transform procedure,

carried out by an efficient quantum circuit built out of one- and 2-Qbit gates. The n-Qbit

quantum Fourier transform is defined to be that unitary transformation UFT whose action

on the computational basis is given by

UFT |x〉n =
1

2n/2

2n−1
∑

y=0

e2πixy/2n |y〉n. (3.21)

The product xy is here ordinary multiplication.

A warning to physicists (which others can ignore): This looks deceptively like a (dis-

cretized) transformation from a position to a momentum representation, and one’s first

reaction might be that it is (perhaps disappointingly) familiar. But it has, in fact, an

entirely different character. The number x is the integer represented by the state |x〉, and

not the position of anything. Changing x to x + 1 induces an arithmetically natural but

physically quite unnatural transformation on the computational basis states, determined

by the laws of binary addition, including carrying. It bears no resemblance to anything

that could be associated with a spatial translation in the physical space of Qbits. So your

eyes should not glaze over, and you should regard UFT as a new and unfamiliar physical

transformation of Qbits.

One easily verifies that UFT |x〉 is normalized to unity and that UFT |x〉 is orthogonal to

UFT |x′〉 unless x = x′, so UFT is unitary. Unitarity also emerges directly from the analysis

that follows, which explicitly constructs UFT out of one- and 2-Qbit unitary gates. The

unitary UFT is useful because, as one also easily verifies, applied to a superposition of states

|x〉 with complex amplitudes γ(x),it produces another superposition with amplitudes that

are related to γ(x) by the appropriate discrete Fourier transform:

UFT

(

2n−1
∑

x=0

γ(x)|x〉
)

=

2n−1
∑

x=0

γ̃(x)|x〉, (3.22)

9

where

γ̃(x) =
1

2n/2

2n−1
∑

y=0

e2πixy/2n

γ(y). (3.23)

The celebrated classical fast Fourier transform is an algorithm requiring a time that

grows with the number of bits as n2n (rather than
(

2n
)2

as the obvious direct approach

would require) to evaluate γ̃. But there is a quantum algorithm for executing the unitary

transformation UFT exponentially faster than fast, in a time that grows only as n2. The

catch as usual, is that one does not end up knowing the complete set of Fourier coefficients,

as one does after applying the classical fast Fourier transform. One only has n Qbits

described by the state given by the right side of (3.22), and as we have repeatedly noted,

having a collection of Qbits in a given state does not enable one to learn what that state

actually is. There is no way to extract all the Fourier coefficients γ̃, given an n-Qbit

register in the state (3.22). Nevertheless, we shall see in Section E that if γ is a periodic

function with a period that is no bigger than 2n/2, then a register in the state (3.22) can

give powerful clues about the precise value of the period r, even though r can be hundreds

of digits long,

Notice the resemblance of the quantum Fourier transform (3.21) to the n-fold Hadam-

ard transformation (Eq. (2.29)). Since −1 = eπi, the the n-fold Hadamard assumes the

form

H
⊗n|x〉n =

1

2n/2

2n−1
∑

y=0

eπix·y|y〉n. (3.24)

Aside from the different powers of 2 appearing in the quantum Fourier transform (3.21)

— so the factors of modulus 1 in the superposition are not just 1 and −1 — the only

other difference between the two transforms is that xy is ordinary multiplication in the

quantum Fourier transform, while x·y is the bitwise inner product in the n-fold Hadamard.

Because the arithmetic product xy is a more elaborate function of x and y than x · y, the

quantum Fourier transformation cannot be built entirely out of 1-Qbit unitary gates as

the n-fold Hadamard is. But, remarkably, it can be constructed entirely out of 1-Qbit and

2-Qbit gates. Even more remarkably we shall see that under certain conditions of practical

interest, all of the 2-Qbit gates can be replaced by 1-Qbit measurement gates followed

by additional 1-Qbit unitary gates whose application is contingent on the measurement

outcomes.

To construct such a circuit to execute the quantum Fourier transform (QFT) UFT , it

is convenient to introduce an n-Qbit unitary operator Z, diagonal in the computational

basis:

Z|y〉n = e2πiy/2n |y〉n. (3.25)

This can be viewed as a generalization to n Qbits of the 1-Qbit operator Z, to which it

10

reduces when n = 1. Using the familiar relation

H
⊗n|0〉n =

1

2n/2

2n−1
∑

y=0

|y〉n, (3.26)

we can reexpress the definition (3.21) as

UFT |x〉n = Zx
H

⊗n|0〉n. (3.27)

This gives UFT |x〉n as an x-dependent operator acting on the state |0〉.
We next reexpress the right side of (3.27) as an x-independent operator acting on

the state |x〉n. Since the computational basis states |x〉n are a basis, we will then have

found an alternative expression for UFT itself. The construction of this alternative form

for (3.27) is made much more transparent by specializing to the case of 4 Qbits. We will

find that the structure that emerges in the case n = 4 has an entirely obvious extension to

general n; dealing with the case of general n from the start would only obscure this simple

structure.

When n = 4 we want to find an appropriate form for

UFT |x3〉|x2〉|x1〉|x0〉 = Zx
H3H2H1H0|0〉|0〉|0〉|0〉. (3.28)

As usual, we number the Qbits by the power of 2 with which they are associated, with

the least significant on the right, so that, reading from right to left, the Qbits are labeled

0, 1, 2, and 3; Hi acts on the Qbit labeled i (and as the identity on all other Qbits). If

|y〉4 = |y3〉|y2〉|y1〉|y0〉 in (3.25) so that y = 8y3 + 4y2 + 2y1 + y0, then the operator Z can

be constructed out of single-Qbit number operators:

Z = exp
[

iπ
8

(

8n3 + 4n2 + 2n1 + n0

)]

. (3.29)

The operator Zx appearing in (3.28) then becomes

Zx = exp
[

iπ
8

(

8x3 + 4x2 + 2x1 + x0

)(

8n3 + 4n2 + 2n1 + n0

)]

. (3.30)

Because the 1-Qbit operator exp(2πin) acts as the identity on either of the 1-Qbit states |0〉
or |1〉, and because any 1-Qbit state is a superposition of these two, n obeys the operator

identity

exp(2πin) = 1. (3.31)

Therefore in multiplying out the two terms

(

8x3 + 4x2 + 2x1 + x0

)(

8n3 + 4n2 + 2n1 + n0

)

(3.32)

11

appearing in the exponential (3.30), we can drop those whose coefficient is a power of 2

greater than 8, getting

Zx = exp
[

iπ
(

x0n3+(x1+ 1
2x0)n2+(x2+ 1

2x1+ 1
4x0)n1+(x3+ 1

2x2+ 1
4x1+ 1

8x0)n0

)]

. (3.33)

Note next that the number and Hadamard operators for any single Qbit obey the

relation

exp(iπxn)H|0〉 = H|x〉. (3.34)

This is trivial when x = 0, and when x = 1 it reduces to the correct statement

(−1)n 1√
2
(|0〉 + |1〉) = 1√

2
(|0〉 − |1〉). (3.35)

(Alternatively, note that exp(iπn) = Z and ZH = HX.) The effect on (3.28) of the four

terms in (3.33) that do not contain factors of 1
2 , 1

4 , or 1
8 is to produce the generalization of

(3.34) to several Qbits:7

exp
[

iπ
(

x0n3 + x1n2 + x2n1 + x3n0

)]

H3H2H1H0|0〉|0〉|0〉|0〉

=
[

exp
(

iπx0n3)H3

][

exp
(

iπx1n2)H2

][

exp
(

iπx2n1)H1

][

exp
(

iπx3n0)H0

]

|0〉|0〉|0〉|0〉
= H3H2H1H0|x0〉|x1〉|x2〉|x3〉. (3.36)

(Note the inversion: because the number operator ni is multiplied by x3−i on the left side

of (3.36), the state of the Qbit labeled i on the right is |x3−i〉.)
The remaining six terms in (3.33) (containing fractional coefficients) further convert

(3.28) to the form

UFT |x3〉|x2〉|x1〉|x0〉 =

exp
[

iπ
(

1
2
x0n2+(1

2
x1+ 1

4
x0)n1+(1

2
x2+ 1

4
x1+ 1

8
x0)n0

)]

H3H2H1H0|x0〉|x1〉|x2〉|x3〉. (3.37)

Since the Hadamard transformation Hi commutes with the number operator nj when i 6= j,

we can regroup the terms in (3.37) so that each number operator ni appears immediately

to the left of its corresponding Hadamard operator Hi:

UFT |x3〉|x2〉|x1〉|x0〉 = H3 exp
[

iπn2
1
2
x0

]

H2 exp
[

iπn1(
1
2
x1 + 1

4
x0)

]

H1×
× exp

[

iπn0(
1
2x2 + 1

4x1 + 1
8x0)

]

H0|x0〉|x1〉|x2〉|x3〉. (3.38)

The state |x0〉|x1〉|x2〉|x3〉 is an eigenstate of the number operators n3, n2, n1, n0 with

respective eigenvalues x0, x1, x2, x3. If we did not have to worry about Hadamard operators

interposing themselves between number operators and their eigenstates, we could replace

each xi in (3.38) by the number operator n3−i of which it is the eigenvalue to get:

7 We use the fact that number operators associated with different Qbits comute with

one another. Since ni has the coefficient x3−i, the Qbit labeled i in the final form is in the

state |x3−i〉.

12

UFT |x3〉|x2〉|x1〉|x0〉 = H3 exp
[

iπ 1
2n2n3

]

H2 exp
[

iπn1(
1
2n2 + 1

4n3)
]

×

×H1 exp
[

iπn0(
1
2n1 + 1

4n2 + 1
8n3)

]

H0|x0〉|x1〉|x2〉|x3〉. (3.39)

But as (3.39) makes clear, we do indeed not have to worry, because every Hi appears safely

to the left of every ni that has replaced an x3−i.

If we define 2-Qbit unitary operators by

Vij = exp
(

iπninj/2|i−j|), (3.40)

then (3.39) assumes the more readable form

UFT |x3〉|x2〉|x1〉|x0〉 = H3

(

V32H2

)(

V31V21H1

)(

V30V20V10H0

)

|x0〉|x1〉|x2〉|x3〉. (3.41)

(I have put in unnecessary parenthesis to guide the eye to the simple structure, whose

generalization to more than four Qbits is, as promised, obvious.)

If we define the unitary operator P to bring about the permutation of computational

basis states

P|x3〉|x2〉|x1〉|x0〉 = |x0〉|x1〉|x2〉|x3〉 (3.42)

then (3.41) becomes

UFT |x3〉|x2〉|x1〉|x0〉 = H3

(

V32H2

)(

V31V21H1

)(

V30V20V10H0

)

P|x3〉|x2〉|x1〉|x0〉. (3.43)

Since (3.43) holds for all computational basis states it holds for arbitrary states and is

therefore equivalent to the operator identity

UFT = H3(V32H2)(V31V21H1)(V30V20V10H0)P. (3.44)

The form (3.44) expresses UFT as a product of unitary operators, thereby indepen-

dently establishing what we already noted directly from its definition, that UFT is unitary.

More importantly it gives an explicit construction of UFT entirely out of one- and two-Qbit

unitary gates, whose number grows only quadratically with the number n of Qbits. (The

permutation P can be constructed out of cNOT gates and one additional Qbit, initially in

the state |0〉 — an instructive exercise to think about — but in the application that follows

it is much easier to build directly into the circuitry the rearranging of Qbits accomplished

by P.)

A circuit diagram that compactly expresses the content of (3.43) is shown in Figure

3.1. Note that the diagram introduces an artificial asymmetry into the 2-Qbit unitary gate

Vij , by treating one Qbit as a control bit, which determines whether or not the unitary

operator eiπn/2|i−j|

acts on the target Qbit. Although this is the conventional way of

representing the circuit for the quantum Fourier transform, the figure could equally well

13

have been drawn as it is in Figure 3.2. This second, less conventional form, reveals a further

simplification of great practical interest, if all the Qbits are measured as soon as the action

of the quantum Fourier transformation is completed. The simplification allows the 2-Qbit

controlled-V gates to be replaced by single-Qbit gates that act or not, depending on the

outcome of a prior measurement of the control Qbit. This is described in the caption of

Figure 3.2.

This replacement of controlled operators (2-Qbit operators) by measurements followed

by 1-Qbit operators is shown explicitly in Figure 3.3. It is made possible by the (easily

verified) fact that if a controlled operation, or a series of consecutive controlled operations

all with the same control Qbit, is immediately followed by a measurement of the control

Qbit, then the possible final states of all the Qbits and the probabilities of those states

are exactly the same as they would be if the measurement of the control Qbit took place

before the application of the controlled operation, and the target Qbit(s) were then acted

upon or not, depending on whether the result of the prior measurement was 0 or 1.

We shall see that if one’s aim is to find the period of the function f , one can indeed

measure each Qbit immediately after applying the quantum Fourier transform. So this

replacement of controlled unitary gates by 1-Qbit unitary gates, which act or not depending

on the outcome of the measurement, is a major simplification from the technological point

of view, 1-Qbit unitaries being far easier to implement than 2-Qbit controlled gates.

The most attractive (but least common) way of representing the quantum Fourier

transform with a circuit diagram is shown in Figure 3.4. In this form the inversion in

order from most to least significant Qbits between the input and the output is shown by

bending the Qbit lines, rather than by inverting the order in the state symbols. The 2-

Qbit gates V are also displayed in a way that does not suggesting a nonexistent asymmetry

between control and target Qbits.

The permutation operator P plays a crucial role in establishing the operator form of

the inverse Fourier transform operator U
†
FT . Since the adjoint of a product is the product

of the adjoints in the opposite order, and since Hadamards and P are self-adjoint, we have

from (3.44)

U
†
FT = P(H0V

†
10V

†
20V

†
30)(H1V

†
21V

†
31)(H2V

†
32)H3. (3.45)

One can insert 1 = PP on the extreme right of (3.45) and then note that the effect of

sandwiching all the Hadamard’s and 1-Qbit unitaries between two P’s is simply to alter

all their indices by the permutation taking 0123→3210. Therefore

U
†
FT = (H3V

†
23V

†
13V

†
03)(H2V

†
12V

†
02)(H1V

†
01)H0P. (3.46)

If we now move every V
† to the right past as many Hadamard’s as we can, keeping in mind

that each V commutes with all Hadamards except those sharing either of its indices, then

we have

U
†
FT = (H3V

†
23)(H2V

†
13V

†
12)(H1V

†
03V

†
02V

†
01)H0P. (3.47)

14

Finally, if we note from (3.40) that each V is symmetric in its indices, and rearrange the

parentheses in (3.47) to make the comparison with (3.44) easier, we have

U
†
FT = H3(V

†
32H2)(V

†
31V

†
21H1)(V

†
30V

†
20V

†
10H0)P. (3.48)

This is precisely the form (3.44) of UFT itself, except that each V is replaced by its adjoint,

which (3.40) shows amounts to replacing each i by −i in the arguments of all the phase

factors. This is exactly what one does to invert the ordinary functional Fourier transform.

E. Getting the period from the quantum Fourier transform

As noted above, the spectacular increase in computational speed of the quantum

Fourier transform over the classical fast Fourier transform is undermined by the usual

proviso: having a specimen of a system described by the state (3.22) does not enable one

to learn what the state is, and therefore there is no way to learn what all the Fourier-

transformed amplitudes γ̃ are. But if γ(x) has a period r which is smaller than 2n/2, then

if we have a small number of specimens of states of the form (3.22), even though we cannot

learn the values of the γ̃, we can, with high probability, learn the value of the period r.

The period r of f appears in the state (3.19) of the input-register Qbits produced from

a single application of Uf . To get valuable information about r we apply the quantum

Fourier transformation (3.21) to the input register:

UFT
1√
m

m−1
∑

k=0

|x0 + kr〉 =
1

2n/2

2n−1
∑

y=0

1√
m

m−1
∑

k=0

e2πi(x0+kr)y/2n |y〉 =

2n−1
∑

y=0

e2πix0y/2n 1√
2nm

(

m−1
∑

k=0

e2πikry/2n
)

|y〉. (3.49)

If we now make a measurement, the probability p(y) of getting the result y is just the

squared magnitude of the coefficient of |y〉 in (3.49). The factor e2πix0y/2n

, in which the

formerly troublesome x0 explicitly occurs, drops out of this probability8 and we are left

with

p(y) =
1

2nm

∣

∣

∣

m−1
∑

k=0

e2πikry/2n
∣

∣

∣

2

. (3.50)

This completes the quantum mechanical part of the process, except that, as noted

below, we may have to repeat the procedure a small number of times (of order 10 or so) to

achieve a high probability of learning the period r. To see why this is so, we require some

8 The random value of x0 < r also determines whether m is given by rounding the

enormous value of 2n/r up or down to the nearest integer — see Eq. (3.20) and the

surrounding text — but this turns out to be of negligible importance.

15

more purely mathematical analysis, that includes the use of another branch of elementary

number theory.

The probability (3.50) is a simple explicit function of y, whose magnitude has maxima

when y is close9 to integral multiples of 2n/r. Indeed we now show that the probability is

at least 40% that the measured value of y will be as close as possible to — i.e. within 1
2 of

— an integral multiple of 2n/r. To see this we calculate a lower bound for p(y) when

y = yj = j 2n/r + δj , (3.51)

with |δj | ≤ 1/2. Only the term in δj contributes to the exponentials in (3.50). The

summation is a geometric series which can be explicitly summed to give

p(yj) =
1

2nm

sin2(πδjmr/2n)

sin2(πδjr/2n)
. (3.52)

Since (3.20) tells us that m is within an integer of 2n/r, and since 2n/r ≥ N2/r > N ,

we can with negligible error replace mr/2n by 1 in the numerator of (3.52), and replace

the sine in the denominator by its (extremely small) argument. This gives

p(yj) =
1

2nm

(sin(πδj)

πδjr/2n

)2

=
1

r

(sin(πδj)

πδj

)2

. (3.53)

When x is between 0 and π/2, the graph of sin x lies above the straight line connecting

the origin to the maximum at x = π/2:

x/ 1
2
π ≤ sin x, x 0 ≤ x ≤ π/2. (3.54)

Since δj ≤ 1
2 we can therefore bound the probability (3.53) below by

p(yj) ≥ (4/π2)/r. (3.55)

Since there are at least r − 1 different values of j, and since r is a large number10 one has

at least a 40% chance (4/π2 = .4053) of getting one of the special values (3.51) for y — a

value that is within 1/2 of an integral multiple of 2n/r.

9 Such sums of phase factors are familiar to physicists (to whom this cautionary footnote

is addressed), particularly in the context of time-dependent perturbation theory, where

one becomes quite used to waving ones hands and treating them as Dirac delta-functions

concentrated in the neighborhood of the maximum values. Physicists should not let this

familiarity distract them from the fact that the analysis here is significantly different.

Because we require highly precise information about the integer r, we must pay much

more careful attention to just how much of the probability is concentrated in those special

values of y. We must also worry about how to get from such maximum values to the period

r itself.
10 We can easily test with a classical computer all values of r less than, say, a hundred,

to see if they are periods of f ; one only need resort to the quantum computation if r itself

is enormous.

16

Note, in passing, that as δj → 0 in (3.53) the probability p(yj) becomes 1/r, so that

if all the δj are 0 — i.e. if the period r is exactly a power of 2 — then the probability

of measuring an integral multiple of 2n/r is essentially 1. Indeed, you can easily check

that in this (highly unlikely) case the probability remains 1 even if we do not double the

number of Qbits in the input register and take n = n0. Thus the case r = 2j avoids many

of the mathematical and practical (i.e. having to double the size of the input register)

difficulties of quantum period finding. Since r divides (p− 1)(q− 1), all periods modulo pq

will necessarily be powers of 2 if p and q are both primes of the form 2n + 1. The smallest

such primes are 3, 5, 17, and 257. Hence claims to have realized the Shor algorithm for

factoring 15 are to be taken cum grano salis, as should possible future claims to have

factored 51, 85, and 771.

Note also that the derivation of (3.55) only requires the argument of the sine in the

denominator of (3.52) to be small. This will be the case provided 2n is any large multiple

of N — i.e. provided the input register is large enough to contain many periods of bx

(mod N). The stronger requirement that 2n should be as large as N2 — that the input

register should actually be able to accomodate at least N full periods — emerges when we

examine whether it is possible to learn r itself, given an integral multiple of 2n/r.

Suppose, then, that we have found a y that is within 1/2 of j2n/r for some integer j.

It follows that
∣

∣

∣

y

2n
− j

r

∣

∣

∣
≤ 1

2n+1
. (3.56)

Since y is the result of our measurement and we know n, the number of input-register

Qbits, we have an estimate for the fraction j/r. It is here that our use of an n-Qbit input

register with 2n > N2 is crucial. By using twice as many Qbits as needed to represent all

the integers up to N , we have ensured that our estimate (3.56) of j/r is off by no more

than 1/2N2. But since r < N , and since any two distinct fractions with denominators less

than N must differ11 by at least 1/N2, the measured value of y and the fact that r is less

than N is enough to determine a unique value of the rational number j/r.

That value of j/r can be efficiently extracted from the known value of y/2n by a

simple application of the theory of continued fractions.12 This gives us the fraction j/r

reduced to lowest terms — i.e. it gives us integers j0 and r0 which have no common factors

satisfying j0/r0 = j/r. Since r0 is r divided by the factors it has in common with j, if

we were lucky enough to get a value of j that is coprime to r, then we have r. Since, as

noted above, two random numbers j and r have a better than even chance of having no

common factors, we do not have to be terribly lucky. We can easily check to see if r0 is

11 For |ab − c
d | ≥ 1

bd unless the two fractions are identical.
12 This is described in the number-theoretic Appendix of Nielsen and Chuang. It is based

on the theorem that if x is an estimate for j/r that differs from it by less than 1/2r2, then

j/r will appear as one of the partial sums in the continued fraction expansion of x. This

will be illustrated in Assignment #5.

17

the sought for period by computing (with a classical computer) br0 modulo (N) and seeing

whether or not it is b. If it is not, we can try several low multiples 2r0, 3r0, 4r0, . . . since

the probability of j sharing a large common factor with r is not large.

If this fails, we can repeat the whole procedure. We now get j ′/r where j′ is another

(random) integer, yielding an r′0 which is r divided by the factors it has in common with

j′. So r is the product of r0 with the factors r has in common with j, and r is also the

product of r′0 with the factors r has in common with j ′. If j and j′ have no factors in

common — which again has a better than even chance of happening — then r will be the

least common multiple13 of r0 and r′0. We can again test to see if we have the right r by

evaluating br (mod N) to see if it is indeed equal to b. If it is not, we can again try some of

the lower multiples of our candidate for r and, if necessary, go through the whole business

one more time to get yet another random multiple of 1/r.

Because we are only 40% sure that our measurement gives us one of the yj , we may

have to repeat the whole procedure several (but not a great many) times before succeeding.

Some not terribly taxing mathematical detective work, carried out with the aid of a classical

computer, will quickly give us the period r.

F. Calculating the periodic function

We have assumed the existence of an efficient subroutine that calculates bx (mod

N). You might think that calculating f(x) = bx (mod N) for arbitrary values of x

less than, say, 2n = 10800 would require astronomical numbers of multiplications, but

it does not. We simply square b (mod N), square the result (mod N), square that, etc.,

calculating the comparatively small number of powers b2j

(mod N) with j < n. The binary

expansion of x = xn−1xn−2 . . . x1x0 tells us which of these must be multiplied together to

get bx =
∏

j(b
2j

)xj .

So if we start with x in the input register, 1 (i.e. 000 . . .001) in the output register,

and b in an additional work register, then we can proceed as follows:

(a) multiply the ouput register by the work register if and only if x0 = 1; (b)

replace the contents of the work register by its modulo-N square; (a′) repeat (a)

with the multiplication now conditional on x1 = 1; (b′) repeat (b); (a′′) repeat

(a) with the multiplication now conditional on x2 = 1; etc.

At the end of this process we will still have x in the input register (which serves only

as a set of control bits for the n controlled multiplications), and we will have bx mod (N) in

the output register. The work register will contain b2n

independent of the value of x in the

input register, and it will therefore be unentangled with the input and output registers and

can be ignored when we take our starting point to be a superposition of classical inputs.14

13 The least common multiple of two numbers is their product divided by their greatest

common divisor; the greatest common divisor can be found with the Euclidean algorithm,

as noted above.
14 As noted in Chapter 2, any additional registers used in the squaring and multiplica-

18

Note the striking difference between classical and quantum programming styles. One’s

classical computational instincts would direct one to make a look-up table of all n modulo-

N multiple squares of b, since (a) Cbits are cheap and stable and (b) otherwise to get bx

modulo (N) for all the needed values of x one would have to recalculate the successive

squares so many times that this would become ridiculously inefficient. But the situation

is quite the opposite with a quantum computer, since (a) Qbits are expensive and fragile

and (b) “quantum parallelism” makes it possible to produce the state (3.18) with only a

single execution of the procedure that does the successive squarings, thereby relieving us

of any need to store all the modulo-N squares, at a substantial saving in Qbits.

As usual with quantum parallelism, there is the major catch that a measurement can

reveal the value of only a single one of the modulo-N powers of b. But, as we have now

seen, by applying UFT to the input register of the state (3.18) and only then making a

measurement, one can get important collective information about the modulo-N values of

bx — in this case clues about the crucial period r — at the price of loosing all information

about the individual values.

G. The unimportance of unavoidable small phase errors

To execute the quantum Fourier transform one needs 2-Qbit gates Vij = eiπninj/2|i−j|

or, if one exploits the Griffiths-Niu trick, 1-Qbit gates Vj = eiπnj/2j

. Since we need to deal

with numbers of many hundreds of digits, the 2j appearing in these phase gates can be

larger than 10100. Producing such tiny phase shifts requires a degree of control over the

gates that is impossible to achieve. Typically such phase-shift gates would allow two Qbits

to interact in a carefully controlled way for an interval of time that was very precisely

specified, but obviously not to hundreds of significant figures. It is therefore crucial that

the effectiveness of the period finding algorithm not be greatly affected by small (but not

absurdly small) errors in the phase shifts.

On the face of it this seems worrisome. Since we need to know the period r to a hundred

or more digits of precision, don’t we have to get the phase shifts right to a comparable

accuracy? Here the fundamentally digital character of the actual output of a quantum

computation saves the day. To learn r we require the outcomes of several hundreds of 1-

Qbit measurements, each of which has just two outcomes (0 or 1). While the action of the

unitary gates that precede the measurements is like that of an analog computer, involving

continuously variable phase shifts that cannot be controlled with perfect precision, this

analog evolution only affects the probabilities of the sharply defined digital outputs. Small

alterations in the phases will produce small alterations in the probabilities of getting that

extremely precise digital information, but not the precision of the information itself, once

it is acquired.15

tion subroutines must also be restored to their initial states to insure that they are also

disentangled from the input and output registers.
15 For a long time this quite crucial point seems to have been discussed only in an

19

Suppose that the phase of each term in the quantum Fourier transform (3.21) is incor-

rect by an amount ϕ(x, y), and that each of these altered phases is bounded in magnitude

by ϕ � 1. The probability p(y) in (3.50) will be changed to

pϕ(y) =
1

2nm

∣

∣

∣

m−1
∑

k=0

e2πikry/2n

eiϕk(y)
∣

∣

∣

2

, (3.57)

where ϕk(y) = ϕ(x0 + kr, y). Since all the phases ϕk(y) are small compared with unity,

eiϕk(y) ≈ 1 + iϕk(y), (3.58)

and therefore

pϕ(y) ≈ 1

2nm

∣

∣

∣

m−1
∑

k=0

e2πikry/2n(

1 + iϕk(y)
)

∣

∣

∣

2

. (3.59)

What affect does this have on the probability of learning from the measurement one of the

special values yj give in (3.51)?

We have

pϕ(yj) ≈
1

2nm

∣

∣

∣

m−1
∑

k=0

e2πikrδj/2n(

1 + iϕjk

)

∣

∣

∣

2

, (3.60)

where ϕjk = ϕk(yj). If we expand to linear order in the small quantities ϕjk, we get

pϕ(yj) ≈ p(yj) +
2

2nm
Im

[

(

m−1
∑

k=0

e−2πikrδj/2n

ϕjk

)(

m−1
∑

k′=0

e2πik′rδj/2n)

]

. (3.61)

We can get an upper bound on the magnitude of the difference between the exact and

approximate probabilities by replacing the imaginary part of the product of the two sums

by the product of the absolute values of the sums, and then replacing each term in each

sum by its absolute value. Since the absolute value of each ϕjk is bounded by ϕ, we can

conclude that

|p(yj) − pϕ(yj)| ≤
2m

2n
ϕ =

2

r
ϕ. (3.62)

Since there are r different yj , the probability of getting one of the special values yj is

altered by less than 2ϕ. So if one is willing to settle for a probability of getting a special

value that is at worst 1% less than the ideal value of about 0.4, one can tolerate phase

errors up to ϕ = 0.4/200 = 1/500. If one leaves out of the quantum Fourier transform

circuit all controlled phase gates eπininj/2|i−j|

with |i − j| > `, the maximum phase error

ϕ this can produce in any term is ϕ = nπ/2`, and therefore the probability will be within

1% of its ideal value if 1/2` < 1/500nπ.

unpublished internal IBM report by D. Coppersmith. In 2002 that 1994 report was finally

posted on www.arXiv.org as quant-ph/0201067.

20

The number of n of Qbits in the input register might be as large as 3000 for problems

of interest (factoring a 500 digit N). Consequently for all practical purposes one can omit

from the quantum Fourier transform all controlled-phase gates connecting Qbits that are

more than about ` = 22 wires apart in the circuit diagram. This has two major advantages.

Of crucial importance, quantum engineers will not have to produce impossibly precise phase

changes. Furthermore the size of the circuit executing the quantum Fourier transform only

has to grow linearly with large n rather than quadratically. Since n is likely to be of order

103 for practical code-breaking, this too is a significant improvement.

H. Period finding and factoring

Since Shor’s period-finding quantum algorithm is always described as a factoring algo-

rithm, I conclude by noting how period finding leads to factoring. I consider only the case

relevant to RSA encryption, where one wants to factor the product of two large primes,

N = pq, although the connection between period finding and factoring is more general.

If we have a way to determine periods (such as Shor’s algorithm) and want to find the

large prime factors of N = pq, we pick a random number a coprime to N . The odds that a

random a happens to be a multiple of p or of q are minuscule when p and q are enormous,

but if you are the worrying kind you can check that it isn’t using the Euclidean algorithm.

(In the overwhelmingly unlikely event that it is, then the Euclidean algorithm will give

you p or q directly, and you will have factored N .) Using our period finding routine, we

find the order of a in Gpq: the smallest r for which

ar ≡ 1 (mod pq). (3.63)

We can use this information to factor N provided our choice of a was lucky in two ways:

Suppose first that we are fortunate enough to get an r that is even. We can then

calculate

x = ar/2 (mod pq) (3.64)

and note that

0 ≡ x2 − 1 ≡ (x − 1)(x + 1) (mod pq). (3.65)

Now x − 1 = ar/2 − 1 is not congruent to 0 mod pq, since r is the smallest power of a

congruent to 1. Suppose in addition — our second piece of good fortune — that

x + 1 = ar/2 + 1 6≡ 0 (mod pq). (3.66)

In that case neither x − 1 nor x + 1 is divisible by N = pq, but (3.65) tells us that their

product is. Since p and q are prime this is only possible if one of them, say p, divides x−1

and the other, q, divides x+1. Because the only divisors of N are p and q, it follows that p

is the greatest common divisor of N and x−1, while q is the greatest common divisor of N

and x + 1. We can therefore find p or q by a straightforward application of the Euclidean

algorithm.

21

So it all comes down to the likelihood of our being lucky. We show in Appendices A3

and A4 that the probability is at least 50% that a random number a in Gpq has an order

r that is even with ar/2 6≡ −1 (mod pq) so we do not have to repeat the procedure an

enormous number of times to achieve a very high probability of success. If you’re willing

to accept the fact that you don’t have to try out very many random a’s to succeed, then

this elementary argument is all you need to know about why period-finding enables you

to factor N = pq.

But if you’re curious about why the probability of good fortune is so high, then you

must contend with Appendices A3 and A4, where I have constructed an elementary but

rather elaborate argument, by condensing a fairly large body of number-theoretic lore into

the comparatively simple form it assumes when applied to the special case in which the

number N is the product of two primes.

Appendix to Chapter 3

A1. Some elementary group theory.

A set of positive integers less than N constitutes a group under multiplication modulo

N if the set (a) contains 1, (b) contains the modulo-N inverse of any of its members,

and (c) contains the the modulo-N products of all pairs of its members. A subset of a

group meeting conditions (a)-(c) is called a subgroup. The number of members of a group

is called the order of the group. An important result of the elementary theory of finite

groups (Lagrange’s theorem) is that the order of any of its subgroups is a divisor of the

order of the group itself. The point of the indented paragraphs that follow is only to

establish this.

If S is any subset of a group G (not necessarily a subgroup) and a is any

member of G (which might or might not be in S), define aS (called a coset of S)

to be the set of all members of G of the form g = as where s is any member of S.

(Throughout this appendix equality will be taken to mean equality modulo N .)

Distinct members of S give rise to distinct members of aS, for if s and s′ are in

S and as = as′, then multiplying both sides by the inverse of a gives s = s′. So

any coset aS has the same number of members as S itself.

If the subset S is a subgroup of G and a is a member s of S, then every

member of the coset sS must be in S. Since sS has as many distinct members as

S has, sS = S. If two cosets aS and bS of a subgroup S have a common member

then there are members s and s′ of S that satisfy as = bs′, so (as)S = (bs′)S.

But (as)S = a(sS) = aS, and similarly (bs′)S = bS. Therefore aS = bS: two

cosets of a subgroup are either identical or have no members in common.

If S is a subgroup then since 1 is in S, any member a of G is in the coset aS.

Since every member of G is thus in some coset, and since the cosets of a subgroup

are either identical or disjoint, it follows that the distinct cosets of a subgroup

S partition the whole group G into disjoint subsets, each of which has the same

22

number of members as S. Consequently the total number of members of G must

be an integral multiple of the number of members of any of its subgroups S: The

order of any subgroup S is a divisor of the order of the whole group G.

Of particular interest is the subgroup given by all the distinct powers of any particular

member a of G. Since G is a finite set, the set of distinct powers of a is also finite, and

therefore for some n and m with n > m we must have an = am, or a(n−m) = 1. The order

of a is defined to be the smallest non-zero k with ak = 1. The subset a, a2, . . . , ak of G is a

subgroup of G, since it contains 1 = ak, and the inverses and products of all its members.

It is called the subgroup generated by a, and its order is the order k of a. Since the order

of any subgroup of G divides the order of G, we conclude that the order of any member of

G divides the order of G.

This is all the group theory one needs to know to understand RSA encryption.

A2: The Euclidean algorithm.

We wish to find the greatest common divisor of two numbers f and c, with f > c.

The Euclidean algorithm is the iterative procedure that replaces f and c by f ′ = c and

c′ = f − Int[f/c]c, where Int[x] is the largest integer less than or equal to x. Evidently

any factors common to f and c are also common to f ′ and c′. Furthermore f ′ and c′

decrease with each iteration and each iteration keeps f ′ > c′, until the procedure reaches

c′ = 0. Let f0 and c0 be the values of f and c at the last stage before c = 0. They are still

divisible by all common factors of the original f and c, but in addition f0 is divisible by

c0 (or the next stage would not be c′0 = 0.) Therefore c0 is the greatest common divisor of

the original f and c.

If f and c (less than f) have no common factors, then iterating the Euclidean algorithm

eventually leads to c0 = 1. This stage must have been immediately preceded by a pair f1

and c1 satisfying f1 − mc1 = 1 for some integer m. But f1 and c1 are given by explicit

integral linear combinations of the pair at the preceding stage, f2 and c2. That pair in

turn are explicit integral linear combinations of f3 and c3, etc. So one can work backwards

through the iterations to construct integers j and k with 1 = jf + kc. We can express k

as lf + d with 1 < d < f and with l a (possibly negative) integer; d is then the inverse of

c modulo f .

A3. More on Factoring

We establish here that the probability is at least 1
2 that if a is a random member of

Gpq, then the order r of a satisfies both

r even (3.67)

and

ar/2 6≡ −1 (mod pq). (3.68)

23

In Section H it is shown that given such an a and its order r, the problem of factoring

N = pq is trivially solved.

Note first that the order r of a in Gpq is the least common multiple of the orders rp

and rq of a in Gp and in Gq. That r must be some multiple of both rp and rq is immediate,

since ar ≡ 1 (mod pq) implies that ar ≡ 1 (mod p) and ar ≡ 1 (mod q). Furthermore any

common multiple r′ of rp and rq satisfies ar′ ≡ 1 (mod pq), because if ar′

= 1 + mp and

ar′

= 1 + nq, then mp = nq. But since the primes p and q have no common factors this

requires m = kq and n = kp, and hence ar′

= 1 + kpq ≡ 1 (mod pq). Since r is the least

integer with ar ≡ 1 (mod pq), since r must be a common multiple of rp and rq, and since

any such multiple works, r must be the least common multiple of rp and rq.

Consequently condition (3.67) can fail only if rp and rq are both odd. Condition

(3.68) can fail only if rp and rq are both odd multiples of the same power of 2; for if rp

contains a higher power of 2 than rq, then since r is a common multiple of rp and rq, it

will remain a multiple of rq if a single factor of 2 is removed from it, and therefore that

ar/2 ≡ 1 (mod q). But this is inconsistent with a failure of condition (3.68), which would

imply that ar/2 ≡ −1 (mod q).

So a necessary condition for failure to factor N = pq is that either rp and rq are both

odd, or they are both odd multiples of the same power of 2. These neatly combine into a

single necessary condition: Our effort to factor N can fail only if we have picked a random

a for which rp and rq are both odd multiples of 2j for any j ≥ 0. We next show that the

probability pf of this happening is less than 1
2 .

To calculate a upper bound for the probability of failure pf , note first that the mod-p

and mod-q orders, rp and rq, of a are the same as the mod-p and mod-q orders of the

numbers ap and aq in Gp and Gq, where

a ≡ ap (mod p), a ≡ aq (mod q). (3.69)

Furthermore, every number a in Gpq is associated through (3.69) with a distinct pair from

Gp and Gq. For if ap = bp and aq = bq then a−b is a multiple of both p and q, and therefore,

since p and q are distinct primes, a − b is a multiple of pq itself, so a ≡ b (mod pq).

Since the (p−1)(q−1) different members of Gpq are thus in one-to-one correspondence

with the number of distinct pairs, one from the p−1 members of Gp and one from the q−1

members of Gq, the modulo-p and modulo-q orders rp and rq of a random integer a in Gpq

will have exactly the same statistical distribution as the orders rp and rq of randomly and

independently selected integers in Gp and Gq. So to show that the probability of failure

is at most 1
2
, we must show that the probability is at most 1

2
that the orders rp and rq

of such a randomly and independently selected pair are both odd multiples of 2j for some

j ≥ 0..

We do this by showing that for any prime p, no more than half of the numbers in Gp can

have orders rp that are odd multiples of any given power of 2. [Given this, if Pp(j) and Pq(j)

are the probabilities that random elements of Gp and Gq have orders that are odd multiples

24

of 2j , then the probability of failre pf is less than
∑

j≥0 Pp(j)Pq(j) ≤ 1
2

∑

j≥0 Pq(j) ≤ 1
2 .]

This in turn follows from the following fact: Let the order p−1 of Gp be an odd multiple of

2k for some k ≥ 0; then exactly half the elements of Gp have orders that are odd multiples

of 2k.

This last fact follows from use the important theorem (proved in Section A4 below)

that if p is a prime, then Gp has at least one primitive element b of order p − 1, whose

successive powers therefore generate the entire group. Given this theorem, we complete

the argument by showing that the the orders of the odd powers of any such primitive b are

odd multiples 2k, but the orders of the even powers are not.

If r0 is the order of bj with j odd, then

1 ≡ (bj)r0 ≡ bjr0 (mod p), (3.70)

so jr0 must be a multiple of p − 1, the order of b. Since j is odd r0 must contain at least

as many powers of 2 as does p − 1. But since the order r0 of any element must divide the

order p − 1 of the group, r0 cannot contain more powers of 2 than p − 1. So r0 is an odd

multiple of 2k.

On the other hand if j is even, then bj satisfies

(bj)(p−1)/2 =
(

bp−1
)j/2 ≡ 1 (mod p), (3.71)

so the order r0 of bj divides (p − 1)/2. Therefore r0 must contain at least one less power

of 2 than does p − 1.

This completes the proof that the probability is at least 1/2 that a random choice of

a in Gpq will satisfy both the conditions (3.67) and (3.68) that lead, with the aid of an

efficient period-finding routine, to an easy factorization of N = pq.

A4. Gp has an element of order p − 1 when p is prime.

It remains to prove the theorem that when p is prime, Gp contains at least one

number of order p − 1. The relevant property of the multiplicative group of integers

{1, 2, 3, . . . p − 1} modulo a prime is that together with 0 these integers also constitute a

group under addition mBut sinceodulo p, which has all the structure necessary to ensure

that a polynomial equation of degree d has at most d roots.16 We can exploit this fact as

follows:

16 This is easily proved by induction on the degree of the equation, using the fact that

every non-zero integer modulo p has a multiplicative inverse modulo p. It is obviously

true for degree 1. Suppose it is true for degree m − 1 and a polynomial P (x) of degree m

satisfies P (a) = 0. Then P (x) = 0 implies P (x) − P (a) = 0. Since P (x) − P (a) has the

form
∑

j cj(x
j − aj), the factor x− a can be extracted from each term leading to the form

(x − a)Q(x) where Q(x) is a polynomial of degree m − 1. So if x 6= a then Q(x) = 0, and

this has at most m − 1 distinct solutions by the inductive assumption.

25

Write the order s = p − 1 of Gp in terms of its prime factors qi:

s = p − 1 = qn1

1 · · · qnm
m . (3.72)

For each qi, the polynomial xs/qi −1 has at most s/qi roots, and since s/qi < s, the number

of elements in Gp, there must be elements ai in Gp satisfying

a
s/qi

i 6≡ 1 (mod p). (3.73)

Given such an ai, define

bi = a
s/(q

ni
i

)
i . (3.74)

We next show that the order of bi is qni

i . This is because

b
(q

ni
i

)
i ≡ as

i ≡ 1 (mod p), (3.75)

so the order of bi must divide qni

i and therefore be a power of qi, since qi is prime. But if

that order were any power of qi less than ni, then we would have a
s/qk

i

i ≡ 1 (mod p) with

k ≥ 1, which contradicts (3.73).

Because each bi has order qni

i , the product b1b2 · · · bm has order qn1

1 qn2

2 · · · qnm
m = p−1.

This follows from the fact that if two numbers in Gp have orders that are coprime, then

the order of their product is the product of their orders.17 Therefore since qn1

1 and qn2

2

are coprime, b1b2 has order qn1

1 qn2

2 . But since qn1

1 qn2

2 and qn3

3 are coprime, it follows that

b1b2b3 has order qn1

1 qn2

2 qn3

3 . Continuing in this way, we conclude that b1b2 · · · bm has order

qn1

1 qn2

2 · · · qnm
m = s = p − 1.

17 For let u, v, and w be the orders of c, d, and cd. Since cu ≡ 1 (mod p) and (cd)w ≡
1 (mod p), it follows that dwu ≡ 1 (mod p). So the order v of d divides wu, and since

v and u have no common factors, v divides w. In the same way one concludes that u

divides w. Therefore, since v and u are coprime, w must be a multiple of uv. Furthermore,

(cd)uv ≡ cuvdvu ≡ 1 (mod p), uv must be a multiple of w. Therefore w = uv.

26

Figure 3.1

H

V1

V1

V2

H

V2

V3

H V1

x

x

x

x

0

1

2

3 x

x

x

x

3

2

1

0

H

P

Figure 3.1. Diagram of a circuit that illustrates, for four Qbits, the construction of
the quantum Fourier transform UFT defined in (3.21), as the product of one- and two-Qbit
gates given in (3.43). (Note that in the figure the order in which the gates act is from left
to right, while in (3.43) the order in which they act is from right to left.)

The convention, as usual, is that the Qbits representing more significant bits are
represented by higher lines in the figure. Note, however, that acting on the computational
basis, the first gate P permutes the states of the Qbits, exchanging the states of the
most and least significant Qbits, and the states of the next most significant and next least
significant Qbits. Rather than going to the trouble of constructing such a gate, it obviously
makes more sense simply to reverse the convention for the input state, representing Qbits
that represent more significant bits by lower lines in the figure. This is what one usually
encounters in diagrams of the quantum Fourier transform: the gate P is omitted and the
conventional ordering of significant bits is reversed for the input. The complete figure then
reduces to the portion to the right of the permutation gate P. For the output, of course,
the conventional ordering remains in effect.

If the input on the left is the computational basis state |x〉4 = |x3〉|x2〉|x1〉|x0〉 the
output will be UFT |x〉4, the superposition (3.21) of computational basis states |y〉4 =
|y3〉|y2〉|y1〉|y0〉, defined in (3.21).

There is no need for the figure to have subscripts on the Hadamard gates appearing
in (3.44), since each is explicitly attached to the line associated with the Qbit on which it
acts. For the same reason each two-Qbit controlled-V gate requires only a single subscript,
which specifies the unitary operator Vk that acts on the target Qbit; the subscript is the
number of “wires” the target Qbit is away from the control Qbit. The explicit form of Vk

is eiπn/2k

where n is the number operator for the target Qbit. In the computational basis
the controlled-V gate acts as the identity unless control and target Qbits are both in the

state |1〉, in which case it multiplies the state of the target Qbit by eiπ/2k

.

27

Figure 3.2

H

V1

1V

HV2

V2V3

H

V1

x

x

x

x

3

2

1

0x

x

x

x

0

1

2

3

H

P

Figure 3.2. Since the action (3.40) of the controlled-V gates is symmetric in i and j,
Figure 3.1 can be redrawn with control and target Qbits interchanged. If the quantum
Fourier transformation is immediately followed by a measurement of all the Qbits, as it is
when applied to period finding, then this equivalent representation of the quantum Fourier
transformation reveals that the two-Qbit controlled-V gates can be replaced by one-Qbit
unitary gates, which act or not depending on the outcome of earlier measurements.

To how this comes about consider first the bottom wire. Once H and the three
controlled-V gates have acted on it, nothing further happens to it until the final measure-
ment of the least significant output Qbit. If the result of that measurement is 1, the state
of the four Qbits reduces to that component of the full superposition in which V1, V2, and
V3 have acted on the three wires above the bottom wire; if the result of the measurement
is 0, the four-Qbit state reduces to the component in which they have not acted. We can
produce exactly the same effect if we measure the least significant output Qbit immediately
after H has acted on the bottom wire, before any of the other gates have acted, and then do
or do not apply the three unitary transformations to the other three Qbits, depending on
whether the outcome of the measurement is 1 or 0. Next, we apply the Hadamard transfor-
mation to the second wire from the bottom. We then immediately measure the next least
significant output Qbit and, depending on the outcome, apply or not apply the appropriate
one-Qbit unitary transformations to each of the remaining two Qbits. Continuing in this
way, we end up producing exactly the same statistical distribution of measurement results
as we would have produced had we used the two-Qbit controlled-V gates, measuring none
of the Qbits until the full unitary transformation UFT was produced.

This simplification, which eliminates the need for any 2-Qbit gates, was pointed out
by Robert B. Griffiths and Chi-Sheng Niu, Phys. Rev. Lett. 76, 3228-3231 (1996). The
procedure that results is pictured in Fig. 3.3.

28

Figure 3.3

H

H

H

Hx

x

x

x

3

2

1

0

y

y

y

y

2

3

1

0

3V

M

1V

2V

M

y
1V M

y

M

y0
1V

2V

0

0

0
y

y

y
y
1

y
1

y
1

2

2
y

3

Figure 3.3. If the Qbits are all measured immediately after all the gates of the quantum
Fourier transform have all acted, then the one-Qbit measurement gates can be applied to
each Qbit immediately after the action of the Hadamard gate on that Qbit, and the
controlled-V gates that follow the action of the Hadamard (see Figure 3.2) can be replaced
by one-Qbit gates that act or not depending on whether the outcome y of the one-Qbit
measurement is 1 or 0.

Note that the final state on the right can now be indicated, since it is just the com-
putational basis state associated with the outcomes of the measurements of the individual
Qbits. If the input state is a computational basis state, the output state is entirely ran-
dom, all states |y〉4 having equal probability. However the distribution of output states
can have a highly informative structure when the input is an appropriate superposition of
computational basis states.

29

Figure 3.4

x

x

x

x

0

1

2

3 H H H H

Figure 3.4. A much more symmetric way of drawing Figs. 1 or 2, due to Griffiths
and Niu. (Although it is superior to the conventional diagram, it does not seem to have
caught on.) The permutation P that in effect permutes the Qbits in the input register is
now built into the diagram by using lines that no longer connect input register Qbits to
output register Qbits at the same horizontal level. Because the lines now cross one another,
the unitary operators V can be represented by the black circles at the intersection of the
lines associated with the Qbits that they couple. This eliminates the artificial distinction
between control and target Qbits used in Figs. 1 and 2. The form of each such operator
is V = exp

(

iπnn′/2k
)

, where n and n′ are the Qbit number operators associated with the
two lines that cross at the dot, and k = 1, 2, or 3 depending on whether the dot lies in the
first, second, or third horizontal row below the top row of Hadamard transformations.

30

