
Chapter 8

Virtual Memory

Managing main memory, especially if it needs to be shared among multiple
concurrent tasks or even different users, is a challenging problem. While the
size of memory has been increasing steadily, and modern CPUs now use long
address fields capable of generating very large address spaces, the amount
of memory available and actually installed in most computers remains a
limiting factor. This situation is not likely to change anytime soon as new
applications, especially those using sound, graphics, and video, are capable of
utilizing all the memory available. Virtual memory addresses the problems of
sharing limited memory through architectural and OS software mechanisms
that hide the presence of physical memory and present instead an abstract
view of main memory to all applications. In this chapter, we describe the
concept of virtual memory and the main implementation schemes.

8.1 Principles of Virtual Memory

The basic idea of virtual memory is to hide the details of the real physical
memory available in a given system from the user. In particular, virtual
memory conceals the fact that physical memory is not allocated to a program
as a single contiguous region and also conceals the actual size of available
physical memory. The underlying implementation creates the illusion that
each user has one or more contiguous address spaces, each beginning at
address zero. The sizes of such virtual address spaces may, for most practical
purposes, be assumed unlimited. The illusion of such a large amount of
memory is created by subdividing the virtual memory into smaller pieces,
which can be loaded into physical memory whenever they are needed by the
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Figure 8.1: Principles of virtual memory

execution.
The principle is illustrated in Figure 8.1, where different portions of

two virtual spaces VM1 and VM2 are mapped onto physical memory. Two
distinct portions of VM1 and the beginning portion of VM2 are currently
present in main memory and thus accessible by the processor. The address
mapping mechanisms, address map, translate logical addresses, generated
by the processor, to physical addresses, presented to the actual memory.

Several different forms of virtual memory exist, depending on the view
presented to the user and the underlying implementation. From the user’s
perspective, there are two main organizations. The first presents virtual
memory as a single contiguous linear space, corresponding to our conven-
tional view of physical memory. In this organization, virtual memory is
considered a large, linearly addressed sequence of n cells (words, bytes, or,
less frequently, individual bits), which are referenced using addresses in the
range from zero to n−1. As with physical memory, n is usually a power of 2,
i.e., n = 2k for some integer k. We call this a single segment address space.
In the implementation, the virtual memory is subdivided into fixed-sized
portions, called pages, which can be loaded into noncontiguous portions of
physical memory, called page frames.

A multiple segment virtual memory divides the virtual address space
into a set of segments, where each segment is a contiguous linear space and
can vary in size. A segment is a user-defined entity that can be treated
as an independent logical unit, for example, a function or a data structure.
In common implementations of this second organization, each segment can
be loaded as a single unit into a contiguous portion of memory, or it can be
subdivided further into fixed-size pages.

For both methods—a single segment or a multiple segment virtual memory—
there are several important issues that must be addressed by an implemen-
tation:

Address Mapping Mechanisms. There are many different ways to
define the conceptual address map function that translates logical addresses
to their physical equivalents. Since such a translation must be performed
one or more time for ever instruction executed, it is crucial to performance
that it is done with minimal overhead. Section 8.2 presents the principal
schemes that are used.
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Placement Strategies. To access any portion of the virtual memory
space, it must reside in main memory. Thus the implementation must pro-
vide a placement or memory allocation strategy, which determines where to
load the needed portions of the virtual memory. When the virtual memory
is subdivided into variable-size segments, the memory manager can employ
the allocation strategies developed for variable-size partitions, such as first-
fit or best-fit, which were already discussed in Section 8.3. With fixed-size
pages, placement become greatly simplified, because all memory holes (page
frames) are of fixed size and thus a given page will fit into any free frame.

Replacement Strategies. When a new portion of a virtual memory
needs to be loaded into main memory and there is not enough free space
available, the system must create more space. In multiprogrammed systems,
this can be done by swapping out one of the current processes. Alternately,
the system could evict only some portion, i.e., a single page or a segment, of
one of the currently resident virtual spaces. The particular page or segment
removed from executable memory affects performance critically. We will
consider various solutions to this problem in Section 8.3.

Load Control. A static loading policy transfers all of a process’s vir-
tual memory into main memory prior to execution. But this automatically
restricts the number of processes that can be active simultaneously. It may
also waste a lot of memory and I/O bandwidth when only a small portion
of the virtual memory is actually used. A more flexible approach is to load
different portions of virtual memory dynamically, i.e., at the time they are
actually needed. This is called demand paging or demand segmenta-
tion, depending on the virtual memory organization. Its main disadvantage
is that processes may run very inefficiently if they only have a relatively
small amount of memory. Load control addresses the problem of how much
of a given virtual space should be resident in memory at any given time.
Section 8.3.3 discusses the various solutions and trade-offs.

Sharing. There are important reasons for allowing two or more processes
to share the same portion (code or data) of main memory. Both paging and
segmentation permit sharing. However, since segments correspond to logical
entities into which the user chose to divide the program, they are a natural
basis for sharing. In contrast, pages represent an arbitrary subdivision of the
virtual space, which makes sharing more difficult. The next chapter explores
the trade-offs in detail.
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Figure 8.2: Form of virtual and physical address

8.2 Implementations of Virtual Memory

We start by describing the architecture of paging systems, present the basics
of segmentation, and then discuss the common combination of the two—
paging with segmentation. Paging of OS systems tables is treated next.
The final topic of the section is the use of translation look-aside buffers for
improved performance.

8.2.1 Paging

In a paging implementation, the virtual address space is divided into a se-
quence of equal-sized contiguous blocks called pages; for P pages, these are
numbered consecutively p0, p1, ..., pP−1. The most common page size is
between 1K to 16K bytes. Similarly, the available physical memory is di-
vided into a number of equal-sized contiguous blocks called page frames,
numbered f0, f1, ..., fF−1, where F is the total number of frames. The page
size is identical to the page frame size.

A virtual address va is then interpreted as a pair (p, w), where p is a
page number and w is a word number, i.e., an offset or displacement,
within the page p. Let us denote the number of bits used to represent p as
|p|, and the number of bits used to represent w as |w|. A virtual address
va is then a string of |p| + |w| bits, resulting in a virtual memory size of
2|p|+|w| words. The first |p| bits of va are interpreted as the page number
p, while the remaining |w| bits give the word number w. The top portion
of Figure 8.2 shows the relationships between the numbers p, w, and their
bit-lengths. As an example, a 32-bit address could be divided into |p| = 22
and |w| = 10, resulting in 222 = 4, 194, 304 pages of 210 = 1024 words each.

A physical memory address pa is similarly interpreted as a pair (f, w),
where f is the page frame number and w is a word number within the
frame f . When pa is a string of |f |+ |w| bits, resulting in a physical memory
of 2|f |+|w| words, the first |f | bits are interpreted as the frame number f ,
while the remaining |w| bits give the word number w. The bottom portion
of Figure 8.2 shows the relationships between the numbers f , w, and their
bit-lengths. For example, a 16-bit address could be divided into |f | = 6 and
|w| = 10, resulting in 64 frames of 1024 words each. Note that |w| is the
same in both va and pa because the size of a page must be the same as the
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Figure 8.3: Paged virtual memory

size of a page frame.
At runtime, any page can reside in any frame of the physical memory.

The task of the address map is to keep track of the relationship between
pages and their current page frames, and to translate virtual memory ad-
dresses va = (p, w) generated by the processor into the corresponding phys-
ical memory addresses pa = (f, w), as illustrated in Figure 8.3. Since the w
component is the same in both addresses, the translation amounts to finding
the frame f holding the page p. Once f is known, the physical address pa
is formed in one of the following two ways, depending on the underlying
hardware support.

Assume that f and w are kept in separate registers. The physical address
can then be computed by the formula pa = f × 2|w| + w, where 2|w| is the
page size. This computation can be done efficiently in hardware by shifting
f to the left by |w| positions and then adding w to it. The second method
is even simpler: the two registers holding f and w are simply concatenated
into one number, pa. For the remainder of this chapter, we will use f +w to
denote the addition or the concatenation of the two components f and w.

The remaining question now is how the address map should keep track of
the mapping between the page numbers p and the frame numbers f . There
are two basic mechanisms to achieve that, one using frame tables and the
other using page tables.

Frame Tables

The first approach to maintaining the correspondence between page numbers
and frame numbers is to implement a table of length F , where each entry cor-
responds to a frame and contains the number of the page currently residing
in that frame. With multiprogramming, the situation is more complicated
because several resident processes can be using the same page number, each
corresponding to a different frame; consequently, the same page number p,
belonging to different processes, can be found in more than one entry of
the table. Thus, in order to distinguish among the entries, we also need to
record the process id as part of each entry.

Let us represent this frame table as an array FT [F ], where each entry
FT [f ] is a two-component structure: FT [f ].pid records the process id whose
page is stored in frame f , and FT [f ].page contains the number of the page



6 CHAPTER 8. VIRTUAL MEMORY

Figure 8.4: Address translation using frame table

stored in that frame. Assuming that each addressed page of the current
process is in main memory, the function of the address map can be written
conceptually as follows:

address map(id, p, w) {
pa = UNDEFINED;
for (f = 0; f < F; f++)

if (FT[f].pid == id && FT[f].page == p) pa = (f+w);
return pa;

}

A sequential search through the table FT would be too inefficient since
the mapping must be performed on every memory reference. One way to
make this approach practical is to store the table in an associative mem-
ory, where the cells are referenced by their content rather than their address.
A familiar example will clarify the idea. To find a phone number for an indi-
vidual in a phone directory, it is necessary to search the directory for a (last
name, first name) match; this task is not difficult only because the entries
have been sorted in alphabetical order by name. If, however, one starts with
a phone number and wishes to find the name or address of the party with
that number, the task is hopelessly time-consuming. Storing the telephone
book in a general associative memory would permit access of any entry using
either a name or an address or a phone number as the search key; that is,
any field in an entry can be used and the search occurs by content.

Hardware implementations of associative memories are not quite this
general and normally only provide one search field for each entry. But this is
sufficient to implement the frame table FT . Each entry of FT can hold the
tuple (id, p), where p is a page number belonging to a process identified by
id. When a process generates a virtual address (p, w), the concatenation of
its id and the page number p is presented to the associative memory, which
searches the frame table for a match. The search is performed entirely in
hardware by examining all entries FT [f ] in parallel. If a match is found, the
index f of the matching entry concatenated with the word offset w, which
yields the physical memory address pa = (f, w). The entire translation
process is illustrated graphically in Figure 8.4.
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Case Study:

Paging can be credited to the designers of the ATLAS computer, who
employed an associative memory for the address mapping [Kilburn, et
al., 1962]. For the ATLAS computer, |w| = 9 (resulting in 512 words
per page), |p| = 11 (resulting in 2024 pages), and f = 5 (resulting in 32
page frames). Thus a 220-word virtual memory was provided for a 214-
word machine. But the original ATLAS operating system employed
paging solely as a means of implementing a large virtual memory;
multiprogramming of user processes was not attempted initially, and
thus no process id’s had to be recorded in the associative memory. The
search for a match was performed only on the page number p.

2

In later systems, the frame table organization has gradually been dis-
placed by a page table structure. As will be described in more detail in
the next section, a page table keeps track of all frames that hold pages be-
longing to a given process. Thus a separate page table is needed for each
process. But, recently, the virtues of frame tables have been rediscovered in
a number of modern systems, including certain IBM and Hewlett-Packard
workstations. The main attraction is that only a single frame table needs
to be maintained for all processes. Such a frame table is commonly referred
to as an inverted page table, since it stores the same information as page
tables but is sorted by frame number, rather than process id and page num-
ber.

The main problem with implementing frame tables is that, due to the
increasingly larger memory sizes, frame tables tend to be quite large and
cannot be kept in associative memories in their entirety, as was the case with
the original ATLAS design. The solution is to use a fast implementation in
software, which can be achieved using hash tables. This still requires at least
one extra memory access. To minimize this overhead, associative memories
are used as translation look-aside buffers to bypass the access to the
tables most of the time.

Another problem is sharing of pages in main memory. To allow two or
more processes to use the same copy of a page in main memory, the frame
table would have to be extended to keep track of multiple processes for each
frame entry. This further complicates the design of the frame table and
increases its cost.
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Figure 8.5: Address translation using page tables

Page Tables

A page table keeps track of the current locations of all pages belonging
to a given process. The p’th entry in the page table identifies the page
frame containing that page. In most systems, a special page table register,
PTR, contains the starting address of the page table of the currently running
process. The translation performed by the function address map is then:

address map(p, w) {
pa = *(PTR+p)+w;
return pa;

}

PTR + p points to the page table entry for page p; the content ∗(PTR + p)
of this entry is the frame number f . Adding the offset w to f then yields
the physical address pa. Figure 8.5 presents this mapping in graphical form.

Example:
Suppose that the page table for the current process is located starting at

address 1024 and has the contents as shown in Figure 8.6.

· · · · · ·
1024 21504
1025 40960
1026 3072
1027 15360
· · · · · ·

Figure 8.6: Page Table Contents

Assuming a page size of 1024 words, the virtual address (2, 100) maps dy-
namically into pa = ∗(1024+2)+100 = ∗(1026)+100 = 3072+100 = 3172.
2

Note that two memory accesses must be made in order to read or write
any memory word during a virtual memory operation—one access to the
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page table and the second to the actual page. To avoid the first access most
of the time, it is common to use translation look-aside buffers to hold the
most recently used parts of the page tables in associative memory.

Demand Paging

Paging greatly simplifies the problem of placement, since any page can be
loaded into any free page frame. But paging can also be used to solve the
problem of limited memory size so that programs larger than the available
main memory could be executed without requiring the programmer to spec-
ify an overlay structure. This is accomplished by implementing dynamic
memory allocation mechanisms, where pages are loaded at the time they
are actually needed rather than statically before program execution. This
approach is called demand paging.

It requires a mechanism that signals a “missing page” when reference is
made to a page currently not resident in main memory. Such a missing page
event is called a page fault. It invokes the operating system; in a lengthy
procedure, the OS finds the desired page, loads it into a selected frame, and
restarts the process that caused the page fault.

The following extension of the address map function illustrates the prin-
ciples of demand paging. The function resident(m) returns the value true
if m designates a currently resident page and the value false if the page is
missing from memory.

address map(p, w) {
if ( (resident(*(PTR+p))) ) {

pa = *(PTR+p)+w;
return pa; }

else page fault;
}

If no free frame is available at the time of the page fault, the operating
system can either block the faulting process, or it may create a free frame.
The latter is accomplished by evicting one of the currently resident pages to
secondary memory, or by evicting an entire process, i.e., all its resident pages,
to secondary memory. Deciding which page or which process to remove is
governed by the load control and page replacement schemes employed.

The main drawback of pure paging is that the user is restricted to a single
contiguous address space into which all program and data must be placed in
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some sequence. This single space presents some difficulty with dynamic data
structures that may grow and shrink at run time. Since they all share the
same address space, the user (or the compiler) must decide where to place
them so that they have sufficient room to expand without running into each
other.

Case Study:

Unix assigns a single contiguous address space to each process. A Unix
process consists of three main parts (segments): (1) the code segment,
(2) the data segment, and (3) the stack segment. All three must be
placed into the single shared address space. Fortunately, only the last
two segments can vary in size—the code segment remains constant.
The data segment, which contains the process’ variables, can grow
and shrink as the program allocates and frees data in heap memory.
That is, the area reserved for the heap may be increased or decreased
explicitly (using a system call brk). The stack segment grows and
shrinks as a result of function invocations and returns. To allow both
segments to grow independently, Unix places them at opposite ends of
the shared address space. That is, one end of the memory contains the
(fixed-size) code segment, followed by the data segment. The other
and contains the stack. Thus both may expand toward the middle.

2

8.2.2 Segmentation

There are many instances where a process consists of more than the three
basic segments: code, data and stack. For example, a process with multiple
threads needs a separate stack for each thread, where each stack grows and
shrinks independently. Similarly, files may be mapped temporarily into the
address space of a process to simplify accessing their contents. (This will be
discussed in Chapter 10.) Such files may also grow and shrink as the pro-
cess executes. Placing multiple dynamically changing entities into a single
address space is a difficult problem.

Segmentation solves the problem in an elegant way. It implements vir-
tual memory as a collection of address spaces, each of which is termed a
segment and may be a different size. This organization permits the system
to mirror the organization of a given application by using a separate segment
for each logical component, such as a function, a module comprising multiple
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functions, an array, a table, or a stack. Each such component has a name
by which it is identified by the programmer.

These logical names are translated by the linker or loader into numbers,
called segment numbers, each of which uniquely identifies one of the seg-
ments. An offset within each segment then identifies a specific word. Thus,
similar to a page implementation of virtual memory, a virtual address va
using segmentation also consists of two components, (s, w), where s is the
segment number and w is the offset. The main difference is that segment
numbers correspond to logical components of the program while page num-
bers bear no relationship with the program structure.

There are two different schemes for building a segmented virtual memory.
One treats the segment as the basic unit for memory allocation and assumes
that memory can be dynamically allocated and relocated in variable size
blocks. The second employs paging as a means of allocating space for a
segment. That is, each segment is itself subdivided into fixed-size pages to
facilitate allocation.

Contiguous Allocation Per Segment

Segmentation was pioneered by the Burroughs Corporation in the 1960’s,
where it was employed in the B5500 and B6500 computers [Burroughs, 1964,
1967]. These were stack machines oriented toward the efficient compilation
and execution of block-structured languages.

Like a page table, a segment table is used for each active process to keep
track of its current segments. Typically, segments are numbered sequentially
with the ith entry in the segment table (i = 0, 1, ...) corresponding to segment
number i. Each entry in the table contains the starting location of the
segment in physical memory. It also contains protection information, to be
discussed later in Chapter 13. The segment table itself is treated as a segment
by the system. The starting point of the segment table of the currently
running process is usually maintained in a dedicated register, the segment
table register, STR. The STR is analogous to the PTR described in the
last section. A virtual address (s, w) is then mapped to a physical memory
address pa as follows:

address map(s, w) {
if ( resident(*(STR+s)) ) {

pa = *(STR+s)+w;
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return pa; }
else segment fault;

}

The function resident serves the same purpose as with demand paging; if the
referenced segment is currently not resident in memory, a segment fault
invokes the operating system to take the necessary actions.

The main advantage of segmentation over paging is that it divides pro-
grams into variable-size components that correspond to their logical compo-
nents, providing, for example, natural protection, debugging, and portabil-
ity boundaries. Its drawbacks are a complex placement and, in the case of
demand segmentation, a complex replacement scheme. Segmentation also
suffers from external fragmentation, similar to the simple memory scheme
discussed in Section 7.3, resulting in wasted memory space. In recent years,
systems using pure paging or paging combined with segmentation have be-
come much more common than those using pure segmentation. As an exam-
ple, the Intel 286 processor had pure segmentation but later models, such as
the 386 or Pentium processor, support a combination of segmentation and
paging.

8.2.3 Paging With Segmentation

To provide a multi-segment address space for each process and, at the same
time, permit a simple placement algorithm, the principles of paging and seg-
mentation have been combined into one memory management scheme. Un-
der this scheme, memory is organized in variable-size segments, and, from
the user’s perspective, there is not much difference between pure segmenta-
tion and segmentation with paging. From the point of view of the operating
system, however, segments are not contiguous portions of memory. Rather,
each segment is subdivided into pages of fixed-size.

The implementation of segmentation with paging requires the use of both
segment tables and page tables, and results in two levels of indirection in
the logical-to-physical address translation. As with pure segmentation, a seg-
ment table register STR points to a segment table for the current process.
Each of the segment table entries points to the page table for the corre-
sponding segment. Each page table then keeps track of the pages belonging
to that segment.

As a consequence of the two levels of indirection, a virtual memory ad-
dress va is interpreted as a triple (s, p, w), where s is the segment number, p
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Figure 8.7: Address translation using segment and page tables

is the page number within the segment, and w is the offset within the page.
That is, p and w together specify a word within the segment s. The result-
ing address map, illustrated graphically in Figure 8.7, performs the following
function.

address map(s, p, w) {
pa = *(*(STR+s)+p)+w;
return pa;

}

This is the simplest form of the address map: it assumes that the seg-
ment table, the page tables, and the pages are all resident in memory. If
this requirement is relaxed (as is frequently done to permit more efficient
utilization of main memory), each reference may potentially produce a page
fault. Hence, the address map must be extended to ensure that a page is
resident before the access is made.

With the above scheme, each segment table and page table is considered
to be a page. Demand paging is attractive under this organization; it permits
an efficient use of memory and allows dynamic changes in segment size. The
disadvantages of paging with segmentation are the extra memory required
for the tables, the overhead of administrating memory in such a complex
system, and the inefficiency of two additional memory references at each
mapping. Again, fast associative registers are used to avoid extra references
(Section 8.2.5).

8.2.4 Paging of System Tables

The sizes of the segment and page tables of a virtual memory system are
determined by the lengths of the s and p address components, respectively.
Depending on the number of bits uses to represent a virtual address, these
tables may become potentially very large. To illustrate the problem, consider
a 48-bit address and assume that the page size is 4K, i.e., requiring 12 bits
for the offset w. That leaves 48 − 12 = 36 bits to be split between s and p.
One philosophy, assumed by many older systems, is to make s large while
keeping p relatively small. For example, keeping p to the same size as w
would leave |s| = 36 − 12 = 24, resulting in a very large segment table size
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Figure 8.8: Address translation with paged segment table

of 224 or 16 MB. Alternatively, we could keep s small while allocating the
remaining address bits to p. This would yield a small number of very large
segments—a philosophy that has been adopted in many recent systems due
to the need to support multimedia applications, which require potentially
very large objects. For example, assigning |s| = 12 would result in 4K
segments per process, each segment consisting of up to 224 or 16 MB of
individual pages of 1KB each.

In both of the above scenarios, the resulting tables comprising megabytes
of data are too large to be kept permanently resident in main memory. The
solution is to subdivide each table into pages and load only those currently
needed by the execution. Let us illustrate how this may be accomplished in
the case of a large segment table. The s component of the virtual address
is divided into two parts, say s1 and s2. The segment table is then broken
into pages of size 2|s2|, where |s2| is the number of bits comprising s2.

To keep track of the pages comprising the segment table, we need a new
page table, as shown in Figure 8.8. To avoid confusion between the new
page table of the segment table and the actual page tables, we will refer to
the former as the segment directory. The s1 component is used to index
this segment directory which, at run time, is pointed to by the register STR.
The individual pages comprising the segment table are indexed by s2, while
p and w are used as before. Assuming that all tables are in memory, the
address map for a virtual address (s1, s2, p, w) can be described as:

address map(s1, s2, p, w) {
pa = *(*(*(STR+s1)+s2)+p)+w;
return pa;

}

Case Studies:

1. MULTICS. The s component in the MULTICS operating system is
18 bits long, resulting in a segment table of 218 or 262,144 entries
(segments). This table is divided into pages of 1024 words, resulting
in |s2| = 10 and |s1| = |s| − |s2| = 8. Hence the segment directory
(i.e., page table of the segment table) has 256 entries.
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Figure 8.9: Address translation in Pentium processor: (a) segmentation only,
(b) segmentation with paging

2. Pentium. The Intel Pentium implements an elegant memory manage-
ment scheme that can support either pure segmentation or segmenta-
tion with paging. The virtual address (called the logical address in the
Pentium literature) is 48 bits long, where 2 bits are used for protec-
tion, 14 bits are used for the segment number and the remaining 32
bits are the offset within the segment. The segment table is divided
into two parts of 4K entries each. One is called the local descriptor
table (LDT) and contains entries for segments private to the process;
the other is called the global descriptor table (GDT) and holds descrip-
tors for segments shared by all processes, notably, segments comprising
the operating system. Each LDT or GDT entry contains the starting
address of the segment, its length, and several other bits that facilitate
the address translation and protection.

Figure 8.9 (a) illustrates the address translation mechanism when pure
segmentation is used. The segment number s first selects one of the
segments from the segment table (i.e., the LDT or GDT), and a pointer
to that segment entry is loaded into one of six special-purpose segment
registers. Note that this is slightly different from the scheme discussed
earlier (e.g. Figure 8.7), where the starting address of the segment
table itself is kept in a register (STR) and the segment number s is
added to it during each address translation. The starting address (32
bits in length) of the selected segment is fetched from the segment
table entry and is added to the 32-bit offset from the virtual address.
The resulting address is used to access the word in the segment.

Figure 8.9(b) illustrates the address translation mechanism when pag-
ing is enabled. In this case, the segment descriptor is fetched from
the segment table (LDT or GDT) using s as before, and the offset
from the virtual address is again added to the segment base address.
The resulting 32-bit quantity is however not interpreted as a physical
memory address. Instead, it is divided into a 20-bit page number p
and a 12-bit offset w within a page. This results in a 4K page size
(212 = 4K) and a page table size of over 1 million entries (220). Since
this too large to keep in memory, the page table is subdivided further
into 4KB pages. That is, p is split into two 10-bit components, p1 and
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Figure 8.10: A translation look-aside buffer

p2; the physical address is then derived as shown in the Figure 8.9(b).

2

8.2.5 Translation Look-aside Buffers

Virtual memory architectures offer a number of advantages over systems
that make physical memory visible to programs. However, one main draw-
back is the increased number of physical memory operations necessary for
each virtual address reference. In the simplest case of pure paging or pure
segmentation, one additional memory read is necessary to access the page
or segment table. If both approaches are combined, two additional memory
reads are needed—one to the segment table and a second to the page ta-
ble. Finally, when segment or page tables are themselves paged, the number
of additional references increases to three. In all cases, each reference also
possibly generates a page fault.

To alleviate this problem, special high-speed memories, usually called
Translation Look-aside Buffers (TLB), are often provided to aid the
address translation. The basic idea is to keep the most recent translations
of virtual to physical addresses readily available for possible future use. An
associative memory is employed as a buffer for this purpose. When a given
virtual page is accessed several times within a short time interval, the address
translation is performed only during the first reference; subsequent accesses
bypass most of the translation mechanisms by fetching the appropriate frame
number directly from the associative buffer.

Figure 8.10 shows the organization of such a translation look-aside buffer
for a system with both segmentation and paging. The first column contains
entries of the form (s, p), where s is a segment number and p is a page
number. When a virtual address (s, p, w) is presented to the memory system,
the buffer is searched associatively (in parallel) for the occurrence of the pair
(s, p). If found, the number f in the second column of the buffer gives the
frame number in which the corresponding page currently resides. By adding
the offset w to f , the addressed word is found. Note that only one access
to main memory is necessary in this case—the segment and page table are
bypassed by searching the buffer.

Only when the search for (s, p) fails, need the complete address trans-
lation be performed. The resulting frame number is then entered, together
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with the pair (s, p), into the buffer for possible future references to the same
page. This normally requires the replacement of a current buffer entry. The
most common scheme is to replace the least recently used such entry, as de-
termined by a built-in hardware mechanism. (More detail on this scheme is
given in the next section.)

Note that a translation look-aside buffer is different from a data or pro-
gram cache, which may be used in conjunction with the translation look-
aside buffer. The difference is that the buffer only keeps track of recently
translated page numbers, while a cache keeps copies of the actual recently
accessed instructions or data values.

8.3 Memory Allocation in Paged Systems

One of the main advantage of paging is that it greatly simplifies placement
algorithms, since, due to their uniform size, any page can be stored in any
free frame in memory. Thus an unordered list of free frames is sufficient to
keep track of available space. This is true of both statically and dynamically
allocated memory systems. In the former, all pages belonging to a process
must be in memory before it can execute. When not enough free page frames
are available, the process must wait; alternatively, we can swap out one or
more of the currently resident processes in order to make enough space.

When memory is allocated dynamically, the situation is more compli-
cated. The set of pages resident in memory is constantly changing as pro-
cesses continue executing. Each process causes new pages to be loaded as a
result of page faults. When no free page frames are available, the system can
choose to suspend the faulting process or to swap out some other resident
process, as in the case of static allocation. But with dynamic allocation it
has a third option. It can choose to evict a single page (belonging either to
the faulting process or to some other unrelated process) in order to create
space for the new page to be loaded.

Deciding which page to evict is determined by the replacement policy.
An algorithm for page replacement falls into one of two general classes,
depending on the choices for eviction candidates:

1. A global page replacement algorithm assumes a fixed number of page
frames shared by all processes. If free frames are needed, the algo-
rithm considers all currently resident pages as possible candidates for
eviction, regardless of their owners.
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2. A local page replacement algorithm maintains a separate set of pages,
called the working set, for each process. The size of the working set
varies over time and thus each process requires a variable number of
page frames. A local page replacement algorithm automatically evicts
those pages from memory that are no longer in a process’ current
working set.

The next two sections present the most common page replacement al-
gorithms from each category. To evaluate the performance of the various
algorithms, we introduce a model that captures the behavior of a paging
system independently of the underlying hardware or software implementa-
tion. The model represents the execution time trace of a particular program
in the form of a reference string (RS):

r0r1...rt...rT

where rt is the number of the page referenced by the program at its tth
memory access. The subscripts in the reference string can be treated as time
instants. Thus the string represents T +1 consecutive memory references by
the program.

Assume that the program represented by RS is allocated a main memory
area of m page frames, where 1 ≤ m ≤ n and n is the number of distinct
pages in RS. An allocation policy P defines for each instant of time t the
set of pages IN t that are loaded into memory at time t and the set of pages
OUT t that are removed or replaced at time t during the processing of RS.

There are two important measures of goodness for a given replacement
policy. The first is the number of page faults generated for a given reference
string RS. The main reason for adopting this measure is that page faults
are very costly and must be kept to a minimum. Each page fault involves
a context switch to the operating system, which must analyze the nature of
the interrupt, find the missing page, check the validity of the request, find a
free frame (possibly by evicting a resident page), and supervise the transfer
of the page to a free frame. The page transfer from the disk to memory
is the most costly of all these tasks, requiring milliseconds of disk access
time. When we compare this to the access time to main memory, which is in
the nanoseconds range, we see that the page fault rate must be kept to less
than one in several millions of memory accesses to prevent any noticeable
degradation in performance due to paging.

The second measure of goodness for a page replacement policy is the total
number of pages, INTOT (RS ), loaded into memory when RS is processed.
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INTOT (RS ) =
T∑

k=0

|INt |

Note that INTOT (RS ) is not necessarily equal to the number of page
faults; it depends on the the size of IN t , i.e., the number of pages loaded at
each page fault. Thus choosing an appropriate value for IN t is an important
consideration in devising efficient replacement algorithms. Loading several
pages during one operation is more cost-effective than loading them one at
a time. That’s because the cost of I/O follows the formula c1 + c2 ∗ k, where
c1 and c2 are constants, and k is the amount of data being transfered. c1

represents the fixed start-up overhead of the I/O operation and c2k is the
cost directly proportional to the number of bytes transferred. For example,
the cost of loading 3 pages at a time is c1 + 3 ∗ c2, while the cost of loading
the same three pages one at a time is 3 ∗ (c1 + c2) = 3 ∗ c1 + 3 ∗ c2.

The main problem with loading multiple pages at each page fault is
deciding which pages to load, i.e., which pages the program is likely to
reference next. If the guess is incorrect, the pages will have been brought
into memory in vain and put unnecessary overhead on the memory system.

Case Study:

Windows 2000 employs the following clustered paging policy. When
a page fault occurs, it loads not only the page being requested but also
several pages immediately following the requested page. In the case of
a code page, 3-8 additional pages are loaded, depending on the size of
physical memory. In the case of data pages, 2-4 additional pages are
loaded. The expectation is that execution will exhibit some degree of
locality, and thus the pre-loaded pages will be accessed without causing
additional page faults.

2

Because of the difficulty to predict the program’s future behavior, most
paging system implement a pure demand paging scheme, where only a single
page—the one causing the page fault—is brought into memory at each page
fault.

In the remainder of this chapter, we will be concerned with only pure
demand paging algorithms. Since only a single page is loaded during each
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page fault, |INt| = 1 if a page fault occurs at time t, and |INt| = 0 if no
page fault occurs. Consequently, the total number of pages, INTOT (RS ), is
equal to the number of page faults for a given reference string:

INTOT (RS ) =
T∑

k=0

|INt | = number of page faults

We will use this measure in comparing the relative performance of the dif-
ferent page replacement algorithms.

8.3.1 Global Page Replacement Algorithms

During normal operation of a multiprogramming system, pages belonging to
different processes will be dispersed throughout the frames of main memory.
When a page fault occurs and there is no free frame, the operating system
must select one of the resident pages for replacement. This section con-
sidered page replacement algorithms where all currently resident pages are
considered as possible candidates for replacement, regardless of the processes
they belong to.

Optimal Replacement Algorithm (MIN)

For later comparisons and to provide insight into practical methods, we first
describe a theoretically optimal but unrealizable replacement scheme. It
has been proven that the following replacement strategy is optimal in that
it generates the smallest number of page faults for any reference string RS
[Belady, 1966; Mattson, et at., 1970; Aho, et al., 1971]:

Select for replacement that page which will not be referenced for
the longest time in the future.

More formally, this strategy can be expressed as follows. If a page fault
requiring a replacement occurs at time t, select a page r such that

r 6= ri, for t < i ≤ T (8.1)

or if such an r does not exist, select

r = rk, such that t < k ≤ T , k − t is a maximum, and
r 6= rk′ , where t < k′ ≤ k (8.2)
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Expression 8.1 chooses an r that will not be be referenced again in the
future. If no such r exists, then the subsequent expression (8.2) chooses the
r that is farthest away from t.

Example:
Consider the reference string RS = cadbebabcd and assume the number

of page frames to be m = 4. Assume further that at time 0, memory contains
the pages {a, b, c, d}. With the optimal replacement algorithm, the memory
allocation changes as illustrated in the following table:

Time t 0 1 2 3 4 5 6 7 8 9 10
RS c a d b e b a b c d

Frame 0 a a a a a a a a a a d
Frame 1 b b b b b b b b b b b
Frame 2 c c c c c c c c c c c
Frame 3 d d d d d e e e e e e

IN t e d
OUT t d a

Two page faults occur while processing RS. The first, at time 5, causes
the replacement of page d, since d will not be referenced for the longest time
in the future. For the second page fault, at time 10, any of the pages a, b, or
c can be chosen, since none of them will be referenced again as part of RS;
we arbitrarily chose page a. 2

Random Replacement and the Principle of Locality

Program reference strings are virtually never known in advance. Thus prac-
tical page replacement algorithms must be devised which can make the nec-
essary decisions without a priori knowledge of the reference behavior. The
simplest scheme one might consider is a random selection strategy where
the page to be replaced is selected using a random number generator. This
strategy would be useful if no assumption about the program’s behavior
could be made.

Fortunately, most programs display a pattern of behavior called the
Principle of Locality. According to this principle, a program that refer-
ences a location at some point in time is likely to reference the same location
and locations in its immediate vicinity in the near future. This statement is
quite intuitive if we consider the typical execution patterns of a program:
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1. Except for branch instructions, which in general constitute an average
of only some 10% of all instructions, program execution is sequential.
This implies that, most of the time, the next instruction to be fetched
will be the one immediately following the current instruction.

2. Most iterative constructs (i.e., for-loops and while-loops) consist of a
relatively small number of instructions repeated many times. Hence
computation is confined to a small section of code for the duration of
each iteration.

3. A considerable amount of computation is spent on processing large
data structures such as arrays or files of records. A significant portion
of this computation requires sequential processing; thus consecutive
instructions will tend to reference neighboring elements of the data
structure. (Note, however, that the way data structures are stored in
memory plays an important role in locality behavior. For example, a
large two-dimensional array stored by columns but processed by rows
might reference a different page on each access.)

Since moving pages between main memory and secondary memory is
costly, it is obvious that a random page replacement scheme will not yield
as effective an algorithm as one that takes the principle of locality into
consideration.

First-In/First-Out Replacement Algorithm (FIFO)

A FIFO strategy always selects the page for replacement that has been
resident in memory for the longest time. In terms of implementation, the
algorithm views the page frames as slots of a FIFO queue. A new page is
appended to the end of the queue, and, at a page fault, the page at the head
of the queue is selected for replacement.

More precisely, assume a physical memory size of m page frames. Let
the identity of all resident pages be stored in a list, P [0], P [1], ..., P [m− 1],
such that P [i + 1 % m] has been loaded after P [i] for all 0 ≤ i < m. A
pointer k is also maintained to index the most recently loaded page, P [k].
On a page fault, page P [k + 1 % m] is replaced and k is incremented by 1
(modulo m).

Example:
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For the reference string RS = cadbebabcd and physical memory size
m = 4, we obtain the following changes in memory occupancy:

Time t 0 1 2 3 4 5 6 7 8 9 10
RS c a d b e b a b c d

Frame 0 →a →a →a →a →a e e e e →e d
Frame 1 b b b b b →b →b a a a →a
Frame 2 c c c c c c c →c b b b
Frame 3 d d d d d d d d →d c c

IN t e a b c d
OUT t a b c d e

We have assumed that the pages resident in memory at time 0 had been
loaded in the order a, b, c, d; i.e., a is the oldest and d is the youngest
resident. This causes a to be replaced first (at time 5) when the first page
fault occurs. The pointer, k, represented by the small arrow, is advanced to
point to b. This page is replaced at the next page fault at time 5, and so on.
The algorithm results in a total of 5 page faults for the given string RS. 2

The main attraction of the FIFO replacement strategy is its simple and
efficient implementation: a list of m elements and a pointer, incremented
each time a page fault occurs, is all that is required. The list does not even
have to be implemented explicitly; the pointer can simply cycle through the
physical page frames in an ascending or descending address order.

Unfortunately, the FIFO strategy assumes that pages residing the longest
in memory are the least likely to be referenced in the future and, as a conse-
quence, it exploits the principle of locality only to some degree. It will favor
the more recently loaded pages, which are likely to be referenced again in
the near future. However, it is unable to deal with the fact that the program
may return to pages referenced in the more distant past and start using
those again. The FIFO algorithm will remove these pages because it only
considers their absolute age in memory, which is unaffected by access pat-
terns. Thus the principle of locality is often violated. Moreover, FIFO can
also exhibit a strange, counterintuitive behavior, called Belady’s anomaly
[Belady et al,1969]: increasing the available memory can result in more page
faults! (See exercises.)

Least Recently Used Replacement Algorithm (LRU)

The LRU algorithm has been designed to fully comply with the principle
of locality, and it does not suffer from Belady’s anomaly. If a page fault
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occurs and there is no empty frame in memory, it will remove that page
which has not been referenced for the longest time. To be able to make
the correct choice, the algorithm must keep track of the relative order of
all references to resident pages. Conceptually, this can be implemented by
maintaining an ordered list of references. The length of this list is m, where
m is the number of frames in main memory. When a page fault occurs, the
list behaves as a simple queue: the page at the head of the queue is removed
and the new page is appended to the end of the queue. Hence the queue
length m remains constant. To maintain the chronological history of page
references, the queue must, however, be reordered upon each reference—the
referenced page is moved from its current position to the end of the queue,
which gives it the greatest chance to remain resident.

Example:
The following table shows the current memory contents for the reference

string RS = cadbebabcd and m = 4 as in the previous examples. Below the
memory, the queue is shown at each reference.

Time t 0 1 2 3 4 5 6 7 8 9 10
RS c a d b e b a b c d

Frame 0 a a a a a a a a a a d
Frame 1 b b b b b b b b b b b
Frame 2 c c c c c e e e e e d
Frame 3 d d d d d d d d d c c

IN t e c d
OUT t c d e

Queue end d c a d b e b a b c d
c�

�>
d c a d b�

�>
e b�

�>
a b c

b b d
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c a d d e e a b
Queue head a a�

�
�
��

b b�
�
�
��

c a a�
�
�
��

d d e a

We assume that the pages were referenced in the order a, b, c, d, resulting
in a being at the head and d at the end of the queue at time 0. During
the next four references, the queue is reordered as each of the currently
referenced pages is moved to the end of the queue (indicated by arrows). At
time 5, a page fault occurs, which replaces page c—the current head of the
queue—with the new page e. The latter is appended to the end of the queue
while the former is removed. The next three references do not cause any page
faults, however, the queue is reordered on each reference as shown. The next
page fault at time 9 causes the removal of page d which, at that time, was
the head of the queue and thus the least recently referenced one. Similarly,
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the page fault at time 10 replaces the least recently referenced page e, thus
bringing the total number of page faults produced by this algorithm to 3. 2

The implementation of LRU as a software queue is impractical due to
the high overhead with reordering the queue upon each reference. Several
methods implemented directly in hardware to reduce this overhead have
been developed. One implements a form of time stamping. Each time a
page is referenced, the current content of an internal clock maintained by
the processor is stored with the page frame. At a page fault, the page with
the lowest time stamp is the one that has not been referenced for the longest
time, and this is selected for replacement.

A similar scheme employs a capacitor associated with each memory
frame. The capacitor is charged upon each reference to the page residing in
that frame. The subsequent exponential decay of the charge can be directly
converted into a time interval which permits the system to find the page
which has not been referenced for the longest time.

Yet another technique uses an aging register R of n bits for each page
frame:

R = Rn−1Rn−2 . . . R1R0

On a page reference, Rn−1 of the referenced page is set to 1. Independently,
the contents of all aging registers are periodically shifted to the right by one
bit. Thus, when interpreted as a positive binary number, the value of each R
decreases periodically unless the corresponding page is referenced, in which
case the corresponding R contains the largest number. Upon a page fault,
the algorithm selects the page with the smallest value of R to be replaced,
which is the one that has aged the most.

Second-Chance (Clock) Replacement Algorithm

Due to the high cost of implementing LRU directly, even in hardware, a
more economical alternative was developed. The Second-Chance Replace-
ment scheme approximates the LRU scheme at a fraction of its cost. The
algorithm maintains a circular list of all resident pages and a pointer to the
current page in much the same way as the FIFO scheme described earlier. In
addition, a bit u, called the use bit (or reference bit or access bit), is associ-
ated with each page frame. Upon each reference, the hardware automatically
sets the corresponding use bit to 1.

To select a page for replacement the Second-Chance algorithm operates
as follows. If the pointer is at a page with u = 0, then that page is selected
for replacement and the pointer is advanced to the next page. Otherwise the
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use bit is reset to 0 and the pointer is advanced to the next page on the list.
This is repeated until a page with u = 0 is found, which in principle could
take a complete pass through all page frames if all use bits were set to 1.

The name Second-Chance refers to the fact that a page with u = 1 gets
a second chance to be referenced again before it is considered for replace-
ment on the next pass. The algorithm is also frequently called the Clock
Replacement Algorithm, because the pointer that cycles through the cir-
cular list of page frames may be visualized as scanning the circumference of
a dial of a clock until a page with u = 0 is found.

Example:
For RS = cadbebabcd and m = 4, the memory occupancy under the

Second-Chance Algorithm changes as follows:

Time t 0 1 2 3 4 5 6 7 8 9 10
RS c a d b e b a b c d

Frame 0 →a/1 →a/1 →a/1 →a/1 →a/1 e/1 e/1 e/1 e/1 →e/1 d/1
Frame 1 b/1 b/1 b/1 b/1 b/1 →b/0 →b/1 b/0 b/1 b/1 →b/0
Frame 2 c/1 c/1 c/1 c/1 c/1 c/0 c/0 a/1 a/1 a/1 a/0
Frame 3 d/1 d/1 d/1 d/1 d/1 d/0 d/0 →d/0 →d/0 c/1 c/0

IN t e a c d
OUT t a c d e

The current value of the use bit is shown as a zero or one following each
page. Initially, we have assumed all pages to have the use bit set. At the
time of the first page fault (time 5), the pointer is at page a. Its use bit
is reset and the pointer is advanced to the next page, b. b’s use bit is also
reset and the pointer is advanced to c. The same reset operation is applied
to c and then to d, thus reaching the page a once more. Unless a has been
referenced again in the meantime, its use bit is zero, causing that page to be
replaced by the new page e. The pointer is advanced to page b. The next
page fault at time 7 does not replace b because its use bit has again been
set (at time 6). The search algorithm only resets b′s use bit and proceeds by
replacing the following page c. The last two page faults occurs when c and
d are re-referenced at time 9 and 10, respectively. The total number of page
faults is 4. 2

The Second-Chance algorithm approximates LRU in that frequently ref-
erenced pages will have their use bit set to one and thus will not be selected
for replacement. Only when a page has not been referenced for the duration
of a complete cycle of the pointer through all page frames, will it be replaced.
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Before After
u w u w

1 1 0 1
1 0 0 0
0 1 0 0 *
0 0 select

Table 8.1: Changes of u and w bits under Second-Chance algorithm

The Third-Chance Algorithm

A replaced page must be written back onto secondary memory if its contents
have been changed during its last occupancy of main memory; otherwise, the
replaced page may simply be overwritten. A page that has been written into
is frequently referred to as a dirty page. To be able to distinguish between
the two types of pages, the hardware provides a write bit, w, associated
with each page frame. When a new page is loaded, the corresponding write
bit is 0; it is set to 1 when the information in that page is modified by a
store instruction.

The pair of bits u (use bit) and w (write bit), associated with each page
frame, is the basis for the Third-Chance algorithm. As was the case with
the Second-Chance algorithm, a circular list of all pages currently resident
in memory, and a pointer, are maintained. When a page fault occurs, the
pointer scans the list, until it finds a page with both bits u and w equal to
0; this page is selected for replacement. Each time the pointer is advanced
during the scan, the bits u and w are reset according to the rules shown in
Table 8.1.

One additional complication is introduced by the fact that the two com-
binations (0, 1) and (1, 0) both yield the same combination (0, 0). But in
the first case, the page has been modified while in the second it has not.
The algorithm must record this difference so that, prior to replacement, the
modified page is written back onto secondary memory. The asterisk in Ta-
ble 5-2 is used to indicate the modification, and can be implemented by an
additional bit maintained for each frame.

The name Third-Chance derives from the fact that a page that has been
written into will not be removed until the pointer has completed two full
scans of the list. Thus, compared to a page that has not been modified,
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it has one additional chance to be referenced again before it is selected for
removal.

Example:
For this algorithm, in addition to specifying the reference string, RS =

cadbebabcd, and the memory size, m = 4, we also need to know which
references are write requests. For the sake of this example, we assume that
the references at time 2, 4, and 6 are write requests, as indicated by the
superscript w. The memory changes are then as follows:

Time t 0 1 2 3 4 5 6 7 8 9 10

RS c aw d bw e b aw b c d

Frame 0 →a/10 →a/10 →a/11 →a/11 →a/11 a/00* a/00* a/11 a/11 →a/11 a/00*
Frame 1 b/10 b/10 b/10 b/10 b/11 b/00* b/10* b/10* b/10* b/10* d/10
Frame 2 c/10 c/10 c/10 c/10 c/10 e/10 e/10 e/10 e/10 e/10 →e/00
Frame 3 d/10 d/10 d/10 d/10 d/10 →d/00 →d/00 →d/00 →d/00 c/10 c/00

IN t e c d
OUT t c d b

At time 1, page c is read, resulting in no changes. At time 2, page
a is written, resulting in the corresponding w bit to be set. At time 3,
the read operation produces no change, while the write at time 4 sets the
corresponding w of b. Note that the pointer has not moved because there
were no page faults. At the time of the first page fault, the pointer is at
page a. The algorithm scans the pages while resetting the u and w bits as
follows: reset u bit of a; reset u bit b; reset u bit of c; reset u bit of d; reset w
bit of a and remember that the page is dirty (asterisk); reset w bit of b and
remember that page as dirty. The next page c has now both bits equal to 0
and is replaced by the new page e, while the pointer is advanced to the next
page d. Note that this search required almost two full passes of the pointer
through the page frames.

The next three references (6 through 8) do not cause page faults but only
modify the u and w bits of the pages a and b according to the reference type.
(Note that the asterisk on page a is removed since the page has again been
written into and thus its w bit is set.) The last two references replace pages
d and b using the same principles, thus bringing the total number of page
faults to 3. 2

Case Study:
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Berkeley Unix uses a form of the second-chance algorithm presented
above. The main difference is that the selection of a page to evict from
memory is not done at the time of a page fault. Rather, a page fault
always uses a frame from the list of currently free frames. If this list
is empty, the process blocks until a free frame becomes available.

Creating free page frames is the responsibility of a dedicated process,
called the page daemon. This process wakes up periodically to check
if there are enough free frames, as defined by a system constant. If not,
the daemon creates free frames using the second-chance algorithm as
follows. During the first pass over all frames, the daemon sets the
use bit of all frames to zero. During the second pass, it marks all
frames whose use bit is still zero, i.e., those not referenced since their
examination during the first pass, as tentatively free. Such frames may
be used to service a page fault when no actually free frames exist. At
the same time, if a tentatively free frame is referenced again by the
process, it may be reclaimed without a page fault by removing it from
the tentatively free frame list.

2

8.3.2 Local Page Replacement Algorithms

Measurements of paging behavior indicate that each process requires a cer-
tain minimum set of pages to be resident in memory at all times in order
to run efficiently; otherwise the page fault rate becomes unacceptably high.
This condition, referred to as thrashing, will be discussed in the context
of load control in Section 8.3.3. Furthermore, the size of this minimal set
of resident pages changes dynamically as the process executes. These ob-
servations led to the development of several page replacement methods that
attempt to maintain an optimal resident set of pages for each active process.
These schemes are strictly local since the page replacement algorithm must
distinguish between pages belonging to different processes. Thus a page fault
caused by a given process will never be resolved by reducing the resident set
of any other process.

Optimal Page Replacement Algorithm (VMIN)

Similar to the optimal replacement algorithm MIN, used as a global page
replacement algorithm (Section 8.3.2), there exists an optimal replacement
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algorithm, VMIN, which varies the number of frames according to the pro-
gram’s behavior [Prieve and Fabry, 1976]. As with MIN, it is unrealizable
because it requires advance knowledge of the reference string.

VMIN employs the following page replacement rule, invoked after each
reference. Consider a page reference at time t. If that page is currently not
resident, it results in a page fault and the page is loaded into one of the
free frames. Regardless of whether or not a page fault occurs, the algorithm
then looks ahead in the reference string RS. If that page is not referenced
again in the time interval (t, t + τ), where τ is a system constant, then the
page is removed. Otherwise it remains in the process’s resident set until
it is referenced again. The interval (t, t + τ) is frequently referred to as a
sliding window, since at any given time the resident set consists of those
pages visible in that window. This contains the currently referenced page
plus those pages referenced during the τ future memory accesses. Thus the
actual window size is τ + 1.

Example:
We use the reference string, RS = ccdbcecead. Let the size of the sliding

window be defined by τ = 3. Assume that there are enough free page frames
to accommodate the set of pages that need to be resident. We do not show
which page resides in which frame, since this is not the concern of a local
replacement policy; instead, we show, using check marks, the pages of RS
that are resident in memory at each reference. At time 0, the only resident
page is page d. The following table then shows the changes in the resident
set.

Time t 0 1 2 3 4 5 6 7 8 9 10
RS d c c d b c e c e a d

Page a – – – – – – – – –
√

–
Page b – – – –

√
– – – – – –

Page c –
√ √ √ √ √ √ √

– – –
Page d

√ √ √ √
– – – – – –

√

Page e – – – – – –
√ √ √

– –
IN t c b e a d

OUT t d b c e a

At time 0, page d is referenced. Since it is referenced again at time 3,
which is within the interval (0, 0 + τ) = (0, 0 + 3) = (0, 3), it is not removed.
The first page fault occurs at time 1, which causes the page c to be loaded
into a free frame; the set of resident pages now consists of two pages, c
and d. At time 2 and 3, both pages c and d are still retained because they
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are referenced again within the current window. Page d is removed from
memory at time 4, since it is not referenced again within (4, 4 + 3) = (4, 7).
Instead, the faulting page b is loaded into one of the free frames. But b falls
out of the current window at the very next time point 5 and is removed,
while c continue to be resident. The next page fault at time 6 brings in page
e, which remains resident until its next reference at time 8. The last two
references bring in the pages a and d respectively.

The total number of page faults for VMIN in this example is 5. The
resident set size varies between 1 and 2 and thus at most two page frames
are occupied at any time. By increasing τ , the number of page faults can
arbitrarily be reduced, of course at the expense of using more page frames.
2

The Working Set Model (WS)

The Working Set model [Denning, 1968, 1980] attempts a practical approxi-
mation to VMIN and employs a similar concept of a sliding window; however,
the algorithm does not look ahead in the reference string (since this infor-
mation is not available), but looks behind. It relies heavily on the principle
of locality discussed previously, which implies that, at any given time, the
amount of memory required by a process in the near future may be estimated
by considering the process’s memory requirements during its recent past.

According to the model, each process at a given time t has a working
set of pages W (t, τ), defined as the set of pages referenced by that process
during the time interval (t−τ, t), where τ is again a system-defined constant.

The memory management strategy under the Working Set model is then
governed by the following two rules:

1. At each reference, the current working set is determined and only those
pages belonging to the working set are retained in memory.

2. A process may run if and only if its entire current working set is in
memory.

Example:
Let RS = ccdbcecead, τ = 3, and the initial resident set at time 0 contain

the pages a, d, and e, where a was referenced at time t = 0, d was referenced
at time t = −1, and e was referenced at time t = −2. The following table
shows the working set at each reference. As with the previous example of
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VMIN, we assume that a list of free page frames is available to accommodate
the current working set. If not enough page frames were available, a load
control mechanism, discussed in Section 8.3.3, would decide which process
to deactivate to create more space.

Time t 0 1 2 3 4 5 6 7 8 9 10
RS a c c d b c e c e a d

Page a
√ √ √ √

– – – – –
√ √

Page b – – – –
√ √ √ √

– – –
Page c –

√ √ √ √ √ √ √ √ √ √

Page d
√ √ √ √ √ √ √

– – –
√

Page e
√ √

– – – –
√ √ √ √ √

IN t c b e a d
OUT t e a d b

The first page fault occurs at time 1 and, as a result, the corresponding
page c is loaded into one of the available page frames. The other three
currently resident pages a, d, e are still visible in the window (1 − 3, 1) =
(−2, 1) and thus are retained. At time 2, page e falls out of the current
window (2− 3, 2) = (−1, 2) and is removed. At time 4, the page fault brings
in page b; this takes the place of page a, which fell out of the current window
(4− 3, 4) = (1, 4). The next page fault at time 6 brings in page e, while the
currently resident pages b, d, and c remain resident as part of the current
working set defined by (6− 3, 6) = (3, 6). Over the next two references, the
working set shrinks to only 2 pages e and c and grows again to four pages
as a result of the last two page faults at times 9 and 10.

The total number of page faults for this algorithm is also 5. The working
set size fluctuates between 2 and 4 page frames as the reference string is
processed. 2

While conceptually very attractive, the Working Set strategy is difficult
to implement in its full generality. One problem is estimating the appropri-
ate window size τ , which is a crucial parameter of the algorithm. This is
usually performed empirically, by varying τ until the highest performance
is achieved. Except for rare cases when anomalous behavior has been ob-
served [Franklin, Graham, Gupta, 1978], increasing the window size reduces
the paging activity of each process. The trade-off is, of course, a reduced
number of processes that may be run concurrently.

A more serious problem with a pure Working Set approach is the large
overhead in implementation since the current working set may change with
each reference. To alleviate this problem, special hardware may be provided
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to keep track of the working set. Alternately, approximations of the Work-
ing Set algorithm have been developed which permit the working set to be
reevaluated less frequently. These generally involve some combination of ref-
erence bits and/or time stamps, which are examined and modified at fixed
intervals determined by a periodic interrupt.

One such scheme uses aging registers similar to those used to approximate
the LRU algorithm (Section 8.3.1). The left-most bit of an aging register is
set to 1 whenever the corresponding page is referenced. Periodically, every
δ memory references (where δ is a system constant), a time-out interrupt is
generated and the contents of all aging registers are shifted to the right. Thus
an aging register gradually decreases in value unless the page is referenced.
When the aging register reaches 0 (or some other system-defined threshold
value), the page is removed from the working set of the process because it
fell out of the sliding window; the size of the window is δ ∗ n, where n is the
number of bits comprising the aging registers.

Example:
For example, assume 3-bit aging registers and a time-out interval of 1000

references. The aging register of a page referenced at time t will be ‘100’ at
time t, ‘010’ at time t + 1000, ‘001’ at time t + 2000, and it will reach ‘000’
at time t + 3000, at which time the page will be removed. This effectively
approximates a working set with a window size 3 ∗ 1000 = 3000. 2

A similar approximation can be implemented with a single use bit and
a time stamp associated with each frame. The use bit is turned on by the
hardware whenever the page is accessed. The use bits and time stamps are
examined periodically at least every δ instructions using a timeout interrupt.
When the use bit of the frame is found to be 1, it is reset and the time of
this change is recorded with the frame as its time-stamp. When the bit is
found 0, the time since it has been turned off, denoted as toff , is computed
by subtracting the value of the time stamp from the current time. The toff

time keeps increasing with each timeout unless the page has been referenced
again in the meantime, causing its use bit to be set to 1. The time toff

is compared against a system parameter, tmax. If toff > tmax, the page is
removed from the working set, i.e., the frame is released.

Case Study

The Virtual Memory Operating System (VMOS) employs the above
scheme of time stamps and use bits, but implements a further refine-
ment of the basic scheme. It maintains two system thresholds, tmax
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and tmin. If toff > tmax, the page is removed from the working set
as before. If tmin < toff < tmax, the page is removed tentatively from
the working set by putting the frame on a special tentatively-released
list. When a new page frame is needed and there are no free frames
available, one of the tentatively released pages is used. Otherwise the
faulting process (or some other process) must be swapped out and its
page frames added to the free page frame list. This two-tier system
guarantees preferential treatment to pages which have not yet exceeded
tmax but have not been used for a significant length of time (at least
tmin).

2

Page Fault Frequency Replacement Algorithm (PFF)

One of the main objectives of any page replacement scheme must be to
keep the number of page faults to a minimum. In the Working Set model
described above, this objective was accomplished indirectly by adjusting
the working set size. The Page Fault Frequency algorithm takes a direct
approach by actually measuring the page fault frequency in terms of time
intervals between consecutive page faults. These times are then used to
adjust the resident page set of a process at the time of each page fault.
The faulting page is of course loaded into memory, increasing the size of the
resident set of pages. The following rule then guarantees that the resident
set does not grow unnecessarily large:

If the time between the current and the previous page fault ex-
ceeds a critical value τ , all pages not referenced during that time
interval are removed from memory.

Here is a more formal specification. Let tc be the time of the current page
fault and tc−1 the time of the previous page fault. Whenever tc − tc−1 > τ ,
where τ is a system parameter, all pages not referenced during the interval
(tc−1, tc) are removed from memory. Consequently, the set of resident pages
at time tc is described as:

resident(tc) =

{
RS(tc−1, tc), if tc − tc−1 > τ
resident(tc−1) + RS(tc), otherwise

where RS(tc−1, tc) denotes the set of pages referenced during the interval
(tc−1, tc) and RS(tc) is the page referenced at time tc (and found missing
from the resident set).
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The main advantage of the Page Fault Frequency algorithm over the
Working Set model is efficiency in implementation. The resident set of pages
is adjusted only at the time of a page fault instead of at each reference.

Example:
We use the same reference string, RS = ccdbcecead, as before and set

the parameter τ to 2. Let the resident set at time 0 consist of the pages a, d,
and e. The following table shows the set of resident pages at each reference.

Time t 0 1 2 3 4 5 6 7 8 9 10
RS c c d b c e c e a d

Page a
√ √ √ √

– – – – –
√ √

Page b – – – –
√ √ √ √ √

– –
Page c –

√ √ √ √ √ √ √ √ √ √

Page d
√ √ √ √ √ √ √ √ √

–
√

Page e
√ √ √ √

– –
√ √ √ √ √

IN t c b e a d
OUT t a,e b,d

The first page fault occurs at time 1. Let’s assume that the previous
page fault occurred recently and so no pages are removed at this time. The
next page fault occurs at time 4. Since tc = 4 and tc−1 = 1, the condition
tc − tc−1 > τ is true, and thus all pages not referenced during the time
interval (1,4) are removed; these are the pages a and e. The next page fault
occurs at time 6. No pages are removed at this time because 6 − 4 = 2 is
not greater then τ . But pages b and d are removed at the next page fault
at time 9, because the condition is again true. No pages are removed at the
last page fault at time 10. The Page Fault Frequency algorithm produces a
total of 5 page faults for the given string RS, while the number of resident
pages fluctuates between 3 and 4. 2

Case Study:

Windows 2000 implements a page replacement scheme that combines
the features of several of the algorithms discussed above, notably, the
working set model and the second chance algorithm.

The replacement is local in that a page fault will not cause the eviction
of a page belonging to another process. Thus the system maintains a
current working set for each process. The size of the working set, how-
ever, is not determined automatically using a sliding window. Instead,
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a minimum and a maximum size is assigned by the system. Typical
values for the minimum are 20-50 page frames, depending on the size
of physical memory; typical values for the maximum are 45-345 page
frames.

At each page fault, the working set of a process is increased by adding
the referenced page to the set, until the maximum is reached. At that
time (unless memory is plentiful, which is determined by a system con-
stant), a page must be removed from the working set to accommodate
the new page.

Whenever memory becomes scares—which is measured by the num-
ber of free frames currently available—the working sets of some pro-
cesses must be decreased. This is accomplished by a routine called
the working set manager, which is invoked periodically (every sec-
ond). It examines processes that have more than their minimum of
pages and orders these processes according to their size, idle time, and
other criteria to select the most suitable candidates for working set
reduction.

Once a process has been selected, the system must choose which page(s)
to remove. For this it uses a variation of the clock algorithm, which
approximates the LRU policy. Each page frame has a use bit, u, and a
counter, cnt. The use bit (called access bit in Windows 2000) is set by
the hardware whenever the page is accessed. When looking for a page
to evict from the working set, the working set manager scans the use
bits of the pages within the working set. During each pass, it performs
the following operations:

if (u == 1) {u = 0; cnt = 0}
else cnt++

At the end of the pass it evicts the page with the highest values of cnt.
Thus as long as a page is being referenced frequently, its cnt value will
be low and it will not be evicted.

Another interesting feature of the page replacement scheme is that the
eviction of a page from a working set gradual. First, the selected page
frame is placed on one of two lists: one holds the tentatively removed
pages that have been modified; the other holds tentatively removed
read-only pages. But the pages remain in memory and, if referenced
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again, can quickly be removed from the list, without causing a page
fault. They are used to satisfy page faults only when the list of actually
free pages is empty.

2

8.3.3 Load Control and Thrashing

When implementing a virtual memory management scheme, one of the main
problems is to maintain a balance between the degree of multiprogramming
and the amount of paging (i.e., page faults) that occurs. On the one hand,
we would like to keep as many processes running concurrently as possible
to keep CPU utilization high. On the other hand, since all active processes
must compete for the same pool of memory frames, their resident page sets
get smaller as the multiprogramming level increases, resulting in more page
faults. Load control refers to the policy that determines the number and
the type of processes that should be active concurrently, thus competing for
memory, CPU time, and other critical resources. The goal is to maximize
overall performance.

Three basic question must be answered for a load control mechanism:

1. How to decide when to increase or decrease the degree of multipro-
gramming?

2. Which of the currently active tasks should be swapped out if the degree
of multiprogramming must be reduced?

3. When a new process is created or a previously suspended process is
reactivated, which of its pages should be loaded into memory as its
current resident set?

The following sections address each of these questions in turn.

Choosing the Degree of Multiprogramming

In the case of local page replacement schemes, such as the Working Set model
or the Page Fault Frequency algorithm, the first question is answered by the
replacement method itself. Since each process has a well-defined resident
set, the system can increase the degree of multiprogramming only to the
point where all memory is allocated. Only when the current resident sets
shrink due to changing patterns in process behavior, or when one or more
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Figure 8.11: Processor utilization

processes are deactivated, can new processes be added to the currently active
set. Conversely, if a process’s resident set expands, it may be necessary to
swap out one or more of the currently active processes in order to create the
necessary space.

With global page replacement, the degree of multiprogramming is not
determined automatically. Thus explicit load control criteria must be pro-
vided to guarantee that each active process has some minimum number of
resident pages. With too many active processes the page fault rate can in-
crease to the point where most of the system’s effort is expended on moving
pages between main and secondary memory. Such a condition is termed
thrashing.

Figure 8.11 illustrates the problem of thrashing. The solid curve shows
the effect of multiprogramming on CPU utilization for a given fixed size
memory. The horizontal axis gives the degree of multiprogramming, N ,
i.e., the number of active processes sharing main memory. The vertical axis
shows the corresponding CPU utilization. Initially, the curve rises rapidly
toward high CPU utilization but it slows down as more processes are added.
Eventually, it drops down again toward zero. It is this latter phase that
is referred to as thrashing and is the direct result of too many processes
competing for a fixed number of frames. Since each process is able to execute
only a few instructions before it encounters a non-resident page, all processes
are blocked most of the time waiting for their page to be moved into main
memory. As a result, the CPU is idle most of the time. Its main activity
becomes the housekeeping related to paging, while the amount of useful work
being accomplished is minimal.

The goal of an effective load control policy must then be to keep the level
of multiprogramming at the point where the CPU utilization is highest, i.e.,
at point Nmax in the figure. Unfortunately, CPU utilization varies at run
time due to a number of circumstances and is difficult to monitor accurately.
Thus we need some other measurable criterion that would tell us at any given
point in time whether CPU utilization has reached its attainable peek.

A number of schemes have been proposed and studied to solve this prob-
lem. Since the main objective is to minimize the amount of paging, most
criteria for determining the optimal degree of multiprogramming are based
on the rate of paging. One example is the L=S criterion, where L is the
mean time between faults and S is the mean page fault service time, i.e.,
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the time it takes to replace a page in main memory. Intuitively, when L
is much larger than S, the paging disk is underutilized. In contrast, when
S exceeds L, there are more page faults than the paging disk can handle.
When L approaches S, both the paging disk and CPU generally reach their
maximum utilization.

The dashed curve in Figure 8.11 shows the L/S ratio—the utilization of
the paging disk—which depresses the CPU utilization when the degree of
multiprogramming is too high. Thus to achieve the highest overall perfor-
mance, the L=S criterion criterion selects the point NL=S as the desired
level of multiprogramming. Note that this is slightly higher than the opti-
mum, Nmax, but the deviation is usually tolerable for the purposes of load
control. The curve is based on extensive measurements in actual computer
systems and is valid under general conditions that apply to almost all real
multiprogramming systems [Denning, 1980].

Another basis for choosing the level of multiprogramming, referred to
as the 50% criterion [Denning et al., 1976], also relies on measuring the
page fault rate. Using this criterion, the system maintains a level of mul-
tiprogramming such that the paging disk is busy 50% of the time. This is
based on the observation that CPU utilization tends to be highest when the
utilization of the paging device is approximately 50%. Both the L = S and
the 50% criteria are closely related.

Yet another criterion, called Clock Load Control, has been proposed
by Carr [1981]. It is applicable to schemes which employ a pointer to scan the
list of page frames, when searching for a page to be replaced. The method
is based on the rate at which the pointer travels around the page frame list.
If this rate is low, one of the following two conditions is true:

1. The page fault rate is low, resulting in few requests to advance the
pointer, or

2. The mean pointer travel between page faults is small, indicating that
there are many resident pages that are not being referenced and are
readily replaceable.

In both cases the level of multiprogramming might usefully be increased.
Conversely, if the travel rate of the pointer increases past a certain threshold
value, the level of multiprogramming should be decreased.
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Figure 8.12: Lifetime curve of a program

Choosing the Process to Deactivate

When the degree of multiprogramming needs to be decreased, the system
must choose which of the currently active processes to deactivate. Some of
the possible choices for selecting a process to evict are the following:

• the lowest priority process: follow the same rules as the process sched-
uler and thus try to maintain a consistent scheduling policy

• the faulting process: eliminate the process that would be blocked any-
way while waiting for its page to be loaded

• the last process activated: the most recently activated process is con-
sidered the least important

• the smallest process: the smallest process is the least expensive to swap
in and out

• the largest process: free up the largest number of frames

In general, it is not possible to determine the superiority of one choice
over another since each depends on many other policies and system param-
eters, including the scheduling methods used in a given system. Hence the
decision will rely upon the intuition and experience of the system’s designer,
as well as the particular application.

Prepaging

In a system with static allocation, all pages belonging to an active process
are loaded before the process is permitted to run. In a dynamically allocated
system, pages are loaded only as a result of page faults. The latter method
works well when the process already has some reasonable set of pages in
memory since page faults do not occur too frequently. Before this set is
established, however, the page fault rate will be high. This will be the
case when a newly created process is started or when an existing process is
reactivated as a result of a satisfied request.

The paging behavior can be captured by a process lifetime curve, which
shows how the mean time between page faults increases with the mean set
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of pages resident in memory [Denning, 1980]. The shape of this lifetime
curve, shown in Figure 8.12, is of particular interest. It shows that, as long
as the resident set of pages is small, page faults occur frequently. When
the set reaches a certain size, the page fault rate decreases dramatically and,
consequently, the mean time between page faults increases accordingly. This
continues until the curve reaches a knee beyond which the benefits of adding
more pages to the resident set begin to diminish. This suggests that a process
should not be started or reactivated with an empty or a very small resident
set. Rather, a set of pages should be prepaged at the time of activation,
which can be done more efficiently than loading one page at a time.

Theoretically, the optimal size of the prepaged set is given by the point
at which the life time curve reaches its knee. In practice, however, this
value is difficult to estimate. Thus for a newly created process, prepaging
is rarely used. In the case of an existing process, i.e., one that has been
blocked temporarily while waiting for an I/O completion or some other event,
the obvious choice is the set of pages that were resident just before the
process was suspended. This is particularly attractive with schemes based
on the working set model, where a list of currently resident pages is explicitly
maintained.

8.3.4 Evaluation of Paging

Systems that employ paging have two main advantages over non-paged sys-
tems. The first is a very simple placement strategy. Since the basic unit of
memory allocation is a fixed-size page, programs and data need not occupy
contiguous areas of memory. Thus, if a request for k pages of memory is
made and there are at least k free frames, the placement decision is straight
forward—any frame may be allocated to any page.

The second advantage is the elimination of external fragmentation, which
occurs with variable memory partitions. That’s because page frames form a
uniform sequence without any gaps. However, the problem of fragmentation
does not disappear entirely. Because the sizes of programs and data are
rarely multiples of the page size, the last page of each virtual memory space
is generally only partially filled. This problem of internal fragmentation
occurs with any scheme using fixed memory partitions, including paging.
The magnitude of the problem depends on the page size relative to the size
of the virtual memory spaces (e.g. segments) that are mapped onto these
pages.

Many early experiments were carried out to study the dynamic behavior
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Figure 8.13: Qualitative program behavior under paging: (a) percentage of
referenced pages, (b) portion of each page actually used, (c) effect of page
size on page fault rate, (d) effect of memory size on page fault rate

of programs under paging [Belady, 1966; Coffman and Varian, 1968; Baer
and Sager, 1972; Gelenbe, Tiberio and Boekhorst, 1973; Rodriguez-Rosell,
1973; Opderbeck and Chu, 1974; Lenfant and Burgevin, 1975; Sadeh, 1975;
Spirn, 1977; Gupta and Franklin, 1978]. The most significant parameters
that were varied were the page size and the amount of available memory.
The results obtained from these independent studies were generally consis-
tent with one another. They can be summarized by the diagrams shown
in Figure 8.13; each illustrates the behavior of an individual process under
different conditions.

1. Figure 8.13(a) shows how pages are referenced by a process over time.
The curve rises sharply at the beginning, indicating that the process
requires a certain percentage of its pages within a very short time
period after activation. After a certain working set is established,
additional pages are demanded at a much slower rate. For example,
about 50% of a process’s total number of pages were referenced on the
average during a single quantum in a typical time-sharing operation.

2. Usage within a page is illustrated in Figure 8.13(b). It shows that a
relatively small number of instructions within any page are executed
before control moves to another page. For page sizes of 1024 words, less
than 200 instructions were executed before another page was referenced
in most of the samples investigated.

3. Figure 8.13(c) describes the effect of page size on the page fault rate.
Given a fixed size of main memory, the number of page faults increases
as the page size increases; that is, a given memory within many small
pages has fewer faults than the same memory filled with larger pages.

4. The effect of memory size on the page fault rate appears in Fig-
ure 8.13(d). For a given fixed page size, the page fault rate rises ex-
ponentially as the amount of available memory decreases. The point
labeled W represents a minimum amount of memory required to avoid
thrashing, i.e., a page fault rate that causes CPU to be grossly under-
utilized as it needs to wait for pages to be transfered into memory.
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These results provide important guidelines for the design of paging sys-
tems. Figure 8.13(a), which is a direct consequence of the principle of local-
ity, underscores the importance of prepaging. When a process is reactivated,
for example, after an I/O completion, it should not be restarted with just
the current page. This would cause it to generate a large number of page
faults before it was able to reestablish its working set. Prepaging can load
these pages much more efficiently than pure demand paging.

Figures 8.13(b) and (c) address the question of page size. Both suggest
that page size should be small. In the case of (b), smaller page sizes would
eliminate many of the instructions that are not referenced, but must be
brought into memory as part of the larger pages. An additional argument in
favor of a small page size, not reflected in the figures, is that the amount of
memory wasted due to internal fragmentation is also reduced. Smaller pages
provide a finer resolution, and thus result in a closer fit for the variable size
of program and data segments.

There are, however, important counter arguments in support of a rel-
atively large page size. First, larger page sizes require smaller page tables
to keep track of a given amount of virtual memory, which reduces mem-
ory overhead. Large pages also mean that main memory is divided into a
smaller number of physical frames; thus, the cost of the hardware necessary
to support paging is less. Finally, the performance of disks is dominated by
the seek time and the rotational delay, while the actual data transfer time is
negligible. As a result, transferring a contiguous block of data is much more
efficient than transferring the same amount of data distributed over multiple
smaller blocks. This too favors a larger page size.

In older systems, pages were generally in the range from 512 bytes to 4K
bytes (for example, the IBM 360/370). Due to the increases in CPU speed
and other technological advances, the trend has been toward increasingly
larger page sizes. Many contemporary systems use page sizes of 16K bytes
or even as large as 64K bytes.

Figure 8.13(d) underscores the importance of effective load control. It
illustrates that there is a critical amount of memory a process needs to run
efficiently; if this is not provided, the process’ paging behavior deteriorates
rapidly, resulting in thrashing, which only waste the system’s resources.
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