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Abstract

The detection of induced magnetic fields in the vicinity of the jovian satellites Europa, Ganymede, and Callisto is one of the most surprising
findings of the Galileo mission to Jupiter. The observed magnetic signature cannot be generated in solid ice or in silicate rock. It rather suggests
the existence of electrically conducting reservoirs of liquid water beneath the satellites’ outermost icy shells that may contain even more water
than all terrestrial oceans combined. The maintenance of liquid water layers is closely related to the internal structure, composition, and thermal
state of the corresponding satellite interior. In this study we investigate the possibility of subsurface oceans in the medium-sized icy satellites and
the largest trans-neptunian objects (TNO’s). Controlling parameters for subsurface ocean formation are the radiogenic heating rate of the silicate
component and the effectiveness of the heat transfer to the surface. Furthermore, the melting temperature of ice will be significantly reduced by
small amounts of salts and/or incorporated volatiles such as methane and ammonia that are highly abundant in the outer Solar System. Based on the
assumption that the satellites are differentiated and using an equilibrium condition between the heat production rate in the rocky cores and the heat
loss through the ice shell, we find that subsurface oceans are possible on Rhea, Titania, Oberon, Triton, and Pluto and on the largest TNO’s 2003
UB313, Sedna, and 2004 DW. Subsurface oceans can even exist if only small amounts of ammonia are available. The liquid subsurface reservoirs
are located deeply underneath an ice-I shell of more than 100 km thickness. However, they may be indirectly detectable by their interaction with
the surrounding magnetic fields and charged particles and by the magnitude of a satellite’s response to tides exerted by the primary. The latter is
strongly dependent on the occurrence of a subsurface ocean which provides greater flexibility to a satellite’s rigid outer ice shell.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The giant planets Jupiter, Saturn, their satellites, rings and
magnetospheres have been the main target of two recent plane-
tary orbiter missions aimed at the exploration of the outer Solar
System. The Galileo mission ended in September 2003 after re-
turning data from the jovian system for almost eight years. In
July 2004 the Cassini spacecraft arrived at its destiny and will
explore the saturnian system in a similar way at least for the du-
ration of the primary mission of about four years. Besides the
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planet itself and its rings, a main focus of the mission will be
the exploration of the satellite system of Saturn.

One of the most intriguing findings of the Galileo mission
is the existence of secondary induced magnetic fields in the
vicinity of Europa (Khurana et al., 1998; Kivelson et al., 2000),
Callisto (Zimmer et al., 2000), and Ganymede (Kivelson et
al., 2002). Such fields, which provide strong observational ev-
idence for subsurface oceans in these moons, are generated by
ions contained in a liquid water layer underneath the outer icy
shells. The induced fields are a result of the interaction of the
ions with the magnetic field of Jupiter. The possible existence
of liquid water layers in all three icy Galilean satellites raises
the question of whether internal oceans are a common feature
on icy satellites in general. From theoretical considerations, this
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Fig. 1. Radius–density relation of the natural satellites of the Solar System. It is distinguished between small, medium-sized, transitional, rocky, and large icy
satellites. Different symbols represent the respective primary planets. The mean densities of the icy satellites range from about 1000 kg m−3 (Tethys) to 2000 kg m−3

(Triton). Note that the mean densities of the mid-sized satellites in the saturnian system are lower than those in the uranian, neptunian, and Pluto–Charon system.
was suggested earlier by Lewis (1971) for icy bodies with radii
larger than 900 km, e.g., Europa, Ganymede, Callisto, Titan,
Triton, and also Pluto.

The relation between radius and density for natural satellites
larger than 190 km in radius and the Pluto–Charon system is
shown in Fig. 1 using observational data as summarized in Ta-
ble 1. The mean density of a planetary body is closely related
to its bulk composition. Depending on the rock-to-ice ratio, we
may distinguish between five groups:

(1) the large icy satellites with low densities, Ganymede, Cal-
listo, and Titan;

(2) the rocky satellites Io, Europa, and the Moon. In spite of
its icy surface, Europa rather belongs to the rocky satel-
lites because its bulk metal and silicate content exceeds
90 wt%;

(3) the transition zone occupied by Triton and Pluto and other
like-sized Kuiper belt objects indicating a still relatively
high rock content;

(4) the medium-sized icy satellites of Saturn and Uranus. The
comparatively low densities and spectral signatures indi-
cate that their interiors are mainly composed of water ice;

(5) the small satellites where we did not consider objects
smaller than Mimas.

The dominant internal heat sources of planetary satellites
are:

(1) radiogenic heating in the silicate component due to the de-
cay of the long-lived radiogenic isotopes uranium, thorium
and potassium;

(2) accretional energy as a remnant from the formation process;
(3) energy of differentiation, e.g., the release of gravitational

energy during core formation; and
(4) tidal heating.
Table 1
Physical properties of the largest (Rp > 190 km) satellites of the outer Solar
System and Pluto

Rp , km Mp , 1020 kg ρ, kg m−3

Io1 1821.6 ± 0.5 893.2 ± 0.1 3527±4
Europa1 1565.0 ± 8 480.0 ± 0.1 2989±47
Ganymede1 2631.2 ± 1.7 1481.9 ± 0.2 1942±4
Callisto1 2410.3 ± 1.5 1075.9 ± 0.1 1834±4

Mimas2,3 198.8 ± 1.5 0.379 ± 0.002 1152±32
Enceladus2,3 252.3 ± 0.6 1.08 ± 0.002 1606±14
Tethys2,3 536.3 ± 1.5 6.18 ± 0.002 956±8
Dione2,3 562.5 ± 1.5 10.96 ± 0.002 1470±12
Rhea2,3 764.5 ± 2.0 23.10 ± 0.03 1234±11
Titan2,3 2575.5 ± 2.0 1345.5 ± 0.18 1880±5
Iapetus2,3 734.5 ± 4.0 18.1 ± 0.007 1088±18

Miranda4,5 235.8 ± 0.7 0.659 ± 0.075 1201±149
Ariel4,5 578.9 ± 0.6 13.53 ± 1.2 1665±153
Umbriel4,5 584.7 ± 2.8 11.72 ± 1.4 1400±184
Titania4,5 788.9 ± 1.8 35.27 ± 0.9 1715±56
Oberon4,5 761.4 ± 2.6 30.14 ± 0.75 1630±58

Triton6,7 1353.4 ± 0.9 214.0 ± 0.6 2061±9

Pluto8,9 1195.0 ± 5 131.4 ± 1.8 1838±49
Charon9,10 603.6 ± 1.4 16.2 ± 0.9 1757±111

Notes. The masses are calculated from the referenced GMp-values using G =
(6.67259 ± 0.00085) m3 kg−1 s−2 (Gillies, 1990) for the constant of gravita-
tion. The mean densities ρ are calculated from ρ = 3Mp/4πR3

p with the given
uncertainties in Rp and Mp . The following references were used:
1 Schubert et al. (2004); 2 Jacobson et al. (2005); 3 http://ssd.jpl.nasa.gov/
sat_props.html#ref81 (status of 2005-November-30); 4 Jacobson et al. (1992);
5 Thomas (1988); 6 Jacobson et al. (1991); 7 Thomas (2000); 8 Seidelmann
et al. (2002); 9 Null and Owen (1996); 10 Sicardy et al. (2006). Proteus
(Rp = 209 km) is not included in this study because its mass is not well de-
termined, so far.

Accretional heating was only important at the early stages of
satellite evolution and should have subsided significantly until
today. The total amount of energy released due to early differ-
entiation is estimated to be about 10% of the accretional energy
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(Schubert et al., 1986) or even less and is, therefore, negligible
compared to the contribution provided by radiogenic heating. In
case of synchronous rotation tidal heating is only important for
large satellites on eccentric or inclined orbits. This is the case
for Io, Europa, and maybe also for Titan, Triton, and the Pluto–
Charon system. In fact, Io is the only satellite where the tidal
heating rate exceeds the radiogenic heating rate significantly,
leading to intense geologic activity and silicate volcanism on
this satellite. However, it cannot be ruled out that tidal heat-
ing played an important role during earlier evolutionary phases
of some satellites. This may well apply to Ganymede, Triton,
Enceladus, and to other medium-sized icy satellites of Saturn
and Uranus, the surfaces of which have been heavily modified
by processes other than impacts (e.g., Peale, 1999). In the ab-
sence of significant tidal heating, internal oceans on small icy
satellites of the size of Mimas or Enceladus are expected to
have solidified early in the history of the Solar System because
of relatively high cooling rates caused by the large surface-to-
volume ratio of small spherical bodies. Larger moons, however,
with considerable H2O and silicate contents may have harbored
internal oceans up to the present time since the silicate com-
ponents of those satellites were massive enough to generate
heat from the decay of long-lived radiogenic isotopes at a rate
sufficient to prevent the freeze-out of liquid subsurface reser-
voirs. Recently, it has been suggested that internal oceans may
exist on medium-sized icy satellites as well (England, 2003;
Rainey and Stevenson, 2003).

An important factor for the existence of liquid layers is
the presence of ammonia or other volatile constituents. Even
small amounts of those additional components will reduce the
melting temperature of H2O significantly, making the existence
of internal oceans more likely. This was already recognized
by Lewis (1971). Recently, the effect has been investigated in
more detail mainly in application to Titan (Grasset et al., 2000;
Sohl et al., 2003; Grasset and Pargamin, 2005).

In the present study, we calculate thermal and mechanical
equilibrium models of the interior structure of medium-sized
icy outer planet satellites and large trans-neptunian objects. We
investigate under which conditions (e.g., ammonia content) sta-
ble two-layer solutions (rocky core and ice shell) or three-layer
solutions (rocky core, internal ocean, and ice shell) can be ob-
tained for the individual satellites. Once the interior structure
is determined, it is straightforward to calculate the body tide
Love numbers which describe the deformation of a planetary
body in response to tidal forces exerted by the primary. The
determination of tidal Love numbers based on remote sensing
observations from orbiting spacecraft may have the potential to
indirectly detect internal oceans because they differ by up to one
order of magnitude in the presence or absence of liquid subsur-
face reservoirs. In application to Titan this was investigated by
Sohl et al. (1995), Rappaport et al. (1997), and Castillo et al.
(2002).

In the following section, we introduce our model approach
that permits the simultaneous calculation of a satellite’s inte-
rior and thermal structure. In Section 3, the resultant two- and
three-layer structural models for the icy satellites and the largest
trans-neptunian objects are presented. Section 4 summarizes the
discussion and conclusions of this study.

2. The model

We start with the model description of conductive and con-
vective heat transport through the ice shell. After that we de-
scribe the internal structure models and apply the heat transport
models to the icy bodies. We discuss two cases, the two-layer
structural model consisting of a rocky core and an ice-I layer
and the three-layer structural model, where the H2O layer is
divided into a liquid part (ocean) and an outer solid part. In
both cases we search for solutions, where the heat production
rate equals the rate of heat loss through the ice shell using the
mean density as model constraint. Since the heat production
rate is determined by the rock content, this allows us to derive
the core size and the thickness of the outer shell(s). Finally, we
compute the tidal Love numbers using plausible rheological as-
sumptions for each individual layer. Material parameters that
are taken constant for each icy body are summarized in Table 2.

2.1. Heat transport within the ice layer

There are two major ways of heat transport in planetary bod-
ies: thermal conduction and convection. The latter requires the
viscosity of the material (mainly ice or rock) to be sufficiently
small and the convecting layers to be thick enough to initiate
the transport of warm material from the interior to upper parts
of the body and, vice versa. For the icy satellites convection
takes place in the ‘stagnant lid’ regime, where the convective
motion is confined to the lower, warmer part of the layer that is
overlain by a purely conductive lid. First, we consider a purely
conductive ice layer.

2.1.1. Thermal conduction
Consider a planet with radius Rp consisting of a rocky core

and an ice layer of thickness D. In the case of thermal conduc-
tion the rate at which heat is lost through the surface is given

Table 2
Material parameters

Parameter Value

Ice I layer
Density ρm, kg m−3 1000
Rigidity1 μm, GPa 3.3
Thermal expansivity α, K−1 1.56 × 10−4

Thermal conductivity k, Wm−1 K−1 3.3
Thermal diffusivity κ , m2 s−1 1.47 × 10−6

Melting point viscosity2 η0, Pa s 1013

Ammonia–water ocean
Density ρw , kg m−3 1000

Rock core
Density ρc , kg m−3 3500
Rigidity μc , GPa 50
Present-day radiogenic heat production rate3, qrad, W kg−1 4.5 × 10−12

Notes. The following references were used: 1 Sotin et al. (1998); 2 Hunten et
al. (1984); 3 Spohn and Schubert (2003).
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by

(1)Qs = 4πR2
pk

Tbot − Ts

D

(
1 − D

Rp

)
,

with the corresponding temperature profile as given by (e.g.,
Turcotte and Schubert, 2001)

(2)T (r) = Ts + Tbot − Ts

1 − Rbot/Rp

(
Rbot

r
− Rbot

Rp

)
,

where Rbot is the radial distance of the base of the ice shell from
the planetary center, and r the radial distance of the point to be
considered. k is the thermal conductivity of ice-I taken constant
at 3.3 W m−1 K−1, Tbot is the temperature at the base of the ice
shell, and Ts is the surface temperature. D = Rp − Rbot is the
thickness of the ice layer. Both equations are connected through
Fourier’s law qs(r) = −k(dT/dr), where qs is the surface heat
flow in units of watts per unit area. Applying Fourier’s law and
using qs(R) = Qs/4πR2

p , Eq. (1) follows directly from Eq. (2).
For Rp � D the factor 1 − D/R is unimportant and Eq. (1)
reduces to the heat transported through a plane layer, an ap-
proximation which is often made for large planets. However, in
our application to the mid-sized icy satellites it is necessary to
keep that factor.

As a heat source we consider radiogenic heating in the sili-
cate core of the planetary body. If the silicate mass of the planet,
Mc, is determined, the radiogenic heating rate Qrad in units of
W can be calculated under the assumption of a chondritic com-
position of the rocky core:

(3)Qrad = Mcqrad,

where qrad = 4.5 × 10−12 W kg−1 is taken as the present-day
chondritic radiogenic heat production per unit mass (Spohn and
Schubert, 2003). If we further assume that the radiogenic heat
production is in equilibrium with the heat loss Qs through the
planetary surface, the temperature profile inside the ice layer is
determined. In this case the temperature at the base of the ice
shell can be obtained from Eq. (1)

(4)Tbot = Ts + DQrad

4πR2
pk(1 − D/Rp)

,

using the equilibrium condition

(5)Qs = Qrad.

2.1.2. Thermal convection
If the temperatures within the ice layer are sufficiently

high, convection will set in at a certain ice thickness. In the
‘stagnant lid regime’ (e.g., Solomatov, 1995) convective mo-
tions are restricted to occur in the lower part of the ice layer.
Above the convective region is the stagnant lid with thick-
ness Dstag, through which heat is transported by conduction
only. Substantial changes in viscosity and temperature are con-
fined to occur in the lid, whereas the convective region is at
almost constant (adiabatic) temperature with only small vis-
cosity contrasts (Davaille and Jaupart, 1993; Solomatov, 1995;
Grasset and Parmentier, 1998). Depending on the viscosity η,
the temperature difference across the convective region is given
by �T ≈ |η/(dη/dT )|. This is based on experimental results
from Davaille and Jaupart (1993) and is consistent with numer-
ical experiments performed by Grasset and Parmentier (1998).
With an appropriate viscosity law chosen, this translates into a
viscosity drop in the convective region of about one order of
magnitude from the bottom to the top. In the present study, the
ice I layer is assumed to be viscoelastic with a temperature-
dependent viscosity. A general flow law for steady state creep
of ice at temperatures above about 0.5 times the melting tem-
perature is (e.g., Durham and Stern, 2001)

(6)ε̇ = Ad−pσn exp−(E∗ + PV ∗)/RT ,

where ε̇ is the strain rate, P is hydrostatic pressure, d is grain
size, σ is differential or deviatoric stress, R is the gas con-
stant, and A, p, n, E∗, and V ∗ are flow constants related
to the dominant creep mechanism. Laboratory-derived flow
laws for pure, polycrystalline ice suggest that both disloca-
tion (n � 3) and grain-size-sensitive creep are appropriate flow
mechanisms for ice I, whereas dislocation creep is the domi-
nant mechanism for high-pressure ice phases (Weertman, 1983;
Durham et al., 1998; Durham and Stern, 2001). However, the
dominant flow mechanisms at geologic timescales and low
strain rates may be different from those which occur under lab-
oratory conditions where strain rates are likely to be orders of
magnitude higher. In particular, grain growth over time in the
presence of low stresses suggests that grain-size-sensitive creep
may be the dominant mechanism in many planetary applica-
tions (McKinnon, 1998; Durham and Stern, 2001). If grain sizes
are small enough and convective stresses are generally low,
however, stress-independent diffusion creep (n = 1) is likely
to dominate (Schubert et al., 1986) and the viscosity η can be
written as

(7)η = σ

2ε̇
= 1

2A
exp(Q∗/RT ),

where Q∗ = E∗ + PV ∗ is the activation enthalpy with E∗ the
activation energy, and V ∗ the activation volume. The pressure
dependence of the activation enthalpy is similar for dislocation
creep, diffusion creep, and grain-size-sensitive creep and can be
expressed in terms of the pressure dependence of the melting
temperature Tm according to Q∗ = lRTm, where l is a dimen-
sionless constant in the range of 18–35 (Kirk and Stevenson,
1987). The viscosity of the ice is then calculated in terms of the
homologous temperature, the ratio between the temperature T

and the melting temperature Tm, according to (e.g., Kirk and
Stevenson, 1987)

(8)η(T ) = η0 exp
[
l(Tm/T − 1)

]
,

where η0 is the melting point viscosity taken at 1013 Pa s and
l = 25 as suggested by Hunten et al. (1984). This is equiv-
alent to an activation energy for creep of about 60 kJ mol−1

at standard pressure and temperature conditions. The pressure
distribution inside the outer ice shell and the underlying deep
interior is derived from the density profile being consistent with
the satellite’s mass and radius (see Table 1) and assuming hy-
drostatic equilibrium.
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The viscosity ratio within the convective interior is small,
typically one order of magnitude (Grasset and Parmentier,
1998). For this region the parameterization laws derived for the
constant viscosity case are applicable (Grasset and Parmentier,
1998; Schubert et al., 2001) and we calculate the heatflow us-
ing the relation between Rayleigh- and Nusselt-number as given
by, e.g., Schubert et al. (1979). For a viscosity ratio γ = 10 be-
tween bottom η(Tbot) and top η(Ttop) of the convective region,
we get

(9)η(Ttop) = γ η(Tbot) = 10η(Tbot).

Using Eq. (8) and solving for Tbot we obtain

(10)Tbot = Tm(D)

Tm(Dstag)/Ttop − lnγ /l
.

Note that the melting temperature is calculated for different
depths (at the base of the ice shell, D, and at the base of the
stagnant lid, Dstag). The conductive heat loss Qstag through the
stagnant lid is, similar to Eq. (1), given by

(11)Qstag = 4πR2
pk

Ttop − Ts

Dstag

(
1 − Dstag

Rp

)
.

Equivalent to Eq. (4), the temperature Ttop can be calculated
using the equilibrium condition Qstag = Qrad

(12)Ttop = Ts + DstagQrad

4πR2
pk(1 − Dstag/Rp)

.

Thus, Tbot and Ttop are both functions of the stagnant lid thick-
ness Dstag only. However, for the three unknowns Tbot, Ttop,
and Dstag an additional equation is required. For that purpose
we use the equilibrium condition that the rate of heat loss out
of the convective region equals the rate of heat loss through the
stagnant lid

(13)Qconv = Qstag, Qstag = Qrad.

Qconv is given by

(14)Qconv = 4π(Rp − Dstag)
2k

Tbot − Ttop

D − Dstag
aRaβ,

where a = 0.12 and β = 0.3 are dimensionless constants and
Ra is the Rayleigh number, given by

(15)Ra = αρmg(Tbot − Ttop)(D − Dstag)
3

κη
.

α = 1.56 × 10−4 K−1 is the thermal expansion coefficient of
ice-I, κ = 1.47 × 10−6 m2 s−1 is the thermal diffusivity, g =
GMp/R

2
p is the gravitational acceleration at the surface (G is

the gravitational constant), and η is the mean viscosity within
the convective region. The latter is calculated from Eq. (8),
where the melting temperature Tm is determined at the mid-
point of this region, i.e., at the depth Dstag +0.5(D−Dstag). The
mean temperature of the convective region is given by T = 0.5
(Tbot + Ttop). Inserting Eqs. (10) and (12) into Eq. (14), the two
Eqs. (13) can be solved numerically. As a solution we obtain
the thickness D of the ice layer and the thickness Dstag of the
stagnant lid. If the heat production rate Qrad is known from the
core mass, the thermal profile and the heat flow are completely
determined. The efficiency of the convective heat transport will
depend on the combination of the parameters involved, namely,
a, β , the viscosity ratio γ and the melting-point viscosity η0.
Depending on the geometry and boundary conditions β can take
values between 0.25 and 1/3, with the latter being the value de-
rived analytically for convection in plane layers [see, e.g., the
discussion in Spohn and Schubert (2003)]. As a reference value
we use β = 0.3. For the prefactor of the Nusselt number we
assume a = 0.12, corresponding in combination with β to a
critical Rayleigh number of 1000 for the onset of convection.
The value of a ranges roughly between 0.1 and 0.3 (Schubert
et al., 2001). Deschamps and Sotin (2001) derived a different
parameterization in application to the large icy satellites, which
corresponds to the one used here, if β = 0.263 and a = 0.79
is used (see also Spohn and Schubert, 2003). It is important to
note that the heat flow in our model is determined by the rock
content and the equilibrium condition (see below). Thus, para-
meter variations of the convective heat transport have only an
influence on the internal temperature distribution and therefore
do not significantly affect our results. As we will show below,
most of our model applications yield conductive solutions. At
least for their present states thermal convection within the icy
shells of the mid-sized satellites is of minor importance.

2.2. Internal structure

In the following we relate the thermal model to the interior
structure model. The link is provided by the radiogenic heating
rate in the rocky core, which is related to both, the density pro-
file and the thermal state of the planetary body. We assume that
the bodies are differentiated into a rocky core and an H2O shell.
For differentiated mid-sized icy bodies the internal pressures
are low enough for ice-I to be stable throughout the entire shell
(see below). The only body considered in this study (note that
we do not consider Ganymede, Callisto, and Titan), where the
formation of high-pressure ice would be critical is the neptunian
satellite Triton. In the following we do not refer to models in-
cluding high-pressure ice phases.

Depending on the internal temperature and ammonia con-
tent, the inner part of the H2O shell may be liquid. Therefore
we consider two kinds of models: (1) a two-layer model, where
the body consists of a rocky core and a solid ice shell, and
(2) a three-layer model, in which the H2O shell is further di-
vided into a liquid water layer and a solid ice shell. Using an
equilibrium condition between heat production and heat loss
we investigate under which conditions solutions with and with-
out a liquid subsurface ocean can be obtained for the mid-sized
icy satellites.

2.2.1. Two-layer structural model
Models of planetary interiors suffer from an inherent non-

uniqueness since there are usually fewer constraints than un-
knowns. If the radius Rp, the mean density ρ (or equivalently
the total mass Mp), and the mean moment-of-inertia Ip are used
as physical constraints for a spherical planetary body, even two-
layer interior structure models would have less constraints than
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unknowns, i.e., the core density ρc (or equivalently the core
mass Mc), the core radius Rc, and the mantle density ρm. The
mean density ρ of a two-layer spherical body is given by

(16)ρR3
p = (ρc − ρm)R3

c + ρmR3
p

from which the relative core radius Rc/Rp and core mass frac-
tion Mc/Mp are calculated according to

(17)
Rc

Rp
=

(
ρ − ρm

ρc − ρm

)1/3

and

(18)
Mc

Mp
= ρc

ρ

(
Rc

Rp

)3

= ρc

ρ

(ρ − ρm)

(ρc − ρm)
,

respectively. The dimensionless mean moment-of-inertia factor
(MoI) of a two-layer planetary body is given by

(19)MoI = Ip

MpR2
p

= 2

5

(
ρc

ρ

(
Rc

Rp

)5

+ ρm

ρ

(
1 −

(
Rc

Rp

)5))
.

Upon insertion of Eq. (17), the MoI factor can be expressed in
terms of the densities ρ, ρm, and ρc:

(20)MoI = 2

5

(
(ρ − ρm)5/3

ρ(ρc − ρm)2/3
+ ρm

ρ

)
.

In Fig. 2, we show contours of Rc/Rp, Mc/Mp, and MoI for
plausible ranges of silicate core and ice shell densities normal-
ized to the mean density, ρc/ρ and ρm/ρ, respectively. Here we
assume a two-layer body in hydrostatic equilibrium which cor-
responds to an increase of density with depth equivalent to the
requirement ρc � ρ and 0 � ρm � ρ.

If assumptions on the core and mantle density are made, the
core mass can be calculated from Eq. (18) and linked to the
thermal model through Eq. (3) and the equilibrium conditions
Eqs. (5) and (13), respectively. In case of an existing two layer
solution, the thermal profile and the internal structure of the
body are completely determined. Fig. 3 shows the temperature
at the bottom of the ice shell Tbot as a function of the surface
radius (solid curve), where the mean density of 1240 kg m−3

and a surface temperature of 80 K are assumed as an exam-
ple. Because of the underlying constant-density assumption, an
increase in radius corresponds to an increase in the intrinsic
heat production, which ranges roughly between 2 × 108 and
1 × 1010 W. From the hydrostatic equation the pressure can be
calculated as a function of depth. Using the parameterization of
Chizhov (1993), the melting temperature of ice-I at the base of
the ice shell (short-dashed line in Fig. 3)

(21)Tm = 273.15 K

(
1 − P

395.2 MPa

)1/9

can be calculated from the hydrostatic pressure P . Purely con-
ductive two-layer solutions are only obtained for temperatures
at the base of the ice shell below the melting temperature.
For satellites with the assumed mean density and radii above
950 km, a subsurface ocean is expected to form between the
ice-I layer and the rocky core.
Fig. 2. Contours of (top) relative core radius, Rc/Rp; (middle) relative core
mass fraction Mc/Mp; (bottom) mean moment-of-inertia factor, MoI, for
two-layer structural models as a function of the ratio of core and mantle density
ρc and ρm, respectively, to mean density ρ.

In the example shown in Fig. 3, the ice layer becomes unsta-
ble to convection for satellites larger than 830 km in radius. For
radii between 830 and 950 km, both convective and conductive
states of the ice layer are possible. Low basal temperatures are
then sufficient in case of highly efficient heat transfer by ther-
mal convection. If heat transfer across the ice layer is entirely
by conduction, however, higher temperatures are required at the
base of the layer to balance surface heat flow and internal heat
production. As a consequence, higher basal temperatures could
initiate thermal convection, so that the heat loss would exceed
internal heat production thereby reducing the bottom tempera-
ture due to more efficient cooling.

2.2.2. Models including subsurface oceans
In the following, we consider a satellite that consists of a

rocky core, an overlying liquid layer, and an outer ice-I shell.
Using general mass balance constraints, we calculate the mass
inside the ice-I shell and the pressure at the base of the ice shell
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Fig. 3. Ice-I melting temperature and temperature at the base of the ice shell
under the assumption of thermal equilibrium. The mean density taken as
1237 kg m−3 represents that of Rhea. The solid line shows the basal tempera-
ture in case of a purely conducting layer. At about Rp = 830 km the ice layer
becomes unstable against convection. The long-dashed line shows the basal
temperature in the convective case. The conductive profile intersects the melt-
ing curve at Rp ≈ 950 km. For larger satellites subsurface oceans are possible
in case of purely conductive heat transport. However, in case of convection, the
basal temperature is lower than the melting temperature.

as a function of its thickness, P = P(D). It is straightforward
to determine the ice shell thickness D by taking into account
the pressure dependence of the melting curve. For that purpose,
we use the empirical formula of Chizhov (1993) to calculate the
melting temperatures of pure H2O, whereas polynomial repre-
sentations reported by Leliwa-Kopystyński et al. (2002) have
been evaluated to construct the melting curves for ammonia–
water mixtures as a function of pressure and ammonia-content
within the subsurface ocean. For a general description of the in-
fluence of ammonia on the melting temperature of water–ice;
see also Grasset and Pargamin (2005). For an H2O-layer with
constant thickness, the NH3 content X = MNH3/Mocean within
the liquid will depend on the ice thickness. We assume that the
ice layer is made of pure H2O–ice and we do not distinguish
in density between solid ice and the liquid layer. With an ini-
tial ammonia concentration of X0 = MNH3/MH2O, we obtain
X0/X = Mocean/MH2O. The ice thickness D, which is a func-
tion of the NH3-concentration within the ocean, is then given
by

(22)D = Rp − [
X0

(
R3

p − R3
c

)
/X + R3

c

]1/3
.

Since we do not distinguish between the density of solid ice
and that of the liquid layer, the core radius can be calculated
from the mass balance equation Mp = Mc + MH2O, where Mc
is the mass of the rocky core and MH2O the mass of the entire
H2O-layer consisting of the liquid part and the solid ice-layer

(23)Rc =
(3Mp/(4π) − ρmR3

p

ρc − ρm

)1/3

.

ρm is the density of the H2O-layer. In case of a purely con-
ductive ice-I layer [Eq. (1)] and using again the equilibrium
condition Qrad = Qs, the core radius can be written as a func-
Fig. 4. Contours of the melting temperature as a function of ammonia concen-
tration and pressure for an H2O–NH3 mixture, according to Eq. (25).

tion of ice thickness D,

(24)

Rc = Rc(D) =
(3R2

pk[Tm(Pbase,X) − Ts](1 − D/Rp)

ρcqradD

)1/3

,

where Tm is the melting temperature, set equal to the tem-
perature at the base of the ice shell. In thermal equilibrium,
the ocean temperature will increase adiabatically with depth.
However, for the pressure range to be expected for the inte-
riors of medium-sized icy satellites the adiabatic temperature
increase with ocean depth can be safely neglected. The internal
ocean is therefore assumed to be isothermal. Using the exper-
imental data of Leliwa-Kopystyński et al. (2002), the melting
temperature, which is a function of pressure P and of the NH3-
concentration within the ocean, is given by

(25)Tm(P,X) = c0 − c1P − c2P
2 − c3X − c4X

2 − c5PX,

with c0 = 273.1 K, c1 = 7.95 × 10−8 K Pa−1, c2 = 9.6 ×
10−17 K Pa−2, c3 = 0.538 × 102 K, c4 = 6.5 × 102 K, c5 =
4.4 × 10−8 K Pa−1, and X is given as the mass ratio MNH3/

Mocean. According to Eq. (25), contours of the melting temper-
ature are shown as a function of pressure and ammonia concen-
tration in Fig. 4. Following Eq. (22) the ice thickness is given
as a function of X, and therefore the pressure and consequently
the melting temperature Tm are functions of X only. Inserting
Eq. (25) into Eq. (24) and equating the latter with Eq. (23),
the NH3 concentration and the thickness of the ice layer at
which the thermal equilibrium is established can be calculated.
In this case the interior structure, the temperature profile, and
the NH3-concentration within the ocean are completely deter-
mined. Since we use the same density for the ice and the liquid
water layer, we can still use Eq. (20) to calculate the moment of
inertia factor.

The procedure in case of convection is analogous to the
two-layer case: an additional layer Dstag and an additional equi-
librium condition Qstag = Qs has to be used. We use the same
definitions for the Rayleigh and the Nusselt numbers as above.
Note that if the subsurface ocean is enriched in ammonia, the
viscosity at the base of the ice-I layer is much higher than in the
presence of a pure water layer because water–ammonia ocean
temperatures are substantially lower (see also Sohl et al., 2003;
Tobie et al., 2005).
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Equation (25) can only be used for temperatures exceed-
ing the peritectic temperature of the ammonia–water mixture of
about 176 K. This corresponds to an NH3-concentration within
the ocean of about 33%. At this point, the water–ammonia layer
will crystallize and the temperature within the ocean will stay
at the peritectic temperature until it is entirely solidified. Our
model is not capable of describing such a scenario including
solid ammonia phases. Whenever the peritectic temperature is
reached in the calculations we cannot decide if there still exists
a liquid part of the ammonia–water mixture or if it is entirely
solid at present. In this case we simply state that the peritectic
temperature is reached.

2.3. Love numbers

The tidal deformation of a satellite can be obtained from
spacecraft measurements. Since it will be indicative of an in-
ternal ocean, we calculate the dimensionless complex body tide
Love numbers h2, k2, and l2 that measure the tidally-induced
radial displacement, radial potential perturbation due to inter-
nal mass displacement, and horizontal displacement at the sur-
face of each satellite, respectively. The body tide Love numbers
are dependent on the interior structure, rheological properties,
and tidal forcing periods and are obtained by numerical inte-
gration of the linearized field equations for small viscoelas-
tic deformations in a spherical and self-gravitating body sub-
ject to certain boundary and continuity conditions (Segatz et
al., 1988; Wieczerkowski, 1999). The correspondence princi-
ple (e.g., Zschau, 1978) which relates the viscoelastic problem
to the well-known elastic problem permits solving the resul-
tant set of twelve differential equations for the complex radial
functions h2(r), k2(r), and l2(r) in the frequency domain. For
simplicity, we assume the linear viscoelastic Maxwell rheologi-
cal model. The real and imaginary parts of the complex rigidity
μ̃i = Re(μ̃i) + i Im(μ̃i) can then be written as

(26)Re(μ̃i) = η2
i ω

2μi

μ2
i + η2

i ω
2
,

(27)Im(μ̃i) = ηiωμ2
i

μ2
i + η2

i ω
2
,

where the tidal forcing frequency ω equals the mean motion of
a synchronously rotating satellite n; μi and ηi are the elastic
rigidity and the steady-state viscosity of the ith layer, respec-
tively. The specific dissipation function of each layer Qi is then
given by

(28)Qi = Re(μ̃i)

Im(μ̃i)
= nτi,

where the Maxwell time τi = ηi/μi represents a characteris-
tic timescale distinguishing viscous-like deformation of the ith
layer for tidal forcing periods longward of τi from its elastic
behavior for tidal forcing periods shortward of τi . The silicate
core is taken to be elastic with a rigidity μc of 50 GPa. The
subsurface ocean is included as a liquid layer with vanishing
rigidity. Tidally-induced deformations of the ice shell are found
to be much stronger in the presence of an internal liquid layer.
In case of conduction we divide the ice shell in five different
sublayers with the viscosity depending on the mean tempera-
ture of a sublayer according to Eq. (8). The temperature of each
of the five sublayers is calculated as the arithmetic mean of the
two temperatures at the bottom and the top of the sublayer from
the conductive temperature profile using Eq. (2). In case of con-
vection, we use the mean viscosity within the convective region
and divide the stagnant lid into five sublayers. The shear modu-
lus of ice I, μm = 3.3 × 109 Pa (Sotin et al., 1998), is assumed
to be constant throughout the calculations.

3. Results

First, we show the solutions obtained for the two-layer struc-
tural models in Section 3.1 and for the three-layer models in
Section 3.2. In Section 3.3 we apply the three-layer model to
the largest known trans-neptunian objects.

3.1. Two-layer structural models

The results for the two-layer model including a rocky core
and an ice-I layer are summarized in Table 3 (internal struc-
ture), Table 4 (thermal quantities), and Table 5 (tidal Love
numbers). The surface temperatures used in the calculations
are 100 K for the jovian system, 80 K for the saturnian sys-
tem, 70 K for the uranian system, and 40 K for the Pluto–
Charon system. We assume rock and ice densities of 3500 and
1000 kg m−3, respectively. Two-layer solutions are obtained
for all the planetary bodies discussed in this study, except for
Triton. The pressure at the bottom of Triton’s ice layer is suf-
ficiently high for pressure-induced phase transitions to occur
but those will not be further considered in the present study. In
case of Europa, the pressure at the base of the relatively thin

Table 3
Results from the 2-layer model

D, km Rc, km Rc/Rp Mc/Mp MoI Pcmb, GPa Pc, GPa

Europa 160.0 1405.0 0.90 0.92 0.346 0.205 4.15

Mimas 120.7 78.1 0.39 0.18 0.355 0.00726 0.0177
Enceladus 95.0 157.3 0.62 0.53 0.308 0.0119 0.0543
Tethys 501.0 29.0 0.06 0.0006 0.399 0.0395 0.0409
Dione 240.2 322.3 0.57 0.45 0.314 0.0607 0.238
Rhea 417.3 347.2 0.45 0.27 0.340 0.111 0.317
Iapetus 491.6 242.9 0.33 0.12 0.370 0.0948 0.196

Miranda 134.2 101.6 0.43 0.23 0.346 0.0104 0.0281
Ariel 206.6 372.3 0.64 0.56 0.306 0.0620 0.299
Umbriel 267.4 317.3 0.54 0.40 0.319 0.0659 0.238
Titania 269.1 519.8 0.66 0.58 0.306 0.114 0.576
Oberon 280.5 480.9 0.63 0.54 0.307 0.108 0.504

Charon 180.0 405.6 0.67 0.60 0.305 0.0656 0.347
Pluto 282.1 854.9 0.75 0.72 0.310 0.205 1.46

Notes. Shown are the thickness of the ice shell, the core radius, the relative core
radius, the rock-to-ice mass ratio, the dimensionless axial moment of inertia,
the pressure at the core-ice boundary, and the central pressure. Triton is the
only body we considered, for which we did not obtain a two-layer solution.
For Pluto we used a radius of 1137 km (Yoder, 1995). However, for the value
of 1195 km given by Seidelmann et al. (2002), we do not obtain a two-layer
solution.
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Table 4
Heatflow and temperature at the base of the ice shell obtained from the 2-layer
model according to the structure given in Table 3

Qs, GW qs, mW m−2 T bot, K Nu

Europa 198 6.4 255 22

Mimas 0.0314 0.063 86 1
Enceladus 0.256 0.321 95 1
Tethys 0.00161 0.00046 81 1
Dione 2.20 0.56 151 1
Rhea 2.76 0.38 185 1
Iapetus 0.946 0.14 143 1

Miranda 0.0692 0.099 79 1
Ariel 3.40 0.81 149 1
Umbriel 2.11 0.50 143 1
Titania 9.26 1.2 217 1
Oberon 7.36 0.10 205 1

Charon 4.40 0.96 126 1
Pluto 41.2 2.5 233 9.8

Note. The Nusselt number Nu indicates whether a conductive (Nu = 1) or a
convective (Nu > 1) solution is obtained.

Table 5
Tidal Love numbers obtained from the 2-layer models according to the internal
structures given in Table 3 and the rheology assumptions described in the text

k2 h2 l2

Europa 0.01857 0.03473 0.01574

Mimas 0.00038 0.00072 0.00028
Enceladus 0.00034 0.00082 0.00045
Tethys 0.00372 0.00620 0.00186
Dione 0.00192 0.00441 0.00226
Rhea 0.00482 0.00976 0.00411
Iapetus 0.00578 0.01047 0.00369

Miranda 0.00049 0.00096 0.00039
Ariel 0.00172 0.00415 0.00234
Umbriel 0.00225 0.00501 0.00244
Titania 0.00310 0.00750 0.00428
Oberon 0.00305 0.00731 0.00406

Charon 0.00177 0.00430 0.00248
Pluto 0.00615 0.01441 0.00848

ice shell is sufficiently low to permit two-layer interior mod-
els. However, to satisfy the satellite’s moment-of-inertia factor
of 0.346 (Anderson et al., 1998) it is required to enhance the
density contrast between the ice layer and the rock core be-
yond that used for the other satellites by attaching rock and
ice densities of 3780 and 920 kg m−3, respectively. The large
rock density value suggests that a Europan silicate core is en-
riched in heavier elements such as iron or that Europa addi-
tionally harbors a dense Fe–FeS core (Anderson et al., 1998;
Sohl et al., 2002).

Purely conductive solutions are not obtained for Pluto and
Europa so that their outer ice layers are convecting, as indi-
cated by Nusselt numbers Nu > 1 in Table 4. This suggests that
the internal dynamics of Pluto and Charon, with the ice-layer
of the latter being purely conductive would be different. Note
that the interior structures of the uranian satellites are similar
to those obtained for the Pluto–Charon system. Apart from Mi-
randa, which is significantly smaller than the others, the silicate
Fig. 5. The mean density as a function of the radius for the two-layer case.
Conductive solutions are located in the red region on the left; convective solu-
tions are obtained in the green region. There is an overlapping region, where
both modes of heat transport are possible. Which one is obtained depends on
the internal temperatures. On the right from the convective region no two-layer
solutions are obtained because the internal pressure requires the formation of
high-pressure ices. The icy satellites of the outer Solar System and Pluto are in-
dicated by asterisks. From left to right with increasing radius: Mimas, Miranda,
Enceladus, Tethys, Dione, Ariel, Umbriel, Charon, Iapetus, Oberon, Rhea, Ti-
tania, Pluto (1137, 1195 km), Triton, Europa, Callisto, Titan, and Ganymede.
For Pluto we considered two estimates of its radius (see, e.g., Yoder, 1995).

mass fraction, and the values of the moment of inertia are very
similar. In the saturnian system there is no such alignment, and
the accretional processes may have been very different for the
individual satellites. It is remarkable that the saturnian satellite
Tethys is very close to a homogeneous composition of water
ice. It has the lowest density of all the bodies considered sug-
gesting a very low rock component. For this body our model is
only applicable for low ice densities and very low rock content.
In this case the assumption of differentiation may be question-
able and an approach assuming a homogeneous mixture would
be more appropriate (see, e.g., Multhaup and Spohn, 2005).

Fig. 5 shows the conductive and convective solutions in the
Rp, ρ-space for the two-layer case. On the right-hand side, no
two-layer solutions are obtained, because the pressure at the
base of the ice shell would exceed the critical pressure required
for the ice-I–III phase transition to occur. Since we limit our-
selves to medium-sized icy satellites, we do not consider this
part of the diagram in the present study.

Convective solutions are obtained for satellites where the ice
layers are thick and warm enough because of the heating from
the silicate core underneath. There is an overlapping region
where both convective and conductive solutions are possible.
The latter require higher bottom temperatures at the same rate
of heat loss (see also Fig. 3). There are two extremes for the in-
terior structure of large bodies shown in Fig. 5. One with high
density, with the mean density being close to the rock density
(upper right corner) and one with low density, with the mean
density being close to the density of ice-I. In the first case,
the planetary body consists of a large rocky core and a thin
ice layer. The equilibrium is characterized by a large heat flow
through the thin ice layer. This explains the curvature at the
top of the figures (toward high densities). Larger bodies have



Subsurface oceans and deep interiors 267
larger cores, higher heat production rates, and thinner ice lay-
ers. In such a regime, an increase in radius requires an increase
in density as well. The mean density is approximating the core
density. In the second case, the body has a small rocky core
and a thick ice layer (lower part in the figure). Equilibrium is
attained for a low heat flux through a thick ice shell. This ex-
plains the curvature to the right at low densities. In this case
larger bodies have smaller cores, lower heat production rates,
but thicker ice layers. In such a regime an increase in radius re-
quires a decrease in mean density with the latter approximating
the ice density.

The right border of the convective regime is simply deter-
mined by the constraint that no high-pressure ices form. It is
therefore independent of other parameters, e.g., the surface tem-
perature used. However, the left border of the convective regime
depends to some extent on the parameters chosen. For the con-
struction of Fig. 5, a surface temperature of 70 K is used. The
general form of the figure is not changed if other values between
40 K (Pluto–Charon system) and 100 K (Galilean satellites)
are used. For higher surface temperatures the convective re-
gion extends more to the left. However, a convective solution
for Titania and Oberon can only be obtained for 100 K, which
is unrealistic for the uranian system. All other satellites stay in
the conductive region even if higher surface temperatures are
used. For 40 K, Pluto (with an assumed radius of 1137 km) still
lies well in the convective region (see also Table 4).

The same holds for other parameters, e.g., thermal conduc-
tivity, or the rheology and heat flow parameters, variations of
which do not affect the results shown in Fig. 5 significantly. The
only quantity, which has a large impact on the extension of the
convective region is the radiogenic heating rate. If we raise it
by a factor of 2 we find convective solutions also for the largest
of the mid-sized satellites. By further increasing this value even
the small satellites are located at the boundary of the convec-
tive region. This indicates the importance of convection in the
satellites’ past evolution, when the radiogenic heating rate was
significantly higher.

Comparing the silicate mass fraction of the bodies, it is inter-
esting to note that it tends to increase if we go from the saturnian
system to the uranian system and further out to Triton and the
Pluto–Charon system. It indicates that the bodies of the Kuiper
belt may contain a substantial amount of rocks (>60%). The
small and medium-sized satellites are found to contain less than
60% silicates. In general, the two-layer model may serve as a
valid approximation for the smaller satellites (left bottom cor-
ner in Figs. 1 and 5).

3.2. Models including subsurface oceans

The results for models including a rocky core, a subsurface
ocean (assumed density 1000 kg m−3), and an ice-I layer are
shown in Table 6 (internal structure) and Table 7 (thermal quan-
tities and Love numbers). Examples of some of the solutions are
also shown in Figs. 6 and 7. Since it is assumed that there is no
density contrast between the ice layer and the liquid layer be-
neath, the internal structures and the heat flows of the satellites
Table 6
Results from the 3-layer model (ice thickness D, ocean thickness Doc, core ra-
dius, relative core radius, rock-to-ice mass ratio, dimensionless axial moment
of inertia, ammonia content within the ocean X, assumed initial ammonia con-
tent X0)

D, km Doc, km Rc, km Rc/Rp Mc/Mp MoI X, % X0, %

Europa 79.5 80.5 1405.0 0.90 0.92 0.346 2.1 1.0
77.5 82.5 1405.0 0.90 0.92 0.346 6.1 3.0
74.8 85.2 1405.0 0.90 0.92 0.346 9.9 5.0
70.0 90.0 1405.0 0.90 0.92 0.346 14.9 8.0
57.0 103.0 1405.0 0.90 0.92 0.346 24.2 15.0

Rhea 400.9 16.4 347.2 0.45 0.27 0.340 32.5 0.5

Titania 253.1 16.0 519.8 0.66 0.58 0.306 26.2 1.0
229.7 39.4 519.8 0.66 0.58 0.306 30.6 3.0
217.7 51.5 519.8 0.66 0.58 0.306 32.5 4.3

Oberon 264.4 16.0 481.0 0.63 0.54 0.307 28.7 1.0
241.1 39.3 481.0 0.63 0.54 0.307 32.5 2.9

Triton 200.5 135.9 1017.0 0.75 0.72 0.310 3.0 1.0
194.9 141.5 1017.0 0.75 0.72 0.310 8.5 3.0
187.5 148.9 1017.0 0.75 0.72 0.310 13.4 5.0
174.8 161.6 1017.0 0.75 0.72 0.310 19.5 8.0
143.9 192.5 1017.0 0.75 0.72 0.310 29.8 15.0

Pluto 260.6 104.2 830.2 0.70 0.64 0.306 4.7 1.0
248.7 116.1 830.2 0.70 0.64 0.306 12.4 3.0
234.9 129.9 830.2 0.70 0.64 0.306 18.1 5.0
214.5 150.3 830.2 0.70 0.64 0.306 24.5 8.0
179.9 184.9 830.2 0.70 0.64 0.306 32.5 13.6

Notes. We considered X0-values of 1, 3, 5, 8, and 15%. In cases where the
peritectic composition of 32.5% within the ocean is reached for initial values
smaller than 15%, we determined the initial concentration, for which a liquid
layer close to the peritectic composition exists (e.g., X0 = 13.6% for Pluto or
0.5% for Rhea). In such cases larger initial concentrations will lead to crys-
tallization of solid ammonia compounds. We did not obtain solutions for the
remaining satellites (note that we excluded the large icy satellites, Ganymede,
Callisto, and Titan).

are identical to those obtained for the two-layer structural mod-
els.

We have considered pure water layers, as well as water lay-
ers including ammonia. Ammonia reduces the melting temper-
ature of ice and oceans are therefore more likely. Indeed, we did
not obtain a single solution in the pure-water case. However, if
ammonia is included, solutions with subsurface oceans are ob-
tained. Starting with the smallest and ordered by size, the bodies
for which liquid layers are possible are: Rhea, Oberon, Tita-
nia, Pluto, Triton, and Europa. Ocean thicknesses range from
16.4 km (Rhea) up to 192.5 km (Triton). All the solutions are
purely conductive, and the reduction of the melting temperature
is evident in Table 7. As a consequence, convective solutions are
not possible because of low temperatures and correspondingly
high ice viscosities.

We assume the crystallization of pure water ice and thus,
the ammonia concentration within the liquid layer will depend
on the ice thickness and on the assumed initial concentration
at the time of formation of the satellites. Estimates of the lat-
ter for the saturnian system given by Lunine and Stevenson
(1987) and Mousis et al. (2002) yield values of about 15 and
1–11.6%, respectively, depending on the N2/NH3 ratio in the
saturnian sub-nebula. From observation of comets a abundance
of 0.7% was inferred by Bockelée-Morvan et al. (2004). Mea-
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Table 7
Heatflow, temperature at the base of the ice shell, and Love numbers obtained
from the 3-layer model according to the structure given in Table 6

Qs,
GW

qs,
mW m−2

Tbot,
K

k2 h2 l2 X0,
%

Europa 197.6 6.42 263 0.21330 1.0343 0.26953 1.0
197.6 6.42 259 0.21264 1.0307 0.26830 3.0
197.6 6.42 253 0.21215 1.0279 0.26745 5.0
197.6 6.42 242 0.21366 1.0349 0.26982 8.0
197.6 6.42 215 0.22114 1.0708 0.28155 15.0

Rhea 2.76 3.76 176 0.01293 0.02657 0.00597 0.5

Titania 9.26 1.18 204 0.02933 0.08329 0.01699 1.0
9.26 1.18 186 0.03369 0.09575 0.01976 3.0
9.26 1.18 178 0.03629 0.10316 0.02147 4.3

Oberon 7.34 1.01 194 0.02441 0.06596 0.01338 1.0
7.34 1.01 178 0.02802 0.07576 0.01547 2.9

Triton 69.40 3.02 255 0.16467 0.56018 0.13124 1.0
69.40 3.02 248 0.16411 0.55827 0.13091 3.0
69.40 3.02 239 0.16751 0.56992 0.13431 5.0
69.40 3.02 223 0.17546 0.59720 0.14216 8.0
69.40 3.02 187 0.19768 0.67341 0.16433 15.0

Pluto 37.75 2.10 252 0.10128 0.30822 0.06721 1.0
37.75 2.10 240 0.10412 0.31692 0.06957 3.0
37.75 2.10 226 0.11013 0.33532 0.07442 5.0
37.75 2.10 175 0.14043 0.42811 0.09959 13.6

Note. The last column shows the assumed initial ammonia content. In this case
all the solutions are purely conductive.

surements on the clouds of young stellar objects yield values of
only a few percent (Dartois and d’Hendecourt, 2001). Grasset
and Pargamin (2005) prefer a value of about 5% in application
to Titan. We thus considered initial NH3-abundances of 1, 3, 5,
8, and 15 wt%, respectively.

For the smaller bodies in this study the peritectic compo-
sition of 32.5% within the ocean may be reached for a given
initial concentration. In that case (all except Europa and Triton)
we determined the solution with an initial concentration, lead-
ing to a present-day composition close to the peritectic value,
but still including a liquid layer. When the peritectic composi-
tion is reached, the thermal state of the ocean will be buffered
at the peritectic temperature of about 176 K due to the release
of latent heat upon water–ammonia crystallization. Since time-
dependent solutions are beyond the scope of the present study,
we cannot assess on the basis of these models if liquid reser-
voirs with peritectic composition may have survived up to the
present time. In particular, the interiors of small bodies may
have entirely solidified over time in the absence of additional
internal heat sources because of their larger surface-to-volume
ratios. However, for all the bodies considered here, past phases
with liquid reservoirs are likely due to the higher radiogenic
heat production rates at that time.

For Rhea we obtain a liquid layer only for small initial abun-
dances of ammonia (0.5%). However, if additional internal heat
sources were available, peritectic subsurface oceans could also
be maintained for higher initial ammonia abundances. Those
Fig. 6. Examples of interior structures according to the results shown in Tables 3 and 6. For the satellites containing a liquid layer, the models with the following
initial NH3-concentrations are shown: Titania, X0 = 4.3%; Oberon, X0 = 2.9%, and Rhea, X0 = 0.5%. The latter values imply present-day liquid layers close to
the peritectic composition (see Table 6). Sizes are shown to scale.

Fig. 7. Interior structure models according to Tables 6 and 8. The following initial NH3-concentrations were used (see Tables 6 and 8): Triton, X0 = 5%; 2003
UB313, X0 = 5%; Pluto X0 = 5%; 2004 DW/Sedna, X0 = 1.4%. Titania is included on the right for size comparison with Fig. 6. Sizes are shown to scale. For
UB313 we used a radius of 1300 km, which is the lower bound of the value determined by Bertoldi et al. (2006).
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Table 8
Results for the largest TNO’s (except Pluto and Charon), with an assumed rock-
to-H2O mass ratio of 65%

TNO Rp, km Mp, 1020 kg D, km Doc, km Rc, km X, % X0, %

2003 UB313 ≈1300 172 242 144 914 3.4 1.0
≈ 1300 172 224 162 914 14.9 5.0
≈ 1300 172 179 207 914 21.2 8.0
≈ 1300 172 169 217 914 31.5 15.0

Sedna/2004 DW 800 40 223 15 562 32.4 1.4

Notes. Shown are the assumed radius (see text for references), the correspond-
ing mass, the thicknesses of the ice layer and the liquid layer, the NH3-content
within the liquid layer X, and the initial NH3-content X0, corresponding to X.
Identical results are obtained for Sedna and 2004 DW, because their estimated
radii are equal. We did not obtain solutions including liquid layers for Quaoar
and Ixion or smaller trans-neptunian objects.

oceans would be thicker and the temperature at the bottom of
the correspondingly thinner ice shell would be higher due to the
pressure dependence of the ammonia–water melting curve. For
larger bodies like Europa, Triton, and Pluto, the peritectic com-
position is not reached even at the present time and for high
initial ammonia abundances. The uranian satellites Titania and
Oberon range in between these extreme cases. For a moderate
initial abundance of a few percent, present-day oceans are ob-
tained for Oberon and Titania as well.

A comparison between models including subsurface oceans
and those without internal liquid layers reveals significant dif-
ferences with respect to the calculated Love numbers. These
are found to be about one order of magnitude larger in the
presence of subsurface oceans (compare Tables 5 and 7). The
outer ice layers are decoupled from the silicate core at depth
and can deform more freely so that the corresponding potential
variation (Love number k2) and the radial (h2) and lateral (l2)
displacements are much larger. This corresponds to results ob-
tained by Sohl et al. (1995) and Moore and Schubert (2000)
in application to Titan and Europa, respectively. The depen-
dence of the tidal deformation on the internal structure may
be sufficient to indirectly detect subsurface oceans from Love-
number measurements from spacecraft, as it is planned for Titan
in the course of the Cassini mission (Rappaport et al., 1997;
Castillo et al., 2002). However, in general the dependence of
the tidal response on frequency, viscosity, and rigidity of the ice
may introduce some ambiguity in application to the icy satel-
lites (Moore and Schubert, 2000).

3.3. Trans-neptunian objects

The results of Sections 3.1 and 3.2 show that the obtained
structures for Triton, Pluto, and Charon are very similar. The
mean value of the silicate fraction for Triton, Pluto, and Charon
is given by Mc/Mp = 0.65. If we assume this value for the
trans-neptunian objects (TNO’s), it is possible to apply the
above models also to these bodies, although their mean den-
sities, or equivalently their masses, are uncertain. We have
used a surface temperature of 40 K for all objects. Apart from
Pluto and Charon, the largest TNO’s known so far are 2003
UB313 (Xena) with an estimated radius slightly larger than that
of Pluto (Brown et al., 2005; Bertoldi et al., 2006); Sedna
(2003 VB12), with an estimated radius of Rp = 800 km (Stern,
2005); 2004 DW (Rp = 800 km; Fornasier et al., 2004); Quaoar
(Rp = 650 km; Marchi et al., 2003); and Ixion (Rp = 550 km;
Marchi et al., 2003). Four of them are even larger than Charon.
For 2003 UB313 we assumed a radius of 1300 km, which is the
lower bound of the value determined by Bertoldi et al. (2006)
including the errorbars. Assuming a larger radius, a structure
including high-pressure ice phases would also be possible for
this object. However, we did not take into account such a possi-
bility in the present study. With the given silicate mass fraction
of 0.65, we obtain the masses as shown in Table 8. Results of
the model calculations are also shown in Table 8 and in Fig. 7.
For the largest object, 2003 UB313, a liquid layer would be pre-
dicted for all the initial ammonia concentrations considered,
with thicknesses ranging from 144 to 217 km. For Sedna and
2004 DW we obtain a liquid layer only for a small initial con-
centration of X0 = 1.4%. Higher initial concentrations would
result in thicker peritectic subsurface oceans that may have sur-
vived if additional heat sources were available. For Sedna and
2004 DW the liquid layer is about 15 km thick located under an
ice shell of 223 km thickness. As can be inferred from Fig. 7,
the obtained structures of Sedna and 2004 DW are similar to
that of Titania. The lower surface temperature leads to a thin-
ner liquid layer for the TNO’s. The interior structures of Triton,
2003 UB313, and Pluto are also similar (Fig. 7). These bodies
have radii around 1000 km, large cores, a relatively high rock
content and thick (100–200 km) liquid layers. These bodies be-
long to the group labeled ‘Transition Zone’ in Fig. 1 ranging in
radius and density between the rocky and mid-sized icy satel-
lites. For the smaller objects, Quaoar and Ixion we did not ob-
tain solutions including liquid layers. According to our model
their interior structure will be similar to that of Charon.

4. Discussion and conclusions

We have calculated interior structure models for the medium-
sized icy bodies of the outer Solar System assuming thermal
equilibrium between radiogenic heat production in the rocky
core and the heat loss through the ice shell. Prior to close space-
craft flybys it is not known if these bodies are differentiated,
an assumption we used throughout the model. In the jovian
system there are, on the one hand, the strongly differentiated
satellites Io, Europa, and Ganymede. On the other hand, the
internal differentiation of Callisto is likely to be incomplete.
Measurements during the Cassini mission will give insight in
the internal structures of at least some of the saturnian satellites
(Matson et al., 2002). However, there are some aspects, arguing
for the internal differentiation of the objects discussed in this
study. (1) The surface spectra of the satellites of the outer So-
lar System are dominated by water ice. Even the TNO Quaoar
shows features of crystalline water ice and ammonia hydrate
(Jewitt and Luu, 2004), regarded as evidence for recent resur-
facing. One possibility would be cryovolcanic activity. Such
spectra suggest that at least the outermost region is depleted
of silicates thereby implying some degree of differentiation.
(2) We included exclusively radiogenic heating of long-lived
isotopes as an internal heat source. However, the decay of short-
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lived isotopes, like 26Al, may contribute significantly to the heat
budget in the early phase of evolution of these bodies. For the
largest ones, the generated heat may be sufficient to initiate the
process of differentiation (McKinnon, 2002). (3) Tidal heating
could have been a relevant heat source in the past for some of
the satellites or Kuiper belt binaries. This is most important for
satellites which had eccentric orbits in the past, initially or later
in their history, for example, due to a resonance crossing. We
did not account for such a coupling of the interior heat budget
with tidal heating, although it may be important, e.g., for Ence-
ladus, Triton, Pluto, and Charon. In that sense our approach
of including only the radiogenic heating of long-lived isotopes
can be regarded as a lower bound to internal heating. Other heat
sources, if relevant, would make differentiation and also the for-
mation of liquid layers even more likely. However, the internal
differentiation of these bodies is an assumption which has to be
confirmed or disproved by future spacecraft measurements.

Including initial ammonia abundances based on most re-
cent observational evidence, we obtain subsurface oceans even
at the present time for Europa, Rhea, Titania, Oberon, Tri-
ton, Pluto, and the TNO’s 2003 UB313, Sedna and 2004 DW.
For the larger bodies (Europa, Triton, Pluto, and 2003 UB313)
we obtain solutions including an internal ocean even in the
whole range of initial ammonia concentration from 1 to 15%.
For the smaller bodies we obtain subsurface oceans only for
initial ammonia concentrations of a few percent. Higher ini-
tial ammonia abundances would require additional internal
heat sources to maintain thicker, peritectic subsurface oceans.
Note, that our model is not applicable to the large icy satel-
lites Ganymede, Callisto, and Titan because we did not include
the formation of high-pressure ice phases. For the latter liquid
water–ammonia layers are also expected on the basis of ther-
mal modeling (Grasset et al., 2000; Spohn and Schubert, 2003;
Sohl et al., 2003). The pressures inside the H2O layer of the
satellites discussed in this study are small, and high pressure ice
layers do not form. However, the ice shells of the large bodies
with relatively thick H2O layers, i.e., Triton, Pluto, and 2003
UB313, have basal pressures that are sufficient for pressure-
induced phase transitions to occur. Some examples of the ob-
tained internal structures are shown in Figs. 6 and 7.

For the bodies discussed here, the liquid layers are in direct
contact with the rocky cores. This contrasts with subsurface
oceans inside the large icy satellites like Ganymede, Callisto,
or Titan, where they are enclosed between ice-I at the top and
high-pressure ice layers at the bottom. The silicate–water con-
tact would allow the highly efficient exchange of minerals and
salts between the rocks and the ocean in the interiors of those
medium-sized satellites.

Subsurface oceans should have an influence on the interac-
tion of the satellite with the magnetosphere of their planets. If
there are ions contained in the liquid, and if the water layer sur-
rounds the whole satellite, which is expected according to this
study, secondary fields should exist, due to the time-varying
magnetic field of the primary felt by the satellite. There may
be the chance during the Cassini mission to search for these
signals on the occasion of close flybys at the satellites. Tar-
gets of special interest in the saturnian system are Rhea and
also Iapetus, which is with the given uncertainties of the model
parameters at least close to possessing a subsurface ocean. Ac-
cording to this study, we would not expect present-day liquid
layers on Mimas, Enceladus, Dione, and Tethys in the absence
of heat sources other than radiogenic heating. Note, however,
that it is very likely that Titan possesses an internal water–
ammonia ocean under these circumstances (Grasset et al., 2000;
Sohl et al., 2003; Tobie et al., 2005).

Another way to detect subsurface oceans from spacecraft
is to determine the Love numbers from measurements of the
tidal deformation of the satellites. The Love numbers are about
one order of magnitude larger in the presence of an internal
ocean. In that case the ice shell is decoupled from the rocky
core and can move freely above the liquid layer. Consequently,
tidal deformations of the ice shell are much stronger. Such an
experiment is planned for the Cassini mission during several
dedicated flybys at Titan. However, tidal Love number deter-
minations at Rhea and Iapetus would also be useful to prove
or disprove the existence of possible subsurface oceans inside
these moons.

There may be a relation between the presence of an internal
ocean and geological features visible at the satellites’ surfaces.
However, this will depend on the thickness of the ice layer
above the ocean; e.g., in case of Rhea, the liquid layer is rela-
tively thin (≈16 km) and lies underneath a thick (≈400 km) ice
shell. Therefore, it is questionable if the internal ocean would
have an influence on the surface. The example of the heav-
ily cratered surface of Callisto suggests that the existence of
a subsurface ocean, evident from measured induction signals
(Khurana et al., 1998; Zimmer et al., 2000) and thermal mod-
eling (Spohn and Schubert, 2003), does not necessarily imply
geologic activity and surface alteration. In case of Callisto the
ice layer is expected to be about 80 km thick. Therefore, the
presence of an internal ocean on Rhea would not be in conflict
with the satellite’s heavily cratered surface.

Our model does not give an explanation for the present ge-
ologic and endogenic activity of Enceladus (Porco et al., 2006;
Spencer et al., 2006). If there ever existed an ocean inside
Enceladus, heat sources other than radiogenic heating would
be required. One option would be tidal heating. Assuming the
eutectic temperature of 176 K as a minimum temperature for
a possible subsurface ocean, the required heat source would be
about 11 times the value of radiogenic heating alone. To pro-
vide such a high value by tidal heating is difficult to achieve.
The most relevant parameters for the tidal heating rate are the
orbital eccentricity and the viscosity in the interior. The ec-
centricity of 0.0044 of Enceladus is forced by the 2:1 mean
motion resonance with Dione. As pointed out by Peale (1999)
the evolution into resonance can occur very smoothly, without
the occurrence of high eccentricity values due to any chaotic be-
havior in the history of the satellite. In this case the eccentricity
of Enceladus should have been even lower in the past. In such
a scenario, we are only left with the possibility to enhance the
tidal heating rate by artificially lowering the viscosity of the in-
terior, especially in the ice layer. As an extreme assumption, we
may consider a vigorously convecting low-viscosity ice layer
surrounded by a viscous veneer layer of one kilometer thick-
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ness at surface temperature. The required heating rate could be
attained only if the viscosity of the ice layer were of the order of
1013 Pa s, i.e., close to the melting point viscosity of water ice.
Such a low value of the viscosity is unrealistic, however, if the
temperature at the base of the shell equals the minimum melting
temperature of 176 K, which is at least required for an internal
water–ammonia ocean to form. For a pure water layer the situa-
tion would even be worse, because in that case temperatures of
about 270 K would have to be reached in the ice layer. It should
be noted that any hypothesis of ocean formation on Enceladus
due to internal processes must also explain the difference to Mi-
mas, which is similar in bulk composition but closer to Saturn,
thereby implying even stronger tidal forces. As also noted by
Peale (1999), a thorough investigation of the phase-space of the
Enceladus–Dione resonance using modern nonlinear dynamics
has not yet been performed. It may turn out, that the orbital his-
tory of Enceladus is not as simple as originally thought (see
also Callegari and Yokoyama, 2005). We favor such a possi-
bility, because an increase of eccentricity would significantly
enhance the tidal dissipation rate without the need of invoking
extreme rheological assumptions. However, we did not yet in-
vestigate such a scenario and note, that the history of Enceladus
must be different from those of the other satellites. This also ap-
plies to the uranian Satellite Miranda. Our model does not help
explain the satellite’s remarkable surface features. Here again
other scenarios are required, which are not subject of this study.
To summarize this aspect, it is suggested that there is a link be-
tween internal oceans and surface features only if the ice layers
are relatively thin (up to a few tens of kilometers) which may
be the case for Europa and also for Triton and Pluto at the be-
ginning of their evolutions. Apart from Europa we obtain ice
layer thicknesses of more than 140 km making a direct link
between subsurface oceans and surface geology unlikely. How-
ever, ice thicknesses are expected to be smaller in the past due
to the higher radiogenic heating rate. If we enhance the heating
rate in the case of Rhea by a factor of 10, which roughly corre-
sponds to the heating rate at the beginning of the Solar System,
and assume a high initial ammonia abundance of 15%, which
leads to a solution with maximum ocean thickness, we still ob-
tain an ice layer of more than 100 km thickness. The situation
is different on Triton for which we obtain an ice thickness of
22 km for X0 = 15% and a 10 times larger heating rate. There-
fore the possibility of thin ice layers in the past is given, at least
for the larger bodies. Therefore it will be worthwhile to calcu-
late evolution models, which will be addressed in future work.

The fact that the liquid layers crystallize during the satel-
lites’ histories may have interesting consequences which are
not discussed in detail here. First, there will be an increase in
volume of the ice layer when it is transformed from the liquid
into the solid state, because ice-I is less dense than water. As
a consequence, this may lead to the early formation of exten-
sional features at the surface of icy satellites (Nimmo, 2004).
Second, we have shown that the Love numbers decrease signif-
icantly when the internal ocean solidifies and the icy layer is no
longer mechanically decoupled from the rocky core underneath.
Therefore, tidal dissipation rates also decrease significantly at a
certain point in the satellite’s evolution, when the liquid layer is
completely solidified. This would have consequences for the or-
bital evolution of the satellites. In general, the satellites slowly
drift outward from their primaries due to the tidal torque exerted
on them. However, this process is slowed down if there is sub-
stantial tidal dissipation within the satellite. At the point where
the subsurface ocean freezes completely, the dissipation rate in
the satellite decreases abruptly so that the satellite will drift out-
ward at a faster rate. This may have consequences for satellites
orbiting close to their parent bodies, for which tidal interactions
are stronger. Additionally, the influence on resonance capture,
e.g., in the case of Dione being in resonance with Enceladus,
has to be investigated.

As summarized in Table 3 we have obtained possible two-
layer solutions for all satellites except Triton. These models
were calculated for pure water ice layers. For some of the satel-
lites we also obtained three-layer structures including a liquid
layer. Which state (two- or three-layer) is actually obtained
by a satellite depends on the volatile (ammonia) content and
also on the temperature shortly after accretion. At that time the
satellites were heated substantially not only due to long-lived
radioactive isotopes but also maybe due to the decay of short-
lived radioactives like 26Al and the conversion of potential en-
ergy into heat during the differentiation process. Therefore, our
models underestimate the heat sources at least at early stages
of a satellite’s evolution. Taking this into account and assum-
ing that there is a small amount of ammonia present, the oceans
are likely to have formed shortly after differentiation. For the
largest bodies the liquid layers could still exist at present.

In general, we argue that internal oceans may be a common
phenomenon (at least in the past) of the satellites of the outer
Solar System and other icy bodies like the large trans-neptunian
objects. The consequences of subsurface oceans are important
for these planetary bodies with respect to orbital evolution,
internal dynamics, and astrobiological implications. However,
more observations are required to confirm or disprove their
existence which can be provided by the search for induced mag-
netic fields and the determination of tidal Love numbers during
the Cassini mission in case of the saturnian satellites and by fu-
ture space missions targeted to other outer Solar System bodies.
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