
Open Hardware Journal
February 2012 – Open-Access Journal, free to read, copy, and redistribute.

Contents
Editorial..1
High Performance Software Defined Radio - An Open Source Design..2
metalfishy: A Pocket Tool for Everyday Carry...18
The Insufficiency of the AppNote and its replacement by Open Source Hardware: as Shown
Through a LIN Protocol Implementation..22
Call for Papers..29
How to Copy This Journal...30

1 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 1

Photo 1: TAPR's HPSDR Janus board, a high-performance ADC/DAC for baseband radio, is a component
in the HPSDR software-defined radio chassis. The board is now under the TAPR Open Hardware License.

http://OpenHardware.org/journal

Open Hardware Journal
Published by the Open Hardware organization. Please see our web site at OpenHardware.org

Editor: Bruce Perens <bruce@perens.com>

Open Hardware means sharing the design of physical or electronic objects with the public,
similarly to Open Source software. The right to use, modify, redistribute, and manufacture,
commercially or as a non-profit, is granted to everyone without any royalty or fee. Thus,
Open Hardware designers hope to enrich society by developing a library of designs for
useful objects that everyone can make, use, and improve.

Editorial
This issue of Open Hardware Journal has come to release two months late, due to pressure on my
time. The next issue will debut on May 1. It sounds like Quarterly is a good start, for now.

Our first issue was very well received, with about 10,000 downloads. The main negative
comment is about our typography and layout. LibreOffice is our chosen tool, but it's a word-
processor rather than a prepress and page-layout application. It's chosen simply because it lets us
put together the issue without eating too much precious volunteer time, and it's Open Source.

Another request has been for an ePub version of the journal, for tablets. We're trying.

2 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 2

http://OpenHardware.org/journal
mailto:bruce@perens.com

High Performance Software Defined Radio - An Open
Source Design

By Scotty Cowling, WA2DFI <scotty@tonks.com>

Photo 2. openHPSDR Transmitter/Receiver

From left to right, LPU, Mercury receiver, Pennylane transmitter, and Metis Ethernet interface are plugged into
Atlas backplane. Alex filters (in aluminum enclosure) are on the right. All boards fit within the Pandora enclosure.

Introduction and History
Since its inception in 2005, the High Performance Software Defined Radio project has produced
over a dozen building blocks that can be used to assemble a high-grade 100kHz to 55MHz
software-defined radio (see Photo 2).

The openHPSDR project, as it is known today, began in March 2006 from the merger of the
HPSDR Yahoo group and the Xylo-SDR e-mail reflector. The first piece of hardware produced
was the Atlas backplane. Eric Ellison, AA4SW, paid for the initial run of 400 PCBs and shipped
them to individuals from his dining room table in May of 2006. He collected enough money
(entirely on the honor system) from these early adopters to pay for the initial PCB run. Due
mainly to Eric’s efforts, TAPR got involved on the production side in June 2006 and was able to
help augment the many HPSDR designers’ efforts with early volume production and storefront
retail sales. While TAPR offers financial support to the designers to help defray some or all of

3 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 3

http://OpenHardware.org/journal

the costs of building prototypes for testing, TAPR and the HPSDR project always were and
remain independent entities. The HPSDR project changed its name to openHPSDR in April 2009
in order to more accurately reflect the open-source nature of the project.

In fact, the openHPSDR project was the impetus for creating the TAPR Open Hardware License
("OHL"). The openHPSDR developers wanted to create a community around their designs,
much like the GNU General Public License, and invited TAPR to work with them to develop a
license for open hardware designs. The OHL itself was the result of an open design process that
included a public comment period. It was released in May, 2007, and is available for use by any
open hardware project. Here is a link to the OHL: <http://www.tapr.org/ohl>

TAPR <http://tapr.org/> is a non-profit corporation that provides resources for the purpose of
advancing the state of the radio art, especially the digital radio art. What could be more digital
than a software defined radio with an A-to-D conversion practically at the antenna?

The openHPSDR project <http://openhpsdr.org/> is a community (currently over 1000 strong) of
designers, developers and users that design, build and experiment with high-performance radios.
The openHPSDR domain hosts an active e-mail reflector where new hardware is proposed,
software is discussed and where users can get (and offer) openHPSDR system help and operating
tips.

System Architecture
From the beginning, the openHPSDR project was designed to be modular and expandable. This
type of architecture makes the system a bit more costly and complex because common interface
circuitry must be duplicated on each module. However, the resulting system is inherently
upgradeable and flexible; these two features are highly desirable from an experimenter’s point of
view. From the openHPSDR perspective, performance generally takes precedence over cost.

An example of the value of the openHPSDR upgrade path is in order. A production run of the
Penelope transmitter board was made by TAPR in May 2008. Penelope was a good transmitter,
but it had two shortcomings. First, the power output fell off rather quickly above 30MHz due the
design of the PA output stage. Second, there was no hardware power-output control. Power
output was reduced by scaling the data values sent to the DAC, resulting in increasing
quantization errors (and thus, more distortion in the output waveform) as the output power was
decreased. In August of 2011, both of these shortcomings were addressed with the production of
the Pennylane transmitter board. Pennylane simply replaces Penelope, uses the same firmware
and software, but performs better. Interestingly enough, due to the open source nature of this
project, Pennylane was produced by iQuadLabs <http://iQuadLabs.com/> and not by TAPR.
More on this later. The example here is that drop-in hardware enhancements are possible with a
modular architecture that would not be possible with a single-board SDR.

One other hardware feature is worth noting: all openHPSDR boards that plug into the Atlas
backplane are a standard size (100mm by 120mm) and use a standard connector (96-pin
DIN41612). This makes a common enclosure for all systems feasible.

4 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 4

http://OpenHardware.org/journal
http://iQuadLabs.com/
http://openhpsdr.org/
http://tapr.org/
http://www.tapr.org/ohl

I have teased you with mysterious talk of Atlas, Penelope and Pennylane long enough. Let’s
move on to some hardware details. Please follow the link for each hardware component for
more detail, schematics, parts lists, and layouts, as appropriate. I will also indicate a source for
purchasing bare PCBs, assembled and tested boards or kits, depending on what is available. Most
of the hardware described below is released under TAPR OHL. A few designs are under TAPR
NCL, but will be moved to OHL when possible.

It is helpful to refer to Figure 1 while reading the board descriptions below to see how each
board fits into the complete openHPSDR system.

5 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 5

http://OpenHardware.org/journal

Figure 1. OpenHPSDR System Overview

6 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 6

http://OpenHardware.org/journal

Hardware – Main Atlas Bus Components
These components consist of the Atlas 6-slot backplane and the three basic boards required for a
functioning transmitter/receiver. (It is not a transceiver in the classic sense, since the transmitter
and receiver are separate and can operate at the same time, i.e., in full-duplex). All openHPSDR
systems must have a communications interface. A receiver, a transmitter or both is also required.

Atlas Backplane – the heart of it all

The Atlas 6-slot backplane (Photo 3) consists of six
96-pin DIN connectors bused to an unterminated 48-bit
(6-byte) wide bus. In addition to the bus, six pins of each
connector are daisy-chained to the adjacent DIN
connectors (3 pins to each side). Power connections are
provided to each DIN connector for one common ground
and five power supplies: +12V, +5V, +3.3V, -5V and
-12V. Paralleled pins allow each power supply
connection to carry in excess of 2.5A. The power input
connector is a standard ATX computer motherboard
connector; an off-the-shelf ATX supply can be connected
here, but be aware that most PC power supplies are very

RF noisy and may compromise receiver small-signal performance. LEDs are provided for each
power rail, and a header is provided for remote power control of an ATX supply. Power rail
bypassing is abundant.

TAPR offers the Atlas 6-slot backplane as a kit only. The DIN and ATX connectors are through-
hole, and the remaining parts are relatively easy to assemble 0805 size SMT parts.

Atlas additional documentation: <http://openhpsdr.org/atlas.php>
Atlas kits: <http://tapr.org/kits_atlas>

Communications Interface – two to choose from

The communications interface is the openHPSDR endpoint of the data path between the PC and
the radio. Magister uses USB 2.0 as its interface, while Metis uses Gigabit Ethernet for the same
function. Speeds and protocols differ between the two boards, but the function is the same.

Note that these two boards are alternates; you cannot use both interfaces at the same time.

7 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 7

Photo 3. Atlas 6-Slot Backplane

http://OpenHardware.org/journal
http://tapr.org/kits_atlas
http://openhpsdr.org/atlas.php

Magister USB Interface

Magister (Photo 4) is a high-speed USB 2.0
interface built around a Cypress FX2
(CY7C68013A) micro-controller and an Altera
Cyclone II FPGA (EP2C8). The FX2 provides the
USB 2.0 interface to the PC and a FIFO interface
to the FPGA. The FPGA formats the data to/from
the various openHPSDR components via the Atlas
bus.

iQuadLabs offers Magister fully assembled and
tested.

Magister additional documentation: <http://openhpsdr.org/magister.php>
Magister boards, assembled and tested: <http://iquadlabs.com/content/magister>

Metis Gigabit Ethernet Interface

Metis (Photo 5) is a 100M/1000M Ethernet
interface built around a Micrel KSZ9021RL Gigabit
PHY and a large Altera Cyclone III FPGA
(EP3C40). The FPGA is the largest Cyclone III part
that is available in a leaded (240-pin QFP) package.
There are 12 FPGA-controlled LEDs, a LVTTL-
level serial port, 512K bytes of SRAM as well as
some digital I/O (four outputs and three inputs).

Metis can use an IP address obtained via DHCP;
lacking a DHCP server on the network, it will use
an APIPA address of the form 169.254.x.x, where
x.x is determined by the board’s MAC address. Each
Metis board has an on-board EEPROM that is pre-
programmed with a unique MAC address. A fixed IP

8 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 8

Photo 4. Magister USB Interface

Photo 5. Metis Gigabit Ethernet Interface

http://OpenHardware.org/journal
http://tapr.org/kits_atlas
http://openhpsdr.org/atlas.php

address can be optionally stored in this EEPROM as well. Data from the Atlas bus (from a Mercury
receiver, for example) is formatted by the logic in the FPGA and sent to the PC via UDP packets. In
the opposite direction, UDP data from the PC is formatted and sent to the Altas bus (to a Pennylane
transmitter, for example).

TAPR offers Metis fully assembled and tested.

Metis additional documentation: <http://openhpsdr.org/metis.php>
Metis boards, assembled and tested: <http://tapr.org/kits_metis>

Mercury Direct Sampling Receiver

Mercury (Photo 6) is a high-speed, direct-
sampling receiver board. The Mercury front-end
consists of a switchable 20dB attenuator
followed by a 20dB LNA (LTC6400-20) and a
low-pass filter (LPF). The LPF feeds a 700MHz
bandwidth 16-bit ADC (LTC2208) clocked at
122.88MHz. The digitized data from the ADC is
fed to an Altera Cyclone III FPGA (EP3C25)
where it is processed and sent to the
communications interface (Magister or Metis)
via the Atlas bus. This “processing” consists of
combined filtering and decimation to reduce the
amount of data sent across the Atlas backpane
and eventually, to the PC for demodulation
and/or display. For those interested in the inner

workings of the Mercury FPGA code, here is a link:
<http://openhpsdr.org/wiki/index.php?title=Mercury_-_Development_History>

Mercury is a very high performance receiver, with a minimum discernable signal (MDS) of
about –138dBm and a blocking dynamic range (BDR) of about 119dB. The BDR is determined
by the overload point of the ADC at -12dBm (+8dBm with attenuator switched in) rather than
being phase-noise limited. Here is an excellent evaluation of Mercury performance:
<http://openhpsdr.org/wiki/index.php?title=Mercury_-_intermodulation_(IMD)_tests>

iQuadLabs offers Mercury fully assembled and tested.

Mercury additional documentation: <http://openhpsdr.org/mercury.php>
Mercury boards, assembled and tested: <http://iquadlabs.com/content/mercury>

9 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 9

Photo 6. Mercury Direct-Sampling Receiver

http://OpenHardware.org/journal
http://tapr.org/kits_metis
http://openhpsdr.org/atlas.php
http://openhpsdr.org/wiki/index.php?title=Mercury_-_intermodulation_(IMD)_tests
http://openhpsdr.org/wiki/index.php?title=Mercury_-_Development_History
http://tapr.org/kits_metis
http://openhpsdr.org/atlas.php

Pennylane Direct Up-Conversion (DUC) 500mW Transmitter

As mentioned above, there are two openHPSDR
transmitter boards. The original Penelope
transmitter board has been superseded by the new
improved Pennylane transmitter. The function of
the two boards is identical; Pennylane just does
the job a bit better than Penelope.

Pennylane (Photo 7) is a 500mW direct up-
conversion transmitter. The transmit data stream
from the Atlas bus is processed by an Altera
Cyclone II FPGA (EP2C8) and fed to a high-
speed 14-bit DAC (AD9744ARU) clocked at
122.88MHz. The analog waveform from the DAC
is filtered and then amplified by a two-stage
500mW RF power amplifier (PA). Other features

of Pennylane are on-board analog output level detection, four general-purpose analog inputs,
three PWM outputs for future class E amplifier support, seven open-collector digital outputs and
a CODEC for microphone audio input and auxiliary audio output. The on-board 122.88MHz
TCXO is the same ultra-low phase noise type that Mercury uses.

iQuadLabs offers Pennylane fully assembled and tested.

Pennylane additional documentation: <http://openhpsdr.org/penny.php>
Pennylane boards, assembled and tested: <http://iquadlabs.com/content/pennylane>

Hardware – Other Atlas Bus Components
These components consist of a power supply and various other boards that provide additional
openHPSDR functions. Excalibur provides enhanced frequency accuracy capability, Janus
provides baseband A/D and D/A capability and Pinocchio allows openHPSDR cards to be
“extended” above the backplane for debug tasks.

LPU Linear Power Unit

LPU (Photo 8) is a linear regulated power supply
designed to power an openHPSDR radio from a
regulated 13.8V bench supply. It provides
2A@+12V, 1.5A@+5V and 100mA@-12V from
a 12.5V to 14.5V input. LPU can also supply
1A@3.3V if optional parts are installed. The -12V
regulator is an inverting switch-mode regulator,

10 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 10

Photo 7. Pennylane 500mW DUC Transmitter

Photo 8. LPU Linear Power Unit

http://OpenHardware.org/journal
http://tapr.org/kits_metis
http://openhpsdr.org/atlas.php

and can be disabled to reduce switching noise when -12V is not required. (Janus is the only
openHPSDR board that uses -12V.)

LPU passes the regulated input connection through to an internal connector for use by a power
amplifier. LPU also provides a header for a 12VDC fan, which is almost always required due to
the large amount of heat generated by the linear nature of LPU regulators. LPU plugs directly
into the power connector on the Atlas bus, without any cables.

LPU was intended to be a temporary solution until a custom openHPSDR switching power
supply could be designed. The switching supply solution has not materialized thus far. LPU is
inefficient, but it is also very RF-quiet; this is a good thing for so sensitive a receiver as Mercury.

TAPR offers the LPU power supply as a kit only. The SMT parts are relatively easy to solder
0805 or larger size.

LPU additional documentation: <http://openhpsdr.org/LPU.php>
LPU kits: <http://tapr.org/kits_lpu>

Excalibur 10MHz Frequency Reference

Excalibur offers two options for generating a
precision 10MHz reference clock source for
openHPSDR boards. The first option is
Excalibur’s on-board high-stability 10MHz
TCXO, which can be phase-locked to an
external input. The second option is an external
GPS-disciplined or other precision oscillator.
The 10MHz oscillators on Pennylane and
Mercury have a rated stability of between
+/-50ppm and +/-100ppm. Thus the 10MHz
clock error can be up to 1kHz at temperature
extremes. Excalibur’s TCXO is rated at
+/-1ppm, or 10Hz at temperature extremes. At
room temperature, the error is typically less
than 1Hz.

If an external high-performance GPS disciplined oscillator is used, typical accuracies of
+/-0.0001ppm can be reached. This is one milliHertz at 10MHz! The time-nuts
<http://leapsecond.com/time-nuts.htm> have lots of fun with Excalibur.

TAPR offers Excalibur as a kit only. The SMT parts are mostly easy to solder 0805 size, but
there are a few smaller ICs. There is one evil toroid to wind.

11 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 11

Photo 9. Excalibur Frequency Reference

http://OpenHardware.org/journal
http://leapsecond.com/time-nuts.htm
http://tapr.org/kits_lpu
http://openhpsdr.org/atlas.php

Excalibur additional documentation: <http://openhpsdr.org/excalibur.php>
Excalibur kits: <http://tapr.org/kits_excalibur>

Janus Baseband A/D and D/A Converter

Janus (Photo 10) is a very high-performance baseband
A/D and D/A (i.e., sound card). It uses a high-
performance, 24-bit, 192ksps ADC (AKM AK5394)
for baseband input, and a stereo CODEC (TI
TLV320AIC23B) for mic/line input and
headphones/line output. Janus is intended to be used
with a source of I/Q data from a QSD-based receiver.
Two examples of such receivers are the Softrock
series from Tony Parks, KB9YIG
<http://kb9yig.com/> and the SDR-1000 from
FlexRadio Systems® <http://www.flex-radio.com/>.
Janus’ CODEC output can also drive the QSE-based
transmitter section of these same radios.

The performance of Janus equals or exceeds all but
the very highest performance (read: expensive) PC sound cards. However, there is currently no
Windows sound card driver for Janus. It can only be used with software that supports it directly,
such as the openHPSDR version of PowerSDRTM.

TAPR offers Janus bare PCBs, as well as fully assembled and tested units.

Janus additional documentation: <http://openhpsdr.org/janus.php>
Janus boards, assembled and tested: <http://www.tapr.org/kits_janus>

12 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 12

Photo 10. Janus A/D and D/A Converter

http://OpenHardware.org/journal
http://www.tapr.org/kits_janus
http://openhpsdr.org/atlas.php
http://www.flex-radio.com/
http://kb9yig.com/
http://tapr.org/kits_excalibur
http://openhpsdr.org/atlas.php

Pinocchio Extender Card

While Pinocchio was designed to
raise any Atlas plug-in card up
and into the open so it can be
probed, it also has other uses.
Since every Atlas bus signal is
available on the surface of the
card, Pinocchio can make an
excellent base for prototyping
new hardware. It is a very simple
kit, with a through-hole right-
angle 96-pin DIN connector on
each end of a PCB.

TAPR offers the Pinocchio
extender as a kit only.

Pinocchio additional documentation: <http://openhpsdr.org/pinocchio.php>
Pinocchio kits: <http://www.tapr.org/kits_pinocchio>

Hardware – Non-Atlas Bus Components
These components do not plug into the Atlas backplane, but are useful and/or necessary to build
up a complete openHPSDR radio.

Pandora Chassis Enclosure

Pandora (Photo 12) is an enclosure
for openHPSDR components. It is
large enough to house all of the
components necessary for a 20W (or
more) HF/6M transceiver. There are
provisions for a fan, an Atlas
backplane fully loaded with six
boards, an LPU, a power amplifier
(Pennywhistle or other model) and a
set of Alex filters in a shielded sub-
chassis. Pandora has a black
powder-coated finish and is made of
aluminum for easy modification. It

13 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 13

Photo 11. Pinocchio Extender

Photo 12. Pandora Enclosure

http://OpenHardware.org/journal
http://www.tapr.org/kits_pinocchio
http://openhpsdr.org/atlas.php

is pre-punched and drilled for all of the above components. Blank filler panels are included to
block off unused Atlas slots.

TAPR offers Pandora as a bolt-together enclosure complete with hardware and blank filler
panels.

Pandora additional documentation: <http://openhpsdr.org/pandora.php>
Pandora kits: <http://www.tapr.org/kits_pandora>

Pennywhistle 20W Power Amplifier

Pennywhistle (Photo 13) is an RF power
amplifier that produces up to 20W of RF output
from 250mW of drive. It uses two RD15HVF1
power MOSFETs in a push-pull output stage
and delivers about 19dB of gain. Some kind of
low-pass filtering is required (such as Alex,
below) to meet FCC regulatory requirements
for harmonic emissions.

TAPR offers Pennywhistle as a kit only. The
SMT parts are easy to solder 1206 size, and
there are a few simple transformers to wind.

Pennywhistle additional documentation: <http://openhpsdr.org/pennywhistle.php>
Pennywhistle kits: <http://www.tapr.org/kits_pw>

Alexiares Transmit/Receive Filters

Alexiares (Alex for short) is a set of filter boards for the openHPSDR project, but these two
boards offer much more that just filtering.

The Alex-TX board (Photo 14) not only contains six switched 100W transmit low-pass filters, it
has a transmit/receive (T/R) relay, an unswitched 6M LPF, a directional coupler for power
measurements and relays to select one of three separate antennas.

14 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 14

Photo 13. Pennywhistle 20W RF Power Amplifier

http://OpenHardware.org/journal
http://www.tapr.org/kits_pw
http://openhpsdr.org/pennywhistle.php
http://www.tapr.org/kits_pandora
http://openhpsdr.org/pandora.php

The Alex-RX board (Photo 15) contains five switched receive high-pass filters, a 6M LNA, an
unswitched 55MHz LPF, a switchable 0/10/20/30 dB attenuator and connections for a

transverter, two separate receive antennas
and an external filter or preamplifier.

Alex-TX and Alex-RX daisy-chain
together on a 10-pin ribbon cable that
supplies power and serial control from an
interface on the Mercury receiver board.
An off-the-shelf extruded aluminum
enclosure with custom end plates is
available to mount and completely shield
the pair of boards in one enclosure.

The Alex-TX and Alex-RX boards are
mounted back-to-back in the enclosure. The
PCB layers are arranged on each board to
shield the transmit components from the
receive components. Here are the Alex
testing results performed by John Ackerman,
N8UR, using laboratory-grade test
equipment:
<http://www.febo.com/pages/alex/>

TAPR offers Alex-TX and Alex-RX boards
fully assembled and tested. TAPR also offers
an enclosure with custom end plates for
proper shielding. Note that an enclosure is

necessary for Alex boards even if they are mounted within the Pandora enclosure for RF
shielding reasons.

Alexiares additional documentation: <http://openhpsdr.org/alex.php>
Alexiares TX/RX filter boards/enclosure, assembled and tested: <http://www.tapr.org/kits_alex>

Hardware – Single Board openHPSDR
It is not quite a single board when you include the Apollo 15W power amplifier and automatic
Antenna Tuning Unit (ATU), but Hermes does include both the transmitter and receiver on one
board. The combination of Hermes and Apollo fits in a standard Eurocard enclosure, yielding a
compact and complete 15W high-performance software defined radio. Just how does it compare
to the openHPSDR Atlas system? Read on…

Hermes 500mW DUC Transmitter/DS Receiver

15 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 15

Photo 15. Alex-RX High-Pass Filter Board

Photo 14. Alex-TX Low-Pass Filter Board

http://OpenHardware.org/journal
http://www.tapr.org/kits_alex
http://openhpsdr.org/alex.php
http://www.febo.com/pages/alex/

The Hermes (Photo 16) receiver section uses the
same front-end filter, preamp (LTC6400) and ADC
(LTC2208) that Mercury uses. The Hermes
transmitter section uses the same DAC
(AD9744ARU), filter and RF power amplifier
(OPA2674) that Pennylane uses, as well as the
same audio CODEC (TLV320AIC23B) and analog
input circuit (ADC78H90). The Hermes Ethernet
interface uses the same PHY (KSZ9021RL) that
Metis uses. The three FPGAs from Metis, Mercury
and Pennylane (EP3C40, EP3C25 and EP2C8,
respectively) are replaced by a single EP3C40
FPGA. The new layout is really the only variable,

and preliminary testing indicates that Hermes is actually quieter on receive than Mercury and has
transmit performance equivalent to Pennylane.

Hermes additional documentation: <http://openhpsdr.org/hermes.php>
Hermes boards, assembled and tested: (under development, TAPR will be the likely source)

Apollo 15W Power Amplifier/LP Filter Bank/Automatic Antenna Tuner

Apollo (Photo 17) is a companion board to
Hermes, and boosts Hermes’ 500mW RF
output to 15W with a pair of RD15HVF1
MOSFETs in a push-pull amplifier
configuration. Apollo contains a set of low-
pass filters to reduce transmitter harmonic
energy. These LP filters are low-power
versions of the filters on the 100W Alex-
TX board. Apollo has an automatic
antenna tuner (ATU) that uses an Atmel
AT90 micro-controller in conjunction with
an on-board directional coupler to
determine the output mismatch and then

switch in capacitance and inductance to correct it. Switching is done with latching relays to
conserve power. The result is a power amplifier correctly matched and harmonically filtered.

Apollo additional documentation: <http://openhpsdr.org/wiki/index.php?title=APOLLO>
Apollo boards, assembled and tested: (under development, TAPR will be the likely source)

16 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 16

Photo 16. Hermes Transmitter/Receiver

Photo 17. Prototype Apollo 15W PA/ATU

http://OpenHardware.org/journal
http://openhpsdr.org/alex.php
http://openhpsdr.org/alex.php

openHPSDR Software
The focus of this article has obviously been on the hardware, but since openHPSDR is a
Software Defined Radio, it stands to reason that there must be some software involved. Several
good programs are available that allow most everyone to play, whatever your computing
persuasion.

For Windows PC users, you can use a derivative of PowerSDRTM, the GPL software that was
developed by FlexRadio Systems® for their product line. This software was originally modified
by Bill Tracey, KD5TFD, to support openHPSDR software. The software is currently supported
by Doug Wigley, W5WC and is at revision 2.23. It is full featured and works very well in the
Windows XP and Windows 7 environments. Joe Martin, K5SO, has a modified version of
PowerSDRTM 2.2.3 that works with multiple Mercury boards for diversity reception and beam
steering. More information on all of these variants of PowerSDRTM for openHPSDR can be
found here: <http://openhpsdr.org/wiki/index.php?title=PowerSDR>

Kiss Konsole (KK for short) is a basic
program for beginners to get their feet wet in
SDR and DSP programming written by Phil
Harman, VK6APH. It is written for Windows
in C# using the free VS 2008 IDE. It is
heavily commented and is a good starting
point for new SDR programmers. Further
information on KISS Konsole can be found
here: <http://openhpsdr.org/wiki/index.php?
title=KISS_Konsole>

For Linux users, John Melton,
GØORX/N6LYT has written two versions of
openHPSDR software: GHPSDR standalone
and GHPSDR3 server/client. The stand-alone

GHPSDR was developed on the Ubuntu version of Linux (specifically version 9.04). This code
runs on MacOS as well. You can find more information on GHPSDR here:
<http://openhpsdr.org/wiki/index.php?title=Ghpsdr>

GHPSDR3 is a client/server implementation that allows the server and client to be either on the
same machine or on separate machines. The servers are written in C and run on Linux machines
(specifically Ubuntu version 9.10). They have also been ported to Windows. There are several
variants of clients, either completed or under development, notably a Java version (jmonitor) and
a Qt4 version (qtmonitor). Qt4 is an open-source cross platform environment, so the code
compiles and runs on Linux, Windows and MacOS. GHPSDR3 information can be found here:
<http://openhpsdr.org/wiki/index.php?title=Ghpsdr3>

Dave McQuate, WA8YWQ, has developed a variant of GHPSDR3 server called ghpsdr3-
Windows that will run up to four virtual receivers within one Mercury board. This code is

17 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 17

Photo 18. An Early Version of KISS Konsole

http://OpenHardware.org/journal
http://openhpsdr.org/wiki/index.php?title=Ghpsdr3
http://openhpsdr.org/wiki/index.php?title=Ghpsdr
http://openhpsdr.org/wiki/index.php?title=KISS_Konsole
http://openhpsdr.org/wiki/index.php?title=KISS_Konsole
http://openhpsdr.org/wiki/index.php?title=KISS_Konsole
http://openhpsdr.org/wiki/index.php?title=PowerSDR

complied for Windows and can be found in the SVN repository here:
<svn://64.245.179.219/svn/repos_hpsdr_kiss/branches/WA8YWQ/ghpsdr3-Windows>

MAC users have another option besides GHPSDR. Jeremy McDermond, NH6Z, has written a
version of openHPSDR software just for you: Heterodyne. Formerly called MACHPSDR, this
software runs on Snow Leopard (MacOS X 10.6) for Intel systems. Here is a link to more
information: <http://openhpsdr.org/wiki/index.php?title=MacHPSDR>

Conclusion
The openHPSDR project is an ongoing evolution of ideas and implementation. The best place to
jump in is the OpenHPSDR e-mail list. Please come join us! You can subscribe here:
<http://openhpsdr.org/reflector.php>

Useful links
openHPSDR web site: <http://openhpsdr.org/>
openHPSDR Wiki: <http://openhpsdr.org/wiki/index.php?title=HPSDRwiki:Community_Portal>
openHPSDR hardware from iQuadLabs: http://iquadlabs.com/
openHPSDR hardware from TAPR: <http://tapr.org/>
TAPR open hardware license: <http://tapr.org/ohl>

18 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 18

http://OpenHardware.org/journal
http://tapr.org/ohl
http://tapr.org/
http://iquadlabs.com/
http://openhpsdr.org/wiki/index.php?title=HPSDRwiki:Community_Portal
http://openhpsdr.org/
http://openhpsdr.org/reflector.php
http://openhpsdr.org/wiki/index.php?title=MacHPSDR
svn://64.245.179.219/svn/repos_hpsdr_kiss/branches/WA8YWQ/ghpsdr3-Windows

metalfishy: A Pocket Tool for Everyday Carry

By Tait Stevens (tait.stevens@gmail.com) and Loren Cress (lpcress@yahoo.com)

History
Life currently seems to involve opening lots of boxes and packages. We have carried small
pocket knives; however, it's not fun forgetting to remove it before airport security and having to
choose between keeping a $20 pocket knife and catching a $400 flight. Car keys work pretty
well for cutting tape and opening boxes, but they can be made from soft metal that wears easily –
to the point that they no longer work to unlock the car.

We decided to explore alternatives that would fit on a keychain for convenient every day carry.

There are some commercial options, including offerings from companies such as Pocket Tool X,
Gerber, and Swiss Tech, and individual manufacturers, such as Peter Atwood. None of these
appear to be open source products.

19 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 19

Title Illustration: A Titanium metalfishy

http://OpenHardware.org/journal

First version

We first a miniature chisel blade – a “chiselette” (Illustration 1). Hardening tool steel was
chosen as it would be fairly wear resistant. A 2.5” piece was cut from 3/32” x 1/2” bar stick. A
hole was drilled in one end, the other sharpened using a belt sander, and then the steel hardened
per manufacturer instructions. After light sanding to round sharp edges, the resulting miniature
chisel fits nicely on a keychain. We ended up making several dozen of these for friends and
family, who found them useful for many activities other than just opening boxes.

Current version

Ongoing reflection on the tool lead to recognition that a bottle opener could be useful if
incorporated into the design. Multiple prototypes lead to the current fish shape with a fin as the
bottle opener (Illustration 2). This design has been dubbed “metalfishy” by a 2 year old family
member. We distribute this design with a card naming the uses of various features (Illustration
3). These have been even more popular with friends, some of whom have suggested marketing

20 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 20

Illustration 1: A "chiselette"

Illustration 2: a “metalfishy”

http://OpenHardware.org/journal

the fish-shaped bottle opener commercially. Several have been carried through airport security
multiple times without incident.

Uses
The metalfishy's primary uses are as a bottle opener and tape breaker/box opener. Other reported
uses: the bottle opener can be used to lift sealed lids on canned goods, the chisel fin works very
well for scraping small areas (such as vagrant paint flecks), as a metal fingernail (such as to
remove batteries that need changing), and as an impromptu screwdriver (in one case, to fix a
broken hotel showerhead).

Material selection
The metalfishy's shape can be made from essentially any flat metal stock. Harder metals, such as
steel and titanium seem likely to last longer than softer selections. The most wear resistant have
been made from high alloy steel requiring heat treatment in excess of 1,500F to harden fully.
We have made one from titanium (title illustration). Titanium stock is readily available for order
on the internet and seems to be holding up very well.

Making metalfishies
Minimal equipment for making one to two would likely include a drill press, hacksaw or
bandsaw, and files. Additional observations are available as part of a documented work in

21 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 21

Illustration 3: metalfishy features

http://OpenHardware.org/journal

progress showing some images from the making of a titanium metalfishy at
http://taitstevens.com/metalfishy.

The design relatively simple and there is enough surface area that additional decoration is
feasible, such as electric coloration of titanium (title illustration) or etching of figures (such as
inch or centimeter scales1).

Contact
Making and using a hand-made, open-source pocket tool is a lot of fun. We would appreciate a
note from anyone who makes and uses metalfishies, particularly if the design is improved upon.
We will also be happy to answer any questions.

1 Vile pun.

22 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 22

http://OpenHardware.org/journal
http://taitstevens.com/metalfishy

The Insufficiency of the AppNote and its replacement
by Open Source Hardware: as Shown Through a
LIN Protocol Implementation

A significant cost to “hardware development” is in fact the software that runs on it. All
major embedded microcontroller manufacturers spend significant resources on what is generally
termed “Application Notes” or AppNotes that often feature their hardware running software
required for some specific market. These AppNotes essentially act as proof-of-concept work to
show that the hardware is capable of performing the needed functions. Generally, these
implementations are license-locked to a particular manufacturer's microcontroller and are often
not production ready. After all, the perceived value to the manufacturer is primarily that of an
advertisement – and as an advertisement the added value in fixing stability and other issues is
practically zero. Also, for a variety of reasons (budget, engineer quality, and simply thousands
of devices to expose rare bugs) it is very difficult to create a production-quality implementation
without actually going into production!

Meanwhile, the AppNote becomes much less valuable once many other manufacturers
provide competing AppNotes. It does not become worthless – instead it becomes a barrier to
entry since late-comers must offer competing AppNotes so their microcontroller will be
evaluated for the chosen application.

This means that the industry as a whole ends up with multiple implementations of the
same (or similar) functionality, none of which are actually usable by the engineers who need it
due to issues with stability, quality, and licensing. These engineers therefore create their own
robust implementations. But these robust implementations are never shared; it is clearly
directly against the economic interest of a traditional end-device manufacturer to share the
software which can be used to produce a competing device.

Game theorists call this situation a state of “Nash equilibrium”. In summary, Nash
equilibrium occurs in a situation where all players have made the best possible decision based on
their knowledge of other player's decisions, but in fact the overall situation may not be optimal
for any of the players. In other words, the advantage to a manufacturer of being first to market
for a particular AppNote topic is overshadowed both by not being first in other AppNote topics
and by providing a poor implementation. A poor implementation ultimately increases end-
product development time and quality and therefore can affect the time before volume chip
purchases begin. The end-device manufacturer has higher front-end costs, resulting in a longer
time-to-market and higher shelf price.

The industry as a whole could save a lot of time and effort by producing a single, robust,
implementation of whatever topic is covered by the AppNote, with a low level “compatibility
layer” that glues this common code to the specific registers of each microprocessor. However,
that would require one of the players to act against their immediate economic benefit by
essentially giving away an AppNote implementation! Open Source Hardware is the concept that
breaks this stalemate.

23 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 23

http://OpenHardware.org/journal

An Example: The LIN Protocol

A Glance At LIN

The LIN protocol was originally made for automotive use but in fact it is pretty useful for
any distributed wired sensor or actuator network, especially within a space-constrained
electrically noisy environment such as a robot or automobile.

It is a clever transformation of the ubiquitous UART hardware into a single wire
packetized, master/slave protocol for control of many devices distributed throughout your
project. The protocol essentially fills the same niche as I2C does in a PCB, but for longer wire
runs. The most common solution (used here) requires 3 wires: power, LIN, and ground, but
chips exist to multiplex the LIN signal onto the Vcc wire, resulting in a 2 wire total solution. In
fact, the protocol is carefully constructed to not require a UART or even a reliable (crystal) clock
on the slave nodes, allowing for extremely cheap slave devices. But this causes a design tradeoff
-- it is not intended for significant data transfer, as it is limited to a theoretical bit rate of
19.2kbaud. And in practice a lot of those bits are protocol overhead, not application data.

On the hardware side an inexpensive, generally 8-pin chip converts the microcontroller's
TX and RX lines (or any general purpose IO) into a signal on the LIN bus wire. I used the Atmel
ATA6663 chip, but similar 8-pin chips are available from many manufacturers.

The LIN Frame

Software in the microcontroller transmits a special “packetized” protocol over the UART
that looks like:

A BREAK signal: Pulls the TX line low (which is actually the dominant, or logical “1” signal)
for longer then is allowed in UART to signal start-of-frame. This is the only non-UART part of
the signal. All subsequent bytes are transmitted as payloads of the UART protocol. To aid in
clarity, these UART envelope bits will not be mentioned in the following description.

A sync byte (0x55): This alternating 1 and 0 byte allows slaves to calibrate their clocks.

An ID byte: Indicates which slave device the master it talking to, and contains some parity bits.

1 to 8 bytes of data: This length is limited by how fast non-crystal clocks typically wander.

A checksum byte: for data integrity.

24 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 24

http://OpenHardware.org/journal

Higher Layers

The LIN protocol definition also contains a concept of a “schedule table” which is not
really part of the protocol; it is essentially a nice design pattern that can be used on the master to
achieve determinism when periodically talking to multiple devices. And if you would like to
transmit more then 8 bytes, there is a higher layer protocol that can be used to segment and
reassemble bigger packets. Of course, this is again an optional protocol in the sense that a
master and a slave can use ANY higher layer protocol (if needed) without causing other slave
devices to see errors.

So the core LIN functionality is the generation of the LIN Frame.

Existing Application Notes

The LIN protocol contains AppNote implementations by most major embedded mCU
manufacturers; a quick search turned up articles and implementations by Atmel2, Microchip3,
Freescale4, and Renesas5. Many vendors have multiple implementations for different processor
families. A quick review shows that these implementations consist of C and assembly code
totaling between 1.5k and 5k lines of code per AppNote. This results in a per project cost
between 50 and 150 thousand dollars (the differences are due to the different number of lines of
code), if you believe the popular line-counting tool “sloccount”6. The purpose of these
AppNotes is to essentially prove that the microprocessor can operate quickly enough to handle
LIN frames, as well as to showcase the particular vendor's LIN transceiver (if it has one).

Typically7, these projects are licensed-locked onto their manufacturers devices, and
contain significant sections in assembly language. A performance-based justification for the use
of significant amounts of assembly language is becoming increasingly hard to swallow as
embedded CPU speeds are becoming quite fast. But each mCU family uses a different assembly
language so the use of assembly language certainly creates strong vendor lock-in. At the same
time, it makes it much harder for any engineer who is not an expert in the mCU family (and in
assembly language in general) to debug or extend the AppNote code.
 Additionally, certain licenses also claim copyright ownership of all derived works (i.e.
your work) and require notification to be given to the manufacturer of all such works.

Generally these factors (and the previously mentioned code quality issues) discourage the
adoption of AppNote software for an actual product, meaning that every application company
must create its own, robust, implementation.

An Open Source Implementation

2 AVR322
3 AN1099, AN237, AN239, AN240, AN729, AN864, AN891
4 68HC908AZ60LINDRV.zip
5 LIN_R8C23_Demo_master_2slave_v1.19.zip
6 http://www.dwheeler.com/sloccount/
7 I checked most but not all projects

25 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 25

http://OpenHardware.org/journal

LIN Protocol Frames

The basic LIN frame can be constructed in about 100 lines of code when built upon
existing Arduino Library APIs. The “Arduino” is an open hardware board, based on the
ATMEGA family consisting of open source hardware (schematics and PCB), open source
firmware, and open source IDE and toolchain8. It is therefore truly an open device. While the
“open” aspects of the Arduino hardware platform have been widely praised, the idea of
abstracting the hardware into a standard software API “underface” within embedded
microprocessors is just as powerful. Embedded microprocessors have traditionally resisted the
API standardization that has occurred in smart phones and desktop machines due to size and
efficiency concerns. However, today even $3 embedded microprocessors can hold significant
amounts of code and RAM. So the benefits of API standardization, like application portability
and modular design, outweigh the detriments.

In particular, this LIN implementation will use the Arduino's Serial APIs9, digital IO
APIs, and delay functions. Since the implementation is so short it will be included here,
however, please check https://github.com/gandrewstone/LIN for the latest implementation.
First, two boring helper functions to generate parity bits and checksums:

/* Lin defines its checksum as an inverted 8 bit sum with carry */
uint8_t Lin::dataChecksum(const uint8_t* message, char nBytes,uint16_t sum)
{
 while (nBytes-- > 0) sum += *(message++);
 // Add the carry
 while(sum>>8) // In case adding the carry causes another carry
 sum = (sum&255)+(sum>>8);
 return (~sum);
}

/* Create the Lin ID parity */
#define BIT(data,shift) ((addr&(1<<shift))>>shift)
uint8_t Lin::addrParity(uint8_t addr)
{
 uint8_t p0 = BIT(addr,0) ^ BIT(addr,1) ^ BIT(addr,2) ^ BIT(addr,4);
 uint8_t p1 = ~(BIT(addr,1) ^ BIT(addr,3) ^ BIT(addr,4) ^ BIT(addr,5));
 return (p0 | (p1<<1))<<6;
}

Next, generation of the BREAK signal. This implementation generally follows
recommendations posted to the Arduino forum10 in a conversation about the DMX protocol. The
fact that some aspects of this problem was already solved within a completely different
application context illustrates another powerful feature of open source firmware – the companion
open forums yield synergistic efficiencies.

8 Http://www.arduino.cc
9 In the “standard” Arduino, the serial port is already used to communicate with the developer's PC. For

convenience, a clone (the Lightuino, www.toastedcircuits.com) was actually used since it talks to the PC through
a USB SPI chip thus freeing up the serial port. Also I have a lot of them :-).

10 http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1237491111

26 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 26

http://OpenHardware.org/journal
https://github.com/gandrewstone/LIN
http://www.toastedcircuits.com/

// Generate a BREAK signal (a low signal for longer than a byte) across the
serial line
void Lin::serialBreak(void)
{
 if (serialOn) serial.end();

 pinMode(txPin, OUTPUT);
 digitalWrite(txPin, LOW); // Send BREAK
 _delay_us((1000000UL/((unsigned long int)serialSpd))*LIN_BREAK_DURATION);
 digitalWrite(txPin, HIGH); // BREAK delimiter
 _delay_us(1000000UL/((unsigned long int)serialSpd));
 serial.begin(serialSpd);
 serialOn = 1;
}

Finally, generation of a LIN “send” frame:

/* Send a message across the Lin bus */
void Lin::send(uint8_t addr, const uint8_t* message, uint8_t nBytes,uint8_t
proto)
{
 uint8_t addrbyte = (addr&0x3f) | addrParity(addr);
 uint8_t cksum = dataChecksum(message,nBytes,(proto==1) ? 0:addrbyte);
 serialBreak(); // Generate the low signal that exceeds 1 char.
 serial.write(0x55); // Sync byte
 serial.write(addrbyte); // ID byte
 serial.write(message,nBytes); // data bytes
 serial.write(cksum); // checksum
}

This code is straightforward except for a small detail in the LIN protocol checksum. It changed
from version 1 to version 2 to cover the address byte. So the protocol version is passed into the
send function and if its version 2, the checksum function is “seeded” with the LIN address byte.

Next, generation of a LIN “recv” frame. This code is more complex for 2 reasons. First, the
UART hardware continues to drive the TX pin which overrides any driving by the slaves. So the
TX pin must be put into a high impedance (i.e. input) state to release the bus for the slave to
drive, and turn it back to an “output” pin when the slave is done. This is implemented with the
pinMode() function call.
Second, since LIN is a single wire the UART's RX pin will “hear” what is transmitted on the TX.
So some logic is added to discard these echos.

uint8_t Lin::recv(uint8_t addr, uint8_t* message, uint8_t nBytes,uint8_t
proto)
{
 uint8_t bytesRcvd=0;
 unsigned int timeoutCount=0;
 serialBreak(); // Generate the low signal that exceeds 1 char.

27 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 27

http://OpenHardware.org/journal

 serial.flush();
 serial.write(0x55); // Sync byte
 uint8_t idByte = (addr&0x3f) | addrParity(addr);
 serial.write(idByte); // ID byte
 pinMode(txPin, INPUT);
 digitalWrite(txPin, LOW); // don't pull up
 do { // I hear myself
 while(!serial.available()) { _delay_us(100); timeoutCount+= 100; if
(timeoutCount>=timeout) goto done; }
 } while(serial.read() != 0x55);
 do {
 while(!serial.available()) { _delay_us(100); timeoutCount+= 100; if
(timeoutCount>=timeout) goto done; }
 } while(serial.read() != idByte);

 for (uint8_t i=0;i<nBytes;i++)
 {
 // This while loop strategy does not take into account the added time
for the logic. So the actual timeout will be slightly longer then written
here.
 while(!serial.available()) { _delay_us(100); timeoutCount+= 100; if
(timeoutCount>=timeout) goto done; }
 message[i] = serial.read();
 bytesRcvd++;
 }
 while(!serial.available()) { _delay_us(100); timeoutCount+= 100; if
(timeoutCount>=timeout) goto done; }
 if (serial.available())
 {
 uint8_t cksum = serial.read();
 bytesRcvd++;
 if (proto==1) idByte = 0; // Don't cksum the ID byte in LIN 1.x
 if (dataChecksum(message,nBytes,idByte) == cksum) bytesRcvd = 0xff;
 }

done:
 pinMode(txPin, OUTPUT);

 return bytesRcvd;
}

Higher Layers
The provided implementation also contains a LIN “schedule table”. In summary, the LIN

schedule table provides a mechanism to organize a set of messages that need to be repeated
periodically so that they do not interfere with each other. Typically this is used when polling
LIN based sensors.

This schedule table is based on a standard skew heap11 data structure (previously
implemented as open source). A skew heap is essentially a self-sorting tree; in this case the root
node will always be the next LIN frame that needs to be transmitted. The implementation
required about 50 lines of code.

11 http://en.wikipedia.org/wiki/Skew_heap

28 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 28

http://OpenHardware.org/journal

A Call For Participation
This implementation of the LIN protocol is done in less then 200 lines. This is a factor of

5 to 25 times smaller then other “AppNote” based implementations. Although it cannot be
known how much the LIN-related AppNotes have cost chip manufacturer and device makers, it
is very likely that the cost to develop this implementation is similarly much smaller.

Manufacturers, this means that it is no longer cost-effective for a chip manufacturer to
base an implementation on exclusive code. Instead it makes better economic sense for chip
manufacturers to follow these steps:

1. Produce an implementation of the core “Arduino” (or other open source) APIs for the
chip. A significant number of engineers are familiar with these APIs, instantly and
massively broadening the possible user base for the chip.

2. Test existing “applications” written over these open source APIs on the chip, fix bugs,
and release AppNotes describing the work.

3. Fund development of additional AppNotes implemented over these open source APIs.
While this can be done in-house, it is more likely that dedicated open source engineers
will do a better job. Your core expertise is in hardware design and manufacturing, not
software. Development will be much less expensive and will be reusable on your other
chips.

Device makers, it makes sense to insist that chip manufacturer follow the process
outlined above. Do not let a manufacturer lock you into their architecture with a “gift” of a large
and unmaintainable library of inscrutable assembly (or register-banging C code)! Instead, insist
on a fully open (not licensed-locked), modular, community-maintained (but possibly
manufacturer funded) implementation running on top of open source APIs. This will produce
the highest quality software for the lowest cost.

29 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 29

http://OpenHardware.org/journal

Call for Papers
Deadlines
April 1, 2012 for the May issue.

July 1, 2012 for the August issue.

Email finished papers or correspondence to bruce@perens.com

Papers must be on the topic of Open Hardware. The licensing of the Open Hardware must be
compliant with the Open Hardware Definition 1.1 (as it existed on August 2011), at
http://freedomdefined.org/OSHW_draft . Design files must be available, please provide the links
in your article.

We'd be delighted if you'd use LibreOffice and its OpenDocument file formats to write your
article, as that's what we're using. You can also use LibreOffice to convert your article from
Microsoft Word, etc. If it's too much trouble to use LibreOffice, please use whatever you wish
and we'll convert the file. We strongly prefer an editable file format to PDFs.

Articles will remain your property or that of your institution, as you decide among yourselves,
and you will retain all rights of a copyright holder, including the right to reprint as you like with
no fee to us.

If you don't understand how to license your article, we'll do it for you. All articles must be
licensed as specified below.

• The Creative Commons Attribution 3.0 United States (CC BY 3.0) at
http://creativecommons.org/licenses/by/3.0/us/

30 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 30

http://OpenHardware.org/journal
http://creativecommons.org/licenses/by/3.0/us/
http://freedomdefined.org/OSHW_draft
mailto:bruce@perens.com

How to Copy This Journal
Simple Copying Permission

You are welcome to print, copy and redistribute exact copies of this journal, as long as you don't
charge a fee. Please use the copy at http://OpenHardware.org/journal/ as this will always be a
correct version.

Simple Translation and Reformatting Permission

You may translate this journal, or reformat it for presentation in another file format or on a
particular kind of display device. You may not charge for copies. You must include a statement
that this is a translated or reformatted version, identifying yourself and providing your contact
information. You may print, copy, and redistribute the modified version under the same terms as
the original. The modified version must be faithful to the content of the original – don't remove
content or add your own other than your attribution as translator. Your modifications become the
property of the copyright holders of the original version. Please email translations to the editor at
bruce@perens.com, we'll re-publish them on our site.

More Complicated

Most needs will be satisfied by the above paragraphs, without involving a lawyer. You can do
more if you read and understand the license statements for the trademark and content, below.
You're encouraged to consult your legal counsel. You're also welcome to contact us, we will
grant special permissions when appropriate, explain our policies and licenses, etc.

The logo of an integrated circuit chip and a padlock with unlocked hasp is a controlled-use
trademark of the Open Hardware organization. You may reproduce it in the exact context in
which we used it in this journal. Please do not otherwise reproduce the logo except under
authorization of the Open Hardware organization. A contract for use of the logo is under
development.

The compilation which is this issue of the Open Hardware Journal is under this license:

• The Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States (CC
BY-NC-SA 3.0) at http://creativecommons.org/licenses/by-nc-sa/3.0/us/

We used this license because of the problem of unscrupulous individuals who make our content
available for a fee, for example on e-reader download sites, and claim it as their own. We intend
for everyone to be able to read our journal at no charge. We left the individual articles under a
more liberal license, so that our community doesn't suffer from our attempt to control the
unscrupulous folks.

The authors have chosen to license their works under:

• The Creative Commons Attribution 3.0 United States (CC BY 3.0) at
http://creativecommons.org/licenses/by/3.0/us/

31 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 31

http://OpenHardware.org/journal
http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/
mailto:bruce@perens.com
http://OpenHardware.org/journal/

Optionally, you may extract an individual article from the journal, removing references to the
journal, and treat it under the more liberal terms that the author has chosen.

Credits
Our logo is by Laura Rodríguez, know also as "LiR", of Papermint Designs.

Colophon

This issue was edited and produced on a Debian GNU/Linux system. All of the tools used were
Open Source / Free Software. Most of them came directly from the Debian distribution. The
paper authors also appear to have used Open Source / Free Software tools.

The main editing tool was LibreOffice.

32 Open Hardware Journal – February 2012 – http://OpenHardware.org/journal 32

http://OpenHardware.org/journal

	Editorial
	High Performance Software Defined Radio - An Open Source Design
	Introduction and History
	System Architecture
	Hardware – Main Atlas Bus Components
	Atlas Backplane – the heart of it all
	Communications Interface – two to choose from
	Magister USB Interface
	Metis Gigabit Ethernet Interface

	Mercury Direct Sampling Receiver
	Pennylane Direct Up-Conversion (DUC) 500mW Transmitter
	Hardware – Other Atlas Bus Components
	LPU Linear Power Unit
	Excalibur 10MHz Frequency Reference
	Janus Baseband A/D and D/A Converter
	Pinocchio Extender Card
	Hardware – Non-Atlas Bus Components
	Pandora Chassis Enclosure
	Pennywhistle 20W Power Amplifier
	Alexiares Transmit/Receive Filters
	Hardware – Single Board openHPSDR
	openHPSDR Software
	Useful links

	metalfishy: A Pocket Tool for Everyday Carry
	History
	First version
	Current version
	Uses
	Material selection
	Making metalfishies
	Contact

	The Insufficiency of the AppNote and its replacement by Open Source Hardware: as Shown Through a LIN Protocol Implementation
	An Example: The LIN Protocol
	A Glance At LIN
	The LIN Frame
	Higher Layers

	Existing Application Notes
	An Open Source Implementation
	LIN Protocol Frames
	Higher Layers
	A Call For Participation

	Call for Papers
	How to Copy This Journal
	Simple Copying Permission
	Simple Translation and Reformatting Permission
	More Complicated
	Credits
	Colophon

