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Abstract—Secret sharing is important in information and
network security and has broad applications in the real world.
Since an elegant secret sharing mechanism was first proposed
by Shamir in 1979, many schemes have appeared in literature.
These schemes deal with either single or multiple secrets and their
shares have either the same weight or different weights. Weighted
shares mean that different shares have different capabilities in
recovering the secret(s) – a more (less) weighted share needs fewer
(more) other shares to recover the secret(s). In this paper, we
identify a direct relation between the length (i.e., the number of
bits) and the weight of shares and, based on this relation, present
a new Chinese Remainder Theorem (CRT) based weighted
multiple secret sharing scheme. This scheme can also be naturally
applied to other cases such as sharing a single secret with same-
weight shares and is remarkably simple and easy to implement.
Compared to both Shamir’s scheme and Mignotte’s scheme –
the representative of existing CRT based secret sharing schemes,
the new scheme is more efficient than both schemes in share
computation and more efficient than Shamir’s scheme (and as
efficient as Mignotte’s scheme) in secret recovery. One prominent
advantage of the new scheme is that the sizes of shares can vary
distantly to fit different requirements and constraints of various
devices such as sensors, PDAs, cell phones, iPads, hence, the
new scheme is able to apply to broader applications involving
wireless/sensor networks and pervasive computing.

Index Terms—Secret sharing, Shamir’s secret sharing scheme,
Weighted secret sharing, Chinese Remainder Theorem, Polyno-
mial interpolation, Mignotte sequence.

I. INTRODUCTION

A secret sharing scheme starts with a secret and then derives
from it certain shares which are distributed to a group of users
(i.e., participants). The secret may be uniquely determined
(i.e., recovered) only by certain predetermined subgroups of
users which constitute the access structure. An important
category of access structure is the (w,N)-threshold access
structure in which, given N shareholders (i.e., participants),
an authorized group contains any w or more participants and
any group of at most w− 1 participants is an unauthorized
group (a more detail discussion later).

Secret sharing has broad applications in the real world
and can be used for situations in which access to important
resources has to be protected. There is an old story which is
believed to have motivated the secret sharing principle [8]:
a group of pirates accidentally discovered a map that would
lead them to an island full of treasure. Who was going
to be entrusted to keep the map? A safe solution is: the

map should be divided into pieces such that all pieces are
needed to recover the map and missing any piece would
make the map totally unreadable. Thus, every pirate was
given one such piece. Another important application of secret
sharing is e-voting where the vote of every individual will be
absolutely and correctly counted in the overall voting result
but there is no way for other people (including candidates and
authorities) to know whom the individual voted for [13]. In
today’s information and networking era, secret sharing is also
a fundamental issue in network security and can be used in
key management and multi-party secure computation [7].

Since the concept of secret sharing, along with an efficient
mechanism to enforce it, was proposed by Shamir in 1979 [21]
(Blakley also did the similar work at that time [5]), there have
been many papers extending Shamir’s scheme and investigat-
ing new secret sharing schemes [2], [7], [9], [10], [11], [13],
[15], [16], [17], [18], [19], [20], [22], [23]. Secret sharing
schemes can be classified into various categories according to
different criteria. In terms of numbers of secrets to be shared,
two classes can be identified: single secret and multiple secrets.
In terms of shares’ capabilities, two classes can be identified
as well: same-weight shares and weighted shares. Weighted
shares mean that different shares have different capabilities in
recovering the secret(s)–a more weighted share needs fewer
other shares and a less weighted share needs more other
shares to recover the secret(s). Based on the underlying tech-
niques used, two typical classes can be identified: polynomial
based schemes and Chinese Remainder Theorem (CRT) based
schemes. Shamir’s scheme [21] is an elegant polynomial based
scheme and Mignotte’s scheme [17] is a representative among
the CRT based secret sharing schemes.

Threshold secret sharing is one of the most popular classes.
(w,N)-threshold secret sharing means that there are N par-
ticipants (i.e., N shares), any w or more participants (i.e.,
shares), when pooled together, are able to recover the secret(s),
however, less than w participants cannot. Both Shamir’s and
Mignotte’s schemes belong to the (w,N)-threshold class.

In this paper, we identify a simple relation between the
lengths (i.e., the number of bits) of shares and their weights
and based on this relation, we propose a new CRT based
(w,N)-threshold secret sharing scheme. This new CRT based
scheme is very simple in principle and efficient in complexity.
Compared to all existing secret sharing schemes, the new CRT



based scheme is generic and very flexible in supporting all
four secret sharing scenarios: single secret (with same-weight
shares), single secret with weighted shares, multiple secrets
(with same-weight shares), and multiple secrets with weighted
shares. Moreover, the construction of our new scheme make
it efficient and flexible in supporting various devices with
different computational capabilities. Thus, the new scheme is
well suited for secure applications in wireless/sensor networks
and pervasive computing domains. The complexity analysis
and experimental results show that the new CRT based scheme
is more efficient than both Shamir’s scheme and Mignotte’s
CRT based scheme in share computation and more efficient
than Shamir’s scheme (and as efficient as Mignotte’s scheme)
in secret recovery.

The paper is organized as follows. We review typical exist-
ing schemes in Section II. Section III particularly introduces
Mignotte’s scheme. The new CRT based weighted multiple
secret sharing scheme is presented in Section IV, including its
performance and security analyses. The experimental results
and the comparisons with Shamir’s and Mignotte’s schemes
are presented in Section V. Section VI concludes the paper.

Some notations used in the paper are listed as follows:
p: a large prime, the system modulus in Shamir’s scheme.
n: the bit length of the basic numbers used in the system. n
should be large enough to prevent brute-force attacks, such as
n = 128. n is called base-bit. In general, n = dlog(p)e.
w: the disclosure weight and a positive integer. That is, when
the total weight of a set of shares is larger than (or equal to)
w, the secret(s) can be reconstructed. Otherwise, the secret(s)
cannot be recovered. w is also called threshold.
S: the secret to be shared.
Si: the multiple secrets to be shared. i = 1, · · · ,k.
N: the number of participants.
Ui: a user or participant. Note: the terms user and participant
are used interchangeably in the paper.
si: the shares of N participants. i = 1, · · · ,N.
pi: the privileges of participants (i.e., the weights of shares)
and expressed as positive integers. Assume pi < w.

In addition, we use S3(w,n,N,P) to denote a (w,N)-
threshold secret sharing scheme, where w is the disclosure
weight (i.e., threshold), n is the base-bit so that the brute-
force attack is infeasible in the secret space 0 to 2n, N is the
number of participants, and P = (p1, · · · , pN) is a list of users’
privileges. There will be a dealer in schemes which generates
shares and distributes them to users.

II. RELATED WORKS

In this section, we review typical existing schemes to help
understand the properties of secret sharing schemes.

A secret sharing scheme could be either “perfect” or “non-
perfect”. A scheme is perfect if any subset in the access
structure can recover the secret(s) while any unauthorized
subset cannot gain any bit of information (in the information-
theoretic sense) about the secret(s). There are typical per-
fect secret sharing schemes in literature, e.g., Benaloh[4],
Feldman[6], Shamir[21], and typical non-perfect secret sharing

schemes, e.g., Bai[2], Iftene[13], Mignotte[17], etc. Moreover,
the CRT based threshold schemes including ours are not per-
fect schemes. To analyze the security of the threshold schemes
based on CRT in a modern framework, an unitary point of view
on the modern context of security was proposed by Quisquater
et. al [20]. They introduced the concept of ”asymptotically
perfect” which is a natural relaxation of perfect schemes
and proved that the threshold scheme based on CRT with
consecutive primes is asymptotically perfect.

Secret sharing schemes can be either threshold schemes,
e.g. Bai[2], Mignotte[17], Shamir[21], etc, or non-threshold
schemes, e.g., Benaloh[4], Iftene[13], etc. Regarding the ac-
commodation of changes to access structures, some schemes
are “easy to add user”. This means that the dealer can easily
compute a new share and securely give it to the new user
without affecting existing users’ shares. Most of these kinds
of schemes are polynomial based since a new share is just a
new point evaluated on the polynomial.

In terms of shares’ capabilities, two classes can be identi-
fied: same-weight shares and weighted shares. However, most
schemes can be adapted to weighted secret sharing schemes.
For example, in Shamir’s scheme, multiple points on the
polynomial can be assigned to one participant as a more
weighted share.

In particular, Shamir’s scheme is a perfect threshold secret
sharing scheme, and it is based on polynomials and easy to
add users. This scheme can deal with either single secret or
multiple secrets (as in its extension by Franklin et. al. [7]) and
the shares have either the same weight or different weights.
However no matter how one extends Shamir’s secret sharing
scheme, a weighted share having weight pi consists of, in fact,
pi independent shares of weight 1. In response, researchers
have been investigating weighted secret sharing schemes based
on other techniques, e.g., CRT.

Recently, Tamir Tassa et. al. investigated different secret
sharing schemes such as hierarchical threshold secret shar-
ing [25], ideal weighted threshold secret sharing [3], and
multipartite secret sharing [26]. These works are all in line
with Shamir’s scheme in terms of ideal and perfect secrecy and
involve polynomials and interpolation, particularly, Birkhoff
interpolation and bivariate Lagrange interpolation.

III. MIGNOTTE’S (w,N) - THRESHOLD SECRET SHARING
SCHEMES

Mignotte’s scheme is the representative of CRT based
(w,N)-threshold secret sharing schemes. We introduce it in
this section.

Mignotte’s threshold secret sharing scheme [17] uses some
special sequences of integers, called Mignotte sequence.
• Let N be a positive integer, N ≥ 2, and 2 ≤ w ≤ N. An

(w,N)−Mignotte sequence is a sequence of pairwise
co-prime positive integers P1 < P2 < ... < PN such that
∏

w−2
i=0 PN−i < ∏

w
i=1 Pi.

Given a publicly known (w,N)-Mignotte sequence, the scheme
works as follows:



• The secret S is chosen as a random integer such that
β < S < α , where α = ∏

w
i=1 Pi and β = ∏

w−2
i=1 PN−i;

• The shares si are chosen as (ri,Pi) where ri = S mod Pi;
• Given w distinct si1 , ...,siw , S can be recovered from:

S≡ ri1 (mod Pi1)
S≡ ri2 (mod Pi2)

...
S≡ riw (mod Piw).

A generalized Mignotte’s scheme that allows moduli to not
be pairwise co-prime was proposed in [12].

The scheme can also be applied to weighted secret sharing
as follows. Consider S3(w,n,N,P) where P = (p1, · · · , pN) is
users’ privileges (i.e., their shares’ weights). We first generate
a generalized (w,W )-Mignotte sequence P

′
1, ...,P

′
W , where W =

∑
N
i=1 pi. And then we define Pi = [{P′j| j ∈ Pa j}], for all 1 ≤

i≤ N, where {Pa1, ...,PaN} is an arbitrary partition of the set
{1,2, ...,W} such that |Pai|= pi, for all 1≤ i≤ N.

IV. THE CRT BASED WEIGHTED SECRET SHARING
SCHEME

As it can be observed from the above discussion, there exists
a direct relation between the size and weight of a share: i.e.,
the bit length of weight 1 shares, a share of weight pi will
have pi× n bits. In addition, Mignotte’s threshold scheme is
not simple in principle or implementation. The generation of
Mignotte’s sequences and weighted threshold access structure
is difficult and requires additional cost. As a result, we propose
a new CRT based weighted secret sharing scheme which is
simple in principle and efficient in implementation and which
employs (and exhibits) this direct size weight relation.

A. Principle

1) As before, we assume the disclosure weight is w, and n
is the bit length of base numbers. We also assume that
w < n. In general, w is much smaller than n.

2) The secret S will have w× n bits (if not, S can be
extended, for example, by appending some random bits).

3) For a user Ui with privilege pi, select a prime Pi having
pi×n bits and assume pi < w. Note: for simplicity, here
we assume Pis are primes. In fact, pairwise co-primes
are enough for the scheme to work correctly.

4) Compute ri = S mod Pi and assign si = {(ri,Pi)} to Ui
as its share.

5) In the secret reconstruction phase, for any pool of users
Ui1 , Ui2 ,· · ·, Uie , as long as the sum of their weights
is larger than w, i.e., pi1 + pi2 + ...+ pie > w, form the
following congruence system:

S≡ ri1 mod Pi1
S≡ ri2 mod Pi2

...
S≡ rie mod Pie

Then compute and recover S by CRT.
Note: because S has w×n bits and the moduli product P̂ =

Pi1 ×Pi2 × ·· · ×Pie has at least (pi1 + pi2 + · · ·+ pie)× n− e
bits, so P̂ > S, as long as w < n.

It is clear that any share si is just one point (ri,Pi) since we
properly utilize the relation between the weight and bit length
of the corresponding share. In addition, when all pi are equal
to 1, it is a same-weight secret sharing scheme.

In the above discussion, it is assumed that pi1 + pi2 + ...+
pie > w. This guarantees that P̂ > S as long as w < n, so S can
always be uniquely recovered. We can reduce this condition to
pi1 + pi2 + · · ·+ pie ≥w. However, in case pi1 + pi2 + · · ·+ pie =
w, since P̂ can have bit length w×n−w+1 (in the smallest
cases), there needs to limit S to have w×n−w bits.

If S must have w×n bits (even may be very rare in reality),
the new scheme can still work correctly by simply introducing
a hel per, whose modulus HP is the smallest prime of w bits
and whose share is HS = S mod HP. The hel per will be used
as one equation in the CRT congruence system. This will
assure that Pi1×Pi2×·· ·×Pie×HP > S, so S will be recovered
uniquely. Note: when Pjs are not primes but pairwise co-
primes, the smallest number with w bits, which is co-prime to
Pjs, can be used as the hel per.

If S has just n bits, we can easily extend S to w× n (or
w×n−w ) bits by repeating S or appending random bits.

B. Multiple Secrets

Suppose there are k secrets S1, · · · ,Sk to be shared and each
secret has n bits. We can easily extend the newly proposed
CRT based scheme to produce a weighted multiple secret
sharing scheme. We simply concatenate the secrets together
to get k×n bits. There are three cases to consider:

1) k < w: Append random bits to get w×n bits.
2) k = w: Do nothing.
3) k > w: Introduce a hel per with weight (k−w).

C. Complexity Analysis

We analyze the complexity of our new CRT based secret
sharing scheme here. Let us consider the case of the same
weight shares, i.e., p1 = · · · = pN = 1. Other cases can be
analyzed in a similar way.

The classical textbook, “The Design and Analysis of Com-
puter Algorithms” by Aho, Hopcroft and Ullman in 1974 [1],
presents detailed discussions and proofs of Chinese Remainder
Theorem and Polynomial Interpolation. Here we excerpt some
of these results.

From Theorem 8.21 and its Corollary [1], given w moduli
of n bits each, the CRT computation requires time at most
O(wn(log2(wn))loglog(wn)).

From Theorem 8.8 and its Corollary [1], given w moduli
of n bits each, the w residues may be computed in at most
O(wn(log(w))(log(wn))loglog(wn)).

When using these results here for share computa-
tion and secret reconstruction of the new CRT based
scheme, we can deduce that their complexities are
in the order of O(n(log(w))(log(wn))loglog(wn)) and
O(wn(log2(wn))(loglog(wn))) respectively.

Let us consider the complexity of Shamir’s scheme [21].
From Horner’s rule, the evaluation of a polynomial with degree
w requires O(w) (in terms of number of multiplications).



From Theorem 8.14 [1], the interpolation of a polynomial
with w points requires O(w(log2(w))) (multiplications).

Suppose the numbers in Shamir’s secret scheme have n bits,
then each operation will be in the complexity of O(n2) (bit
operations). Thus, the complexities of polynomial evaluation
and polynomial interpolation in terms of bit operations are
O(wn2) and O(w(log2(w))n2) respectively.

It can be observed that the newly proposed CRT based
secret sharing scheme is more efficient than Shamir’s secret
sharing scheme in both share computation and secret recovery.
In Section V, the experimental results on Shamir’s scheme and
the new scheme are presented, which justifies this analysis.
Section V also analyzes Mignotte’s scheme and shows that
the new scheme is more efficient than Mignotte’s scheme in
share computation and is as efficient as Mignotte’s scheme in
secret recovery.

D. Security Analysis

The security of the newly proposed scheme is guaranteed
since the new scheme is solely based on Chinese Remainder
Theorem (CRT) and CRT has been used in many other
CRT based secret sharing schemes. Here we first discuss the
security features shared by the new CRT based scheme and
Shamir’s scheme and then briefly discuss the common security
features of the new scheme and Mignotte’s scheme. In terms
of perfect secrecy, our new scheme is same as Mignotte’s
scheme, i.e., being not a perfect one. However, in terms of the
brute-force attack searching space, our scheme is equivalent to
Shamir’s scheme. Suppose the base-bit in Shamir’s scheme is
n, then the brute-force attack searching space is 2n when there
are less than w shares in the pool. In our scheme, when the
total weight (suppose t) in the pool is less than w, the secret
will have w× n bits, and the moduli product will have t× n
bits. The brute-force attack searching space will be 2(w−t)×n,
which is at least 2n. In this sense, even though our scheme is
not perfect, its security strength is no less than that of Shamir’s
scheme. On the other hand, the shares in Shamir’s scheme have
n bits, same as that of the secret. In contrast, if the secret in
the new scheme has n bits, the shares (with weight 1) can have
n/w bits. This feature makes the new scheme more suitable
to use in power-constrained devices such as sensors and cell
phones.

With regard to Mignotte’s scheme and our new scheme, both
are based on CRT and use the same operation to recover the
secret. As for share generation, they use the same operation
to generate all same weight shares. For the shares of different
weights pi, the new scheme generates pi× n bit primes (or
co-primes) directly. However, Mignotte’s scheme generates a
Mignotte sequence of n bits each first and then gets pi× n
bit (maybe pi × n− pi + 1 bit) primes (or co-primes) by
multiplying pi primes (or co-primes) in the Mignotte sequence.
After generating primes (or co-primes), both schemes use
the same modular operation to get shares. The difference in
generating primes (or co-primes) affects only performance
of the schemes but not security features. As a result, the

new scheme and Mignotte’s scheme have identical security
features.

V. EXPERIMENT AND COMPARISONS

In this section, we present our experimental results and
comparisons with both Shamir’s and Mignotte’s schemes.

A. Comparison with Shamir’s Secret Sharing Scheme

We performed an extensive set of experiments to evaluate
and compare the performance of Shamir’s scheme and the new
CRT based scheme. We simulated the share computation time
and the secret recovery time. In our experiment, we varied
secret size and number of secrets to measure the computation
complexity of both schemes. The code was written in java,
and the experiment was performed on Dell PowerEdge 2850
running Red Hat Enterprise Linux (v. 4) with Dual Core
3.6GHz Processor and 4 GB RAM. The results were obtained
based on average of 10000 runs for each case. Details of
the experiments performed and experimental results are given
below.

Considering the case of same weight shares, we constructed
figures using the complexity analysis of Section IV-C and
the obtained experimental results to compare two schemes.
Specifically, Figures 1 and 2 show the theoretical and ex-
perimental results of the share computation time and the
secret recovery time for single secret with sizes ranging from
64 to 256 bits. For example in Figure 1, the experimental
results come from our simulation and the theoretical results
are based on the complexity analysis of the share computation
of Shamir’s scheme and the new CRT based scheme as shown
in Section IV-C. In this case, they are drawn (automatically
by a software tool: gnuplot) in the formulae of wn2 (for
Shamir’s scheme) and n(log(w))(log(wn))loglog(wn) (for the
new CRT based scheme), specifically with w being equal to
8 and n ranging from 64 to 256. As shown in the figures, the
experimental results match the theoretical analysis well. As
secret size increases, the average computational time increases
too. And the new CRT based scheme shows an obvious
advantage over Shamir’s scheme in both share computation
and secret recovery.
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Fig. 1. Secret size VS share computation time (ms) (disclosure weight=8,
number of participants = 15, number of secrets = 1)

Figure 3 and Figure 4 show similar experiments for multiple
secrets. To share eight secrets with same size, the new CRT
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Fig. 2. Secret size VS secret recovery time (ms) (disclosure weight=8,
number of participants = 15, number of secrets = 1)
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Fig. 3. Secret size VS share computation time (ms) (disclosure weight=8,
number of participants = 15, number of secrets = 8)
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Fig. 4. Secret size VS secret recovery time (ms) (disclosure weight=8,
number of participants = 15, number of secrets = 8)

based scheme needs less computation time in both share
computation and secret recovery.

As shown in these figures, the new CRT based scheme
takes very little time to compute shares and recover secrets.
Depending on different secret sizes, disclosure weights and
numbers of secrets, share computation of the new CRT based
scheme can be 2 to 20 times faster than that of Shamir’s
scheme, while secret recovery of the new CRT based scheme
can be 5 to 50 times faster than that of Shamir’s scheme.

B. Comparison with Mignotte’s Secret Sharing Scheme

Since Mignotte’s secret sharing scheme is also based on
CRT, we will make a detailed comparison between Mignotte’s
scheme and ours in this subsection.

The main difference between our new scheme and
Mignotte’s scheme is that Mignotte’s scheme needs to gen-
erate Mignotte sequences first and then generate modular co-
primes. Hence, we focus on the complexity analysis of these

operations. Let us consider the case of shares s1,s2, ...,sN
with weights p1, · · · , pN respectively. The total weight of these
shares is p1 + p2 + ...+ pN = W , and the disclosure weight is
w. The base-bit is n. There are several steps involved in user
moduli generation of Mignotte’s scheme. First, the generation
of a Mignotte sequence involves generating W pairwise co-
primes P1, ...,PW , sorting them and checking the condition
∏

w−2
i=0 PW−i < ∏

w
j=1 Pj. The main operation involved in the

generation of co-primes is the GCD operation, which is in
O(n2) [24] (Note: GCD stands for Greatest Common Divisor).
For each newly generated integer, we need to check if the
integer is pairwise co-prime with existing integers. Therefore,
the complexity of generating W pairwise co-prime integers is
in O(W 2n2). We can sort the W integers in O(Wlog(W )n). The
computation complexity for multiplying two integers of size
l bits and v bits is in O(lv). When checking the condition
∏

w−2
i=0 PW−i < ∏

w
i=1 Pi, the cost is O(w2n2). Thus, the total

cost of generating Mignotte sequence is in O(W 2n2). Second,
there is a need to multiply pi integers of n bits each to
generate a modulus for a user with weight pi. The complexity
for generating N moduli is in O((p1 − 1)n2 + (p2 − 1)n2 +
...+(pN−1)n2) = O((W −N)n2). Therefore, the total cost of
generating user moduli in terms of bit operation is in O(W 2n2).

Next, let us consider the newly proposed CRT based
scheme. The only operation needed in the new CRT based
scheme is the generation of N pairwise co-prime integers of
length p1n, · · · , pNn. The running time of this operation mainly
depends on the cost of checking whether these numbers are
pairwise co-prime. Thus, the computational complexity is in
O(N2ŵ2n2), where ŵ = max{p1, · · · , pN}.

Consider the case of non-weighted secret sharing, in which
ŵ = 1 and W = N, the complexity of our scheme is in O(N2n2)
which is equal to that of Mignotte’s scheme. However, our
new scheme does not involve additional operations like the
generation of a Mignotte sequence, therefore, our scheme is
more efficient. Consider the case of weighted secret sharing,
in which it is possible that W 2� N2, it can be observed from
our experimental results that our new scheme is still more
efficient than Mignotte’s scheme.
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Fig. 5. Secret size VS user modulus generation Time (ms) (number
of participants = 15, number of secrets = 1, disclosure weight = 4, p̂ =
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1))

To verify the performance of Mignotte’s CRT based scheme
and our new CRT based scheme, we implemented and con-
ducted experiments on Mignotte’s scheme. With weights p̂ =



(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) (i.e., same weighted secret
sharing) as shown in Figure 5, the new CRT based scheme
is more efficient in generating modulus for each user. With
weights p̂ = (1,2,3,1,2,3,1,2,3,1,2,3,1,2,3) (i.e., weighted
secret sharing) as shown in Figure 6, we get the same result
which indicates that the user moduli generation of our new
scheme is more efficient than that of Mignotte’s scheme.

It is worthy to mention that the secret recovery efficiency of
our new scheme is similar to that of Mignotte’s scheme since
both use the identical operation. Also, computing ri = S mod
Pi is same in both schemes.
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Fig. 6. Secret size VS user modulus generation Time (ms) (number
of participants = 15, number of secrets = 1, disclosure weight = 4, p̂ =
(1,2,3,1,2,3,1,2,3,1,2,3,1,2,3))

In summary, our new CRT based scheme is more efficient
than both Shamir’s scheme and Mignotte’s scheme and is
much simpler than Mignotte’s scheme. It is worthy to mention
that even though we just compared the new CRT based
scheme with original Mignotte’s scheme [17], this conclusion
also applies to other more recent CRT based schemes [12],
[14] since they utilize the same principles and have similar
efficiency as the original one.

VI. CONCLUSIONS

We proposed a clean and efficient weighted multiple secret
sharing scheme based on Chinese Remainder Theorem. The
new scheme is flexible in the sense that it can also be naturally
applied to other cases such as sharing a single secret with
same-weight shares in a uniform way. The principle of the
new scheme is simple and its implementation is straight-
forward. Both theoretical analysis and experimental results
were presented and justified that the new CRT based scheme
outperforms Shamir’s secret sharing scheme and Mignotte’s
CRT based scheme. One additional advantage of the new
scheme is that the size of shares can vary distantly to fit
different requirements and constraints of various devices such
as sensors, PDAs, cell phones, laptops, and desktops. Hence,
the new scheme is able to apply to broader applications
in pervasive computing domains. This, again, justifies the
flexibility and adaptivity of the new scheme.

As future work, we will extend the new scheme to deal with
other desirable features such as dynamics and verifiability. We
will also study the applicability of our newly proposed scheme
to real world applications such as secure and efficient e-voting
systems.
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