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emphasizing those aspects which seem to be of greatest 
interest from the standpoint of computer science. A 
number of old Babylonian tablets, many of which have 
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One of the ways to help make computer science re- 
spectable is to show that it is deeply rooted in history, 
not just a short-lived phenomenon. Therefore it is natu- 
ral to turn to the earliest surviving documents which 
deal with computation, and to study how people ap- 
proached the subject nearly 4000 years ago. Archeo- 
logical expeditions in the Middle East have unearthed a 
large number of  clay tablets which contain mathematical 
calculations, and we shall see that these tablets give 
many interesting clues about  the life of  early "computer  
scientists." 
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Introduction to Babylonian Mathematics 

The tablets in question come from the general area of 
Mesopotamia (present day Iraq), between the Tigris and 
Euphrates rivers, centered more or less about the ancient 
city of Babylon (near present-day Baghdad). They are 
covered with cuneiform (i.e. "wedge-shaped") script, a 
form of writing which goes back to about 3000 B.C. The 
tablets of greatest mathematical interest were written 
about the time of the Hammurabi  dynasty, about 1800- 
1600 B.c., and we shall be primarily concerned with 
texts that date from this so-called Old-Babylonian pe- 
riod. 

It is well known that Babylonians worked in a 
sexagesirnal, i.e. radix 60, number system, and that our 
present sexagesimal units of  hours, minutes, and seconds 
are vestiges of their system. But it is less widely known 
that the Babylonians actually worked withfloating-point 
sexagesimal numbers, using a rather peculiar notation 
that did not include any exponent part. Thus, the two- 
digit number 

2,20 

stood for 2 × 60 + 20 = 140, and for 2 + 20/60 = 2~, 
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and for 2/60 + 20/3600, and in general for 140 X 60 ", 
where n is any integer. 

At  first sight this manner  of  representing numbers 
may look very awkward, but in fact it has significant 
advantages when multiplication and division are in- 
volved. We use the same principle when we do calcula- 
tions by slide rule, performing the multiplications and 
divisions without regard to the decimal point location 
and then supplying the appropr ia te  power of  10 later. 
A Babylonian mathematician computing with numbers 
that were meaningful to him could easily keep the ap- 
propriate  power of  60 in mind, since it is not difficult to 
estimate the range of a value within a factor of  60. A 
few instances have been found where addition was per- 
formed incorrectly because the radix points were im- 
properly aligned [7, p. 28], but such examples are sur- 
prisingly rare. 

As an indication of the utility of  this floating-point 
notation, consider the following table of  reciprocals: 

2 30 16 3,45 45 1,20 
3 20 18 3,20 48 1,15 
4 15 20 3 50 1,12 
5 12 24 2,30 54 1,6,40 
6 10 25 2,24 1 1 
8 7,30 27 2,13,20 1,4 56,15 
9 6,40 30 2 1,12 50 

10 6 32 1,52,30 1,15 48 
12 5 36 1,40 1,20 45 
15 4 40 1,30 1,21 44,26,40 

Dozens of tablets containing this information have been 
found, some of which go back as far as the "U r  I I I  
dynasty"  o f  about  2250 B.c. There are also many mul- 
tiplication tables which list the multiples of  these num- 
bers; for example, division by 81 = 1,21 is equivalent to 
multiplying by 44,26,40, and tables of  44,26,40 × k for 
1 < k < 20 and k = 30,40,50 were commonplace.  Over 
two hundred examples of  multiplication tables have 
been catalogued. 

Babylonian "Programming" 

The Babylonian mathematicians were not limited 
simply to the processes of  addition, subtraction, mul- 
tiplication, and division; they were adept at solving 
many types of  algebraic equations. But they did not 
have an algebraic notation that  is quite as t ransparent  as 
ours; they represented each formula by a step-by-step 
list of  rules for its evaluation, i.e. by an algorithm for 
comput ing that  formula. In effect, they worked with a 
"machine  language" representation of formulas instead 
of  a symbolic language. 

The flavor of  Babylonian mathematics  can best be 
appreciated by studying several examples. The transla- 
tions below at tempt  to render the words of the original 
texts as faithfully as possible into good English, without 
extensive editorial interpretation. Several remarks have 

been added in parentheses, to explain some of the things 
that  were originally unstated on the tablets. All numbers 
are presented Babylonian-style, i.e. without exponents, 
so the reader is warned that  he will have to supply an 
appropriate  scale factor in his head; thus, it is necessary 
to remember  that  1 might mean 60 and 15 might mean ¼. 

The first example we shall discuss is excerpted f rom 
an Old-Babylonian tablet which was originally about  
5 X 8 × 1 inches in size. Ha l f  of  it now appears in the 
British Museum, about  one-fourth appears  in the 
Staatliche Museen, Berlin, and the other fourth has ap- 
parently been lost or destroyed over the years. The 
original text appears  in [3, pp. 193-199; 4, Tables 7, 8, 
39, 40; and 8, pp. 11-21]. 

A (rectangular) cistern. 
The height is 3,20, and a volume of 27,46,40 has been 

excavated. 
The length exceeds the width by 50. (The object is to find the 

length and the width.) 
You should take the reciprocal of the height, 3,20, obtaining 18. 
Multiply this by the volume, 27,46,40, obtaining 8,20. (This 

is the length times the width; the problem has been reduced 
to finding x and y, given that x -- y = 50 and xy = 8,20. 
A standard procedure for solving such equations, which 
occurs repeatedly in Babylonian manuscripts, is now used.) 

Take half of 50 and square it, obtaining 10, 25. 
Add 8,20, and you get 8,30, 25. (Remember that the radix point 

position always needs to be supplied. In this case, 50 stands 
for 5/6 and 8,20 stands for 8], taking into account the 
sizes of typical cisterns!) 

The square root is 2,55. 
Make two copies of this, adding (25) to the one and subtracting 

from the other. 
You find that 3,20 (namely 3-~) is the length and 2,30 (namely 

2½) is the width. 
This is the procedure. 

The first step here is to divide 27,46,40 by 3,20; this is 
reduced to multiplication by the reciprocal. The mul- 
tiplication was done by referring to tables, probably by 
manipulat ing stones or sand in some manner  and then 
writing down the answer. The square root  was also 
computed by referring to tables, since we know that  
many tables of  n vs. n ~ existed. Note  that  the rule for 
computing the values of  x and y such that  x -- y = d 
and x y  = p was to form 

sqrt((d/2) ~ + p) 4- (d/2). 

The calculations described in Babylonian tablets are 
not merely the solutions to specific individual problems:  
they actually are general procedures for solving a whole 
class of  problems. The numbers shown are merely in- 
cluded as an aid to exposition, in order to clarify the 
general method. This tact is clear because there are 
numerous instances where a particular case of  the gen- 
eral method reduces to multiplying by 1 ; such a multi- 
plication is explicitly carried out, in order to abide by 
the general rules. Note  also the stereotyped ending, 
"This  is the procedure,"  which is commonly  found at 
the end of  each section on a tablet. Thus the Babylonian 
procedures are genuine algorithms, and we can com- 
mend the Babylonians for developing a nice way to ex- 
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plain an algorithm by example as the algorithm itself 
was being defined. 

Here is another  excerpt f rom the same tablet, this 
t ime involving only a linear equation: 

A cistern. 
The length (in cubits) equals the height (in gars, where 1 gar = 

12 cubits). 
A certain volume of dirt has been excavated. 
The cross-sectional area (in square cubits) plus this volume (in 

cubic cubits) comes to 1,10 (namely 1-~). 
The length is 30 (namely ½ cubit). What is the width? 
You should multiply the length, 30, by 12, obtaining 6; this is the 

height (in cubits instead of gars). 
Add 1 to 6, and you get 7. 
The reciprocal of 7 does not exist; what will give 1,10 when 

multiplied by 7? 10 will. 
(Hence 10, namely ~, is the cross-sectional area in square cubits.) 
Take the reciprocal of 30, obtaining 2. 
Multiply 10 by 2, obtaining the width, 20 (namely a x cubit). 
This is the procedure. 

Note  the interesting way in which the Babylonians dis- 
regarded units, blithely adding area to volume; similar 
examples abound, showing that  the numer ica l  algebra 
was of pr imary importance to them, not the physical or 
geometrical significance of the problems. At the same 
time they used conventional units of  measure (cubits, 
even "gars"  and the understood relation between gars 
and cubits), in order to set the scale factors for the 
parameters.  And they "appl ied"  their results to practical 
things like cisterns, perhaps because this would make 
their work appear  to be socially relevant. 

In this problem it was necessary to divide by 7, but 
the reciprocal of  7 didn ' t  appear  on the tables because 
it has no finite reciprocal. (There is an infinite repeating 
expansion 1/7 - 8,34,17,8,34,17,..., but we have no 
evidence that  the Babylonians knew this.) In such cases 
where the reciprocal table was of no avail, the text 
always says, in effect, "What  shall I multiply by a in 
order to obtain b?" and then the answer is given. This 
wording indicates that  a multiplication table is to 
be used backwards;  for example, the calculation of  
11,40 - 35 = 20 [3, p. 329] could be read off f rom a 
multiplication table. For  more difficult divisions, e.g. 
1,26,40 - 43,20 = 15 [3, p. 246; 5, p. 8], a slightly 
different wording was used, indicating perhaps that  a 
special division procedure was employed in such cases. 
At  any rate we know that  the Babylonians were able to 
compute 

7 + 2,6; 28 ,20--  17; 10,12,45 + 40,51; 

and so on. One Old-Babylonian table of  reciprocals is 
known that  gives reciprocals of  irregular numbers to 
three sexagesimal places, but it is not extremely accurate 
[3, p. 16]. 

Further Examples 

We have noted that general algorithms were usually 
given, accompanied by a sample calculation. In rare 

instances such as the following text (again f rom the 
British Museum),  the style is somewhat  different [5, p. 
19]: 

The sum of length, width, and diagonal is 1,1 and 7 is the area. 
What are the corresponding length, width, and diagonal? 
The quantities are unknown. 
1,10 times 1,10is 1,21,40. 
7 times 2 is 14. 
Take 14 from 1,21,40 and 1,7,40 remains. 
1,7,40 times 30 is 33,50. 
By what should 1,10 be multiplied to obtain 33,50? 
1,10 times 29 is 33,50. 
29 is the diagonal. 

The sum of length, width, and diagonal is 12 and 12 is the area. 
What are the corresponding length, width, and diagonal? 
The quantities are unknown. 
12 times 12 is 2,24. 
12 times 2 is 24. 
Take 24 from 2,24 and 2 remains. 
2 times 30 is 1. 
By what should 12 by multiplied to obtain 17 
12 times 5 is 1. 
5 is the diagonal. 

The sum of length, width, and diagonal is 1 and 5 is the area. 
Multiply length, width, and diagonal times length, width, and 

diagonal. 
Multiply the area by 2. 
Subtract the products and multiply what is left by one-half. 
By what should the sum of length, width, and diagonal be 

multiplied to obtain this product? 
The diagonal is the factor. 

This text comes f rom the considerably later "Seleucid" 
period of Babylonian history (see below), which may 
account for the difference in style. I t  treats a problem 
based on the rather remarkable  formula  

d -- ½((1 q- w q- d) ~ - 2 A ) / ( l  q- w W d), 

where 

A = lw is the area of  a rectangle, 
d -- x / ( l  2 -b w 2) is the length of its diagonals. 

(There is ample evidence from other texts that  the Old- 
Babylonian mathematicians knew the so-called Pythago- 
rean theorem, over I000 years before the time of  
Pythagoras.)  The first two sections quoted above work 
out the problem for the cases (1, w, d) = (20, 21, 29) and 
(3, 4, 5) respectively, but without calculating l and w; 
we know from other texts that the solution tox  -b y = a, 
x ~ q_ y2 = b was well known in ancient times. The de- 
scription of  the calculation in these two sections is un- 
usually terse, not naming the quantities it is dealing 
with. On the other hand, the third section gives the same  
procedure entirely without  numbers.  The reason for this 
may be the fact that  the stated parameters  1 and 5 can- 
not possibly correspond to the length-F width-Fdiagonal 
and the area, respectively, of  any rectangle, no matter  
what powers of  60 are attached! Viewed in this light, 
teachers of  computer  science will recognize that  the 
above text reads very much like the solution to an ex- 
aminat ion in which an impossible problem has been 
posed. (Note also that  the second section follows the 
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general procedure,  as stated in the third section, very 
faithfully when it comes  to  dividing 1 by 12, instead o f  
using the reciprocal  o f  12.) 

Instances o f  a lgor i thms wi thout  accompany ing  num- 
bers are very rare; here is another  one, this t ime an 
Old-Babylonian  text f rom the Louvre  [4, p. 39; 8, p. 71]: 

Length and width is to be equal to the area. 
You should proceed as follows• 
Make two copies of one parameter• 
Subtract 1. 
Form the reciprocal. 
Multiply by the parameter you copied. 
This gives the width, 

In  other  words,  if x + y = xy, it is possible to  compu te  
y by the procedure  y = (x - 1) -1 x. The fact tha t  no  
numbers  are given made  this passage part icularly h a r d  
to  decipher,  and it was not  proper ly  unde r s tood  for  
m a n y  years  (see [9, pp. 73-74]) ;  hence we can see the 
advantages  o f  numerical  examples. 

The above procedure  reads surprisingly like a pro- 
g ram for a " s tack  mach ine"  like the Bur roughs  B5500l 
N o t e  tha t  bo th  in this example and in the very first one 
we discussed we are told to  make  two copies o f  some 
number ;  this indicates tha t  actual  numerical  calcula- 
t ions generally des t royed the operands  in the process o f  
finding a result. Similarly we find in other  texts the in- 
s t ruct ion to " K e e p  this number  in your  head"  [6, pp. 
50-51], a remarkable  parallelism with t oday ' s  not ion 
tha t  a compute r  stores numbers  in its " m e m o r y . "  In  
another  place we read, in essence, "Rep lace  the sum o f  
length and width by 30 times itself" [3, p. 114], an 
ancient  version of  the assignment  s ta tement  " x  : =  x/2". 

C o n d i t i o n a l s  a n d  I t e r a t i o n s  

So far we have seen only "s t ra ight- l ine"  calculations,  
wi thout  any branching or decis ion-making involved. In  
order  to const ruct  a lgori thms that  are really nontrivial  
f rom a compute r  scientist 's point  o f  view, we need to  
have some operat ions  that  affect the flow of  control .  

But alas, there is very little evidence o f  this in the 
Babylonian  texts. The only thing resembling a condi-  
t ional  b ranch  is implicit in the opera t ion of  division, 
where the calculat ion proceeds a little differently if the 
reciprocal  o f  the divisor does not  appear  in the table. 

We d o n ' t  find tests like " G o  to step 4 if x < 0" ,  
because the Babylonians  d idn ' t  have negative numbers ;  
we d o n ' t  even find condi t ional  tests like " G o  to step 5 
if x = 0",  because they d idn ' t  t reat  zero as a number  
either! Ins tead of ha,~ing such tests, there would  effec- 
tively be separate a lgor i thms for the different cases. (For  
example, see [3, pp. 312-314] for a case in which one 
a lgor i thm is step-by-step the same as another ,  but  sim- 
plified since one o f  the parameters  is zero.) 

N o r  are there many  instances o f  iteration. The basic 
operat ions  underlying the multiplication o f  high-preci- 
sion sexagesimal numbers  obviously involve iteration, 

and these opera t ions  were clearly unders tood  by the 
Babylonian  mathemat ic ians ;  but  the rules were ap- 
parent ly  never written down.  N o  examples showing in- 
termediate  steps in mult ipl icat ion have been found.  

The fol lowing interesting example dealing with com-  
p o u n d  interest, taken f rom the Berlin M u s e u m  collec- 
tion, is one o f  the few examples o f  a "DO I = 1 TO N" in 
the Babylonian  tablets tha t  have been excavated so far 
[3, pp. 353-365;  4, Tables  32, 56, 57; 5, p. 59; 8, pp. 
118-120]:  

I invested 1 maneh of silver, at a rate of 12 shekels per maneh (per 
year, with interest apparently compounded every five years). 

I received, as capital plus interest, 1 talent and 4 manehs. 
(Here 1 maneh = 60 shekels, and 1 talent = 60 manehs.) 
How many years did this take? 
Let 1 be the initial capital. 
Let 1 maneh earn 12 (shekels) interest in a 6 (= 360) day year. 
And let 1,4 be the capital plus interest. 
Compute 12, the interest, per 1 unit of initial capital, giving 12 

as the interest rate. 
Multiply 12 by 5 years, giving 1. 
Thus in five years the interest will equal the initial capital. 
Add 1, the five-year interest, to 1, the initial capital, obtaining 2. 
Form the reciprocal of 2, obtaining 30. 
Multiply 30 by 1,4, the sum of capital plus interest, obtaining 32. 
Find the inverse of 2, obtaining 1. (The" inverse" here means the 

logarithm to base 2; in other problems it stands for the value 
of n such that a given valuef(n) appears in some table.) 

Form the reciprocal of 2, obtaining 30. 
Multiply 30 by 30 (the latter 30 apparently stands for 32 -- 2, for 

otherwise the 32 would never be used and the rest of the 
calculation would make no sense), obtaining 15 ( = total 
interest without initial capital if the investment had been 
cashed in five years earlier). 

Add 1 to 15, obtaining 16. 
Find the inverse of 16, obtaining 4. 
Add the two inverses 4 and 1, obtaining 5. 
Multiply 5 by 5 years, obtaining 25. 
Add another 5 years, making 30. 
Thus, after the 30th year the initial capital and its interest will 

be 1,4. 
. . .  (Here about 4 lines of the text have broken off. Apparently 

there is now a question of checking the previous answer.) 
• . .  giving 12 as the interest rate. 

Multiply 12 by 5 years, giving 1. 
Thus in five years the interest will equal the initial capital• 
Add 1, the five-year interest, to 1, the initial capital, obtaining 2, 

the capital and its interest after the fifth year. 
Add 5 years to the 5 years, obtaining 10 years. 
Double 2, the capital and its interest, obtaining 4, the capital 

and its interest after the tenth year. 
Add 5 years to the 10 years, obtaining 15 years. 
Double 4, the capital and its interest, obtaining 8, the capital 

and its interest after the fifteenth year. 
Add 5 years to the 15 years, obtaining 20 years. 
Double 8, obtaining 16, the capital and its interest after the 

twentieth year. 
Add 5 years to the 20 years, obtaining 25 years. 
Double 16, the capital and its interest, obtaining 32, the capital 

and its interest after the twenty-fifth year. 
Add 5 years to the 25 years, obtaining 30 years. 
Double 32, the capital and its interest, obtaining I, 4, the capital 

and its interest after the thirtieth year. 

This long-winded and ra ther  c lumsy procedure  reads 
a lmost  like a macro  expansion ! 

674 Communications July 1972 
of Volume 15 
the ACM Number 7 



A more sophisticated example involving compound 
interest appears in another section of  the Louvre tablet 
quoted earlier. The same usurious rate of  interest (20 
percent per annum) occurs, but now compounded an- 
nually: 

One kur (of grain) has been invested; after how many years will 
the interest be equal to the initial capital? 

You should proceed as follows. 
Compound the interest for four years. 
The combined total (capital + interest) exceeds 2 kur. 
What can the excess of this total over the capital plus interest 

for three years be multiplied by in order to give the four-year 
total minus 2? 

2,33,20 (months). 
From four years, subtract 2,33,20 (months), to obtain the desired 

number of full years and days. 

Translated into decimal notation, the problem is to de- 
termine how long it would take to double an investment. 
Since 

1.728 = 1.23 < 2 < 1.24 = 2.0736, 

the answer lies somewhere between three and four years. 
The growth is linear in any one year, so the answer is 

1.24 -- 2 33 20 
1.24 _ 1.23 X 12 = 2 q- ~ q- 36---~ 

months less than four years. This is exactly what was 
computed [5, p. 63]. 

Note that here we have a problem with a nontrivial 
iteration, like a "WHILE" clause: The procedure is to 
form powers of  I q- r, where r is the interest rate, until 
finding the first value of n such that (1 + r)" >_ 2; then 
calculate 

12((1 -F r)" -- 2)/((1 q- r)" -- (1 -Jr- r)"-1), 

and the answer is that the original investment will 
double in n years minus this many months. 

This procedure suggests that the Babylonians were 
familiar with the idea of linear interpolation. Therefore 
the trigonometric tables in the famous "Plimpton tab- 
let" [6, p. 38-41] were possibly used to obtain sines and 
cosines in a similar way. 

ample, a symbol for zero was now used within numbers, 
instead of the blank space that formerly appeared. The 
following excerpts from a text in the Louvre Museum [3, 
pp. 96-103; 8, p. 76] indicate some of the other ad- 
vances: 

From 1 to 10, sum the powers (literally the "ladder") of 2. 
The last term you add is 8,32. 
Subtract 1 from 8,32, obtaining 8,31. 
Add 8,31 to 8,32, obtaining the answer 17,3. 

The squares from 1 X 1 = 1 to 10 X 10 = 1,40; what is their 
sum? 

Multiply 1 by 20, namely by one-third, giving 20. 
Multiply 10 by 40, namely by two thirds, giving 6,40. 
6,40 plus 20 is 7. 
Multiply 7 by 55 (which is the sum of 1 through 10), obtaining 

6,25. 
6,25 is the desired sum. 

Here we have correct formulas for the sum of a geo- 
metric series 

~-~2 k = 2nq - (2" - -  1) 
k = l  

and for the sum of a quadratic series 

kffil ~ n k. 

These formulas have not been found in Old-Babylonian 
texts. 

Moreover, this same Seleucid tablet shows an in- 
creased virtuosity in calculation; for example, the roots 
to complicated equations like 

x y =  1, x q - y =  2,0,0,33,20 

(solution: x = 1,0,45 and y = 59,15,33,20) are com- 
puted. Perhaps this problem was designed to demon- 
strate the use of the new zero symbol. 

An extremely impressive example of the Seleucid era 
calculating ability appears in another Louvre Museum 
tablet [3, pp. 14-22]. It is a 6-place table of  reciprocals, 
which begins thus: 

By the power of Anu and Antum, whatever I have made with my 
hands, let it remain intact. 

The Seleueids 

Old-Babylonian mathematics has several other in- 
teresting aspects, but a more elaborate discussion is be- 
yond the scope of this paper. Very few tablets have been 
found that were written after 1,600 B.c., until approxi- 
mately 300 B.c. when Mesopotamia became part of the 
empire of Alexander the Great 's  successors, the "Seleu- 
cids." A great number of tablets from the Seleucid era 
have been found, mostly dealing with astronomy which 
was highly developed. A very few pure mathematical 
texts of  this era have also been found; these tablets 
indicate that the Old-Babylonian mathematical tradition 
did not die out during the intervening centuries. 

Indeed, some noticeable progress was made; for ex- 

Reciprocal 1 
Reciprocal 1,0,16,53,53,20 
Reciprocal 1,0,40, 53,20 
Reciprocal 1,0,45 

and so on, ending with 

2,57,8,49,12 
Reciprocal 2,57,46,40 

2,59,21,40,48,54 

is 1 
59,43,10,50,52,48 
59,19,34,13,7,30 
59,15,33,20 

20,19,19,34,45,35,48,8,53,20 
20,15 
20,4,16,22,28,44,14,57,40,4, 

56,17,46,40 

Reciprocal 3 is 20 

First part; results for 1 and 2, incomplete. 
Table of Nidintum-Anu, son of Inakibit-Anu, son of Kuzu, 

priests of Anu and Antum in Uruk. Author Inakibit-Anu. 
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Apparently Inakibit-Anu (whom we shall call Inaki- 
bit for short) was the author of this remarkable table; 
and his son made a copy. Another tablet or tablets, now 
lost, continued the table to numbers beginning with 
3, 4, . . . .  

There are exactly 231 sexagesimal numbers of six 
digits (i.e. six sexagesimal places) or less which have a 
finite reciprocal and which begin with 1 or 2. This table 
contains every one of them, without exception. And 20 
further entries, giving reciprocals of numbers that have 
more than six digits, are also included. It is not clear 
how these 20 extra numbers were selected. (See the Ap- 
pendix to this paper for further discussion.) 

How did Inakibit prepare this table? The simplest 
procedure would be to start with the pair of numbers 
(1, 1) and then to go repeatedly from (x, y) to (2x, 30y), 
(3x, 20y), and (5x, 12y) until no more numbers x of six 
or less digits are possible. (In fact this procedure can be 
simplified further if we note that only those values x of 
the form 2~3~'5 k need to be considered where either i _< 1 
o r j  --- 0 or k = 0; other numbers are multiples of 60.) 
There is some evidence that this is exactly what he did; 
for example, several tables are known that start with 
some pair of reciprocals and then repeatedly apply one 
of these three operations [6, p. 13-16]. An even more 
convincing argument for this hypothesis is that Inaki- 
bit's values for 3 -22 and 3 -23 are both wrong; and most of 
the errors in 3 -2a are accounted for if we assume that he 
calculated 3 -~8 from the incorrect value of 3 -~2. 

The complete table requires that 721 pairs (x, y) 
must be generated, and of course it is very laborious to 
work with such high-precision numbers. Moreover, even 
after all these pairs (x, y) have been computed, the work 
is far from done; it is still necessary to sort them into 
order ! Inakibit 's table is the earliest known example of a 
large file that has been sorted; and this is one of the 
reasons his work is so impressive, as anyone who has 
tried to sort over 700 cards by hand will attest. To get 
some idea of the immensity of this task, consider that it 
takes many hours to sort 700 large numbers by hand 
nowadays; imagine how difficult it must have been to do 
this job in ancient times! Yet Inakibit must have done it, 
since there is no simple way to generate such a table in 
order. (As we might expect, he made a few mistakes; 
there are three pairs of lines which should be inter- 
changed to bring the table into perfect order.) 

Thus, Inakibit seems to have the distinction of being 
the first man in history to solve a computational prob- 
lem that takes longer than one second of time on a 
modern electronic computer ! 

Suggestions for Further Reading 

If you have been captivated by Babylonian mathe- 
matics, there are several good books on the subject 
which give further interesting details. The short intro- 
ductory text Episodes from the Early History of  Mathe- 

matics by A.A. Aaboe [1] can be recommended, as can 
B.L. van der Waerden's well-known treatise Science 
Awakening [9]. Much of the deciphering of Babylonian 
mathematical texts was originally due to Otto Neuge- 
bauer, who has written an authoritative popular ac- 
count The Exact Sciences in Antiquity [7]; see especially 
his fascinating discussion, pp. 59-63; 103-105, of the 
problems that plague historical researchers in this field. 

For more detailed study, it is fun to read the original 
source material. Neugebauer published the texts of all 
known mathematical tablets,, together with German 
translations, in a comprehensive series of three volumes, 
during the period 1935-1937 [3, 4, 5]. A French edition 
of the texts [8] was published in 1938 by F. Thureau- 
Dangin, an eminent Assyriologist. Then in 1945, Neuge- 
bauer and A. Sachs published a supplementary volume 
[6], which includes all mathematical tablets discovered 
in the meantime (mostly in American museums). The 
Neugebauer-Sachs volume is written in English, but un- 
fortunately these tablets are not quite as interesting as 
the ones in Neugebauer's original German series. A list 
of developments since 1945 appears in [7, p. 49]. 

Most of the Babylonian mathematical tablets have 
never been translated into English. The translations 
above have been made by comparing the German of 
[3, 4, 5] with the French [8]; but these two versions ac- 
tually differ in many details, so the Akkadian and 
Sumerian vocabularies published in [4, 8, 6] have been 
consulted in an attempt to give an accurate rendition. 

Since only a tiny fraction of the total number of clay 
tablets has survived the centuries, it is obvious that we 
cannot pretend to understand the full extent of Babylo- 
nian mathematics. Neugebauer points out that the job 
of discovering what they knew is something like trying 
to reconstruct all of modern mathematics from a few 
pages that have been randomly torn out of the books in 
a modern library. We can only place "lower bounds" on 
the scope of Babylonian achievements, and speculate 
about what they did not know. 

What about other ancient developments? The Egyp- 
tians were not bad at mathematics, and archeologists 
have dug up some old papyri that are almost as old as 
the Babylonian tablets we have discussed. The Egyptian 
method of multiplication, based essentially in the binary 
number system (although their calculations were deci- 
mal, using something like Roman numerals)~ is espe- 
cially interesting; but in other respects, their use of 
awkward "unit  fractions" left them far behind the 
Babylonians. Then came the Greeks, with an emphasis 
on geometry but also on such things as Euclid's al- 
gorithm; the latter is the oldest nontrivial algorithm 
which still is important to computer programmers. (See 
[7, 9] for the history of Egyptian mathematics, and [1, 7, 
9] for Greek mathematics. A free translation of Euclid's 
algorithm in his own words, together with his incom- 
plete proof of its correctness, appears in [2, p. 294-296].) 
And then there are the Indians, and the Chinese; it is 
clear that much more can be told. 
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Appendix 

The 20 additional entries included in Inakibit's table are some- 
what mysterious. In 19 of the cases, the number has a reciprocal 
with six digits or less; the exception is 3 z3 = 2 ,1 ,4 ,8 ,3 ,0 ,  7, whose 
reciprocal has 17 sexagesimal digits. 

Let's say that a sexagesimal number is a Q-number if it has 
six or less digits, while its reciprocal is finite and has more than 
six digits and begins with 1 or 2. There are 132 Q-numbers in 
all, only 19 of which appear in Inakibit's table. Five of these are 
217, 223, 311, 3 TM, and 32z; they constitute all Q-numbers of the forms 
2 ~, 3 ., or 5 ~, and it is likely that such numbers appeared in special 
tables. However, the Q-number 611 is not included, so it is not 
simply a matter of perfect powers being included. The three- 
digit Q-numbers 2131° and 2239 are excluded, so it not a matter of 
including the smallest cases. The Q-numbers which do appear, 
besides the five listed above, are 3951, 3105 a, 31155; 213951, 2131'52, 
213135 a (but not 2131554); 31851, 2339, 2731°, 212311, 2183 TM, 2203 ~, 29259, 
2'2452. It is perhaps noteworthy that 31153 does not appear, but its 
multiple 3u5 ~ does. 

Since so many Q-numbers are missing, we may conclude that 
Inakibit continued his table by giving the reciprocals of all six- 
digit numbers up to 59,43,10, 50, 52,48, not taking advantage of 
symmetry. Hence the complete table contained the reciprocals of 
at least 721 six-digit numbers, and it probably filled three clay 
tablets in all. 
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