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Abstract

This note provides historical perspectives and background on the moti-
vations which led to the invention of the modulation spaces by the author
almost 25 years ago, as well as comments about their role for ongoing re-
search efforts within time-frequency analysis. We will also describe the role
of modulation spaces within the more general coorbit theory developed
jointly with Karlheinz Gröchenig, and which eventually led to the develop-
ment of the concept of Banach frames and more recently to the so-called
localization theory for frames. A comprehensive bibliography is included.
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1 Introduction

By now the modulation spaces have fixed their place in the zoo of Banach spaces
of functions and distributions, as described in the preface to this issue by Karl-
heinz Gröchenig and Christopher Heil. They have specific relevance to almost
all of the central topics of time-frequency analysis, and in particular to Gabor
analysis. According to Gröchenig’s descriptions of this field (see [115]) time-
frequency analysis can be characterized as that part of mathematical analysis
for which the use of time-frequency shift operators plays a central role. Time-
frequency shift operators are defined to be the unitary operators on L2(Rd)
(or on L2(G), for a LCA group G) given by π(λ) = π(t, ω) = MωTt, with
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[Mωf ](z) := exp(2πiω · z)f(z) and [Ttf ](z) := f(z − t), and where λ = (t, ω) is
a point in the time-frequency place R2d (which is also sometimes called phase
space). The single most important tool within TF-analysis is certainly the short-
time Fourier transform, or STFT. The STFT (which is often called the sliding
window Fourier transform, see [1]), of a function f with respect to a window g
is given (first for f, g ∈ L2(R)) by

Sgf(x, y) :=
∫

R
e−2πiy·z ḡ(z − x)f(z)dz〈f,MyTxg〉 for (x, y) ∈ R2. (1)

Note that the STFT is symmetric with respect to f and g, i.e.

Sgf(x, y) = e−πix·y · Sfg(−x,−y) . (2)

This is important as it shows that decay properties of Sgf are joint properties of
f and g. Due to its good time-frequency concentration and its invariance under
the Fourier transform, the Gauss kernel g0(x) := e−πx2

is a very good choice of
window. In fact, Dennis Gabor argued that it attains equality in the Heisenberg
uncertainty relation. The formula Sgf(x, y) = e−2πix·y · Sĝf̂(y,−x) implies

|Sg0f(x, y)| = |Sg0 f̂(y,−x)| for f ∈ L2(R) . (3)

Thus the behavior of Sg0 f̂ is exactly the same as that of Sg0f , rotated by 90◦ in
the TF-plane. Since g0 is a Schwartz function, the STFT with window g0 can be
extended to the space of all tempered distributions (which have an STFT of at
most polynomial growth), and furthermore even to spaces of ultra-distributions
since g0 has exponential decay (see [36, 115]). It is nowadays a well-established
principle, that, for example, the behavior of a function or distribution in terms
of variable smoothness over time can be qualitatively well-described by means of
the decay and summability properties of its STFT (with respect to a window g
that has good TF-concentration). This is a very natural concept, and the mod-
ulation spaces can be described in such terms. Let us recall now the “modern”
description of modulation spaces.

Given a non-zero window g ∈ S(Rd), and 1 ≤ p, q ≤ ∞, the modulation
space M s

p,q(Rd) consists of all tempered distributions f ∈ S ′(Rd)) such that
Vgf ∈ Ls

p,q(R2d) (a weighted mixed-norm space). The norm on M s
p,q is

‖f‖Ms
p,q

= ‖Vgf‖Ls
p,q

=

(∫
Rd

(∫
Rd

|Vgf(x, ω)|p dx

)q/p

(1 + |ω|)sq dω

)1/p

.

In fact, we believe that such norms quantifiably describe properties of functions
which are at least as relevant as those described by the standard Lp-norms.
Just recall that Lp-norms depend only on the distribution of values taken by a
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function, independently of where those values are taken. Hence, any measure-
preserving transformation acts isometrically on Lp(Rd), yet typically destroys
smoothness and decay properties. In contrast, a modulation space norm would
distinguish between smooth rearrangements and non-smooth ones of a given
function.

Another aspect of TF-analysis is the fact that additional insight can be
gained by studying the properties of linear operators (e.g., time-varying sys-
tems) by analyzing not only their (distributional) kernels, but also their (distri-
butional) spreading functions, which describe the amount of TF-shifts “occurring
within a given operator” (cf. [146, 85]).

Gabor analysis, in turn, can be roughly described as that part of TF-analysis
which operates with a sampled version of Sgf , and is typically concerned with
properties of so-called Gabor or Weyl–Heisenberg systems which arise in the
form (π(λ)g)λ∈Λ, where Λ C Rd × R̂d is a lattice. The terminology refers to
Dennis Gabor’s seminal paper of 1946 [107], where he proposed a kind of “atomic
decomposition” of arbitrary functions as a double series using such a system with
Λ = Z2d C Rd × R̂d and g = g0.

Without going into further details let us mention here that many questions
in TF-analysis make use (explicitly and more often implicitly) of modulation
spaces in one form or the other. The reason for today’s wide-spread interest
in TF-analysis is its many applications, for example in the modeling of wireless
channels, or for the analysis of linear operators as mentioned above.

The present paper tries to provide a little bit of background and a look
behind the scenes at how the modulation spaces came to life more than twenty
years ago, and what further developments have been spurred by their study in
the meantime. Although we have built a rather lengthy bibliography containing
virtually all references to papers explicitly referring to modulation spaces, we
are sure that there are many others not known to us, using modulation-space
conditions only implicitly. Contributors to the field are encouraged to send
updates to the author in order to have their contributions integrated into the
NuHAG bibliography system and subsequently to the Gabor server.1

2 The Motivation for Modulation Spaces in 1983

I start my narration with a description of my background and interests at the
time of the development of the theory of modulation spaces, which certainly
started to take shape in the spring of 1980, when I spent a memorable semester
(my first visiting position) at the applied mathematics department of the Uni-
versity of Heidelberg at the invitation of Wolf Beiglböck and Michael Leinert.
I had just done my Habilitation at the University of Vienna in the spring of

1http://www.univie.ac.at/nuhag-php/home/gabor.php
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1979, on the subject of Banach convolution algebras (see, e.g., [51]). It took
place shortly after a winter-school at our institute in February 1979, organized
by Siegfried Grosser (see [53]). It was at this occasion that I presented for the
first time “my Segal algebra”2 S0(R), as the smallest isometrically character
invariant Segal algebra.

I reported that I had discovered a Fourier-invariant Banach space, which was
characterized by so-called uniform partitions of unity, as they had been used
(already) by Norbert Wiener [204, 205] in his work on Tauberian theorems. One
of the spaces, used in Wiener’s description of what I call his second Tauberian
theorem, was the Segal algebra called “Wiener’s algebra” in [174]. I had observed
earlier that this space, described by the symbol W (C0,L

1)(Rd), was the minimal
Segal algebra which at the same time was also a pointwise C0(Rd)-module (see
[50]). Looking back now it is easy to recognize that this was the beginning of
my approach to Wiener amalgam spaces.

Classical amalgam spaces have been treated in a number of papers in the
early 1980s, see, e.g., [15, 16, 27, 102]. During my semester in the spring of 1980
in Heidelberg I took a closer look into the most general approach to what I called
Wiener-type spaces W (B,C) (which are now called Wiener amalgam spaces).
These spaces are described by the global behavior — decay and summability,
that is expressed by the global component C — of the local property that is
expressed by the local component B. I remember working hard on giving a very
compact description of this concept in “full generality,” but also having fun with
my brand-new typewriter. The outcome, and still a standard reference, was
the article [60].3 That paper showed that certain continuous descriptions are
equivalent to corresponding discrete characterizations, using so-called BUPUs
(bounded uniform partitions of unity). Moreover, basic convolution relations for
Wiener amalgam spaces were derived. While Wiener amalgams have been an
important tool within the majority of research topics I have worked on since
that time, they are still not widely used, and some useful information appears
to be hidden in publications which have received little attention by the scientific
community, such as [66, 67, 68, 69, 89, 70, 92, 86] or the Master’s thesis [45] of
Thomas Dobler from 1989.

While my first interest in Banach spaces of functions (already during my
Ph.D. thesis) was in weighted Lp-spaces and their generalizations (a still in-
formative summary of properties of weight functions is given in [50],4 and see
[121, 118] for recent accounts of the subject), soon function spaces defined by
dyadic decompositions turned out to be natural in the derivation of convolution
estimates. I found such spaces also in the work of Carl Herz and Raymond John-

2A PDF version of the extended abstract to this event is available at
http://www.univie.ac.at/nuhag-php/bibtex/login/files/areyfegi79 winter79.pdf

3see http://www.univie.ac.at/nuhag-php/bibtex/open files/fe83 wientyp1.pdf
4see http://www.univie.ac.at/nuhag-php/bibtex/open files/fe79-2 gewfkta.pdf
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son [133, 140], and above all in the work of Jaak Peetre and Hans Triebel (see
[165, 14, 193, 194] for just some of the relevant books on the subject available
at that time). I was familiar with (real and complex) interpolation theory for
Banach spaces, and that it is desirable to have families of Banach spaces of dis-
tributions which are closed under duality (as long as the test functions are dense
in the Banach space and therefore the dual can be considered as a Banach space
of distributions as well), and interpolation methods. The prototypical examples
of this type were the Besov–Triebel–Lizorkin spaces. The unified view on these
spaces by means of their Fourier-analytic description (which in turn was built on
Paley–Littlewood theory) was well-described in the work by Peetre and Triebel,
long before wavelet theory arose. In fact, I consider the work on atomic de-
compositions of Besov spaces using the ϕ-transform, due to Frazier and Jawerth
[103, 104, 105, 106], to be an immediate consequence of those Fourier-analytic
characterizations of Besov spaces: the ϕ-transform allows one to apply the Shan-
non sampling principle to the different contributions in the dyadic frequency
bands. Moreover, interpolation theory provides for the method of retracts with
respect to vector-valued Banach spaces in order to establish interpolation results
for these spaces (cf. [14]).

In the years since my Ph.D. thesis (in 1974), I had been very much inter-
ested in all kinds of Banach convolution algebras (in particular weighted Lp-
spaces), but I had also done a lot of reading on Banach spaces of sequences
(so-called BK-spaces), and generalizations of the family of Lp-spaces, such as
Lorentz and Orlicz spaces. From all that I drew the conclusion that it does not
make sense to concentrate too much on the study of individual Banach function
spaces, but that one should consider whole families of Banach spaces, which
ideally should be (almost) closed under duality and, say, complex interpolation.
The class of all weighted Lp-spaces is such an “ideal family,” and Besov spaces
and Triebel–Lizorkin spaces provide another example. In this light the class of
solid BF-spaces5 appeared as a very natural domain for many considerations. I
had learned about complex interpolation methods (cf. [14, 165, 194]), and that
the complex interpolation of weighted interpolation spaces results in another
weighted Lp-space, while the applications of real interpolation (according to the
real K-method) results in decomposition spaces, the decomposition domains be-
ing given by the level sets of the moderate function m = w1/w2, typically dyadic
coronas in the case of polynomial weight functions w1, w2.

3 Basic Properties of Modulation Spaces

It is not necessary to report here on all of the important properties of modu-
lation spaces, for at least two reasons. First, most of the important facts with

5Such spaces appear under the name of Banach function spaces in the work of Luxemburg
and Zaanen [209].
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respect to TF-analysis are well-presented in Gröchenig’s book [115], and second,
it would take far too much space within this note. So let me reveal some hidden
connections: Because the original approach to modulation spaces was based on
the understanding that one is “just doing” a form of Wiener amalgam spaces
on the Fourier transform side, typically spaces of the form W (F Lp,Lq)(Rd), it
was clear to me from the very beginning (and indeed a motivation to provide a
description of Wiener amalgam spaces in full generality) that one can invoke all
the results from the theory of amalgam spaces already presented at two confer-
ences in 1980 (see [56] and [60]). This concerns facts about the independence of
the use of the specific choice of the partition of unity (the famous BUPUs), the
equivalence of the “discrete and continuous norms” (for suitable “windows”),
the density of test functions, or the translation and modulation invariance of
these spaces. Results concerning duality and pointwise multipliers were even
given in a more general form by describing pointwise multipliers of decomposi-
tion spaces [73, 63], see also [11, 87]. In fact, Wiener amalgam spaces are exactly
the decomposition spaces obtained by coverings using balls of uniform size. It
also can be shown that some of the modulation spaces are Banach algebras with
respect to pointwise multiplication by verifying the corresponding convolution
properties of Wiener amalgams on the Fourier transform side (cf. [186, 71, 60]).
A similar statement can be made with respect to the interpolation methods that
were discussed for Wiener amalgam spaces in [56].

The original report [59] described most of those properties in the context of
locally compact Abelian groups, because they are the natural context for these
kind of function spaces (much in the same way that LCA groups are the natural
context for harmonic analysis as such, according to André Weil, see [202]). On
the other hand, the conference report [60] put its emphasis on the family of (by
now classical) modulation spaces M s

p,q(Rd). In fact, this program worked out
well, and it was even possible to verify trace theorems (restrictions to subgroups
for sufficiently smooth functions), showing exactly the same loss of smoothness as
for the corresponding Besov classes. Those details were finally published in [71].
The important atomic characterizations were first reported at an approximation
theory conference in Edmonton in the summer of 1986 (the publication [65]
resulted from this event), during my first trip to North America. It started
with a talk on Wiener amalgam spaces at the Canadian Summer Meeting in
Newfoundland6 (June 1986), and ended with my participation at the ICM in
Berkeley where I gave a summary of the properties of S0(Rd). Unfortunately,
plans to collect the various facts concerning S0(Rd) into a larger publication have
not been realized even yet, but hopefully this will change in the near future with
an ongoing book project, carried out jointly with Georg Zimmermann.

6I specifically remember enjoying drinking fresh milk there, for it was soon after the Cher-
nobyl catastrophe, which contaminated the grass all over Austria with the result that there
“was no milk” for some time.
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From my personal point of view, a lot of the general results about the mod-
ulation spaces, i.e., at least for the classical spaces M s

p,q(Rd), were known from
the beginning, even in the context of general locally compact Abelian groups,
and described in the report [60].7 This is true in particular for embeddings of
spaces with different parameters into each other, or the invariance properties
of the spaces with respect to translation, modulation, dilation or the Fourier
transform.

4 The Most Important Modulation Space: M 1(Rd)

It is fair to say that (aside from L2 and the L2-Sobolev spaces, which are mod-
ulation spaces as well as Besov spaces) the first “true” modulation space was
(M1(Rd), ‖ · ‖M1), introduced under the name S0(Rd) in [57], see below. By
pointing out some of the important properties of this space, we will empha-
size that it may still be considered as the prototypical model of a modulation
space and is probably the most important in the entire family of modulation
spaces. In fact, not only is it itself a suitable tool for research, but it also
provides a not-so-technical introduction to the theory of generalized functions
and their Fourier transforms (see [64], and hopefully soon a complete summary
in an ongoing book project on the subject). It allows us to express basic facts
about the Fourier transform and about the Kohn–Nirenberg and spreading sym-
bols of operators (cf. [85]) based on the concept of the Banach Gelfand triple
(S0(Rd),L2(Rd),S′

0(Rd)), avoiding both Lebesgue integration and the theory of
topological vector spaces. Therefore I recommend such an approach to engineers
who obviously have to go beyond “ordinary functions” for modeling but wish to
avoid the heavy abstraction of the theory of topological vector spaces.8

When the space M1(Rd) was introduced in 1979, the name S0(Rd) was
chosen in order to indicate that this space is the smallest among all the Segal
algebras that are isometrically invariant under modulations. Nowadays I would
describe it simply as the smallest (non-trivial) Banach space of functions which
has the extra property of being isometrically invariant under all TF-shifts π(λ),
λ ∈ Rd × R̂d. This space was also discovered by Jean-Paul Bertrandias inde-
pendently. In a technical report (around 1982) they described the space and
its Fourier invariance. However, he and his coauthors did not recognize the
large potential of this space (based on a number of further properties) and its
potential for a number of applications in analysis.

Given the other properties of general Segal algebras (e.g., they are dense
subspaces of L1(Rd) and are also homogeneous Banach spaces in the sense

7This report was only recently published (in 2003), in the proceedings of the ICWA [149].
Consequently, the modulation spaces went widely unnoticed for a long time.

8PDF-versions of two talks delivered at a conference (Bremen: January 2006) are found at:
http://www.univie.ac.at/nuhag-php/bibtex/open files/fe03-1 modspa03.pdf
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of Katznelson [144]), this extra property is equivalent to being a pointwise
FL1(Rd)-module. Indeed, this was the key for introducing the description of
M1(Rd) as W (FL1, `1)(Rd). I certainly owe a lot to Hans Reiter, who helped
me to recognize the usefulness of S0(Rd) by asking me whether I could prove a
variety of properties (essentially those known to hold for the Schwartz–Bruhat
spaces). He was interested in these properties because he wanted to give a
detailed account of André Weil’s work [203] related to the metaplectic group
(published in [175, 176]). It was Viktor Losert who showed in [154, 155] that
S0(G) is the only Segal algebra defined for general LCA groups that satisfies
a number of functorial properties. More recently, Franz Luef was able to show
that S0(Rd) is not only a good replacement for the Schwartz–Bruhat space in
the work of Weil, but also in the work of Marc Rieffel on non-commutative tori
[156, 157].

Obviously S0(Rd) and other modulation spaces of the form M1
w(Rd) are very

good tools for describing the perturbation invariance of Gabor frames, be it in
the context of jitter error (implicitly, such results appear in [75]), or even more
interestingly for the case of “varying the TF-lattice,” as described in the paper
with Norbert Kaiblinger [83]. It is one of the corollaries in this paper that for
any g ∈ S0(Rd), the set of all parameters (a, b) with a > 0, b > 0 such that the
Gabor family with lattice constants (a, b) is a Gabor frame is an open set, and
that the dual Gabor atom depends continuously in the S0-norm on the lattice
constants within this open sets. Hence the calculation of a dual Gabor window
g̃ for (g, a, b) can be replaced by the calculation of the dual g̃1 for (g, a′, b′),
where (a′, b′) could be — just for the sake of illustration — a sufficiently close
rational approximation to (a, b), at the cost of a small error in the S0-norm.
This in turn implies that deviation of operator, which uses g̃1 instead of g̃ for
the reconstruction of signals f from their STFT with window g over the lattice
aZd × bZd, will be small in operator norm on L2(Rd). In the proof many of
the interesting properties of S0(Rd) are used, and it is quite clear that without
the use of modulation spaces fairly involved sufficient conditions (most likely
some form of sufficient condition for g to belong to S0(Rd)) would have to be
formulated in order to obtain results of this kind.

One of the deep results used in the course of this paper is the insight that a
regular Gabor frame generated from a Gabor window in S0(Rd) has its dual Ga-
bor window g̃ = S−1(g) in S0(Rd) as well, because the Gabor frame operator S,
which is invertible on L2(Rd) and bounded on S0(Rd) is automatically invert-
ible as an operator on S0(Rd) (cf. [122], the rational case was done by different
methods in [78]). This is in sharp contrast to the situation for general L2(Rd)-
windows, where even the Bessel property of the corresponding Weyl–Heisenberg
families may vary wildly depending on the underlying lattice [81].

In the past years it has also been shown that S0(Rd) and its dual are conve-
nient tools for the treatment of generalized stochastic processes, in particular for
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stationary ones. Some key results in this direction had been obtained already
in the early 80s, but not published. The most relevant visible contribution in
this direction is the 1989 Ph.D. thesis [137] of Wolfgang Hörmann, and the 2003
Ph.D. thesis of Bernard Keville [145]. In their work the various key properties of
S0(Rd), including Fourier invariance and the existence of a kernel theorem, show
that S0(Rd) is a very convenient and technically relatively simple, yet flexible,
tool for this context. As in the deterministic case, the distributional setup of
S′

0(Rd) makes the Fourier transform and its inverse much more symmetric. One
does not need different arguments in order to describe the Fourier transform
and the inverse Fourier transform (the spectral representation of stochastic pro-
cesses). More recently there are the papers [199, 197, 198] by Patrik Wahlberg
which make use of these modulation spaces in a stochastic context. He also
introduced vector-valued modulation spaces very recently in [200].

We also want to emphasize the role of S0(G) as a natural domain for the Pois-
son formula (in standard or symplectic form). It had been observed by Tolimieri
and Orr in [190] that Poisson’s formula can be used to derive the fundamental
identity for Gabor analysis. In full generality this principle is described in the
recent paper [86]. The validity of Poisson’s formula over LCA groups is also one
of the cases where the use of S0(G) instead of the Schwartz–Bruhat space S(G)
provides more general statements with less technical effort.

The restriction theorem for S0(Rd) also allows us to apply ordinary point-
wise sampling (and, conversely, quasi-interpolation operators [84]) to functions
in S0(Rd). In particular, the sufficient conditions described in the paper by
A. J. E. M. Janssen [139] are satisfied for f ∈ S0(Rd). Consequently, one can
calculate the samples of a dual Gabor window g ∈ S0(Rd) by calculating the
dual Gabor window of the sampled version of the given Gabor window. This
has far-reaching consequences and leads in particular to the possibility of ap-
proximating dual Gabor atoms for (g, a, b) numerically by using finite models:
If the samples of a Gabor atom g ∈ S0(R) are choosen in a suitable manner, as
well as appropriate discrete parameters (an, bn) the dual atom within the finite
context can be used to obtain a good approximation of the dual Gabor atom
g̃ (in the S0(R)-sense) by means of quasi-interpolation methods (see [143] or
[182]).

Finally let us mention that the definition of S0(Rd) also captures features
relevant to the context of classical summability theory. Results of this kind have
been worked out in a recent series of joint papers with Ferenc Weisz (among
them [93, 94]), providing a long list of classical kernels within S0(Rd).

5 Thinking in Terms of Families: Banach Frames

The Segal algebra S0(Rd), together with L2(Rd) and the dual space S′
0(Rd),

allows us to prove many useful properties and to discuss a number of issues
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that arise in a natural way in the context of harmonic analysis in general, and
in particular within Gabor analysis (cf. the results provided by [95, 88]). For
example, one can formulate the fact that Wilson bases are a suitable family of
orthonormal bases for modulation spaces by stating that the mapping from f to
its Wilson coefficients establishes a unitary Gelfand triple isomorphism between
(S0,L

2,S′
0) and (`1, `2, `∞). In other words, the usual orthonormal expansion

of elements from the Hilbert space L2(Rd) with respect to a Wilson orthonormal
basis allows us to characterize the elements of S0(Rd) as exactly those functions
in L2(Rd) which have an absolutely convergent Wilson expansion. Moreover,
if one chooses a Wilson basis generated by a Schwartz function, then one can
identify S′

0(Rd) with the subspace of tempered distributions which have bounded
Wilson coefficients. Since the first appearance of Wilson bases in [44], a num-
ber of constructions have been obtained by different people. More or less as
an immediate reaction to a discussion with Ingrid Daubechies in 1989, when
she disclosed the construction described in [44] to me, it was clear that these
bases should be well-suited to characterize the modulation spaces, very much as
wavelet bases are well-suited to characterize the Besov–Triebel–Lizorkin spaces.
The details are published in [79, 80]. More recent papers on Wilson bases are
[192, 168, 17, 150, 206]. An alternative way to characterize modulation spaces
via weighted mixed-norm conditions on their coefficients are the local Fourier
bases, such as the ones constructed by Coifman and Meyer in [4, 29]. Therefore
it may not be surprising that modulation spaces arise in the characterization of
spaces of tempered distributions which show a certain decay rate for the non-
linear least n-term approximations with respect to such expansions (cf. [123]).
(Besov spaces played a similar role for wavelet expansions in the early work of
Popov and DeVore). In this context the case p ≤ 1 appears to be most relevant,
see [109]. It is worthwhile noting that modulation spaces with these parameters
have already been treated in Triebel’s very early paper [195], while [173] is a
very recent contribution to the subject.

Since Wilson bases are not true Weyl–Heisenberg families, but are systems
typically obtained from tight Gabor frames of redundancy 2 by suitable pair-
ings (see [44]), one may naturally ask whether a similar characterization is also
possible using proper Gabor frames. Recall that according to the Balian–Low
principle the existence of Gabor Riesz bases (and in particular orthonormal Ga-
bor bases) for L2(Rd) with generator g ∈ S0(Rd) or even g ∈ W (C0,L

1)(Rd), is
excluded. Again, we will explain the situation for the Gelfand Triple (S0,L

2,S′
0)

only. Assume that we have a Gabor atom g ∈ S0(Rd) which defines a Gabor
frame (gλ)λ∈Λ, i.e., the frame operator S is invertible on L2(Rd). In this situation
a deep result on the automatic invertibility of S over S0(Rd) (cf. [122, 78]) implies
that the dual atom g̃ = S−1(g) belongs to S0(Rd) as well. Hence the coefficient
operator C : f 7→ cλ = 〈f, π(λ)g〉, λ ∈ Λ, which is first of all defined on L2(Rd),
extends to a bounded linear mapping from the Gelfand triple (S0,L

2,S′
0) into
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(`1, `2, `∞). It has closed range because there exists a right inverse R, which is
simply of the form c = (cλ) 7→

∑
λ∈Λ cλπ(g̃), that maps (`1, `2, `∞) back into

(S0,L
2,S′

0), with R ◦C = Id at all three levels. It is also possible to change the
order of g̃ and g above, so that one comes in a linear way to the minimal norm
coefficients necessary to represent a distribution f as an unconditionally conver-
gent double series using the Gabor building blocks (π(λ)g)λ∈Λ, with coefficients
cλ = 〈f, π(λ)g̃〉.

In fact, we see here a simple example of the much more general concept of a
Banach frame for Gelfand triples, which was introduced by Karlheinz Gröchenig
in [113] for the context of individual Banach spaces. So in fact, the above
statement9 describes a retract of Gelfand triples, which is more than just having
three Banach frames. Indeed, the concept of Gelfand triples puts emphasis on
the fact that the mappings at the different levels are natural continuations of
each other, very much as the Fourier transform at the L2-level is the unique
extension to all of L2(Rd) of the ordinary Fourier transform defined for S0(Rd)
(given by Riemann integrals) or L1(Rd) (using the Lebesgue integral).

Quite similar statements hold true for regular and irregular Gabor families,
and are often immediate consequences of the general coorbit theory developed
in [75, 76]. The results of these papers can be applied to the (irreducible)
Schrödinger representation of the reduced Heisenberg group and yield results
for the family of all M s

p,q(Rd)-spaces (see [77] for the translation process be-
tween group representation concepts and signal processing terminology). For
sufficiently nice elements of M1

w or the Schwartz space, such as the Gauss-
function or finite linear combinations of Hermite functions, one can guarantee
that any sufficiently dense, uniformly separated set of points (λi)i∈I in the time-
frequency plane (or phase space) Rd × R̂d can be used to represent any f as a
series of the form

∑
i∈I ciπ(λi)g, with coefficients belonging to some weighted

mixed-norm space sequence space resembling the weighted mixed-norm space
used to define M s

p,q(Rd).
Another insight gained by the study of modulation spaces and more gen-

eral function spaces is the idea of equivalence of orthonormal bases (or frames),
which are typically bases (or Banach frames) for a whole family of Banach spaces
“around” the original Hilbert space. For example, one of the fine properties of
all the “good” wavelet transforms, based on admissible wavelets with sufficient
decay, smoothness, and vanishing moments, is the fact that these systems are
equally well-suited to describe any of the Besov–Triebel–Lizorkin spaces. In par-
ticular, operators such as the localization operators in [42], or wavelet thresh-
olding operators, preserve the membership of a function in one of those spaces
(see e.g. [47]).

In a completely similar way, good Gabor frames allow us to characterize the
modulation spaces, and Wilson basis provide unconditional bases for this family

9In interpolation theory one uses the notion of a retract, see [14].
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of spaces. Wilson bases were rigorously developed in the paper [44], of which
I learned already during a first discussion with Ingrid Daubechies in late 1989
(the paper [79] grew out of the observation that they should do more or less the
same for the modulation spaces as what the wavelet bases do for the classical
smoothness spaces.)

With further generalizations going on — e.g., the alpha-modulation spaces,
and coorbit spaces with respect to sections, as developed in a series of papers by
Dahlke and his coauthors, see [99, 40, 41, 24, 171] — it has became clear that
also in this more general context, there are equivalence classes among the various
orthonormal bases for L2(Rd) that have particular interesting properties. For
example, one can call two such bases `1-equivalent if the set of all absolutely
convergent series are the same. More generally, one obtains narrower equivalence
classes if one poses similar requirements for certain families of sequence spaces
instead of the single space `1. In wavelet theory this phenomenon is well-known:
if one wants to characterize distributions in Besov spaces, one has to use wavelet
bases with atoms satisfying decay and moment conditions. There is also a benefit
from these restrictions: the bases in those smaller equivalence classes exhibit a lot
of robustness (e.g., to jitter error). In contrast, from the point of view of Hilbert
space theory, all the orthonormal bases are “equivalent,” although they are not
equally well-suited for practical purposes. For example, the orthonormal Gabor
system at critical density, i.e., with g = 1[0,1] and a = 1 = b, shows very little
robustness against jitter perturbations. Furthermore one cannot characterize
S0(R) with this basis.

As there are now different families of Banach spaces, the modulation spaces
and Besov spaces being typical cases, the question of mutual embeddings arises.
Already the Ph.D. thesis of Peter Gröbner [112] contained optimal embedding
results between Besov and (alpha-)modulation spaces, while the embeddings
among the classical modulation spaces are covered by the corresponding results
for Wiener amalgams. More recent results are obtained by Kasso Okoudjou [160]
and Joachim Toft ([186] and many other papers ([188, 187, 189] by this author),
and we should also mention [119] and [135] in this context.

6 Usefulness of Modulation Spaces

It is a true (but maybe trivial) statement that any new family of Banach spaces
of distributions will lead to new mathematical results, some of which are just
contributing to clarification of concepts or to a comparison between new families
and established ones. New results which help to answer questions arising from
applications typically serve much better as explanations of why a new family of
spaces should be studied more closely. For a demonstration of the relevance of
modulation spaces, the theory of pseudo-differential operators comes to mind.
There is already a long list of publications related to the use of modulation
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spaces in pseudo-differential operator theory, e.g., [184, 119, 185, 151, 152, 169,
39, 129, 120, 2, 13, 19, 22, 186, 188, 187, 170, 12, 23].

The development started with the work of Kazuya Tachizawa who described
the behavior of classical pseudo-differential operators on modulation spaces in
[184, 178], while at the same time it became more and more clear that it is
natural to describe pseudo-differential operators themselves (resp. their Kohn–
Nirenberg or spreading symbols) also in terms of the modulation spaces. One of
the most interesting results in this direction goes back to Christopher Heil and
Karlheinz Gröchenig, improving on the classical Calderón–Vaillancourt theorem
[120]. Modulation spaces are also implicitly used in [131], but also completely
independently in the work of Johannes Sjöstrand [181], and N. Lerner [153], cf.
also [116, 125].

There are also other connections to the theory of pseudo-differential opera-
tors. Only recently it has been discovered (see [20]) that the so-called Shubin
classes Qs are in fact typical modulation spaces (M2

vs
in the notation of [115]),

with radially symmetric weights on the time-frequency plane. Various interesting
properties (aside from the obvious invariance of these spaces under metaplectic
transformations, including the Fourier transform) can be derived from such a
characterization. For example, they are pointwise algebras (as well as convolu-
tion algebras) for s > d/2. Shubin classes have been discussed in some detail
from the viewpoint of time-frequency analysis in papers such as [20, 37, 21]. In
an alternative description, they are of the form L2

ws
∩ H2

s(Rd), the intersection
of a weighted L2-space with a classical Sobolev space.

The description of time-varying channels for wireless communications is an-
other area where the use of the spreading function is quite useful and very helpful.
Due to the limited distance between the sending station and the receiver, as well
as a maximal Doppler shift due to the maximal possible speed of movement of
the receiver, the communication channels may be modeled as slowly time-varying
channels, or, respectively, as “underspread linear systems”. Such systems are
the subject of an active area of research, where time-frequency methods play a
significant role (see [85, 158, 128, 124]). Beam-forming can be interpreted as a
task of looking for approximate eigenvectors for these systems under the side
constraint of keeping their norms in the modulation spaces M1

vs
(Rd) small in

order to maximize TF-concentration as well as robustness of the system. It is
this area of application which shows mathematical similarities with the theory of
Calderón–Zygmund operators. While Calderón–Zygmund operators are almost
diagonalized by “good wavelet systems,” underspread operators appear to be
almost diagonalized by the Banach frames of Gabor type which are built from
well-concentrated Gabor atoms. New results from the theory of Banach algebras
(generalizing Wiener’s inversion theorem [174]), imply that the inverse, resp.
pseudo-inverse, of the corresponding matrices share various types of off-diagonal
decay properties with the doubly-infinite matrices arising in this context.
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7 What Came After Modulation Spaces?

Seeing the modulation spaces and the Besov spaces side by side (e.g. as in [43,
132]) as rather parallel theories with a lot of similarities — but also differences
— it is natural to ask in which sense they might be made “comparable” or
connected. I suggest two possible answers.

The first is provided by the theory of coorbit spaces and their atomic charac-
terizations, which was developed together with Karlheinz Gröchenig in the late
1980s. An important impetus for this work came during a summer school orga-
nized by DMV in 1985 (with courses provided by Roger Howe, Detlev Poguntke
and Elias Stein), which I attended together with Gröchenig. Here we learned
(mostly from Howe) a lot about the (reduced) Heisenberg group and its relevance
for many branches of analysis [?]. In the same year the paper [127] appeared (I
had seen a preprint some time earlier) on the decomposition of functions into
building blocks of “constant shape”. Then, in late 1986, I received notice of
Yves Meyer’s report [159], describing his first construction of an orthonormal
wavelet system. From the beginning it was clear that these new wavelet systems
are unconditional bases for a large class of Banach spaces which had already
played an important role in analysis, for example in connection with the the-
ory of Calderón–Zygmund operators (such as the real Hardy space H1(Rd) or
BMO, and of course Lp-spaces for 1 < p < ∞). A short visit to Yves Meyer in
Paris in February 1987 confirmed to me that a fascinating development within
mathematical analysis had started. Having in front of us both the modula-
tion spaces and the Besov–Triebel–Lizorkin spaces, it was natural to look for a
joint background, which we found in the theory of integrable group representa-
tions. This theory was developed jointly with Gröchenig in a series of papers
([74, 75, 76, 77, 113]). In the context of these papers one starts (based on work
of Duflo and Moore [49]) with a general integrable and irreducible representation
π of some locally compact group G on a certain Hilbert space H. Depending
on whether one uses the Schrödinger representation of the Heisenberg group or
the standard representation of the affine group (the “ax + b”-group), one would
characterize different Banach spaces of distributions via the so-called generalized
wavelet or voice transform. Indeed, one obtains the modulation and the Besov
spaces in this way, by using these two representations.

The second option would be to interpolate the geometries which are used in
the atomic characterization of these two families of spaces (namely, uniform ver-
sus dyadic partitions of unity). This idea leads to the so-called alpha-modulation
spaces, discussed below.

Since one has both Besov and modulation spaces over Rd sharing a number
of joint properties, it was natural from the very beginning to look for ways
of “interpolating” between the two families. The obvious way — the use of
standard interpolation methods — did not work out, but a relatively natural
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approach using (geo)metric ideas did turn out to be feasible. The foundations
of this theory were described in the Ph.D. thesis of Peter Gröbner (worked
out between 1980 and 1992).10 In fact, the definition of the so-called alpha-
modulation spaces was motivated by the general theory of decomposition spaces
(cf. [73, 63]).

In the last few years the alpha-modulation spaces have received a lot of
attention through the work of Massimo Fornasier, Lasse Borup and Morten
Nielsen [73, 63, 161, 22, 99, 101, 23, 24, 25, 41]. Among other results, the
existence of Banach frames for these spaces has been established.

The developments around modulation spaces and their generalizations — i.e.,
the general coorbit theory in its various forms — has also led to the introduction
of the concept of localization for frames. Especially in the time-frequency con-
text, localization of frames has a natural meaning: a regular or irregular Gabor
frame resp. the elements of its dual frame (which are thought to have a “natural
center within the TF-plane”) can be considered uniformly concentrated around
their respective centers if their STFTs show a uniform decay (same order, joint
constants). Technically, the concept of localization appeared in two different
and independent ways. The team of Radu Balan, Peter Casazza, Christopher
Heil, and Zeph Landau came up with this notion in their work on “excess and
redundancy” of frames, see [6, 7], following their earlier work [5] on excess of
Gabor frames. The other approach is based on concepts from the theory of
Banach algebras, especially the inverse-closedness of certain algebras of infinite
matrices which are dominated by well-concentrated convolution-type matrices.
The key publication in this direction is due to Karlheinz Gröchenig [117], where
localization of a frame with respect to some given orthonormal system is defined.
Subsequently, a concept of intrinsic localization and related concepts of mutual
localization of a (dual) pair of Banach frames, expressed in terms of their (cross)-
Gramian matrices, have been developed, see e.g., the paper [100] by Fornasier
and Gröchenig, and this also was developed in [6]. Further interesting results in
this direction can be expected in the near future, expanding the range of situa-
tions where such arguments can be employed. In view of the recent paper [101],
I believe that many cases will be found where such principles can be applied to
Banach frames that are obtained by applying suitable discretization procedures
to continuous frames (that are indexed by some metric space, so that elements
with parameters “far away from each other” naturally show little correlation).

10According to Peter’s diary the first suggestions for this topic of the thesis had been made
during my visiting professorship in Heidelberg in the spring of 1980. His thesis took a very
long time because he was pursuing research as an “amateur,” while working full time as a high
school teacher.
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8 What should we call a Modulation Space?

Since there now exist various generalizations of the classical modulation spaces
M s

p,q(Rd), it has become an issue as to how far one can or should stretch the
terminology, and in particular which features need to be satisfied by a space in
order to call it a modulation space (at least in the wider sense). Let us jump
right to our proposed answer to this question: Modulation spaces should be
those Banach spaces of distributions on a LCA group which are described by
the behavior of their STFT. But let us make this statement more precise and
for this purpose review various options, again including historical aspects.

The modulation spaces M s
p,q, which one might now call the “classical mod-

ulation spaces,” have a number of specific features, including the following.
On the Fourier transform side they are Wiener amalgam spaces of the form
W (F Lp, `q

ws
), or equivalently: they can be characterized using a mixed Lp-

Lq-norm conditions on the STFT, with integration in the time-direction first
[115, Chap. 11], and with weights of polynomial type which depend only on the
frequency variable. In other words, the classical modulation spaces are a spe-
cific family of coorbit spaces (as described in [75, 77])arising via the Schrödinger
representation of the reduced Heisenberg group through time-frequency shift op-
erators (the resulting “generalized wavelet transform” is then just the STFT).
We think that this is the most important feature of modulation spaces, and
should be taken as characteristic of this terminology, rather than the specific
form of solid BF-spaces which are used in the definition.

Let us recall the different aspects of the components which are used to build
the classical (and more recent variants of) modulation spaces:

• If one wants to start within the space of tempered distributions (for sim-
plicity or because no more is needed), then of course it is important to
admit only weights of at most polynomial growth if one is interested in a
family of Banach spaces that will be closed under duality and (complex)
interpolation.

• One can still keep the approach via BUPUs on the Fourier transforms as
long as one uses only subexponential weights, such as weights of the form
ξ 7→ eβ|x|α , 0 ≤ α < 1, β > 0, or, more generally, weight functions which
satisfy the so-called Beurling–Domar non-quasi-analyticity condition [174,
177]. Such weights occur in the early report [59, 71], and weights of this
kind are the subject of the work of Nenad Teofanov and Stevan Pilipovic
[168, 170]. In the latter papers, the notion of ultra-modulation spaces is
introduced, which naturally reminds us of the need to make use of ultra-
distribution spaces as a reservoir to select from if one wants to establish a
family of spaces which is closed under duality. On the other hand, certain
aspects of those spaces are covered in a different way by the general coorbit



MODULATION SPACES: LOOKING BACK AND AHEAD 125

theory developed in [74], where the reservoir is the dual space of a coorbit
space associated to some L1

w(G)-space over G = Rd × R̂d = phase space.

• The dependence of the weight on the frequency variable is another aspect
of the original approach. It has already been removed in Gröchenig’s de-
scription of modulation spaces in [115], e.g. the spaces Mp

vs
. In fact, radial

weight functions of polynomial growth over phase space are particularly
attractive, because they give rise to a new family of modulation spaces
which are invariant with respect to metaplectic transformations, including
partial Fourier transforms. As already mentioned above, one obtains the
Shubin classes for the choice p = 2. In turn, according to a recent result
by Hogan and Lakey, the Shubin classes can be characterized via weighted
`2-conditions on their Hermite coefficients.

• There is no reason why one should not allow subexponential radial weights
on phase space, such as w(x, y) = exp(

√
(x2 + y2)).

Summarizing, we can say that the terminology of modulation spaces should
be used for Banach spaces of (ultra-)distributions which are characterized by
the membership of STFTs (with respect to the Gaussian window g0) in some
solid and translation invariant Banach function space over phase space. Only
recently it has been shown [31] that there is a joint dense subspace of S0(Rd)
resp. L2(Rd) which is contained in all of these spaces.

Moreover, as a consequence of the atomic theory developed in the context of
coorbit spaces in [75, 76], one has immediate characterizations of those general
modulation spaces using sufficiently dense regular or irregular Gabor families
generated from sufficiently good atoms, i.e., from one of the modulation spaces
M1

w. Since such atomic characterizations (cf. [65]) are also quite typical for
the case of the classical modulation spaces, we have another argument for our
suggestion above.

As a final remark let us mention that the name “modulation space” refers
to the fact that the STFT describes the behavior of f under convolution with a
modulated version of g , due to the following identity ([115], p. 39)

|Vgf(x, ω)| = |(Mωg) ∗ f(x)|.
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[18] K. Bittner and K. Gröchenig, Direct and inverse approximation theorems
for local trigonometric bases, J.Approx. Theory, 117(1):74–102, 2002.

[19] P. Boggiatto, Localization operators with Lp symbols on modulation
spaces, In Advances in Pseudo-Differential Operators, vol. 155 of Oper.
Theory Adv. Appl., pages 149–163, Birkhäuser, Basel, 2004.
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basis with exponential decay, SIAM J. Math. Anal., 22(2):554–573, 1991.

[45] T. Dobler, Wiener Amalgam Spaces on Locally Compact Groups, Master’s
thesis, University of Vienna, 1989:
http://www.mat.univie.ac.at/∼nuhag/papers/PS/1989/dob89.zip

[46] D. L. Donoho, Unconditional bases are optimal bases for data compression
and for statistical estimation, Appl. Comput. Harmon. Anal., 1(1):100–
115, 1993.

[47] D. L. Donoho, M. Vetterli, R. A. DeVore, and I. Daubechies, Data com-
pression and harmonic analysis, IEEE Trans. Inform. Theory, 44(6):2435–
2476, 1998.

[48] M. Dörfler, H. G. Feichtinger, and K. Gröchenig, Compactness criteria in
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Boston, 2001.
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dérivé partielles, 1985–1986, Exp. No. I, École Polytech., Palaiseau, 1986.
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