CS/EE 3710

National Semiconductor CR16
Compact RISC Processor
Baseline ISA and Beyond...

CR16 Architecture

¢ Part of a microcontroller family from
National Semiconductor

= 16-bit embedded RISC processor core

= Available in Synethesizeable Verilog HDL

= Die size of 0.6 mm2 @ 0.25u

» 2 Mbytes of linear address space (221)

= Less than 0.2mA per MHZ @ 3 Volts, 0.35u

¢ This has morphed into the CP3000 family...

University of Utah CS/EE 3710

CR16 Architecture

¢ More specs...
= Static 0 to 66 MHz clock frequency
= Direct bit manipulation instructions
= Save and Restore of Multiple Registers
= Push and Pop of Multiple Registers

» Hardware Multiplier Unit for fast 16-bit
multiplication

» Interrupt and exception handling

University of Utah CS/EE 3710

CR16 Block Diagram

..

DISFLACEMENT

University of Utah CS/EE 3710

CR16 Register Set

* All registers are 16 bits wide
= Except address registers which are 21 bits
= Original version used 18 bits...

* 16 general purpose registers

¢ 8 processor registers

» 3 dedicated address registers
(PC, ISP, INTBASE)

= | Processor Status Register
= | configutation register
= 3 debug-control registers

University of Utah CS/EE 3710

CR16 Registers

Dedicated Address Registers General-Purpose Registers
15 0
20 15 0 RO
PC R1
00000 ISP R2
INTBASEH INTBASEL R3
INTBASE R4
R5
Processor Status Register R6
R7
15 0 RS
| PSR | R9
. A X R10
Configuration Register R11
15 0 R12
[CFG | R13/ERA
Debug Registers [RA |
20 15 0 | SP |
DCR
DSR
| CARH CARL 15 2|1|ofafs|7|e|s[a]l23]2(f1

reserved | I |P|E|JO|N[Z|F|O|O|L|[T]|C
University of Utah e

Processor Registers

¢ PSR — Processor Status Register

«n C,T,L,F,Z, N, E, P, I bits

» Carries, conditions, interrupt enables, etc.
¢ INTBASE - Interrupt Base register

= Holds the address of the dispatch table for
interrupts and traps

¢ [SP — Interrupt Stack Pointer

s Points to the lowest address of the last item
stored on the interrupt stack

University of Utah

CS/EE 3710

CR16 Instruction Encoding

* More complex than our version...

15 14 | 13| 12 9 8 5 4 1 o
o] 1 i op code dest reg src reg 1
Figure B-2. Register to Register Format
| 15 14 | 13 | 12 9 | 8 5 | 4 o |
| o o | i I op code I dest reg I imm |

Figure B-3. Short Immediate Value to Register Format

31 16 [15 14(13|12

op code

98 5(4 o

0O Of i dest reg 10 0 0 1

Figure B-4. Medium Immediate Value to Register Format

15 14 [13| 12 9| 8 5| 4 1 0o

do

op code i disp (dg4—d4) reg base reg

Figure B-8. Load/Store Format, Relative with Short Displacement Value

31

16| 15 14 | 13|12 11| 10 9 8 5|4 110
disp (d45—dg) op code i 1 0] dy7 dis reg base reg | 1
. .) Figure B-9. Load/Store Format, Relative with Medium Displacement Value
University of Utah

CS/EE 3710

CR16 Instructions

¢ Most ALU instructions have two forms
s MOVi->MOVW or MOVB

* Two-address instruction formal

= One of the two arguments is also used as
destination (Rdest) and is overwritten

= ADD RO, R3 =>R3 :=R0+R3
+ Little-Endian data references

» Least-significant is lowest numbered

= Both bits and bytes

University of Utah CS/EE 3710
CR16 Instructions
MOVES
MOVi Rsrc/imm, Rdest Move
MOVX Rsrc, Rdest Move with sign extension
MOvZ Rsrc, Rdest Move with zero extension
MOVD imm, (Rdest+1, Rdest) Move 21-bit immediate to register-pair
INTEGER ARITHMETIC
ADD[U]i Rsrc/imm, Rdest Add
ADDCi Rsrc/imm, Rdest Add with carry
MULi Rsrc/imm, Rdest Multiply: Rdest(8):= Rdest(8) * Rsrc(8)/Imm
Rdest(16):= Rdest(16) * Rsrc(16)/Imm
MULSB Rsrc, Rdest Multiply: Rdest(16):= Rdest(8) * Rsrc(8)
MULSW Rsrc, Rdest Multiply: (Rdest+1, Rdest):= Rdest(16) * Rsrc(16)
MULUW Rsrc, Rdest Multiply: Rsrc = {R0,R1,R8,R9 only}
(Rdest+1,Rdest):= Rdest(16) * Rsrc(16);
SUBI Rsrc/imm, Rdest Subtract: (Rdest := Rdest — Rsrc)
SUBCi Rsrc/imm, Rdest Subtract with carry: (Rdest := Rdest — Rsrc)

University of Utah

CS/EE 3710

More CR16 Instructions

INTEGER COMPARISON

CMPI Rsrc/imm, Rdest Compare (Rdest — Rsrc)

BEQOI Rsrc, disp Compare Rsrc to 0 and branch if EQUAL
Rsrc = (R0,R1,R8,R9 only)

BNEOi Rsrc, disp Compare Rsrc to 0 and branch if NOT-EQUAL
Rsrc = (R0O,R1,R8,R9 only)

BEQ1i Rsrc, disp Compare Rsrc to 1 and branch if EQUAL
Rsrc = (R0O,R1,R8,R9 only)

BNE1i Rsrc, disp Compare Rsrc to 1 and branch if NOT-EQUAL

Rsrc = (R0O,R1,R8,R9 only)

LOGICAL AND BOOLEAN

ANDI Rsrc/imm, Rdest Logical AND
ORi Rsrc/imm, Rdest Logical OR
Scond Rdest Save condition code as boolean
XORIi Rsrc/imm, Rdest Logical exclusive OR
SHIFTS
ASHUI Rsrc/imm, Rdest Arithmetic left/right shift
LSHi Rsrc/imm, Rdest Logical left/right shift
University of Utah CS/EE 3710
BITS
TBIT Rposition/imm, Rsrc Test bit in register
SBITi Iposition, 0(Rbase) Set a bit in memory;
Iposition, disp16(Rbase) Rbase = (RO, R1, R8, R9}
Iposition, abs
CBITi Iposition, 0(Rbase) Clear a bit in memory
Iposition, disp16(Rbase) Rbase = (RO, R1, R8, R9}
Iposition, abs
TBITi Iposition, 0(Rbase) Test a bit in memory
Iposition, disp16(Rbase) Rbase = (RO, R1, R8, R9}
Iposition, abs
POPRET imm, Rdest Restore registers (similar to POP) and perform JUMP

PROCESSOR REGISTER MANIPULATION

LPR Rsrc, Rproc

Load processor register

SPR Rproc, Rdest

Store processor register

University of Utah

CS/EE 3710

RA or JUMP (RA, ERA), depending on memory model

Still More CR16 Instructions

JUMPS AND LINKAGE

Bcond disp9 Conditional branch using a 9-bit displacement
disp17 Conditional branch to a small address[S]
disp21 Conditional branch to a large address|L]

BAL RIlink, disp17 Branch and link to a small address[S]
(Rlink+1, Rlink), disp21 Branch and link to a large address|[L]

BR disp9 Branch using a 9-bit displacement
disp17 Branch to a small address[S]
disp21 Branch to a large address|[L]

EXCP vector Trap (vector)

Jcond Rtarget Conditional Jump to a small address[S]
(Rtarget+1, Rtarget) Conditional Jump to a large address[L]

JAL Rlink, Rtarget Jump and link to a small address[S]

(Riink+1, Rlink), (Rtarget+1, | jymp and link to a large address|L]
Rtarget)

JUMP Rtarget Jump to a small address[S]
(Rtarget+1, Rtarget) Jump to a large address|L]

RETX Return from exception

PUSH imm, Rsrc Push “imm” number of registers on user stack,

starting with Rsrc

POP imm, Rdest Restore “imm” number of registers from user stack,

starting with Rdest
University of Utah CS/EE 3710

More and More Instructions

LOAD AND STORE

LOADI disp(Rbase), Rdest Load (register relative)
abs, Rdest Load (absolute)
disp(Rpair+1, Rpair), Rdest |Load (far-relative)
STORI Rsrc, disp(Rbase) Store (register relative)
Rsrc, disp(Rpair +1, Rpair) Store (far-relative)
Rsrc, abs Store (absolute)
sm_imm, O(Rbase) Store small immediate in memory;
sm_imm, disp(Rbase) Rbase = (RO, R1, R8, R9)
sm_imm, abs
LOADM imm Load 1 to 4 registers (R2 - R5) from memory, starting at
the address in RO, according to imm count value
STORM imm Store 1 to 4 registers (R2 - R5) to memory, starting at
the address in R1, according to imm count value

University of Utah

CS/EE 3710

CR16 Memory Map

Address
000000, | "~} "} =i
[}
@ @ 3
| Data, Code and I/O ° ® £
Stacks 3 3 g
Dispatch Table El E| T
(63K) £ £| 2
s 8| ¢
=~ ©
00FCO0, g gl °
Interrupt Control (1K) 3 a P
010000, 2 8| 3
" g 2 3
ol @ 2
Far-Data, Code and /0 5 i 13
Dispatch Table ~ a9 g
(64K) - 2
020000, .
Far-Data, I/O and
Large Model Code
Dispatch Table
(128K)
03FFFF; [——— -~ -
Large Model Far-Data,
~ 1/0, Code and
Dispatch Table
(256K - 2M)
University of Utah ~ WFFFFF | | \ CS/EE 3710

CR16 Exceptions

¢ Interrupt
= Exception caused by external activity

» CR16 recognizes three types, Maskable,
Non-maskable, and ISE (In-System Emulator)

¢ Trap
= Exception caused by program action

» Six types: SVC, DVZ, FLG, BPT, TRC, UND

¢ Interrupt process saves PC and PSR on
interrupt stack, RETX returns from interrupt

University of Utah CS/EE 3710

CR16 Pipeline

* Three stage pipe
= Fetch
= Decode
= Execute
¢ Instruction execution is serialized after an
exception

¢ Also serialized after LPR, RETX, and EXCP

University of Utah CS/EE 3710

Our Class Version!

+ Baseline instruction set uses (almost) fixed
instruction encoding

¢ Detailed description on the web page
= All instructions are a single 16-bit word

= All memory references (inst or data) operate on
16-bit words

= Not all instructions are included

¢ Each group will extend the baseline ISA
somehow

University of Utah CS/EE 3710

Baseline ISA

+ ADD, ADDI, SUB, SUBI

¢+ CMP, CMPI

+ AND, ANDI, OR, ORI, XOR, XORI
*+ MOV, MOVI

¢ LSH, LSHI (restricted to shift of one)
¢ LUI, LOAD, STOR

+ Bcond, Jcond, JAL

University of Utah CS/EE 3710

Class Encoding

¢ In the handout on the web

¢ Much more regular than real CR16

ImmHi/ ImmLo/

OP Code | Rdest | OP Code Ext | Rsrc
Mnemonic Operands 15-12 11-8 7-4 3-0 Notes (* is Baseline)
ADD Rsrc, Rdest 0000 Rdest | 0101 Rsrc *
ADDI Imm, Rdest 0101 Rdest | ImmHi ImmLo * Sign extended Imm
ADDU Rsrc, Rdest 0000 Rdest | 0110 Rsrc
ADDUI Imm, Rdest 0110 Rdest | ImmHi ImmLo Sign extended Imm
ADDC Rsre, Rdest 0000 Rdest | 0111 Rsre
ADDCI Imm, Rdest 0111 Rdest | ImmHi ImmLo Sign extended Imm
MUL Rsre, Rdest 0000 Rdest | 1110 Rsre
MULI Imm, Rdest 1110 Rdest | ImmHi ImmLo Sign extended Imm

University of Utah CS/EE 3710

Data Types

+ All data is 16-bit
= Two’s complement encoding for data
= Unsigned for address manipulation

= Boolean for boolean operations

s Of course, the ALU doesn’t know which is
which — they’re all 16bit clumps to the ALU!

= Flags are set for all interpretations

e The programmer can sort out the flags later

University of Utah CS/EE 3710

PSR Issues

* Only ADD, ADDI, SUB, SUBI, CMP, CMPI
can change the PSR flags

¢ CMP, CMPI are the same as SUB, SUBI
= But, they affect the PSR differently

¢ Only PSR bits FLCNZ are needed for
baseline implementation

+ ADD, ADDI, SUB, SUBI set the C on carry
out and F on overflow

¢ CMP, CMPI set Z, L (unsigned), and N
(signed)

University of Utah CS/EE 3710

Conditional Jumps/Branches

¢ Jumps are absolute
+ Branches are relative to current PC

¢ JAL Jump and Link stores the address of the
next instruction in Rlink, and jumps to
Rtarget

s Return with JUC Rlink

+ Conditions are derived from PSR bits

Beond disp 1100 cond DispHi DispLo * 2s comp displacement
Jeond Rtarget 0100 cond 1100 Rtarget *
JAL Rlink, Rtarget 0100 Rlink | 1000 Rtarget *
University of Utah CS/EE 3710

Condition Table

Table 1: COND Values for Jcond, Beond, and Scond

Mnemonic | Bit Pattern Description PSR Values
EQ 0000 Equal 7=1
NE 0001 Not Equal 7=0

GE 1101 Greater than or Equal N=lorZ=1
CS 0010 Carry Set C=1
cc 0011 Carry Clear C=0
HI 0100 Higher than L=1
LS 0101 Lower than or Same as L=0

LO 1010 Lower than L=0and Z=0

HS 1011 Higher than or Same as | L=1 or Z=1
GT 0110 Greater Than N=1
LE 0111 Less than or Equal N=0
FS 1000 Flag Set F=1
FC 1001 Flag Clear F=0

LT 1100 Less Than N=0 and Z=0
uc 1110 Unconditional N/A
1111 Never Jump N/A

University of Utah CS/EE 3710

Memory Map

¢ 16 bit PC and LOAD/STOR addresses
» 64k addresses
s Each address is a 16-bit word

= So, 128k bytes of data, but organized as words
e But, only 40k bytes of block RAM on Spartan-3E

e 20k 16-bit words
¢ But, 64M bytes of SDRAM
e But, SDRAM is a pain...

s We need to reserve some I/O addresses

e Up to you, but I recommend using the some top
address bits

e Upper 16k words (32kbytes) as I/O space?

University of Utah

CS/EE 3710

Memory Map

FFFF
Word

addresses (00
BFFF

8000
7FFF
4000
3FFF

0000

University of Utah

/0
Switches/LEDs
UART, LCD

Code/Data

Code/Data

Code/Data

Top two address
bits define regions

16k words
32k bytes

CS/EE 3710

Strata Flash

Intel StrataFlash

16 MByte Spartan-3E FPGA zif
(8 Mword) flash Loco o ceo
ROM HDC SSFF’BV:.I:E WE#
. LDC - BYTE
* Designed to hold i ssts oo
. SF_D<15:12> .
configuration data p— E::f:]
for the Spartan part p7it] | SERT1> _f oo
SPI_MISO
* But, can be used for OO or aloabo 2{2120]
general non-volatile A0 —SF AN | g
data A23:20] —X
CoolRunner-ll CPLD Character LCD
4| paj7.a)
Memory Map
FFFF 1/0 ;
Interrupt dispatch
Word Switches/LEDs table s{)p P
addresses 000 | UART, LCD '
BFFF Glyphs? Code?
Flash ROM?
Top two address 8000 SRAM
bits define regions TFFF Block RAM
4000 Code/Data Frame buffer?
| 4k additional words
3FFF
16k words
2000 Code/Data 32k bytes

University of Utah

CS/EE 3710

