
Integer-Valued, Minimax Robust Designs for Estimation and Extrapolation in
Heteroscedastic, Approximately Linear Models

Zhide Fang; Douglas P. Wiens

Journal of the American Statistical Association, Vol. 95, No. 451. (Sep., 2000), pp. 807-818.

Stable URL:

http://links.jstor.org/sici?sici=0162-1459%28200009%2995%3A451%3C807%3AIMRDFE%3E2.0.CO%3B2-D

Journal of the American Statistical Association is currently published by American Statistical Association.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/astata.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For
more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Sat Mar 31 14:28:34 2007

http://links.jstor.org/sici?sici=0162-1459%28200009%2995%3A451%3C807%3AIMRDFE%3E2.0.CO%3B2-D
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/astata.html


Integer-Valued, Minimax Robust Designs for 
Estimation and Extrapolation in Heteroscedastic, 

Approximately Linear Models 
Zhide FANGand Douglas P. WIENS 

We present our findings on a new approach to robust regression design. This approach differs from previous investigations into 
this area in three respects: the use of a finite design space, the use of simulated annealing to carry out the numerical minimization 
problems, and in our search for integer-valued, rather than continuous, designs. We present designs for the situation in which the 
response is thought to be approximately polynomial. We also discuss the cases of approximate first- and second-order multiple 
regression. In each case we allow for possible heteroscedasticity and also obtain minimax regression weights. The results are 
extended to cover extrapolation of the regression response to regions outside of the design space. A case study involving dose- 
response experimentation is undertaken. The optimal robust designs, which protect against bias as well as variance, can be roughly 
described as being obtained from the classical variance-minimizing designs by replacing replicates with clusters of observations 
at nearby but distinct sites. 

KEY WORDS: 	 Bioassay; Carcinogen; Dose response; Efficient rounding; Finite design space; Fisher consistency; Logistic model; 
Polynomial regression; Probit model; Quota rounding; Second-order design; Simulated annealing; Weighted least 
squares. 

1. INTRODUCTION 	 sheim (1988) took this approach in constructing optimal 

In this article we present our findings on a new approach designs assuming the fitted (linear, homoscedastic) model 

to robust regression design. As was done by Box and Draper to be exactly correct. 

(1959), Li and Notz (1982), Marcus and Sacks (1976), Pe- The final departure from previous work lies in our search 

sotchinsky (1982), and Wiens (1992, 1998), to name but for integer-valued, rather than continuous, designs. Previ- 

a few contributors, we seek robustness against departures ous approaches have generally resulted in "designs" that 
are arbitrary and possibly continuous probability functions 

from the assumed linear response function and/or from the 
[(x) on the design space. The number of observations al- 

assumption of homoscedasticity. Our model allows for such located to a particular design point x, is then n[(x,),with
departures of a very general form. the experimenter left to approximate this quantity when, as 

One way in which this work differs from that of the is typically the case, it is not an integer. In two of the three 
aforementioned authors is in our use of a finite design classes of problems considered here, the annealing algo- 
space. To our knowledge, robust regression designs under rithm gives exact integer-valued designs; that is, n[(x,)is 
this restriction have previously been investigated only by Li an integer. In the remaining case, although the designs need 
(1984). The number of possible design points may be arbi- not be exact, we use and compare two methods of obtaining 
trarily large, so that finiteness is not a practical restriction. integer-valued approximations to n[(x,). 
The mathematical problem is, however, reduced to a finite- We begin with a discussion of our model of approximate 
dimensional one, resulting in a considerable simplification linearity and possible heteroscedasticity. We follow with a 
both analytically and numerically. description of the design problems for which we seek solu- 

The formulation of the problem of Li (1984) led to a lin- tions. In Section 2 we reduce these problems to numerical 
ear programming problem sufficiently involved as to limit minimization problems. In Sections 3-5 we give the anneal- 
the investigation to the case of straight line regression over ing algorithms, and examples of the minimum loss designs, 
an interval. In contrast, we use an easily implemented sim- for polynomial regression over an interval and for first- or 
ulated annealing algorithm that yields (near-) optimal so- second-order multiple regression over a multidimensional 

lutions with no restrictions on the fitted model or on the cube. In Section 6 we extend our results to the case of 

structure of the design space. A general discussion of sim- extrapolation, and apply them to a case study involving 

ulated annealing algorithms, with an application to a nonlin- dose-response experimentation. In Section 7 we give con- 

ear design problem, has been given by Bohachevsky, John- clusions and guidelines based on the observation that the 

son, and Stein (1986). Haines (1987) and Meyer and Nacht- optimal robust designs, which protect against bias and het- 
eroscedasticity, can be roughly described as being obtained 
from the classical, (homogeneous) variance-minimizing de- 
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1.1 Statistical Model 

The statistical model under consideration is initially for- 
mulated simply as a general regression model with addi- 
tive errors, Y = E[Ylx]+ E .  Possible design points x, 
(i = I, . . . ,N) are specified in advance and generally will 
be equally spaced over the region to be explored by the ex- 
perimenter. At these points, uncorrelated observations Xj 
may be taken. The experimenter is to allocate n, > 0 ob-
servations to x,, with ni = n specified in advance. 
The design problem is to choose nl:. . . , n~ in an optimal 
manner. 

The mean response E[Yjx]is thought to be well ap- 
proximated by a linear combination zT(x)f3of p regres-
sors ( z l( x ) :. . . , z , ( ~ ) ) ~= z ( x ) .  We assume throughout 
this article that the number of distinct locations at which 
ni > 0 exceeds p. As is common in robustness problems 
in which the population being sampled may be incorrectly 
specified, one must decide beforehand exactly what is be- 
ing estimated. Somewhat akin to the imposition of Fisher 
consistency in robust estimation problems, we define the pa- 
rameter vector so as to minimize the average squared error 
of the approximation E[Ylx]= zT(x)f3, 

Write f ( x )= E[Ylx]- zT(x)O,so that the model be- 
comes 

where, by virtue of (I),  

To bound the bias of an estimate 0, we also assume that 

for a given constant 172. 

We allow for possibly heteroscedastic errors, var[&(xi)]= 

g2g,,  where g,  = g(x,)for g E B satisfying 

The special case B = ( 1 )  corresponds to homoscedastic 
errors. 

The estimation method is least squares, possibly weighted 
with weights w,= w(x,) for w E W. The special case 
W = ( 1 )corresponds to ordinary least squares (OLS). 

As a loss function, we take the average mean squared er- 
ror (AMSE) I of ~ ( x )zT(x)8as an estimate of E [ Y x ] ,= 

Journal of the American Statistical Association, September 2000 

This corresponds to the classical notion of I-optimality 
("integrated variance"), termed Q-optimality by Fedorov 
(1972), with respect to which Studden (1977) characterized 
designs for exact polynomial regression. Huber (1975) used 
this loss function to obtain continuous robust designs for ap- 
proximate straight line regression; Wiens (1990) extended 
Huber's theory to the case of multiple, approximately linear 
regression. 

1.2 Design Problems 

By a design, we mean a probability distribution { p , ) f l l  
on the design space S = {x,)$Ll;if p, = n,/n for integers 
n, > 0,then we say that the design is integer valued. Such 
a design is implemented by assigning n, observations to x,. 
We consider the following problems: 

PI .  Take B = (1 ) .W = ( 1 ) and find an integer-valued 
design that minimizes the maximum, over f ,  value of the 
loss. Such a design is to be used with ordinary least squares 
estimation when the errors are assumed to be homoscedas- 
tic. 

P2. Take W = (1 )and find an integer-valued design that 
minimizes the maximum over f and g, value of the loss. 
Such a design is to be used with OLS estimation when the 
errors may be heteroscedastic. 

P3. Find an integer-valued design and weights that min- 
imize the maximum, over f and g ,  value of the loss. Such 
a design is to be used with weighted least squares (WLS) 
estimation when the errors may be heteroscedastic. It turns 
out that we must be content with an approximate solution 
to this problem. 

2. PRELIMINARIES 

Let {p i  = niln):, be an integer-valued design on S. 
Without loss of generality, we assume the weights to be 
normed in such a way that = 1 and define 
m, = is a probability distribution on p,wi; then { m , ) ~ ? ,  
S satisfying 

For OLS, mi - p,. 
Let Z be the N xp matrix with rows zT(x l ) ,. . . , zT(xN) ,  

and define f = . . : f ( x . ~ ) ) ~ .( , f  ( x l ) : .  Let G:W ,and M be 
iV x AT diagonal matrices with diagonal elements { g i ) ,  {w,}, 
and {mi).Assume that Z is of full rank p and let Z = 
U I V x p A p x p V ~ pbe the singular value decomposition, with 
UTU = V T V  = I ,  and A diagonal and invertible. Aug- 
ment u by f iNx lV- ,  in such a way that [u~U],\~,N is or- 
thogonal. Then by (3) and (4), we have that there is an 
iV - p x 1 vector c, with ilcil < 1,satisfying 

Finally, define p x p matrices Mj = UTMJU for j = 1 , 2  
and 
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In this notation, the WLS estimate 

has bias vector d := E[B - 81 and covariance matrix C := 

cov[8] given by 

and 

C = o2(5nawiz (xa ) zT (x i )  n,w:giz(xi)zT ( x i )  
i=l 

x n : w z ( x ; ) z ~ ( x : )  
i=l 

o2  
= - ( Z ~ M Z ) - ~ Z ~ M W G Z ( Z ~ M Z ) - ~  

n 

Our results depend on r12 and o2  only through u := 
02 / (n i12 ) ,which can be chosen by the experimenter to re- 
flect his view of the relative importance of variance ver- 
sus bias. From (6), using (2), (lo), (1 l), and finally (8), the 
AMSE I = I ( % :g, w ,  m )  is 

N 

I ( f , g , w . m )= -
1 1 xi)] - z ~ ( x , ) ~ ) ~

AT 
%=I 
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over f and g, loss and to then minimize this maximum loss 
over {w i )K1 and { p , ) ~ ~ l .The minimizations can equiv- 
alently be done over { w , ) ~ ~ ,  subject to (7) .and { m , ) ~ ,  
The maximizations over f and g ,  and the minimization over 
{ w , ) ~ ~ , ,can then be evaluated algebraically. This leaves 
only one numerical minimization over {m,) fLl .  

Fix a design mi}^, on S. Lemma 1, which is required 
for the maximization of (12) over f , follows from the ob- 
servation that the nonzero .eigenvalues of ~ J ~ M U M ; ~  
M ; ~ u ~ M Uare the same as those of 

Lemma 1. The maximum, over vectors c with ilcli < 1, 
of I +f J T ~ ~ ~ , 2 ~ T ~ cis the largest eigenvalue A, of 
M ; l M 2 M ;  l .  The maximizing c is the unit eigenvector of 
~ J ~ M U M ; ~ U ~ M Ubelonging to its maximum eigenvalue 
Am - 1. 

From Lemma 1 and (12), we immediately obtain Theo- 
rem 1. 

Theorem 1. For OLS estimation with homoscedastic er- 
rors, (G= { I ) ,  W = ( 1 ) ) we have 

and SO the minimax design for PI  has { p , ) t ~ l= mi)^^,,
where {ma}El minimizes (13). For computational Pur-
Po"Sl we note that zLlm,li = tr M?. The least favor- 
able response contaminant f is determined by (8), where c 
is as in Lemma 1. 

To obtain the maximum loss under heteroscedasticity, we 
must maximize (12) over g; this is a straightforward appli- 
cation of the Cauchy-Schwarz inequality. 

N N
1 1 NThe maximum value of C;=,  miwigil, sub-+ .1
var [ ~ ( x , ) ]  f 2 ( x i )+ g 1 Lemma 2. 

,=I ~ = l  ject to ( 5 ) is 4-,
 attained with gi rn m2wili. 
1 

d T z T z d + -1 
tr ( Z C Z ~ )+ -1 

f T f  
Lemma 2, tbgether with Lemma 1 and (12), give= -

N N N 

rnax I ( . f , g ,w ,m) 
1 f , s= - f T ~ ~ ~ ; 2 ~ T ~ f

N 

o 
N I = i12 { A  + n w 1 ' 2 }  , (14)+ n\ C m Z w , g z l i+ -N f T f  


i=l 


f from which Theorem 2 is immediate. 
= i12 t C T ( 1+ ~ J ~ M U M ; ~ U ~ M U ) C

Theorem 2. For OLS estimation ( W  = ( 1 ) ) with het- 
eroscedastic errors, we have 

Designs Solving Problems P I ,  P2, and P3 

Problems PI-P3 require us to evaluate the maximum, 



810 

and so the minimax design for P2 has {p,) ,N=l= { m i } g l ,  
where {m,}:?, minimizes (15). 

The maximum loss (14) for WLS can be minimized over 
the weights with the aid of a Lagrange multiplier. The result 
of this minimization is given by Lemma 3. 

Lerrlmn 3. The minimum value of xZl( n ~ , , w ~ l , ) ~sub-
ject to (7) is (EL,m,4131,2'3)3, attained with wi cx 

-1/3172/3m, , whenever mi > 0. 
Lemmas 1, 2, and 3, together with (12), now give Theo- 

rem 3. 

Theorem 3. For WLS estimation with heteroscedastic 
errors. we have 

The minimax design { p i ) ~ ~ l  oc mi
4 / 3  2 / 3  

,for P3 has pi li 
where {mi):=l minimizes (16). The least favorable vari- 
ances satisfy g, cx fi and the optimum weights satisfy 
wi oc mi lp i  whenever mi > 0. 

The motivation for considering P3 is that, as seen in 
(12), the loss has two distinct components. One-the bias 
component-arises purely from the effect of f .  The other- 
the variance component-arises purely from the effect of g. 
It thus seems plausible that one could reduce one compo- 
nent through an appropriate choice of design points, and the 
other through a judicious choice of weights. This is what 
we attempt to do through the minimization of (16); see Sec- 
tion 4.3 for a numerical indication that the venture can be 
quite successful. 

An interesting special case of Theorem 3 is v = 0 ,  in 
which case the design and weights minimize the maximum 
bias measure A, - 1. We can in any event impose unbiased- 
ness by requiring that mi = N - l ,  resulting in the absolute 
minimum A, = 1. In this case the l i  are proportional to the 
diagonal elements hii of the hat matrix H = z ( z T z ) - l z T ,  
and we have Corollary 1. 

Corollary 1. The design with pi oc h:/3 and wi cx 
minimizes the maximum AMSE, subject to the side condi- 
tion that ~ [ 0 ]0 for all f .= 

3. EXACT DESIGNS FOR P I  AND P2; 
POLYNOMIAL RESPONSE 

3.1 Description of the Simulated Annealing Algorithm 

We consider approximate polynomial regression; that is, 
z ( x )  = ( 1 . 2 ,  z 2 . .  . . ,Z P - ~ ) ~ ,on [ - I .  I ] .  For simplicity, we 
assume that one of (n.itT)is a multiple of the other. If 
n < itT,then we also require that they have the same parity. 
We take equally spaced design points, 
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A simulated annealing algorithm, in general, consists of the 
following: 

1. A description of the initial state of the process; that 
is, of the starting vector of allocations n = ( n l ,. . . : nlv) 

2. A scheme by which subsequent states are generated 
3. A criterion according to which these subsequent states 

are accepted or rejected. 

If n > itT,then the initial state is the uniform design, 
with n, = n/itTfor i = 1, . . . .N .  If n 5 N ,  then this vector 
of frequencies assigned to X I ,  . . . , xly starts with the vector 
formed by repeating the vector ( 1 , 0 ,. . . , 0 )  (with N / n  - 1 
0's) [ n / 2 ]times. This is followed by the same vector with 
the order of its elements reversed. If N is odd, then also a 
vector ( 0 , .. . , O .  1 , 0 , . . . , 0 )  of length N / n  is inserted in the 
middle. Thus in either case the initial design is symmetric 
and at least close to uniform. We impose symmetry on the 
designs largely for its intuitive appeal. However, we remark 
that searches for better, possibly asymmetric, designs have 
yielded no improvements. 

To generate new designs, first define v to be the [ N / 2 ]x 1 
vector consisting of the initial segment ( n l , .. . .n [ , ~ / 2 1 )of 
the current allocation vector. Define 

with cardinalities j+ 2 1 and jo. Generate a Bernoulli ran- 
dom variable, 

1,  with probability A 
B= 
\ 0 ,  with probability &. 

If j+ 2 2, then choose two indices ( t l , t 2 )from J+, at 
random and without replacement, and (if B = 1)  pick an 
index to from Jo,  at random. Replace v by the vector G 
whose elements are those of v except for 

Eta = zto + B ,  Etl  = ztl - 1,  and 


Et2 = zt2 + 1 - B.  (1 8) 


If j+ = 1, then pick t o  from .Jo at random, let t l  be the 
element of J+, and replace (18) by 

If N is even, then let ii = (111,.. . , f i N )  = ( E l , .. . ,El\rIZ, 
6 N / 2 ,. . . .El) ,  thus preserving symmetry. If N is odd, then 
a further Bernoulli experiment is simulated, with probabil- 
ity l / N  of "success." If a success is obtained, then, with 
probability 112,~ ~ [ ~ \ r / 2 1 + 1(the frequency assigned to 0) is 
increased by 2, with these taken randomly and symmetri- 
cally from the remaining n,. With the remaining probability 
112,n[N/2~+lis reduced by 2, with these allocated randomly 
and symmetrically to the remaining n,.  If n[N/2j+1< 2, then 
this step is omitted. Then ii is constructed as earlier, with 
also the inclusion of the new frequency 11[l\r/21+1. 

To accept or reject ii as the next state, first evaluate the 
loss I = I ( i i ) . If I ( i i )  < I ( n ) ,then ii is accepted and itera- 
tions continue. If A I  = I ( i i )- I ( n )  > 0 ,  then ii is accepted 
with probability exp( - N I T ) ,  where T is a user-chosen 
parameter. Following Haines (1987), we initially choose T 
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in such a way that the acceptance rate is at least 50%; this 
parameter is then progressively decreased. As discussed by 
Press, Flannery, Teukolsky, and Vetterling (1989), we de- 
crease T by a factor of .9 after each 100 iterations. 

The timing parameters were decided on partly by trial 
and error. Decreasing T too quickly-in particular, imple- 
menting a pure descent algorithm by setting T = 0-often 
caused the process to become trapped in a local minimum. 
We satisfied ourselves that the final minimum was global 
by running the algorithm several times, with a variety of 
timing parameters. All computations were carried out us- 
ing S-PLUS; the relevant code is available from the authors 
on request. 

3.2 Examples 

We first discuss some limiting cases, where it is possible 
to compare our results with the known solutions to closely 
related problems. If v = 0,so that only bias is a consider- 
ation, then by (3) and (9), the best continuous design has 
p, N - 1 .  , that is, is uniform on {z,):,. With our re- 
striction to integer-valued designs, exact uniformity is not 
attainable unless n is a multiple of N ,  and in such cases our 
annealing algorithm converges to the uniform design. Oth- 
erwise, the final designs are approximately uniform, with 
the approximations serving to bring the total number of 
observations up to n. 

As u + m, one anticipates that the designs should ap- 
proach their classically optimal counterparts that minimize 
variance alone. We have considered in particular the case 
of approximate cubic regression ( p  = 4) with n = 20 and 
N = 40. With a finite design space, there is no previous 
theory that applies. But because our equally spaced design 
points (17) discretize the interval [-I, 11,Studden's (1977) 
results for continuous I-optimal designs over this interval 
may be taken as a guide. Studden found that the I-optimal 
design places mass .I545 and .3455 at *I and *.447. Our 
algorithm results in a design placing 3 of the 20 observa- 
tions at each of *l and 7 at each of *.436 if the errors 
are homoscedastic (problem Pl) .  The points *.436 are the 
nearest, in our design space, to *.447, so that our algorithm 
attains the closest approximation to Studden's solution. For 
heteroscedastic errors (problem P2), our design is very sim- 
ilar to that in Figure 2(b), the only difference being that the 
sites *.231 are moved to *.538. 

Figures 1 and 2 illustrate examples of designs obtained 
using u = 10 and 172 = 1. We have found that the designs 

change only slowly with changes in u.Figure 1 displays 
case PI;  Figure 2 displays case P2. A message illustrated 
in these figures, and obtained by us quite generally, is that 
in the presence of bias and heteroscedasticity, making new 
observations at nearby sites seems to be preferable to repli- 
cation at the same site. These sites are located close to those 
at which replicates would be taken if bias and heteroscedas- 
ticity were ignored and homogeneous variance alone were 
minimized. The end result is sometimes a near-uniformity, 
which then also supports the remark of Box and Draper 
(1959, p. 622) that "the optimal design in typical situations 
in which both variance and bias occur is very nearly the 
same as would be obtained if variance were ignored com- 
pletely and the experiment designed so as to minimize bias 
alone." 

We have quantified the cost, in terms of lost efficiency, 
of the robustness given by these designs. Our measure 
of this efficiency is the ratio of the variance component 
[= N - 1  C!Y m,g,l ,  in (12)] of the loss when the design 

is constructed assuming the fitted response to be correct 
(f (.) = 0), to this term for the minimax design. For PI ,  
this resulted in an efficiency of 96.7%. We first compared 
the minimax design for P2 to the design derived assum-
ing both f (.) = 0 and homoscedastic errors, and with both 
designs evaluated under these assumptions; this gave an ef- 
ficiency of 90.0%. When we compared this minimax design 
to the design derived assuming f (.) = 0 but heteroscedastic 
errors, and with both designs then evaluated at their least 
favorable variance functions, the resulting efficiency was 
99.7%. It thus appears that the robustness is obtained quite 
inexpensively. 

4. APPROXIMATE DESIGNS FOR P3; 
POLYNOMIAL RESPONSE 

For problem P3, the transition from the probabilities 
{ m i ) ~ ~ l  makes it very diffi- to the probabilities {p,):, 
cult to obtain exact integer-valued designs. One could of 
course apply the methods of the previous section to obtain 
probabilities mi with the nmi being integers, but there is 
no guarantee that this property would be retained by the 
pi.  We thus obtain designs without the integer restriction, 
then discuss ways in which these can be approximated by 
integer-valued designs. 

4.1 Description of the Simulated Annealing Algorithm 

We describe the algorithm for AT even; in the odd case, 

Figure 1. Exact Integer-Valued Design for Approximate Cubic Regression and Case PI With n = 20, N = 40, and u = 10. (a) Loss I(n) versus 
iteration number. Vertical bars above horizontal axis indicate occurrences of minimax design, with loss I = 34.28. (b) Design points and frequencies. 
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Figure 2. Exact Integer-Valued Design for Approximate Cubic Regression and Case P2 with n = 20, N = 40, and u = 10. The setup is the 
same as for Figure 1. Minimax loss is I = 51.41. 

an adjustment analogous to that in the previous section is 
made. We take the same initial state as in Section 3.1, define 
v to be the N/2 x 1vector consisting of the initial segment 
(ml.. . . .mNI2)of the current vector m of probabilities, 
and define J+. Jo,  and B as before. The next possible state 
is generated as follows. If B = 1or if j+ = .1, then we pick 
indices t o  E Jo and tl E J+ at random and proceed as in 
Section 3.1, but replace (18) by 

If B = 0, then we pick indices tl and t2E J+, and replace 
(19) by 

where U is a random variable uniformly distributed over 
[O, 11. For all other indices, put v, = 6,. Because these 
f i i  may now not be probabilities, we next replace them by 
7 ) ( 6 , ) / ( 2c::':7 ) ( V i ) )  for i = 1 : . . . ,N/2, where $(v) = 

inin(inax(v,O),. 5 ) .  The {fii) ,"=/? so obtained are then in 
[O, .5] and sum to .5. Finally, let rG = (ml ,. . . ,m,) = 
( G l : .  . . , ' U l V l 2 ,  V N l 2 : .  . . ,G I ) .  The criterion for acceptance or 
rejection of this and subsequent states is as in Section 3.1. 

4.2 Approximation Methods 

Once the minimizing probabilities { m , ) ~ ~ ,  deter-are 
mined by annealing, the probabilities pi)^, are deter-
mined as in Theorem 3. The problem is now to approxi- 
mate the allocations ni = np, by integers ni in a suitable 
fashion. We have implemented and compared two approx- 
imation methods: 

1. The minimum norm method (termed the quota method 
in Pukelsheim 1993), as used by Kiefer (1971). This min- 
imizes the I ,  norm between the {n,) and the {fii),for 
any p. It is implemented by first rounding down the ni to 
their integer parts [nil,and then distributing the discrep- 
ancy n - C[ni]among those xi for which the fractional 
parts ni - [nil are the greatest. If the discrepancy is odd, 
then one more observation is allocated to 0 before this pro- 
cess is carried out. 

2. The multiplier; or efficient rounding, method proposed 
by Pukelsheim and Rieder (1992). In this method, slightly 
modified here to preserve symmetry, one first computes fre- 
quencies fii = [ (n- .51)p,l, where r.1 denotes rounding up 

to the next integer and 1 is the number of n, > 0. Then 
one loops until the discrepancy n - C 6, is 0, either in- 
creasing a frequency ii, that attains 6,/n, = minnt,o 6,/n, 
to K ,  + 1 or decreasing an ii, that attains (ii,- l ) / n ,  = 

max,z,o(fi, - l ) / n , to f i ,  - 1. As in the minimum norm 
method, if the discrepancy is odd, then a preliminary ad- 
justment is made before the looping begins: iirN121-1is 
decreased by 1 if it is positive, and increased by 1 oth- 
erwise. The looping is then applied only to the remain- 
ing frequencies. 

These increases and decreases are made sequentially and 
hence are not uniquely determined. In our implementation 
we have first increased those for which the support points 
are largest in absolute value, and first decreased those for 
which the support points are smallest in absolute value. The 
net effect is to move relatively more mass toward the ex- 
tremes of the design space. 

After obtaining the integer allocations n, by one of these 
methods, we compute weights w, as in Lemma 3, and then 
compute the loss by evaluating (14) at wi and mi = niwi/n. 

Lest the reader think that we have missed something ob- 
vious, we remark that we investigated the option of comput- 
ing both integer-valued approximations after each iteration 
of the annealing algorithm and basing the choice of the next 
state on the minimum of the two losses associated with 
these integer designs. This approach typically gave quick 
convergence to a design with loss about one unit greater 
than that of the optimum, but then gave no further progress. 
The reason appears to be that due to the rounding, small 
changes in the {mi}very often resulted in the same values 
{n,).There was then no change in the loss and no reason 
to change states. 

Our numerical studies have indicated that the two approx- 
imation methods often yield identical or almost identical 
results. Of course the designer can, and probably should, 
compute selections of both methods in each application. 
We have also noticed that the losses of the integer-valued 
designs can be lower when nonoptimal allocations npi are 
being approximated. Indeed, this is implied by the fact that 
the approximate solution to P2 in Figure 3 does not coincide 
with the exact integer-valued solution in Figure 2. 

4.3 Examples 

The methods of this section can be applied to problems 
P1 and P2 as well, thus affording a means of assessing the 
quality of the approximation methods. For the model and 
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parameters of Section 3.2, both approximation methods re- 
sulted in the same design for P1 as there, illustrated in Fig- 
ure 1. The loss associated with this design is very close- 
34.28 versus 34.03-to that of the non-integer-valued de-
sign being approximated. For P2, both approximation meth- 
ods again resulted in the same design, whose loss is about 
3% greater than that of the exact integer-valued design. This 
loss for the exact design in turn exceeds that of the non- 
integer-valued design by about 3%. 

We have obtained weights and designs for approximate 
cubic regression and problem P3, using the same parameters 
as were used in Section 3.2 (see Fig. 3(b)-(d)). In this case 
the multiplier method resulted in a slightly higher loss than 
the minimum norm method. 

Plots (not shown) of the least favorable f reveal that for 
all three problems, m, is roughly proportional to 1 f i l . In 
P2 we find that gi is increasing in / x i /  within each cluster 
of design points. In P3, however, gi is decreasing in / x i /  
within each such cluster, as is wi.In this latter case are we 
then designing for a particularly unlikely contingency, at 
the cost of protection against more realistic departures from 
homoscedasticity? To give a partial answer to this question, 
we assessed the performance of our designs assuming that 
the true variance function was known to be of the form g,* cx 
1+c/xi 1"  normed to satisfy ( 5 )with equality. We computed 
the maximum (over f )  loss of the exact designs for P1 
and P2 and the two approximate designs-both with the 
minimax weights and with optimal weights w? cx l/g$-for 
P3. These maxima are displayed in Table 1. Note that with 
the minimum norm approximation, the minimax weights 

in fact result in a smaller loss than do the optimal weights. 
This is presumably due to the bias reduction effected by the 
minimax weights, as anticipated in the discussion following 
Theorem 3. 

5. 	 DESIGNS FOR FIRST- AND SECOND-ORDER 
MULTIPLE REGRESSION 

In this section we outline a method by which the the- 
oretical and computational methods of the preceding sec-
tions can be adapted to the q-variate approximate regres- 
sion model, and discuss the qualitative features of the re- 
sulting designs. For these models, x = ( z l , . . . ,z , ) ~and 
z(x) has elements 1,x l ,  . . . .  x, and possibly second order 
terms xix3 (15 i < j < q). Thus p = q + 1for first-order 
models, and p = (q + l ) (q  + 2)/2 for second-order mod- 
els. As design space, we take the q-fold Cartesian product 
S = S1x . . .  x S,,where each Sjconsists of ATo equally 
spaced points in [-I, I], as at (17) with N replaced by ATo. 
Thus AT = N:. There being no a priori reason to prefer one 
axis to another, we require that the designs be exchange- 
able and symmetric in each variable. Such designs can be 
generated by symmetrically choosing no points on the XI- 
axis and then forming the q-fold Cartesian product of these 
points with themselves, whence n = n:. We assume that no 
and Noare restricted in the same way as were n and N in 
Sections 3 and 4. The algorithms of those sections may then 
be used to choose the ,no points, so that the computational 
complexity does not increase with the dimensionality. 

Our simulations with q = 2 have led to the following 
observations. Recall that the classical designs that mini- 

Figure 3. Integer-Valued Approximations, Using the Annealing Scheme and Approximation Methods of Section 4, to the Minimax Designs; n = 

20, N = 40, and v = 10. For P I ,  both approximations result in the exact design of Figure 1. (a) P2, both approximations, loss I = 52.58. (b) P3, 
regression weights. (c) P3, minimum norm approximation, loss I = 52.03. (d) P3, multiplier approximation, loss I = 52.99. The losses associated 
with the non-integer-valued designs being approximated are P I ,  I = 34.03; P2, I = 49.83; and P3, I = 49.20. 
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Table I .  Losses Associated With Variance Functions g; x 1 
+c xi Under Various Design and Weight Combinations 

P3, minimum norm P3, multiplier 

Minimax Optimal Minimax Optimal 
c d P I  P2 weights weights weights weights 

mize variance alone are formed, in the Cartesian manner 
described earlier, from sites at xl= &I for the first-order 
model, and as well zl= 0 for the second-order model. 
The robust designs for the second-order model move mass 
away from the corners of the design space and into more 
central sites. They also do this, but to a lesser extent, for 
the first-order model. Furthermore, relative to the variance- 
minimizing designs, the robust designs replace replicates 
with clusters. For instance, if no = 7, we find that the robust 
first-order designs with = 21 are (for each of PI ,  P2, 
and P3) given by the Cartesian product of ( 0 ,  * . 8 . 1 . 9 ,  * I )  
with itself. Thus there are clusters of nine points in each cor- 
ner, with as well three points near the middle of each axis 
and one center point. The second-order designs are instead 
formed from ( 0 ,  * . I ,  1 . 9 .  i l ) ,  with four points clustered in 
each corner, six points in the middle of each axis, and nine 
points near the center. The solution for P3 gives very lit- 
tle weight to the center point of the first-order design, and 
weights all other points approximately equally in the other 
cases. We also note that the rounding mechanisms used for 
P3 can sometimes slightly alter the Cartesian product prop- 
erty. 

Calculations such as those described at the end of Sec- 
tion 3 gave efficiencies of 90.6%, 90.6%, and 100% for the 
first-order designs, and 93.3%, 93.3%, and 100% for the 
second-order designs. The robust designs thus seem very 
sensible. Their emphasis on near, rather than exact, replica- 
tion protects against model bias and allows for the estima- 
tion of alternate models; the clustering makes them fairly 
efficient when the fitted model is in fact correct. 

6. EXTRAPOLATION DESIGNS 

In this section we consider designs for the extrapolation 
of the estimates of the mean response, determined from ob- 
servations made within the design space S , to an extrapola- 
tion region 7 disjoint from S. Extrapolation is an inherently 
risky procedure, exacerbated by an overreliance on model 
assumptions; for this reason, robustness against model vio- 
lations is particularly important in such applications. 

Designs for extrapolation of polynomials, assuming a 
correctly specified response, were studied by Hoe1 and 
Levine (1964) and Kiefer and Wolfowitz (1964a,b). Studden 
(1971) studied such problems for multivariate polynomial 
models. Dette and Wong (1996) and Spruill (1984) con- 
structed extrapolation designs for polynomial regression, 
robust against various misspecifications of the degree of 
the polynomial. Huber (1975) obtained designs for extrap- 
olation of a response, assumed to have a bounded derivative 
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of a certain order but to be otherwise arbitrary, to one point 
outside of the design interval. These results were corrected 
and extended by Huang and Studden (1988). Draper and 
Herzberg (1973) extended the methods of Box and Draper 
(1959) to extrapolation under response uncertainty. In their 
approach, one estimates a first-order model but designs with 
the possibility of a second-order model in mind; the goal 
is extrapolation to one fixed point outside of the spherical 
design space. In earlier work (Fang and Wiens 1999), we ob- 
tained approximate (i.e., continuous) designs robust against 
departures from linearity and homoscedasticity similar to 
those entertained in this article. The goal there was extrap- 
olation to a region of positive Lebesgue measure. 

Our model is as described by (1)-(5) for x E S .  For 
x E 7,it is given by Y = z T ( x ) B+ f T ( x )  + E ,  where the 
function fT is constrained only by its L 2 ( p ) norm, 

for some measure p and a given constant rl;.Important 
special cases are T,an interval; p, Lebesgue measure; and 
7,a point at which p places unit mass. As a loss function, 
we take the maximum, over all f ~  satisfying (20), value of 
the integrated mean squared prediction error (IMSPE), 

Define a p x p matrix, AT = ST z ( x ) z T  ( x ) p ( d x ) ,  of rank 

q I p. Let be a p x q square root of AT and define 
Q,,, = A - ~ v T A $ / ~ .  Let 

and define r T , ~= rlT/(m17).  Using this notation, we first 
calculate that 

The maximum is achieved by requiring the sign of f T ( x )  
to be opposite that of d T z ( x ) ,by requiring equality in (20), 
and by then maximizing I ST d T z ( x )fT ( x ) p ( d x )  by apply- 
ing the Cauchy-Schwarz inequality. The maximizing fT is 
given ~ T ( x )- 7 j T d T z ( ~ ) / -= Substituting this 
into (21), and the trace. gives 

IT(^, 9 ,W,m) 

2 

= v 2  d T ATd + I T , s )  +{ 
6.l Designs Solving Problems " 5  P 2 z  

and P3 

Proceeding as in Section 2.1, we find that the maximum 
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(minimum norm approximation). (d) Weights for P3. 

value of d T A ~ d ,over functions f satisfying (3) and (4), is 
Nr12X,,T, where X n L , ~is the largest characteristic root of 
the q x q matrix Q ~ ( M ; ~ M ~ M L ~- 1)Q.Lemmas 2 and 3 
remain valid with I ,  replaced by I,. The analog of (14) thus 
becomes 

+ 7 . ~s )2+ JV Cm;~;ip-(Il I}(231 

and the following results are immediate. 

Theorem4 For OLS estimation with homoscedastic er- 
rors, (G= ( 1 ) .W = { I ) ) ,we have 

and so the minimax extrapolation design for P1 has 
{ p 1  = { m , ) : l l ,  where {mi)::, minimizes (24). 

N -For computational purposes, we note that C,=,mili = 

t r ( Q T ~ ; l Q ) .  

Tlzeorem 5. For OLS estimation (W = { I ) ) with het- 
eroscedastic errors, we have 

Figure 4. Designs for Extrapolation From [ I ,  5001 to { .5);  n = 235, N = 47, 7) = 10, and r ~ ; s  = I .  (a), (b), (c) Designs for P I ,  P2, and P3 

lnax I T ( f .  g,1. m )  
fl" 


= ~~2 (.J;\lm;r+r.~,s)+ --fl ( } . (25) 

and so the minimax extrapolation design for P2 has 
{pi);=, = {m,)t:,, where mi)^^, minimizes (25). 

Tlzeoreln 6. For WLS estimation with heteroscedastic 
errors, we have 

i n i i lmaxI~( f , g . zu .m)
f,s 


= 11'7?2 (& + T T , ~ )+ 7 m:/3?'3( r 2 } . ( 2 6 )  

The minimax extrapolation design {p,);!!l for P3 has p, cx 
413 -2/3 m ,  1, minimizes (26). The least favor- , where { m , ) ~ ~ ,  

able variances satisfy g, x Jp,,and the optimum weights 
satisfy w, x m,/p, whenever m ,  > 0. 

Corollary 2. The design with p, x ( ( Z ( Z T Z ) - ' A T
( z ~ z ) - ~ z ~ ) , , ) ~ / ~ minimizes the maximum and w, oc p;' 
IMSPE, subject to the side condition that ~ [ 8 ]0 for all f .= 

6.2 Case Study 

Consider the following extrapolation problems for bioas- 
says or dose-response experiments. Let P ( x ) be the prob- 
ability of a particular response when a drug or carcino-
gen is administered at dose x. At various levels of x ,  one 
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observes the proportion p, of subjects exhibiting the re- 
sponse, and transforms to the p,-quantile Y = Gpl(p,) 
for a suitable distribution G. If G is the logistic distri- 
bution, then one obtains the logit model; G as the nor-
mal distribution gives the probit model. The regression 
function E[YIx] = EIGpl(p,)] is then approximated by 
G p l ( P ( x ) ) .Because P ( x )  is unknown, a further approx- 
imation, E[YIx]= <(x) ,is often made, where <(x)is a 
polynomial, typically of low degree. Of course, var[Y/x] 
will also vary with x, due to the nature of the data as pro- 
portions and to the transformation. The model of Section 
1.1 would then seem to be quite appropriate. 

In the "low-dose" problem, it is difficult or impossible 
to observe Y near x = 0, or the error variance increases 
markedly as x + 0. Either of these situations leads to the 
extrapolation of estimates computed from data observed at, 
say, x E [a.b] (a > 0)  to estimate E [ Y / x= t] for small 
nonnegative values of t < a.  A related problem is that of 
estimating the excess probability P ( x )- P(0) of a subject 
exhibiting the response on continuous exposure at dose x. 
A third problem involves determination of a "virtually safe 
dose" (Cornfield 1977) below which the excess probability 
will be less than a specified quantity. 

Hoel and Jennrich (1979) obtained optimal designs for 
these problems, assuming G-I ( P ( x ) )  = - log(1- P ( x ) )  
to be an exact polynomial in x and assuming the variance 
function, derived by the delta method, to be exact in fi- 
nite samples. This variance function depends on the un- 
known parameters and so was estimated to determine the 
design by inserting the estimates from a prior experiment. 
Krewski, Bickis, Kovar, and Arnold (1986) considered de- 
signs for low-dose problems assuming that E[YIx]was ex- 
actly linear in lnx. Lawless (1984) obtained designs that 
minimize the MSPE of qx=O,for various trial values of E 
[ Y / x= 01 - <(0).Of course, this difference is unknown; 
our approach is to model it [by f ~ ( 0 ) ]in such a way as to 
allow a minimax treatment. Lawless (1984) reached qualita- 
tive conclusions very similar to ours, remarking that "in ex- 
trapolation problems, a slight degree of model inadequacy 
quickly wipes out advantages that minimum variance de- 
signs possess when the model is exactly correct." 

An example considered by Hoel and Jennrich (1979) con- 
cerns an experiment discussed by Guess, Crump, and Peto 
(1977) in which a cubic polynomial is to be fitted to data 
from n = 235 responses to various doses x, with x rang-

ing over [I,  5001. The extrapolation region is the point 
7 = 1.5). We first obtained a design for problem P1 in 
this situation, with design space comprising :V = 3n = 705 
points equally spaced over [I ,  5001 and a measure p placing 
unit mass at .5. This resulted in four clusters of points, with 
each point allocated one observation. The clusters ranged 
over [I ,  601, [137, 1901, [370, 4001, and [494, 5001. Because 
some replication is necessary for experimentation of this 
type, we then reran the program with a restricted design 
space of 1V = 1215 = 47 points, roughly uniformly dis- 
tributed over these intervals. This yielded the final design, 
illustrated in Figure 4(a) with more details in Table 2. We 
carried out a similar process for P2 and for P3. In all cases 
we took u= 10.TT,S  = 1, and '12 = 1. 

For each case, we carried out 100 runs, each consisting 
of 100 iterations of the algorithms described in Sections 3.1 
and 4.1. We repeated this procedure several times to ensure 
that a minimum had been reached. The computations were 
carried out using one 360 MHz CPU on a Sun UltraSPARC- 
I1 workstation; typical CPU times for these sets of 100 runs 
were 494, 594, and 504 seconds for P1, P2, and P3 (both 
approximations). 

The resulting designs are illustrated in Figures 4(b) and 
4(c), with weights for the latter design given in Figure 4(d). 
For comparison, the design of Hoel and Jennrich (1979), 
for a particular prior reflecting a "background effect" (i.e., 
P(0)  > O ) ,  placed 63, 125, 35, and 12 observations at 
x = 1.82.6.342, and 500. Such a design does not allow 
for testing the model for lack of fit nor for estimating poly- 
nomial responses of degree greater than three. The design 
of Huang and Studden (1988) for extrapolation of a re- 
sponse assumed to have a bounded fourth derivative can be 
obtained from their theorem 4.4. It depends on a parame- 
ter p similar to our u;for p = 10, the design places mass 
.988, .008, .003, and .001, yielding frequencies 232, 2, 1, 
and 0 at sites 1, 125.75, 375.3, and 500. Thus even the cu- 
bic response is not estimable without an adjustment of the 
design. 

We compared the variances of the prediction at x = .5 
from the designs for PI ,  P2, and P3 to those of the Hoel- 
Jennrich design. In each case g, x P ( x , ) / ( ~ z , ( l- P ( x , ) ) )  
was estimated by plugging in the estimated response func- 
tion P ( x )= 1-exp(-.01- ,00026377~) obtained by Guess 
et al. (1977) and used in this way by Hoel and Jenn- 
rich (1979). The resulting efficiencies of the robust designs 

Table 2. Extrapolation Designs for the Case Study of Section 6.2 

Case Ranges (frequencies) of blocks of design points Loss 

Extrapolation to T= {.5) 
PI [ I ,  431 (159) [137, 1901 (60) 
P2 [ I ,  361 (1 69) [I 40, 1901 (39) 
P3a [ I ,  451 (1 81) [ I  35, 1851 (31) 
Extrapolation to T= [O, .5] 
PI [ I ,  511 (1 44) [I 30, 2031 (54) 
P2 [ I ,  431 (157) [139, 1941 (46) 
P3b [ I ,  491 (1 83) [I 38, 1911 (31) 

[370, 4001 (22) 
[370, 4001 (1 9) 
[375, 3951 (1 6) 

[359, 41 01 (27) 
[358, 4021 (23) 
[364, 41 01 (14) 

[494, 5001 (8) 
[494, 5001 (8) 
[495, 5001 (7) 

[490, 5001 (1 0) 
[492, 5001 (9) 
[495, 5001 (7) 

89.39 
1 14.43 
85.47a 

73.54 
83.43 
68.90~ 

a Mlnimum norm approximation; loss for mult~plier approximation was 85.92. 
Minimum norm approximatlon; loss for multiplier approximatlon was 69.87 
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Figure 5. Designs for Extrapolation From [ I ,  5001 to [O, .5]; n = 235, N = 47, u = 10, and riis = I .  (a), (b), (c) Designs for PI ,  P2, and P3 
(minimum norm approximation). (d) Weights for P3. 

were 32.3%, 37.0%, and 13.4%. These indicate that the 
premium paid for the robustness is high, if one has con- 
fidence in the cubic model and in the assumed variance 
function. An indication of the amount of insurance ob- 
tained for this premium is given by comparing the predic- 
tion variances under homoscedasticity: g, LX l ln, ,  which 
gives efficiencies of 109.8%, 124.0%, and 64.7%. If in- 
stead g, is altered by taking a prior response function 
P ( x )  = 1 - exp(-.l - .00026377x), corresponding to a 
different prior estimate of the background effect, then the 
efficiencies are 87.3%, 99.0%, and 45.9%. 

We repeated the process just described with the change 
7 = [O.  . 5 ] .p = Lebesgue measure, for extrapolation 
to a low-dose region. These designs and weights are 
given in Figure 5. Relative to those in the design for 
a one-point extrapolation space, the clusters of sites are 
somewhat more spread out. Note also that some of the 
designs continue to call for a number of unreplicated 
observations; the experimenter would presumably want 
to group these in some manner, to give replicates. A 
possibility is to run the programs once again, with a 
design space containing fewer possible sites in these 
regions. 

For both types of extrapolation regions, the algorithms 
for P3 did not improve on the initial allocations rn,= N p l .  
These designs then agree with those given by Corollary 2. 
For larger values of u, this was no longer the case. 

7. CONCLUSIONS AND GUIDELINES 

We have presented integer-va1ued regression and 
in some cases regression weights, that are at least nearly 

optimal for various estimation and extrapolation problems. 
The designs are robust against an incorrectly specified re- 
sponse function and against possible error heteroscedastic- 
ity. The use of a finite design space and of a simulated 
annealing algorithm has greatly facilitated the construction 
of the designs. In particular, these methods, combined in 
some cases with the rounding methods used, have allowed 
us to present exact (i.e. integer-valued) designs in situations 
where only approximate (continuous) designs were previ- 
ously obtainable. 

A recurring message has been that the designs that pro- 
tect against these very general forms of model bias and error 
heteroscedasticity may be approximated by taking the (ho- 
mogeneous) variance-minimizing designs, which typically 
have replicates at p sites, and replacing these replicates by 
clusters of observations at nearby but distinct sites. A ju- 
dicious application of this maxim alone should enable the 
experimenter to obtain improved, if not completely optimal, 
designs in those cases in which the classical design problem 
has been solved. In less structured problems, the optimal de- 
signs can be obtained by applying simulated annealing, as 
in Sections 3-5 of this article, to the minimization problems 
outlined in Section 2. 

[Received April 1999. Revised Jni~cialy 2000.1 
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