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Abstract. In this paper, we mainly review recent results on mathematical
theory and numerical methods for Bose-Einstein condensation (BEC), based
on the Gross-Pitaevskii equation (GPE). Starting from the simplest case with
one-component BEC of the weakly interacting bosons, we study the reduction
of GPE to lower dimensions, the ground states of BEC including the existence
and uniqueness as well as nonexistence results, and the dynamics of GPE in-
cluding dynamical laws, well-posedness of the Cauchy problem as well as the
finite time blow-up. To compute the ground state, the gradient flow with dis-
crete normalization (or imaginary time) method is reviewed and various full
discretization methods are presented and compared. To simulate the dynamics,

both finite difference methods and time splitting spectral methods are reviewed,
and their error estimates are briefly outlined. When the GPE has symmetric
properties, we show how to simplify the numerical methods. Then we compare
two widely used scalings, i.e. physical scaling (commonly used) and semiclas-
sical scaling, for BEC in strong repulsive interaction regime (Thomas-Fermi
regime), and discuss semiclassical limits of the GPE. Extensions of these re-
sults for one-component BEC are then carried out for rotating BEC by GPE
with an angular momentum rotation, dipolar BEC by GPE with long range
dipole-dipole interaction, and two-component BEC by coupled GPEs. Finally,
as a perspective, we show briefly the mathematical models for spin-1 BEC,
Bogoliubov excitation and BEC at finite temperature.
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1. Introduction. Quantum theory is one of the most important science discoveries
in the last century. It asserts that all objects behave like waves in the micro length
scale. However, quantum world remains a mystery as it is hard to observe quantum
phenomena due to the extremely small wavelength. Now, it is possible to explore
quantum world in experiments due to the remarkable discovery of a new state of
matter, Bose-Einstein condensate (BEC). In the state of BEC, the temperature is
very cold (near absolute zero). In such case, the wavelength of an object increases
extremely, which leads to the incredible and observable BEC.

1.1. Background. The idea of BEC originated in 1924-1925, when A. Einstein
generalized a work of S. N. Bose on the quantum statistics for photons [58] to a
gas of non-interacting bosons [94, 95]. Based on the quantum statistics, Einstein
predicted that, below a critical temperature, part of the bosons would occupy the
same quantum state to form a condensate. Although Einstein’s work was carried
out for non-interacting bosons, the idea can be applied to interacting system of
bosons. When temperature T is decreased, the de-Broglie wavelength λdB of the
particle increases, where λdB =

√
2π~2/mkBT , m is the mass of the particle, ~ is

the Planck constant and kB is the Boltzmann constant. At a critical temperature
Tc, the wavelength λdB becomes comparable to the inter-particle average spacing,
and the de-Broglie waves overlap. In this situation, the particles behave coherently
as a giant atom and a BEC is formed.

Einstein’s prediction did not receive much attention until F. London suggested
the superfluid 4He as an evidence of BEC in 1938 [139]. London’s idea had inspired
extensive studies on the superfluid and interacting boson system. In 1947, by de-
veloping the idea of London, Bogliubov established the first macroscopic theory of
superfluid in a system consisting of interacting bosons [57]. Later, it was found
in experiment that less then 10% of the superfluid 4He is in the condensation due
to the strong interaction between helium atoms. This fact motivated physicists to
search for weakly interacting system of Bose gases with higher occupancy of BEC.
The difficulty is that almost all substances become solid or liquid at temperature
which the BEC phase transition occurs. In 1959, Hecht [116] pointed out that
spin-polarized hydrogen atoms would remain gaseous even at 0K. Hence, H atoms
become an attractive candidate for BEC. In 1980, spin-polarized hydrogen gases
were realized by Silvera and Walraven [170]. In the following decade, extensive ef-
forts had been devoted to the experimental realization of hydrogen BEC, resulting
in the developments of magnetically trapping and evaporative cooling techniques.
However, those attempts to observe BEC failed.
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In 1980s, due to the developments of laser trapping and cooling, alkali atoms
became suitable candidates for BEC experiments as they are well-suited to laser
cooling and trapping. By combining the advanced laser cooling and the evaporative
cooling techniques together, the first BEC of dilute 87Rb gases was achieved in
1995, by E. Cornell and C. Wieman’s group in JILA [12]. In the same year, two
successful experimental observations of BEC, with 23Na by Ketterle’s group [86] and
7Li by Hulet’s group [59], were announced. The experimental realization of BEC
for alkali vapors has two stages: the laser pre-cooling and evaporative cooling. The
alkali gas can be cooled down to several µK by laser cooling, and then be further
cooled down to 50nK–100nK by evaporative cooling. As laser cooling can not be
applied to hydrogen, it took atomic physicists much more time to achieve hydrogen
BEC. In 1998, atomic condensate of hydrogen was finally realized [99]. For better
understanding of the long history towards the Bose-Einstein condensation, we refer
to the Nobel lectures [80, 126].

The experimental advances [12, 86, 59] have spurred great excitement in the
atomic physics community and condensate physics community. Since 1995, numer-
ous efforts have been devoted to the studies of ultracold atomic gases and various
kinds of condensates of dilute gases have been produced for both bosonic particles
and fermionic particles [11, 84, 97, 130, 147, 149, 154]. In this rapidly growing
research area, numerical simulation has been playing an important role in under-
standing the theories and the experiments. Our aim is to review the numerical
methods and mathematical theories for BEC that have been developed over these
years.

1.2. Many body system and mean field approximation. We are interested
in the ultracold dilute bosonic gases confined in an external trap, which is the case
for most of the BEC experiments. In these cold dilute gases, only binary interaction
is important. Hence, the many body Hamiltonian for N identical bosons held in a
trap can be written as [133, 130]

HN =
N∑

j=1

(
− ~2

2m
∆j + V (xj)

)
+

∑

1≤j<k≤N
Vint(xj − xk), (1.1)

where xj ∈ R3 (j = 1, . . . , N) denote the positions of the particles, m is the mass
of a boson, ∆j is the Laplace operator with respect to xj , V (xj) is the external
trapping potential, and Vint(xj−xk) denotes the inter-atomic two body interactions.
The wave function ΨN := ΨN (x1, . . . ,xN , t) ∈ L2(R3N × R) is symmetric, with
respect to any permutation of the positions xj . The evolution of the system is then
described by the time-dependent Schrödinger equation

i~∂tΨN(x1, . . . ,xN , t) = HNΨN(x1, . . . ,xN , t). (1.2)

Here i denotes the imaginary unit. In the sequel, we may omit time t when we write
the N body wave function ΨN .

In principle, the above many body system can be solved, but the cost increases
quadratically as N goes large, due to the binary interaction term. To simplify the
interaction, mean-field potential is introduced to approximate the two-body interac-
tions. In the ultracold dilute regime, the binary interaction Vint is well approximated
by the effective interacting potential:

Vint(xj − xk) = g δ(xj − xk), (1.3)
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where δ(·) is the Dirac distribution and the constant g = 4π~2as
m . Here as is the s-

wave scattering length of the bosons (positive for repulsive interaction and negative
for attractive interaction), and it is related to the potential Vint [133]. The above
approximation (1.3) is valid for the dilute regime case, where the scattering length
as is much smaller than the average distance between the particles.

For a BEC, all particles are in the same quantum state and we can formally take
the Hartree ansatz for the many body wave function as

ΨN (x1, . . . ,xN , t) =

N∏

j=1

ψH(xj , t), (1.4)

with the normalization condition for the single-particle wave function ψH as
∫

R3

|ψH(x, t)|2 dx = 1. (1.5)

Then the energy of the state (1.4) can be written as

E = N

∫

R3

[
~2

2m
|∇ψH(x, t)|2 + V (x)|ψH (x, t)|2 + N − 1

2
g|ψH(x, t)|4

]
dx. (1.6)

Let us introduce the wave function for the whole condensate

ψ(x, t) =
√
NψH(x, t). (1.7)

Neglecting terms of order 1/N , we obtain the energy of the N body system as

E(ψ) =

∫

R3

[
~2

2m
|∇ψ(x, t)|2 + V (x)|ψ(x, t)|2 + 1

2
g|ψ(x, t)|4

]
dx, (1.8)

where the wave function is normalized according to the total number of the particles,
∫

R3

|ψ(x, t)|2 dx = N. (1.9)

Eq. (1.8) is the well-known Gross-Pitaevskii energy functional. The equation gov-
erning the motion of the condensate can be derived by [153]

i~∂tψ(x, t) =
δE(ψ)

δψ
=

[
− ~2

2m
∇2 + V (x) + g|ψ|2

]
ψ, (1.10)

where ψ denotes the complex conjugate of ψ := ψ(x, t). Eq. (1.10) is a non-
linear Schrödinger equation (NLSE) with cubic nonlinearity, known as the Gross-
Pitaevskii equation (GPE).

In the derivation, we have used both the dilute property of the gases and the
Hartree ansatz (1.4). Eq. (1.4) requires that the BEC system is at extremely low
temperature such that almost all particles are in the same states. Thus, mean field
approximation (1.8) and (1.10) are only valid for dilute boson gases (or usually
called weakly interacting boson gases) at temperature T much smaller than the
critical temperature Tc.

The Gross-Pitaevskii (GP) theory (1.10) was developed by Pitaevskii [152] and
Gross [109] independently in 1960s. For a long time, the validity of this mean
field approximation lacks of rigorous mathematical justification. Since the first
experimental observation of BEC in 1995, much attention has been paid to the
GP theory. In 2000, Lieb et al. proved that the energy (1.8) describes the ground
state energy of the many body system correctly in the mean field regime [133, 134].
Later H. T. Yau and his collaborators studied the validity of GPE (1.10) as an
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approximation for (1.2) to describe the dynamics of BEC [96], without the trapping
potential V (x).

GP theory, or mean field theory, has been proved to predict many properties of
BEC quite well. It has become the fundamental mathematical model to understand
BEC. In this review article, we will concentrate on the GP theory.

1.3. The Gross-Pitaevskii equation. As shown in section 1.2, at temperature
T � Tc, the dynamics of a BEC is well described by the Gross-Pitaevskii equation
(GPE) in three dimensions (3D)

i~∂tψ(x, t) =

[
− ~2

2m
∇2 + V (x) +Ng|ψ(x, t)|2

]
ψ(x, t), x ∈ R3, t > 0, (1.11)

where x = (x, y, z)T ∈ R3 is the Cartesian coordinates, ∇ is the gradient operator
and ∇2 := ∇ · ∇ = ∆ is the Laplace operator. In fact, the above GPE (1.11) is

obtained from the GPE (1.10) by a rescaling ψ →
√
Nψ, noticing (1.9), the wave

function ψ in (1.11) is normalized by

‖ψ(·, t)‖22 =

∫

R3

|ψ(x, t)|2 dx = 1. (1.12)

1.3.1. Different external trapping potentials. In the early BEC experiments, a single
harmonic oscillator well was used to trap the atoms in the condensate [84, 60].
Recently more advanced and complicated traps are applied in studying BEC in
laboratory [153, 145, 61, 72]. Here we present several typical trapping potentials
which are widely used in current experiments.

I. Three-dimensional (3D) harmonic oscillator potential [153]:

Vho(x) = Vho(x) + Vho(y) + Vho(z), Vho(α) =
m

2
ω2
αα

2, α = x, y, z, (1.13)

where ωx, ωy and ωz are the trap frequencies in x-, y- and z-direction, respectively.
Without loss of generality, we assume that ωx ≤ ωy ≤ ωz throughout the paper.

II. 2D harmonic oscillator + 1D double-well potential (Type I) [145]:

V
(1)
dw (x) = V

(1)
dw (x) + Vho(y) + Vho(z), V

(1)
dw (x) =

m

2
ν4x
(
x2 − â2

)2
, (1.14)

where ±â are the double-well centers in x-axis, νx is a given constant with physical
dimension 1/[s m]1/2.

III. 2D harmonic oscillator + 1D double-well potential (Type II) [118, 67]:

V
(2)
dw (x) = V

(2)
dw (x) + Vho(y) + Vho(z), V

(2)
dw (x) =

m

2
ω2
x (|x| − â)

2
. (1.15)

IV. 3D harmonic oscillator + optical lattice potential [79, 153, 3]:

Vhop(x) = Vho(x)+Vopt(x)+Vopt(y)+Vopt(z), Vopt(α) = Iα Eα sin
2(q̂αα), (1.16)

where q̂α = 2π/λα is fixed by the wavelength λα of the laser light creating the
stationary 1D lattice wave, Eα = ~2q̂2α/2m is the so-called recoil energy, and Iα is
a dimensionless parameter providing the intensity of the laser beam. The optical
lattice potential has periodicity Tα = π/q̂α = λα/2 along α-axis (α = x, y, z).

V. 3D box potential [153]:

Vbox(x) =

{
0, 0 < x, y, z < L,
∞, otherwise.

(1.17)
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where L is the length of the box in the x-, y-, z-direction.

For more types of external trapping potential, we refer to [153, 151]. When a
harmonic potential is considered, a typical set of parameters used in experiments
with 87Rb is given by

m = 1.44×10−25[kg], ωx = ωy = ωz = 20π[rad/s], a = 5.1×10−9[m], N : 102 ∼ 107

and the Planck constant has the value

~ = 1.05× 10−34 [Js].

1.3.2. Nondimensionlization. In order to nondimensionalize Eq. (1.11) under the
normalization (1.12), we introduce

t̃ =
t

ts
, x̃ =

x

xs
, ψ̃

(
x̃, t̃
)
= x3/2s ψ (x, t) , Ẽ(ψ̃) =

E(ψ)

Es
, (1.18)

where ts, xs and Es are the scaling parameters of dimensionless time, length and

energy units, respectively. Plugging (1.18) into (1.11), multiplying by t2s/mx
1/2
s ,

and then removing all ,̃ we obtain the following dimensionless GPE under the nor-
malization (1.12) in 3D:

i∂tψ(x, t) = −1

2
∇2ψ(x, t) + V (x)ψ(x, t) + κ|ψ(x, t)|2ψ(x, t), (1.19)

where the dimensionless energy functional E(ψ) is defined as

E(ψ) =

∫

R3

[
1

2
|∇ψ|2 + V (x)|ψ|2 + κ

2
|ψ|4

]
dx, (1.20)

and the choices for the scaling parameters ts and xs, the dimensionless potential
V (x) with γy = tsωy and γz = tsωz, the energy unit Es = ~/ts = ~2/mx2s, and the
interaction parameter κ = 4πasN/xs for different external trapping potentials are
given below [136]:

I. 3D harmonic oscillator potential:

ts =
1

ωx
, xs =

√
~

mωx
, V (x) =

1

2

(
x2 + γ2yy

2 + γ2zz
2
)
.

II. 2D harmonic oscillator + 1D double-well potential (type I):

ts =

(
m

~ν4x

)1/3

, xs =

(
~

mν2x

)1/3

, a =
â

xs
, V (x) =

1

2

[(
x2 − a2

)2
+ γ2yy

2 + γ2zz
2
]
.

III. 2D harmonic oscillator + 1D double-well potential (type II):

ts =
1

ωx
, xs =

√
~

mωx
, a =

â

xs
, V (x) =

1

2

[
(|x| − a)2 + γ2yy

2 + γ2zz
2
]
.

IV. 3D harmonic oscillator + optical lattice potentials:

ts =
1

ωx
, xs =

√
~

mωx
, kτ =

2π2x2sIτ
λ2τ

, qτ =
2πxs
λτ

, τ = x, y, z,

V (x) =
1

2
(x2 + γ2yy

2 + γ2zz
2) + kx sin

2(qxx) + ky sin
2(qyy) + kz sin

2(qzz).
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V. 3D Box potential:

ts =
mL2

~
, xs = L, V (x) =

{
0, 0 < x, y, z < 1,
∞, otherwise.

1.3.3. Dimension reduction. Under the external potentials I–IV, when ωy ≈ 1/ts =
ωx and ωz � 1/ts = ωx (⇔ γy ≈ 1 and γz � 1), i.e. a disk-shape condensate, the
3D GPE can be reduced to a two dimensional (2D) GPE. In the following discussion,
we take potential I, i.e. the harmonic potential as an example.

For a disk-shaped condensate with small height in z-direction, i.e.

ωx ≈ ωy, ωz � ωx, ⇐⇒ γy ≈ 1, γz � 1, (1.21)

the 3D GPE (1.19) can be reduced to a 2D GPE by assuming that the time evolu-
tion does not cause excitations along the z-axis since these excitations have larger
energies at the order of ~ωz compared to excitations along the x and y-axis with
energies at the order of ~ωx.

To understand this [31], consider the total condensate energy E (ψ(t)) with
ψ(t) := ψ(x, t):

E (ψ(t)) =
1

2

∫

R3

|∇ψ(t)|2dx+
1

2

∫

R3

(
x2 + γ2yy

2
)
|ψ(t)|2dx

+
γ2z
2

∫

R3

z2|ψ(t)|2dx+
κ

2

∫

R3

|ψ(t)|4dx. (1.22)

Multiplying (1.19) by ψt and integrating by parts show the energy conservation

E (ψ(t)) = E (ψI) , t ≥ 0, (1.23)

where ψI = ψ(t = 0) is the initial function which may depend on all parameters γy,
γz and κ. Now assume that ψI satisfies

E(ψI)

γ2z
→ 0, as γz → ∞. (1.24)

Take a sequence γz → ∞ (and keep all other parameters fixed). Since
∫
R3 |ψ(t)|2 dx

= 1, we conclude from weak compactness that there is a positive measure n0(t)
such that

|ψ(t)|2 ⇀ n0(t) weakly as γz → ∞.

Energy conservation implies∫

R3

z2|ψ(t)|2 dx → 0, as γz → ∞,

and thus we conclude concentration of the condensate in the plane z = 0:

n0(x, y, z, t) = n0
2(x, y, t)δ(z),

where n0
2(t) := n0

2(x, y, t) is a positive measure on R2.
Now let ψ3 = ψ3(z) be a wave function with

∫

R

|ψ3(z)|2 dz = 1,

depending on γz such that

|ψ3(z)|2 ⇀ δ(z), as γz → ∞. (1.25)

Denote by Sfac the subspace

Sfac = {ψ = ψ2(x, y)ψ3(z) | ψ2 ∈ L2(R2)} (1.26)
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and let

Π : L2(R3) → Sfac ⊆ L2(R3) (1.27)

be the projection on Sfac:

(Πψ)(x, y, z) = ψ3(z)

∫

R

ψ3(z
′) ψ(x, y, z′) dz′. (1.28)

Now write the equation (1.19) in the form

i∂tψ = Aψ + F(ψ), (1.29)

where Aψ stands for the linear part and F(ψ) for the nonlinearity. Applying Π to
the GPE gives

i∂t(Πψ) =ΠAψ +ΠF(ψ)

=ΠA(Πψ) + ΠF(Πψ) + Π ((ΠA−AΠ)ψ + (ΠF(ψ)−F(Πψ))) . (1.30)

The projection approximation of (1.19) is now obtained by dropping the commutator
terms and it reads

i∂t(Πσ) = ΠA(Πσ) + ΠF(Πσ), (1.31)

(Πσ)(t = 0) = ΠψI , (1.32)

or explicitly, with

(Πσ)(x, y, z, t) =: ψ2(x, y, t)ψ3(z), (1.33)

we find

i∂tψ2 = −1

2
∇2ψ2 +

1

2

(
x2 + γ2yy

2 + C
)
ψ2 +

(
κ

∫ ∞

−∞
ψ4
3(z) dz

)
|ψ2|2ψ2, (1.34)

where

C = γ2z

∫ ∞

−∞
z2|ψ3(z)|2 dz +

∫ ∞

−∞

∣∣∣∣
dψ3

dz

∣∣∣∣
2

dz.

Since this GPE is time-transverse invariant, we can replace ψ2 → ψ e−iC/2 and
drop the constant C in the trap potential. The observables are not affected by this.
For the same reason, we will always assume that V (x) ≥ 0 in (1.11).

The ‘effective’ GPE (1.34) is well known in the physical literature, where the
projection method is often referred to as ‘integrating out the z-coordinate’. How-
ever, an analysis of the limit process γz → ∞ has to be based on the derivation as
presented above, in particular on studying the commutators ΠA−AΠ, ΠF −FΠ .
In the case of small interaction β = o(1) [53], a good choice for ψ3(z) is the ground
state of the harmonic oscillator in z-dimension:

ψ3(z) =
(γz
π

)1/4
e−γzz

2/2. (1.35)

For condensates with interaction other than small interaction the choice of ψ3 is
much less obvious. Often one assumes that the condensate density along the z-axis
is well described by the (x, y)-trace of the ground state position density |φg|2

|ψ(x, y, z, t)|2 ≈ |ψ2(x, y, t)|2
∫

R2

|φg(x1, y1, z)|2 dx1dy1 (1.36)

and (taking a pure-state-approximation)

ψ3(z) =

(∫

R2

|φg(x, y, z)|2 dxdy
)1/2

. (1.37)
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Similarly, when ωy � 1/ts = ωx and ωz � 1/ts = ωx (⇔ γy � 1 and γz � 1),
i.e. a cigar-shaped condensate, the 3D GPE can be reduced to a 1D GPE. For a
cigar-shaped condensate [31, 151, 153]

ωy � ωx, ωz � ωx, ⇐⇒ γy � 1, γz � 1, (1.38)

the 3D GPE (1.11) can be reduced to a 1D GPE by proceeding analogously.
Then the 3D GPE (1.11), 2D and 1D GPEs can be written in a unified way

i∂tψ(x, t) = −1

2
∇2ψ(x, t) + V (x)ψ(x, t) + β |ψ(x, t)|2ψ(x, t), x ∈ Rd, (1.39)

where

β = κ





∫
R2 ψ

4
23(y, z) dydz,∫

R
ψ4
3(z) dz,

1,

V (x) =





1
2γ

2
xx

2, d = 1,
1
2

(
γ2xx

2 + γ2yy
2
)
, d = 2,

1
2

(
γ2xx

2 + γ2yy
2 + γ2zz

2
)
, d = 3;

(1.40)

where γx ≥ 1 is a constant and ψ23(y, z) ∈ L2(R2) is often chosen to be the x-trace

of the ground state φg(x, y, z) in 3D as ψ23(y, z) =
(∫

R
|φg(x, y, z)|2 dx

)1/2
which

is usually approximated by the ground state of the corresponding 2D harmonic
oscillator [31, 151, 153]. The normalization condition for (1.39) is

∫

Rd

|ψ(x, t)|2 dx = 1, (1.41)

and the energy of (1.39) is given by

E(ψ(·, t)) :=
∫

Rd

[
1

2
|∇ψ(x, t)|2 + V (x)|ψ(x, t)|2 + β

2
|ψ(x, t)|4

]
dx. (1.42)

For a weakly interacting condensate, choosing ψ23 and ψ3 as the ground states of
the corresponding 2D and 1D harmonic oscillator [31, 151, 153], respectively, we
derive,

β := κ





(γyγz)
1/2

2π , d = 1,√
γz
2π , d = 2,

1, d = 3.

(1.43)

1.3.4. BEC on a ring. BEC on a ring has been realized by choosing Toroidal po-
tential (3D harmonic oscillator +2D Gaussian potential) [161]:

Vtor(x) = Vho(x) + Vgau(x, y), Vgau(x, y) = V0e
−2 x2+y2

w2
0 , (1.44)

where Vgau is produced by a laser beam, w0 is the beam waist, and V0 is related to
the power of the plug-beam.

In the quasi-1D regime [161], ωx = ωy = ωr, the toroidal potential can be written
in cylindrical coordinate (r, θ, z) as

Vtor(r, θ, z) =
m

2
ω2
rr

2 +
m

2
ω2
zz

2 + V0e
−2 r2

w2
0 . (1.45)

When ωr, ωz � 1, the dynamics of BEC in the ring trap (1.44) would be confined

in r = R and z = 0, where m
2 ω

2
rr

2 + V0e
−2 r2

w2
0 attains the minimum at R. Then

similar to the above dimension reduction process and nondimensionlization, we can
obtain the dimensionless 1D GPE for BEC on a ring as [110]:

i∂tψ(θ, t) = −1

2
∂θθψ(θ, t) + β|ψ|2ψ(θ, t), θ ∈ [0, 2π], t > 0, (1.46)
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with periodic boundary condition, where ψ := ψ(θ, t) is the wave function and β is
a dimensionless parameter.

1.4. Outline of the review. Concerning the GPE (1.39), there are two basic
issues, the ground state and the dynamics. Mathematically speaking, the dynamics
include the time dependent behavior of GPE, such as the well-posedness of the
Cauchy problem, finite time blow-up, stability of traveling waves, etc. The ground
state is usually defined as the minimizer of the energy functional (1.42) under the
normalization constraint (1.41). In the remaining part of the paper, we will review
the mathematical theories and numerical methods for ground states and dynamics
of BECs.

In section 2, we review the theories of GPE for single-component BEC. Existence
and uniqueness, as well as other properties for the ground states are presented. Well-
posedness of the Cauchy problem for GPE is also reviewed. The rigorous analysis on
the convergence rates for the dimension reduction is introduced in section 2.3. After
an overview on the mathematical results for GPE, we list the numerical methods
to find the ground states and compute the dynamics for GPE in sections 3 and 4,
respectively. The most popular way for computing the ground states of BEC is the
gradient flow with discrete normalization (or imaginary time) method. Section 3
provides a solid mathematical background on the method and details on the full
discretizations. For computing the dynamics of GPE, the traditional finite difference
methods and the popular time splitting methods are taken into consideration in
section 4, with rigorous error analysis.

In section 5, we investigate the rotating BEC with quantized vortices. There
exist critical rotating speeds for the vortex configuration. In order to compute the
ground states and dynamics of rotating BEC in the presence of the multi-scale
vortex structure, we report the efficient and accurate numerical methods in section
6. For fast rotating BEC, the semiclassical scaling is usually adopted other than
the physical scaling used in the introduction. We demonstrate these two different
scalings in section 7, for the whole space case (harmonic trap) and the bounded
domain case (box potential). In fact, the semiclassical scaling is very useful in the
case of Thomas-Fermi regime.

Section 8 is devoted to the mathematical theory and numerical methods for dipo-
lar BEC. There are both isotropic contact interactions (short range) and anisotropic
dipole-dipole interactions (long range) in a dipolar BEC, and the dipolar GPE in-
volves a highly singular kernel representing the dipole-dipole interaction. We over-
come the difficulty caused by the singular kernel via a reformulation of the dipolar
GPE, and carry out accurate and efficient numerical methods for dipolar BECs.
In section 9, we consider a two component BEC, which is the simplest multi com-
ponent BEC system. Ground state properties as well as dynamical properties are
described. Efficient numerical methods are proposed by generalizing the existing
methods for single component BEC. Finally, we briefly introduce some other impor-
tant topics that are not covered in the current review in section 10, such as spinor
BEC, Bogoliubov excitations and BEC at finite temperatu re.

Throughout the paper, we adopt the standard Sobolev spaces and write the ‖ ·‖p
for standard Lp(Rd) norm when there is no confusion on the spatial variables. The
notations are consistent in each section, and the meaning of notation remains the
same if not specified.
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2. Mathematical theory for the Gross-Pitaevskii equation. In this section,
we consider the dimensionless GPE in d (d = 1, 2, 3) dimensions (1.39),

i∂tψ(x, t) = −1

2
∇2ψ(x, t) + V (x)ψ(x, t) + β |ψ(x, t)|2ψ(x, t), x ∈ Rd, (2.1)

where V (x) ≥ 0 is a real-valued potential and β ∈ R is treated as an arbitrary
dimensionless parameter. The GPE (2.1) can be generalized to any dimensions and
many results presented here are valid in higher dimensions, but we focus on the
most relevant cases d = 1, 2, 3 for BEC.

There are two important invariants, i.e., the normalization (mass),

N(ψ(·, t)) =
∫

Rd

|ψ(x, t)|2 dx ≡ N(ψ0) =

∫

Rd

|ψ(x, 0)|2 dx = 1, t ≥ 0, (2.2)

and the energy per particle

E(ψ(·, t)) =
∫

Rd

[
1

2
|∇ψ|2 + V (x)|ψ|2 + β

2
|ψ|4

]
dx ≡ E(ψ(·, 0)), t ≥ 0. (2.3)

In fact, the energy functional E(ψ) can be split into three parts, i.e. kinetic energy
Ekin(ψ), potential energy Epot(ψ) and interaction energy Eint(ψ), which are defined
as

Eint(ψ) =

∫

Rd

β

2
|ψ(x, t)|4dx, Epot(ψ) =

∫

Rd

V (x)|ψ(x, t)|2dx, (2.4)

Ekin(ψ) =

∫

Rd

1

2
|∇ψ(x, t)|2 dx, E(ψ) = Ekin(ψ) + Epot(ψ) + Eint(ψ). (2.5)

For convenience, we introduce the following function spaces:

LV (R
d) =

{
φ|
∫

Rd

V (x)|φ(x)|2dx <∞
}
, X := X(Rd) = H1(Rd) ∩ LV (Rd).

(2.6)

2.1. Ground states. To find the stationary solution of (2.1), we write

ψ(x, t) = φ(x) e−iµt, (2.7)

where µ is the chemical potential of the condensate and φ(x) is a function indepen-
dent of time. Substituting (2.7) into (2.1) gives the following equation for (µ, φ(x)):

µ φ(x) = −1

2
∆φ(x) + V (x)φ(x) + β|φ(x)|2φ(x), x ∈ Rd, (2.8)

under the normalization condition

‖φ‖22 :=

∫

Rd

|φ(x)|2dx = 1. (2.9)

This is a nonlinear eigenvalue problem with a constraint and any eigenvalue µ can
be computed from its corresponding eigenfunction φ(x) by

µ = µ(φ) =

∫

Rd

[
1

2
|∇φ(x)|2 + V (x)|φ(x)|2 + β|φ(x)|4

]
dx

= E(φ) +

∫

Rd

β

2
|φ(x)|4dx = E(φ) + Eint(φ). (2.10)

The ground state of a BEC is usually defined as the minimizer of the following
minimization problem:
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Find φg ∈ S such that

Eg := E(φg) = min
φ∈S

E(φ), (2.11)

where S = {φ | ‖φ‖2 = 1, E(φ) <∞} is the unit sphere.
It is easy to show that the ground state φg is an eigenfunction of the nonlinear

eigenvalue problem. Any eigenfunction of (2.8) whose energy is larger than that of
the ground state is usually called as excited states in the physics literatures.

2.1.1. Existence. In this section, we discuss the existence and uniqueness of the
ground state (2.11). Denote the best Sobolev constant Cb in 2D as

Cb = inf
06=f∈H1(R2)

‖∇f‖2L2(R2) ‖f‖2L2(R2)

‖f‖4L4(R2)

. (2.12)

The best constant Cb can be attained at some H1 function [187] and it is crucial in
considering the existence of ground states in 2D.

For existence and uniqueness of the ground state, we have the following results.

Theorem 2.1. (Existence and uniqueness) Suppose V (x) ≥ 0 (x ∈ Rd) satisfies
the confining condition

lim
|x|→∞

V (x) = ∞, (2.13)

there exists a ground state φg ∈ S for (2.11) if one of the following holds
(i) d = 3, β ≥ 0;
(ii) d = 2, β > −Cb;
(iii) d = 1, for all β ∈ R.

Moreover, the ground state can be chosen as nonnegative |φg |, and φg = eiθ|φg | for
some constant θ ∈ R. For β ≥ 0, the nonnegative ground state |φg| is unique. If
potential V (x) ∈ L2

loc, the nonnegative ground state is strictly positive.
In contrast, there exists no ground state, if one of the following holds:
(i′) d = 3, β < 0;
(ii′) d = 2, β ≤ −Cb.

To prove the theorem, we present the following lemmas.

Lemma 2.1. Suppose that V (x) ≥ 0 (x ∈ Rd) satisfies lim
|x|→∞

V (x) = ∞, the

embedding X ↪→ Lp(Rd) is compact, where p ∈ [2,∞] for d = 1, p ∈ [2,∞) for
d = 2, and p ∈ [2, 6) for d = 3.

Proof. It suffices to prove the case for p = 2 and the other cases can be obtained
by interpolation in view of the Sobolev inequalities. Since X is a Hilbert space,
we need show that any weakly convergent sequence in X has a strong convergent
subsequence in L2(Rd). Taking a bounded sequence {φn}∞n=1 ⊂ X such that

φn ⇀ φ in X, (2.14)

in order to prove the strong L2(Rd) convergence of the sequence, we need only prove
that

‖φn‖L2(Rd) → ‖φ‖L2(Rd). (2.15)

Using the weak convergence, there exists C > 0 such that
∫
Rd V (x)|φn|2 dx ≤ C.

For any ε > 0, from lim
|x|→∞

V (x) = ∞, there exists R > 0 such that V (x) ≥ C
ε for
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|x| ≥ R, which implies that ∫

|x|≥R
|φn|2 ≤ ε. (2.16)

For |x| ≥ R, applying Sobolev embedding theorem, we obtain
∫

|x|≤R
|φ|2 dx = lim

n→∞

∫

|x|≤R
|φn|2 dx. (2.17)

Combining (2.16) and (2.17) together as well as the lower semi-continuity of the
L2(Rd) norm, we have

lim sup
n→∞

‖φn‖2L2(Rd) − ε ≤ ‖φ‖2L2(Rd) ≤ lim inf
n→∞

‖φn‖2L2(Rd). (2.18)

Hence we get ‖φn‖L2(Rd) → ‖φ‖L2(Rd) and the strong convergence in L2(Rd) holds
true. The conclusion then follows. �

The following lemma ensures that the ground state must be nonnegative.

Lemma 2.2. For any φ ∈ X(Rd) and energy E(·) (2.3), we have

E(φ) ≥ E(|φ|), (2.19)

and the equality holds iff φ = eiθ|φ| for some constant θ ∈ R.

Proof. Noticing the inequality for φ ∈ H1(Rd) (d ∈ N)[131],

‖∇|φ|‖L2(Rd) ≤ ‖∇φ‖L2(Rd), (2.20)

where the equality holds iff φ = eiθ|φ| for some constant θ ∈ R, a direct application
implies the conclusion. �

The minimization problem (2.11) is nonconvex, but it can be transformed to a
convex minimization problem through the following lemma when β ≥ 0.

Lemma 2.3. ([134]) Considering the density ρ(x) = |φ(x)|2 ≥ 0, for
√
ρ ∈ S, the

energy E(
√
ρ) (2.3) is strictly convex in ρ if β ≥ 0.

Proof. The potential energy (2.4) is linear in ρ and the interaction energy (2.4) is

quadratic in ρ. Hence, Epot + Eint is convex in ρ. For φ1(x) =
√
ρ1(x), φ2(x) =√

ρ2(x) ∈ S (ρ1, ρ2 ≥ 0), we have φθ(x) =
√
θρ1(x) + (1 − θ)ρ2(x) ∈ S for any

θ ∈ (0, 1). Using Cauchy inequality, we get

|∇φθ(x)|2 =

∣∣∣
√
θρ1(x)

√
θ∇φ1(x) +

√
(1 − θ)ρ2(x)

√
1− θ∇φ2(x)

∣∣∣
2

θρ1(x) + (1− θ)ρ2(x)

≤(θρ1(x) + (1− θ)ρ2(x))
(
θ|∇φ1(x)|2 + (1− θ)|∇φ2(x)|2

)

θρ1(x) + (1− θ)ρ2(x)

=θ|∇φ1(x)|2 + (1− θ)|∇φ2(x)|2,

which implies the convexity of the kinetic energy Ekin (2.5) (with possible approx-
imation procedure). The conclusion then follows. �



MATHEMATICS AND NUMERICS FOR BEC 15

Proof of Theorem 2.1: We separate the proof into the existence and nonexistence
parts.

(1) Existence. First, we claim that the energy E (2.3) is bounded below under
the assumptions. Case (i) is clear. For case (ii), using the constraint ‖φ‖22 = 1 and
Gagliardo-Nirenberg inequality, we have

β‖φ‖44 ≥ −‖φ‖22 · ‖∇φ‖22 = −‖∇φ‖22.

For case (iii), using Cauchy inequality and Sobolev inequality, for any ε > 0, there
exists Cε > 0 such that

‖φ‖44 ≤ ‖φ‖2∞‖φ‖22 ≤ ‖φ‖2∞ ≤ ‖∇φ‖2‖φ‖2 ≤ ε‖∇φ‖22 + Cε,

which yields the claim. Hence, in all cases, we can take a sequence {φn}∞n=1 mini-
mizing the energy E in S, and the sequence is uniformly bounded in X . Taking a
weakly convergent subsequence (denoted as the original sequence for simplicity) in
X , we have

φn ⇀ φ∞, weakly in X. (2.21)

Lemma 2.1 ensures that {φn}∞n=1 converges to φ∞ in Lp where p is given in Lemma
2.1. Combining the lower-semi-continuity of the H1 and LV norms, we conclude
that φ∞ ∈ S is a ground state [134]. Lemma 2.2 ensures that the ground state
can be chosen as the nonnegative one. Actually, the nonnegative ground state is
strictly positive [134]. The uniqueness comes from the strict convexity of the energy
in Lemma 2.3.

(2) Nonexistence. Firstly, we consider the case d = 3, i.e. case (i′). If β < 0, let

φ(x) = π− 3
4 e−|x|2/2 ∈ S and denote

φε(x) = ε−3/2φ(x/ε) ∈ S, ε > 0, (2.22)

we find

E(φε) =
C1

ε2
+
βC2

ε3
+ C3 +O(1), C1, C2 > 0. (2.23)

Hence E(φε) → −∞ as ε→ 0+ which shows that there exists no ground state.
Secondly, we consider the case d = 2. Let φb(x) (x ∈ R2) be the smooth, radial

symmetric (decreasing) function such that the best constant Cb is attained in (2.12).
If β < −Cb, let φεb(x) = ε−1φb(x/ε) (ε > 0), and we have

E(φεb) =
β + Cb
2ε2

+ C4 +O(1) as ε→ 0+. (2.24)

As ε → 0+, E(φεb) → −∞, which shows that there exists no ground state. For
β = −Cb, as ε→ 0+, φεb will converge to the Dirac distribution and the infimum of
the energy E will be the minimal of V (x) (suppose V (x) take minimal at origin),
given by the sequence φεb. Thus, there exists no ground state for β = −Cb. The
proof is complete. �

Remark 2.1. The conclusions in Theorem 2.1 hold for potentials satisfying the
confining condition, including the box potential as in (1.17). Since box potentials are
not in L2

loc, there exists zeros in the ground state at the points where V (x) = +∞.
Results for the 3D case were first obtained by Lieb et al. [134].
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2.1.2. Properties of ground states. In this section, when we refer to the ground
state, the conditions guaranteeing the existence in Theorem 2.1 are always assumed
and potentials are locally bounded.

For the ground state φg ∈ S, we have the following Virial theorem when V (x) is
homogenous.

Theorem 2.2. (Virial identity) Suppose V (x) (x ∈ Rd, d = 1, 2, 3) is homogenous
of order s > 0, i.e. V (λx) = λsV (x) for all λ ∈ R, then the ground state solution
φg ∈ S for (2.11) satisfies

2Ekin(φg)− s Epot(φg) + d Eint(φg) = 0. (2.25)

Proof. Consider φε(x) = ε−d/2φg(x/ε) ∈ S (ε > 0), and use the stationary condi-

tion of the energy E(φε) at ε = 1, then we get dE(φε)
dε

∣∣
ε=1

= 0, which yields the

Virial identity (2.25). �

Many properties of the ground state are determined by the potential V (x).

Theorem 2.3. [134](Symmetry) Suppose V (x) is spherically symmetry and mono-
tone increasing, then the positive ground state solution φg ∈ S for (2.11) must be
spherically symmetric and monotonically decreasing.

Proof. This fact comes from the symmetric rearrangements. �

To learn more on the ground state, we study the Euler-Lagrange equation (2.8).

Theorem 2.4. The ground state of (2.11) satisfies the Euler-Lagrange equation
(2.8). Suppose V (x) ∈ L∞

loc, the ground state φg ∈ S of (2.11) is H2
loc. In addition,

if V ∈ C∞, the ground state is also C∞.

Proof. It is easy to show the ground state satisfies the nonlinear eigenvalue problem
(2.8). The regularity follows from the elliptic theory. �

For confining potentials, we can show that ground states decay exponentially fast
when |x| → ∞.

Theorem 2.5. Suppose that 0 ≤ V (x) ∈ L2
loc satisfies (2.13) and φg ∈ S is a

ground state of (2.11). When β ≥ 0, for any ν > 0, there exists a constant Cν > 0
such that

|φg(x)| ≤ Cνe
−ν|x|, x ∈ Rd, d = 1, 2, 3. (2.26)

Proof. The proof for d = 3 is given in [134] and the cases for d = 1, 2 are the same.
For any ν > 0, rewrite the Euler-Lagrange equation (2.8) for φg as

(
−1

2
∇2 +

ν2

2

)
φg =

(
µ+

ν2

2
− V − β|φg |2

)
φg. (2.27)

Making use of the d-dimensional Yukawa potential Y νd (x) (d = 1, 2, 3) [131] associ-

ated with − 1
2∇2 + ν2

2 , φg can be expressed as

φg(x) =

∫

Rd

Y νd (x− y)

[
µ+

ν2

2
− V (y) − β|φg(y)|2

]
dy. (2.28)
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Noticing that φg and the Yukawa potential are positive and V is confining potential,

we see that for sufficiently large R > 0, µ+ ν2

2 − V (x)− β|φg(x)|2 ≤ 0 for |x| ≥ R.
Thus, we get

φg(x) ≤
∫

|y|<R
Y νd (x− y)

[
µ+

ν2

2
− V (y) − β|φg(y)|2

]
dy. (2.29)

Noticing that Y νd ∈ L2
loc (d = 1, 2, 3) and |Y νd (x)| ≤ Ce−ν|x| for sufficiently large

|x|, we find

Cν = sup
x

∫

|y|<R
eν|x|Y νd (x− y)

[
µ+

ν2

2
− V (y) − β|φg(y)|2

]
dy <∞, (2.30)

and the conclusion (2.26) holds. �

Remark 2.2. Results (2.26) can be generalized to 1D case for arbitrary β, where
‖φg‖∞ is bounded by Sobolev inequality. The proof is the same.

For convex potentials, the ground states are shown to be log concave.

Theorem 2.6. Suppose V (x) (x ∈ Rd, d = 1, 2, 3) is convex, then the positive
ground state φg of (2.11) is log concave, i.e. ln(φg(x)) is concave,

ln(φg(λx + (1− λ)y)) ≥ λ ln(φg(x)) + (1− λ) ln(φg(y)), x,y ∈ Rd, λ ∈ [0, 1].

Proof. See [134]. �

When β > 0, we can actually estimate the L∞ bound for the ground state.

Theorem 2.7. Suppose that 0 ≤ V (x) ∈ Cαloc (α > 0) satisfies (2.13) and β > 0.
Let φg be the unique positive ground state of (2.11), we have

‖φg‖∞ ≤
√
µg
β
, µg = E(φg) +

β

2
‖φg‖44. (2.31)

The chemical potential µg ≤ 2E(φg) and hence can be bounded by choosing arbitrary
testing function.

Proof. Applying elliptic theory to the Euler-Lagrange equation,

µgφg =

(
−1

2
∇2 + V + β|φg|2

)
φg, (2.32)

we get φg ∈ C2,α
loc . From Theorem 2.5, φg is bounded in L∞. Consider the point x0

where φg takes its maximal, we can obtain

µgφg(x0) =

(
−1

2
∇2φg + V + β|φg|2

) ∣∣∣∣
x0

φg(x0)

≥
[
V (x0) + β|φg(x0)|2

]
φg(x0) ≥ β|φg(x0)|2φg(x0),

and so

‖φg‖2∞ = |φg(x0)|2 ≤ µg
β
. (2.33)

�
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Remark 2.3. In 2D and 3D, for small β > 0 or β < 0, the L∞ estimate above
can be improved by employing the W 2,p estimates for (2.32) and the embedding
H2(Rd) ↪→ L∞(Rd) (d = 2, 3). In 1D, L∞ bound can be simply obtained by
H1(R) ↪→ L∞(R), while the H1 norm can be estimated by the energy.

2.1.3. Approximations of ground states. For a few external potentials, we can find
approximations of ground states in the weakly interaction regime, i.e. |β| = o(1),
and strongly repulsive interaction regime, i.e. β � 1 [33, 37]. These approximations
show the leading order behavior of the ground states and they can be used as initial
data for computing ground states numerically.

Under a box potential, i.e. we take

V (x) =

{
0, x = (x1, . . . , xd)

T ∈ U = (0, 1)d,

+∞, otherwise,
(2.34)

in (2.8). When β = 0, i.e. linear case, (2.8) collapses to

µφ = −1

2
∇2φ, φ|∂U = 0, ‖φ‖22 =

∫

U

|φ(x)|2dx = 1. (2.35)

For this linear eigenvalue problem, it is easy to find an orthonormal set of eigen-
functions as [31, 151, 153]

φJ(x) =

d∏

m=1

φjm(xm), φl(x) =
√
2 sin(lπx), l ∈ N, J = (j1, · · · , jd) ∈ Nd, (2.36)

with the corresponding eigenvalues as

µJ =

d∑

m=1

µjm , µl =
1

2
l2π2, l ∈ N. (2.37)

Thus, for linear case, we can find the exact ground state as φg(x) = φ(1,··· ,1)(x).
In addition, when |β| = o(1), we can approximate the ground state as φg(x) ≈
φ(1,··· ,1)(x). The corresponding energy and chemical potential can be found as

Eg = E(φg) ≈ E(φ(1,··· ,1)(x)) = dπ2/2 +O(β),

µg = µ(φg) ≈ µ(φ(1,··· ,1)(x)) = dπ2/2 +O(β).

On the other hand, when β � 1, by dropping the diffusion term (i.e. the first term
on the right hand side of (2.8)) – Thomas-Fermi (TF) approximation – [131, 11],
we obtain

µTF
g φTF

g (x) = β|φTF
g (x)|2φTF

g (x), x ∈ U. (2.38)

From (2.38), we obtain

φTF
g (x) =

√
µTF
g

β
, x ∈ U. (2.39)

Plugging (2.39) into the normalization condition, we obtain

1 =

∫

U

|φTF
g (x)|2 dx =

∫

U

µTF
g

β
dx =

µTF
g

β
⇒ µTF

g = β. (2.40)

The TF energy ETF
g is obtained via (2.10),

ETF
g = µTF

g − β

2

∫

U

|φTF
g |4 dx =

µTF
g

2
=
β

2
. (2.41)
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Therefore, we get the TF approximation for the ground state, the energy and the
chemical potential when β � 1:

φg(x) ≈ φTF
g (x) = 1, x ∈ U, (2.42)

Eg ≈ ETF
g =

β

2
, µg ≈ µTF

g = β. (2.43)

It is easy to see that the TF approximation for the ground state does not satisfy
the boundary condition φ|∂U = 0. This is due to removing the diffusion term in
(2.8) and it suggests that a boundary layer will appear in the ground state when
β � 1. Due to the existence of the boundary layer, the kinetic energy does not go
to zero when β → ∞ and thus it cannot be neglected. Better approximation with
matched asymptotic expansion can be found in [37].

Under a harmonic potential, i.e. we take V (x) as (1.40). When β = 0, the exact
ground state can be found as [31, 151, 153]

µ0
g =





γx
2 ,
γx+γy

2 ,
γx+γy+γz

2 ,

φ0g(x) =





(γx)
1/4

(π)1/4
e−(γxx

2)/2, d = 1,
(γxγy)

1/4

(π)1/2
e−(γxx

2+γyy
2)/2, d = 2,

(γxγyγz)
1/4

(π)3/4
e−(γxx

2+γyy
2+γzz

2)/2, d = 3.

Thus when |β| = o(1), the ground state φg can be approximated by φ0g, i.e.

φg(x) ≈ φ0g(x), x ∈ Rd.

Again, when β � 1, by dropping the diffusion term (i.e. the first term on the right
hand side of (2.8)) – Thomas-Fermi (TF) approximation – [131, 11], we obtain

µTF
g φTF

g (x) = V (x)φTF
g (x) + β|φTF

g (x)|2φTF
g (x), x ∈ Rd. (2.44)

Solving the above equation, we get

φg(x) ≈ φTF
g (x) =

{ √(
µTF
g − V (x)

)
/β, V (x) < µTF

g ,

0, otherwise,
(2.45)

where µTF
g is chosen to satisfy the normalization ‖φTF

g ‖2 = 1. After some tedious
computations [33, 37], we get

µTF
g =





1
2

(
3βγx
2

)2/3
,

(
βγxγy
π

)1/2
,

1
2

(
15βγxγyγz

4π

)2/5
,

ETF
g =





3
10

(
3βγx
2

)2/3
, d = 1,

2
3

(
βγxγy
π

)1/2
, d = 2,

5
14

(
15βγxγyγz

4π

)2/5
, d = 3.

It is easy to verify that the Thomas-Fermi approximation (2.45) does not have limit
as β → ∞.

Remark 2.4. For the harmonic potential (1.40), the energy of the Thomas-Fermi
approximation is unbounded, i.e.

E(φTF
g ) = +∞. (2.46)

This is due to the low regularity of φTF
g at the free boundary V (x) = µTF

g . More

precisely, φTF
g is locally C1/2 at the interface. This is a typical behavior for solutions

of free boundary value problems, which indicates that an interface layer correction
has to be constructed in order to improve the approximation quality.
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2.2. Dynamics. Many properties of dynamics for BEC can be reported by solving
GPE (2.1). In this section, we will consider the well-posedness for Cauchy problem
of GPE (2.1). For BEC, energy (2.3) is an important physical quantity and thus
it is natural to study the well-posedness in the energy space X(Rd) (d = 1, 2, 3)
(2.6).

2.2.1. Well-posedness. To investigate the Cauchy problem of (2.3), dispersive esti-
mates (Strichartz estimates) have played very important roles. For smooth poten-
tials V (x) with at most quadratic growth in far field, i.e.,

V (x) ∈ C∞(Rd) and DkV (x) ∈ L∞(Rd), for all k ∈ Nd0 with |k| ≥ 2, (2.47)

where N0 = {0} ∪N, Strichartz estimates are well established [73, 175].

Definition 2.1. In d dimensions (d = 1, 2, 3), let q′ and r′ be the conjugate index
of q and r (1 ≤ q, r ≤ ∞), respectively, i.e. 1 = 1/q′ +1/q = 1/r′ +1/r, we call the
pair (q, r) admissible and (q′, r′) conjugate admissible if

2

q
= d

(
1

2
− 1

r

)
, (2.48)

and

2 ≤ r <
2d

d− 2
, (2 ≤ r ≤ ∞ if d = 1; 2 ≤ r <∞ if d = 2). (2.49)

Consider the unitary group eitH
V
x generated by HV

x = − 1
2∇2 + V (x), for V (x)

satisfying (2.47), then the following estimates are available.

Lemma 2.4. (Strichartz’s estimates) Let (q, r) be an admissible pair and (γ, %) be
a conjugate admissible pair, I ⊂ R be a bounded interval satisfying 0 ∈ I, then we
have

(i) There exists a constant C depending on I and q such that
∥∥∥e−itHV

x ϕ
∥∥∥
Lq(I,Lr(Rd))

≤ C(I, q)‖ϕ‖L2(Rd). (2.50)

(ii) If f ∈ Lγ(I, L%(Rd)), there exists a constant C depending on I, q and %,
such that∥∥∥∥∥

∫

I
⋂

s≤t
e−i(t−s)H

V
x f(s) ds

∥∥∥∥∥
Lq(I,Lr(Rd))

≤ C(I, q, %)‖f‖Lγ(I,L%(Rd)). (2.51)

Using the above lemma, we can get the following results [73, 176].

Theorem 2.8. (Well-posedness of Cauchy problem) Suppose the real-valued trap
potential satisfies V (x) ≥ 0 (x ∈ Rd, d = 1, 2, 3) and the condition (2.47), then we
have

(i) For any initial data ψ(x, t = 0) = ψ0(x) ∈ X(Rd), there exists a Tmax ∈
(0,+∞] such that the Cauchy problem of (2.1) has a unique maximal solution ψ ∈
C ([0, Tmax), X). It is maximal in the sense that if Tmax <∞, then ‖ψ(·, t)‖X → ∞
when t→ T−

max.
(ii) As long as the solution ψ(x, t) remains in the energy space X, the L2-norm

‖ψ(·, t)‖2 and energy E(ψ(·, t)) in (2.3) are conserved for t ∈ [0, Tmax).
(iii) The solution of the Cauchy problem for (2.1) is global in time, i.e., Tmax =

∞, if d = 1 or d = 2 with β > Cb/‖ψ0‖22 or d = 3 with β ≥ 0.
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2.2.2. Dynamical properties. From Theorem 2.8, the GPE (2.1) conserves the en-
ergy (2.3) and the mass (L2-norm) (2.2). There are other important quantities that
measure the dynamical properties of BEC. Consider the momentum defined as

P(t) =

∫

Rd

Im(ψ(x, t)∇ψ(x, t)) dx, t ≥ 0, (2.52)

where Im(c) denotes the imaginary part of c. Then we can get the following result.

Lemma 2.5. Suppose ψ(x, t) is the solution of the problem (2.1) and |∇V (x)| ≤
C(V (x) + 1) (V (x) ≥ 0) for some constant C, then we have

Ṗ(t) = −
∫

Rd

|ψ(x, t)|2∇V (x) dx. (2.53)

In particular, for V (x) ≡ 0, the momentum is conserved.

Proof. Differentiating (2.52) with respect to t, noticing (2.1), integrating by parts
and taking into account that ψ decreases to 0 exponentially when |x| → ∞ (see also
[73]), we have

Ṗ(t) =− i

∫

Rd

[
ψt∇ψ −∇ψψt

]
dx =

∫

Rd

[(
−iψt

)
∇ψ + iψt∇ψ

]
dx

=

∫

Rd

[(
−1

2
∇2ψ + V ψ + β|ψ|2ψ

)
∇ψ +

(
−1

2
∇2ψ + V ψ + β|ψ|2ψ

)
∇ψ
]
dx

=

∫

Rd

[
1

2
∇|∇ψ|2 + V (x)∇|ψ|2 + β

2
∇|ψ|4

]
dx

=−
∫

Rd

|ψ|2∇V (x) dx, t ≥ 0.

The proof is complete. �

Another quantity characterizing the dynamics of BEC is the condensate width
defined as

σα(t) =
√
δα(t), where δα(t) =

∫

Rd

α2|ψ(x, t)|2dx, (2.54)

for t ≥ 0 and α being either x, y or z, with x = x in 1D, x = (x, y)T in 2D and
x = (x, y, z)T in 3D. For the dynamics of condensate widths, we have the following
lemmas:

Lemma 2.6. Suppose ψ(x, t) is the solution of (2.1) in Rd (d = 1, 2, 3) with initial
data ψ(x, 0) = ψ0(x), then we have

δ̈α(t) =

∫

Rd

[
2|∂αψ|2 + β|ψ|4 − 2α|ψ|2∂αV (x)

]
dx, t ≥ 0, (2.55)

δα(0) = δ(0)α =

∫

Rd

α2|ψ0(x)|2dx, α = x, y, z, (2.56)

δ̇α(0) = δ(1)α = 2

∫

Rd

α Im
(
ψ0∂αψ0

)
dx. (2.57)

Proof. Differentiating (2.54) with respect to t, applying (2.1), and integrating by
parts, we obtain

δ̇α(t) = −i
∫

Rd

[
αψ(x, t)∂αψ(x, t)− αψ(x, t)∂αψ(x, t)

]
dx, t ≥ 0. (2.58)
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Similarly, we have

δ̈α(t) =

∫

Rd

[
2|∂αψ|2 + β|ψ|4 − 2α|ψ|2∂αV (x)

]
dx, (2.59)

and the conclusion follows. �

Based on the above Lemma, when V (x) is taken as the harmonic potential (1.40),
it is easy to show that the condensate width is a periodic function whose frequency
is doubling the trapping frequency in a few special cases [47].

Lemma 2.7. (i) In 1D without interaction, i.e. d = 1 and β = 0 in (2.1), for any
initial data ψ(x, 0) = ψ0 = ψ0(x), we have

δx(t) =
E(ψ0)

γ2x
+

(
δ(0)x − E(ψ0)

γ2x

)
cos(2γxt) +

δ
(1)
x

2γx
sin(2γxt), t ≥ 0. (2.60)

(ii) In 2D with a radially symmetric trap, i.e. d = 2 and γx = γy := γr in (1.40)
and (2.1), for any initial data ψ(x, y, 0) = ψ0 = ψ0(x, y), we have

δr(t) =
E(ψ0)

γ2r
+

(
δ(0)r − E(ψ0)

γ2r

)
cos(2γrt) +

δ
(1)
r

2γr
sin(2γrt), t ≥ 0, (2.61)

where δr(t) = δx(t) + δy(t), δ
(0)
r := δx(0) + δy(0), and δ

(1)
r := δ̇x(0) + δ̇y(0). Fur-

thermore, when the initial condition ψ0(x, y) satisfies

ψ0(x, y) = f(r)eimθ with m ∈ Z and f(0) = 0 when m 6= 0, (2.62)

we have, for any t ≥ 0,

δx(t) =δy(t) =
1

2
δr(t)

=
E(ψ0)

2γ2x
+

(
δ(0)x − E(ψ0)

2γ2x

)
cos(2γxt) +

δ
(1)
x

2γx
sin(2γxt), t ≥ 0. (2.63)

For the dynamics of BEC, the center of mass is also important, which is given
by

xc(t) =

∫

Rd

x|ψ(x, t)|2 dx, t ≥ 0. (2.64)

Following the proofs for Lemmas 2.5 and 2.6, we can get the equation governing
the motion of xc.

Lemma 2.8. Suppose ψ(x, t) is the solution of (2.1) in Rd (d = 1, 2, 3) with initial
data ψ(x, 0) = ψ0(x), then we have

ẋc(t) = P(t), ẍc(t) = −
∫

Rd

|ψ(x, t)|2∇V (x) dx, t ≥ 0, (2.65)

xc(0) = x(0)
c =

∫

Rd

x|ψ0(x)|2dx, (2.66)

ẋc(0) = x(1)
c = P(0) =

∫

Rd

Im(ψ0∇ψ0) dx. (2.67)

Proof. Analogous calculation to Lemma 2.5 shows that

ẋc(t) =
i

2

∫

Rd

(ψ∇ψ − ψ∇ψ) dx = P(t), t ≥ 0. (2.68)
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Hence, Lemma 2.5 leads to the expression for ẍc(t). �

Remark 2.5. When V (x) is the harmonic potential (1.40), Eq. (2.65) can be
rewritten as

ẍc(t) + Axc(t) = 0, t ≥ 0, (2.69)

where A is a d× d diagonal matrix as A = (γ2x) when d = 1, A = diag(γ2x, γ
2
y) when

d = 2 and A = diag(γ2x, γ
2
y , γ

2
z ) when d = 3. This immediately implies that each

component of xc is a periodic function whose frequency is the same as the trapping
frequency in that component.

For the harmonic potential (1.40), Remark 2.5 provides a way to construct the
exact solution of the GPE (2.1) with a stationary state as initial data. Let φe(x)
be a stationary state of the GPE (2.1) with a chemical potential µe [43, 46], i.e.
(µe, φe) satisfying

µeφe(x) = −1

2
∇2φe + V (x)φe + β|φe|2φe, ‖φe‖22 = 1. (2.70)

If the initial data ψ0(x) for the Cauchy problem of (2.1) is chosen as a stationary
state with a shift in its center, one can construct an exact solution of the GPE (2.1)
with a harmonic oscillator potential (1.40) [55, 101]. This kind of analytical con-
struction can be used, in particular, in the benchmark and validation of numerical
algorithms for GPE.

Lemma 2.9. Suppose V (x) is given by (1.40), if the initial data ψ0(x) for the
Cauchy problem of (2.1) is chosen as

ψ0(x) = φe(x− x0), x ∈ Rd, (2.71)

where x0 is a given point in Rd, then the exact solution of (2.1) satisfies:

ψ(x, t) = φe(x− xc(t)) e
−iµet eiw(x,t), x ∈ Rd, t ≥ 0, (2.72)

where for any time t ≥ 0, w(x, t) is linear for x, i.e.

w(x, t) = c(t) ·x+ g(t), c(t) = (c1(t), · · · , cd(t))T , x ∈ Rd, t ≥ 0, (2.73)

and xc(t) satisfies the second-order ODE system (2.69) with initial condition

xc(0) = x0, ẋc(0) = 0. (2.74)

Proof. See detailed proof in [28]. �

2.2.3. Finite time blow-up and damping. According to Theorem 2.8, there is a max-
imal time Tmax for the existence of the solution in energy space. If Tmax <∞, there
exists finite time blow up.

Theorem 2.9. (Finite time blow-up) In 2D and 3D, assume V (x) satisfies (2.47)
and d V (x)+x ·∇V (x) ≥ 0 for x ∈ Rd (d = 2, 3). When β < 0, for any initial data
ψ(x, t = 0) = ψ0(x) ∈ X with finite variance

∫
Rd |x|2|ψ0|2 dx < ∞ to the Cauchy

problem of (2.1), there exists finite time blow-up, i.e., Tmax < ∞, if one of the
following holds:

(i) E(ψ0) < 0;
(ii) E(ψ0) = 0 and Im

(∫
Rd ψ0(x) (x · ∇ψ0(x)) dx

)
< 0;

(iii) E(ψ0) > 0 and Im
(∫

Rd ψ0(x) (x · ∇ψ0(x)) dx
)
< −

√
d E(ψ0)‖xψ0‖L2 .



24 WEIZHU BAO AND YONGYONG CAI

Proof. Define the variance

δ
V
(t) =

∫

Rd

|x|2|ψ(x, t)|2 dx. (2.75)

Lemma 2.6 indicates that δ′
V
(t) = 2 Im

(∫
Rd ψ(x, t)(x · ∇ψ(x, t)) dx

)
and

δ̈
V
(t) =2d

∫

Rd

(
1

d
|∇ψ|2 + β

2
|ψ|4 − 1

d
|ψ|2x · ∇V (x)

)
dx

=2dE(ψ)− (d− 2)

∫

Rd

|∇ψ|2 dx− 2

∫

Rd

|ψ(x, t)|2(d V (x) + x · V (x)) dx

≤2dE(ψ) = 2dE(ψ0), d = 2, 3.

Thus,

δ
V
(t) ≤ dE(ψ0)t

2 + δ′
V
(0)t+ δ

V
(0). (2.76)

When one of the conditions (i), (ii) and (iii) holds, there exists a finite time t∗ > 0
such that δ

V
(t∗) ≤ 0, which means that there is a singularity at or before t = t∗. �

Theorem 2.9 shows that the solution of the GPE (2.1) may blow up for negative β
(attractive interaction) in 2D and 3D. However, the physical quantities modeled by
ψ do not become infinite which implies that the validity of (2.1) breaks down near
the singularity. Additional physical mechanisms, which were initially small, become
important near the singular point and prevent the formation of the singularity.
In BEC, the particle density |ψ|2 becomes large close to the critical point and
inelastic collisions between particles which are negligible for small densities become
important. Therefore a small damping (absorption) term is introduced into the
NLSE (2.1) which describes inelastic processes. We are interested in the cases
where these damping mechanisms are important and, therefore, restrict ourselves
to the case of focusing nonlinearity, i.e. β < 0, where β may also be time dependent.
We consider the following damped nonlinear Schrödinger equation:

i ∂tψ = −1

2
∇2ψ + V (x) ψ + β|ψ|2σψ − i f(|ψ|2)ψ, t > 0, x ∈ Rd, (2.77)

ψ(x, t = 0) = ψ0(x), x ∈ Rd, (2.78)

where f(ρ) ≥ 0 for ρ = |ψ|2 ≥ 0 is a real-valued monotonically increasing function.
The general form of (2.77) covers many damped NLSE arising in various different

applications. In BEC, for example, when f(ρ) ≡ 0, (2.77) reduces to the usual GPE
(2.1); a linear damping term f(ρ) ≡ δ with δ > 0 describes inelastic collisions with
the background gas; cubic damping f(ρ) = δ1|β|ρ with δ1 > 0 corresponds to two-
body loss [162, 155]; and a quintic damping term of the form f(ρ) = δ2β

2ρ2 with
δ2 > 0 adds three-body loss to the GPE (2.1) [162, 155]. It is easy to see that the
decay of the normalization according to (2.77) due to damping is given by

Ṅ(t) =
d

dt

∫

Rd

|ψ(x, t)|2 dx = −2

∫

Rd

f(|ψ(x, t)|2)|ψ(x, t)|2 dx ≤ 0, t > 0.

(2.79)
Particularly, if f(ρ) ≡ δ with δ > 0, the normalization is given by

N(t) =

∫

Rd

|ψ(x, t)|2 dx = e−2δ tN(0) = e−2δ t

∫

Rd

|ψ0(x)|2 dx, t ≥ 0. (2.80)

For more discussions, we refer to [30].
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2.3. Convergence of dimension reduction. In an experimental setup with har-
monic potential (1.40), the trapping frequencies in different directions can be very
different. Especially, disk-shaped and cigar-shaped condensate were observed in
experiments. In section 1.3.3, the 3D GPE is formally reduced to 2D GPE in
disk-shaped condensate and to 1D GPE in cigar-shaped condensate. Mathematical
and numerical justification for the dimension reduction of 3D GPE is only avail-
able in the weakly interaction regime, i.e. β = o(1) [38, 53, 52]. Unfortunately,
in the intermediate (β = O(1)) or strong repulsive interaction regime (β � 1), no
mathematical results are available and numerical studies can be found in [29].

For weak interaction regime, the dimension reduction is verified by energy type
method with projection discussed in section 1.3.3 [38, 53]. Later, Ben Abdallah
et al. developed an averaging technique and proved the more general forms of the
lower dimensional GPE [52] without using the projection method. A more refined
model in lower dimensions is developed in [51]. Here, we introduce this general
approach. We refer to [52] and references therein for more discussions.

Consider the 3D GPE for (x, z) ∈ Rd × Rn with d+ n = 3 (d = 1 or d = 2)

i∂tψ(x, z, t) =

[
−1

2
(∆x +∆z) + V ε(x, z) + β|ψ|2

]
ψ(x, z, t),

ψ(x, z, 0) = Ψinit(x, z), V ε(x, z) =
|x|2
2

+
|z|2
2ε2

, x ∈ Rd, z ∈ Rn,

(2.81)

where ∆x and ∆z are the Laplace operators in x ∈ Rd and z ∈ Rn, respectively.
The wave function is normalized as ‖Ψinit‖2L2(R3) = 1. Compared with the situation

in section 1.3.3 (1.39), we have 0 < ε = 1/γz � 1 (d = 2) with γy = 1 in disk-shaped
BEC (2D) and 0 < ε = 1/γ � 1 (d = 1) with γy = γz = γ in cigar-shaped BEC
(1D). Our purpose is to describe the limiting dynamics of (2.81) for 0 < ε� 1.

First, we introduce the rescaling z → ε1/2z and rescale ψ → e−itn/2εε−n/4ψε(x, z,
t) to keep the normalization. Then Eq. (2.81) becomes

i∂tψ
ε(x, z, t) = Hxψ

ε +
1

ε
Hzψ

ε +
β

εn/2
|ψε|2ψε, (x, z) ∈ Rd × Rn, (2.82)

with initial data
ψε(t = 0) = Ψinit ∈ L2(Rd × Rn), (2.83)

where

Hx =
1

2

(
−∆x + |x|2

)
, Hz =

1

2

(
−∆z + |z|2 − n

)
,

β

εn/2
:= δ ∈ R. (2.84)

Here β = δεn/2 with a constant δ ∈ R means that we are working in the weak
interaction regime, i.e., β = O(ε1/2) in 2D disk-shaped BEC and β = O(ε) in 1D
cigar-shaped BEC. Notice that the singularly perturbed Hamiltonian Hz is a har-
monic oscillator (conveniently shifted here such that it admits integer eigenvalues).

By introducing the filtered unknown

Ψε = eitHz/ε ψε, (2.85)

we get the equation

i∂tΨ
ε(x, z, t) = HxΨ

ε(x, z, t) + F

(
t

ε
,Ψε

)
, Ψε(t = 0) = Ψinit, (2.86)

where F is equal to

F (s,Ψ) = δ eisHz

(∣∣e−isHzΨ
∣∣2 e−isHz Ψ

)
. (2.87)
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When ε is small, (2.82) (or, equivalently, (2.86)) couples the high oscillations in
time generated by the strong confinement operator with a nonlinear dynamics in
the x plane, which is the only phenomenon that we want to describe.

In [52], Ben Abdallah et al. have developed an averaging technique and proved
that, for general confining potentials in the z direction, the limiting model as ε goes
to zero is

i∂tΨ = HxΨ+ Fav (Ψ) , Ψ(t = 0) = Ψinit, (2.88)

where the long time average of F is defined by

Fav(Ψ) = lim
T→+∞

1

T

∫ T

0

F (s,Ψ) ds. (2.89)

For general confining operator Hz, the convergence is proved using the fact that
F (s,Ψ) is almost periodic [52], but the convergence rates are generally unclear. In
the specific case of a harmonic confinement operator, like here, this convergence
result can be quantified. The important point is that Hz admits only integer eigen-
values and the function F is 2π-periodic with respect to the s variable. Therefore,
the expression of Fav is not a limit but a simple integral, and we have in fact

Fav(Ψ) =
1

2π

∫ 2π

0

F (s,Ψ) ds. (2.90)

On top of that, one can characterize the rate of convergence and prove that Ψ is a
first order approximation of Ψε in ε.

Rigourously, in order to state the convergence, we introduce the convenient scale
of functional spaces. For all ` ∈ R+, we set

B` :=
{
ψ ∈ H`(R3)

∣∣∣∣(|x|2 + |z|2)`/2ψ ∈ L2(R3)

}

endowed with one of the two following equivalent norms:

‖u‖2B`
:= ‖u‖2L2(R3) + ‖H`/2

x u‖2L2(R3) + ‖H`/2
z u‖2L2(R3) (2.91)

or
‖u‖2B`

:= ‖u‖2H`(R3) + ‖(|x|2 + |z|2)`/2u‖2L2(R3). (2.92)

For the equivalence, see e.g. Theorem 2.1 in [52].
We have the convergence as the following.

Theorem 2.10. For some real number m > 3/2, assume that the initial datum
Ψinit belongs to Bm+4. Let Ψε(x, z, t) = eitHz/εψε be the solution of the filtered
equation

i∂tΨ
ε(x, z, t) = HxΨ

ε(t, x, z) + F

(
t

ε
,Ψε

)
, Ψε(t = 0) = Ψinit, (2.93)

where
F (s,Ψ) = δ eisHz

∣∣e−isHzΨ
∣∣2 e−isHz Ψ . (2.94)

Define also Ψ̃ as the solution of the averaged problem

i∂tΨ̃ = HxΨ̃ + Fav

(
Ψ̃
)
, Ψ̃(t = 0) = Ψinit, (2.95)

where Fav is defined by (2.90). Then, we have the following conclusions.

(i) There exists T0 > 0, depending only on ‖Ψinit‖Bm+4 , such that Ψε and Ψ̃
are uniquely defined and are uniformly bounded in the space C([0, T0];Bm+4),
independently of ε ∈ (0, 1].
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(ii) The function Ψ̃ is a first order approximation of the solution Ψε in C([0, T0];
Bm), i.e., for some C > 0, we have

‖Ψε(t)− Ψ̃(t)‖Bm ≤ Cε, ∀t ∈ [0, T0]. (2.96)

The readers are referred to [52, 51] for a detailed proof of Theorem 2.10.

Remark 2.6. The key property here is the periodicity of F (s,Ψ), and the result
can be generalized to other dimensions Rp = Rd×Rp−d, more general nonlinearities
f(|ψ|2)ψ in (2.82) and other operators Hz such that F (s,Ψ) defined by (2.87) is
periodic.

Theorem 2.10 implies results of lower dimensional GPE (1.39). Let us take disk-
shaped BEC as an example, i.e., n = 1 and d = 2. Thus, the eigenvalues of Hz are
the nonnegative integers. Let χp(z) be the normalized eigenfunction associated to
the eigenvalue p ∈ N0:

Hzχp = pχp ,

∫
χ2
p dz = 1. (2.97)

In particular,

χ0(z) = e−z2/2/π1/4, z ∈ R. (2.98)

Consider a function Ψ ∈ Bm expanded on this basis as

Ψ(x, z) =

+∞∑

p=0

ϕp(x)χp(z) . (2.99)

Then we have

F (s,Ψ) = δ
∑

p1,p2,p3,p4

ap1p2p3p4 e
isΩp1p2p3p4 ϕp2 (x)ϕp3 (x)ϕp4 (x)χp1(z), (2.100)

where we define the coefficients

Ωpqrs = p+ s− q − r, apqrs = 〈χpχqχrχs〉.

Here and in the sequel, 〈·〉 denotes the integration over the z variable. We write
the expansion (2.100) shortly as

F (s,Ψ) = δ
∑

p1,p2,p3,p4

a1234 e
isΩ1234 ϕp2ϕp3ϕp4 ⊗ χp1 . (2.101)

In the above sums, and in the sequel, a1234 and Ω1234 stand for ap1p2p3p4 and
Ωp1p2p3p4 , respectively.

The expansion of Fav (2.90) is obtained by averaging F (s,Ψ) over time s. Notic-
ing that the average of eisΩ1234 vanishes if Ω1234 6= 0, let us define the following
index set, whose information is preserved after averaging F (s,Ψ) given by (2.101),
for any p ∈ N,

Λ(p) = {(q, r, s), such that p+ s = q + r}. (2.102)

Then we have

Fav(Φ) = δ

∞∑

p1=0

∑

(p2,p3,p4)∈Λ(p1)

a1234 ϕp2ϕp3ϕp4 ⊗ χp1 . (2.103)
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The solution of (2.93) is written as Ψε(x, z, t) =
∞∑
p=0

ϕεp(x, t)χp(z) and the solution

of (2.95) is written as Ψ(x, z, t) =
∞∑
p=0

ϕp(x, t)χp(z). If the initial data is polarized

on the ground mode of the confinement Hamiltonian, i.e., we have

∀p ∈ N \ {0}, ϕεp(t = 0) = 0 and ϕε0(t = 0) = ϕinit.

In this case, the averaged system (2.95) reads

i∂tϕp1 = Hxϕp1 + δ
∑

(p2,p3,p4)∈Λ(p1)

a1234 ϕp2ϕp3ϕp4 ,

ϕp1(t = 0) = δ0p1 ϕ
init,

where δ0p1 is the Kronecker delta. It is readily seen from this expression that
ϕp(t) = 0 for all t as soon as p 6= 0. Hence the averaged system (2.95) reduces to
the single equation for ϕ0 as

i∂tϕ0 = Hxϕ0 + δa0000|ϕ0|2ϕ0, (2.104)

where a0000 = 1√
2π

. This is exactly the 2D GPE (1.39) with the choice (1.43) (notice

that we adopt a rescaling here).
Similarly, for a cigar-shaped BEC, i.e. n = 2, when initial data is polarized on

the ground mode of the confinement Hamiltonian, we recover the 1D GPE (1.39).
This averaging technique has solved the dimension reduction of 3D GPE in the

weak interaction regime β = o(1) (2.81). However, there seems no progress for the
intermediate interaction regime β = O(1) (2.81) yet.

3. Numerical methods for computing ground states. In this section, we
review different numerical methods for computing the ground states of BEC (2.11).
Due to the presence of the confining potential, the ground state decays exponentially
fast when |x| → ∞ and thus it is natural to truncate the whole space problem (2.1)
to a bounded domain U ⊂ Rd with homogeneous Dirichlet boundary conditions.
Thus, we consider the GPE (2.1) in U as

i ψt = −1

2
∇2ψ + V (x) ψ + β|ψ|2ψ, t > 0, x ∈ U ⊂ Rd, (3.1)

ψ(x, t) = 0, x ∈ Γ = ∂U, t ≥ 0. (3.2)

The normalization (2.2) and energy (2.3) then become

N(ψ) = ‖ψ(·, t)‖22 :=

∫

U

|ψ(x, t)|2 dx = 1, t ≥ 0, (3.3)

and

E(ψ) =

∫

U

[
1

2
|∇ψ(x, t)|2 + V (x)|ψ(x, t)|2 + β

2
|ψ(x, t)|4

]
dx, t ≥ 0. (3.4)

Replacing Rd with U , many results presented in section 2 can be directly general-
ized to bounded domain case. Similarly, finding the ground state φg of (3.1), i.e.
minimizing energy E(φ) (3.4) under normalization constraint N(φ) = 1 (3.3), is
equivalent to solving the nonlinear eigenvalue problem (2.8) with boundary condi-
tion (3.2). According to Theorem 2.1, ground state φg can be chosen as nonnega-
tive, and we will restrict ourselves in real-valued wave function φ throughout this
section.
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3.1. Gradient flow with discrete normalization. One of the most popular
techniques for dealing with the normalization constraint (3.3) is through the follow-
ing construction: choose a time sequence 0 = t0 < t1 < t2 < · · · < tn < · · · with
τn := ∆tn = tn+1− tn > 0 and τ = maxn≥0 τn. To adapt an algorithm for the solu-
tion of the usual gradient flow to the minimization problem under a constraint, it is
natural to consider the following gradient flow with discrete normalization (GFDN)
which is widely used in physical literatures for computing the ground state solution
of BEC [15, 27]:

φt = −1

2

δE(φ)

δφ
=

1

2
∇2φ− V (x)φ − β |φ|2φ, x ∈ U, tn < t < tn+1, n ≥ 0,

(3.5)

φ(x, tn+1)
4
= φ(x, t+n+1) =

φ(x, t−n+1)

‖φ(·, t−n+1)‖2
, x ∈ U, n ≥ 0, (3.6)

φ(x, t) = 0, x ∈ Γ, φ(x, 0) = φ0(x), x ∈ U, (3.7)

where φ(x, t±n ) = limt→t±n
φ(x, t) and ‖φ0‖2 = 1. In fact, the gradient flow (3.5) can

be viewed as applying the steepest decent method to the energy functional E(φ)
without constraint and (3.6) then projecting the solution back to the unit sphere in
order to satisfy the constraint (3.3). From the numerical point of view, the gradient
flow (3.5) can be solved via traditional techniques and the normalization of the
gradient flow is simply achieved by a projection at the end of each time step. In
fact, Eq. (3.5) can be obtained from the GPE (3.1) by t→ it. Thus GFDN is also
known as the imaginary time method in physics literatures.

The GFDN (3.5)-(3.7) possesses the following properties [27].

Lemma 3.1. Suppose V (x) ≥ 0 for all x ∈ U , β ≥ 0 and ‖φ0‖2 = 1, then
(i) ‖φ(·, t)‖2 ≤ ‖φ(·, tn)‖2 = 1 for tn ≤ t ≤ tn+1, n ≥ 0.
(ii) For any β ≥ 0,

E(φ(·, t)) ≤ E(φ(·, t′)), tn ≤ t′ < t ≤ tn+1, n ≥ 0. (3.8)

(iii) For β = 0,

E

(
φ(·, t)

‖φ(·, t)‖2

)
≤ E

(
φ(·, tn)

‖φ(·, tn)‖2

)
, tn ≤ t ≤ tn+1, n ≥ 0. (3.9)

The property (3.8) is often referred as the energy diminishing property of the
gradient flow. It is interesting to note that (3.9) implies that the energy diminishing
property is preserved even with the normalization of the solution of the gradient
flow for β = 0, that is, for linear evolutionary equations.

Theorem 3.1. Suppose V (x) ≥ 0 for all x ∈ U and ‖φ0‖2 = 1. For β = 0, the
GFDN (3.5)-(3.7) is energy diminishing for any time step τ and initial data φ0,
i.e.

E(φ(·, tn+1)) ≤ E(φ(·, tn)) ≤ · · · ≤ E(φ(·, 0)) = E(φ0), n = 0, 1, 2, · · · . (3.10)

For β > 0, the GFDN (3.5)-(3.7) does not preserve the diminishing property for
the normalization of the solution (3.9) in general.
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In fact, the normalized step (3.6) is equivalent to solving the following ODE
exactly

φt(x, t) = µφ(t, τ)φ(x, t), x ∈ U, tn < t < tn+1, n ≥ 0, (3.11)

φ(x, t+n ) = φ(x, t−n+1), x ∈ U ; (3.12)

where

µφ(t, τ) ≡ µφ(tn+1, τn) = − 1

2 τn
ln ‖φ(·, t−n+1)‖22, tn ≤ t ≤ tn+1. (3.13)

Thus the GFDN (3.5)-(3.7) can be viewed as a first-order splitting method for the
gradient flow with discontinuous coefficients [27]:

φt =
1

2
∇2φ− V (x)φ− β |φ|2φ+ µφ(t, τ)φ, x ∈ U, t > 0, (3.14)

φ(x, t) = 0, x ∈ Γ, φ(x, 0) = φ0(x), x ∈ U. (3.15)

Let τ → 0, we see that

lim
τ→0+

µφ(t, τ) = µφ(t) =
1

‖φ(·, t)‖22

∫

U

[
1

2
|∇φ(x, t)|2 + V (x)φ2(x, t) + βφ4(x, t)

]
dx.

This suggests us to consider the following continuous normalized gradient flow
(CNGF) [27]:

φt =
1

2
∇2φ− V (x)φ − β |φ|2φ+ µφ(t)φ, x ∈ U, t ≥ 0, (3.16)

φ(x, t) = 0, x ∈ Γ, φ(x, 0) = φ0(x), x ∈ U. (3.17)

In fact, the right hand side of (3.16) is the same as (2.10) if we view µφ(t) as a
Lagrange multiplier for the constraint (3.3).

Furthermore, for the above CNGF, as observed in [5, 27, 91], the solution of
(3.16) also satisfies the following theorem:

Theorem 3.2. Suppose V (x) ≥ 0 for all x ∈ U , β ≥ 0 and ‖φ0‖2 = 1. Then the
CNGF (3.16)-(3.17) is normalization conservative and energy diminishing, i.e.

‖φ(·, t)‖22 =

∫

U

φ2(x, t) dx = ‖φ0‖22 = 1, t ≥ 0, (3.18)

d

dt
E(φ) = −2 ‖φt(·, t)‖22 ≤ 0 , t ≥ 0, (3.19)

which in turn implies

E(φ(·, t1)) ≥ E(φ(·, t2)), 0 ≤ t1 ≤ t2 <∞.

3.2. Backward Euler finite difference discretization. In this section, we will
present a backward Euler finite difference method to discretize the GFDN (3.5)-(3.7)
(or a full discretization of the CNGF (3.16)-(3.17)). For simplicity of notation, we
introduce the method for the case of one spatial dimension d = 1 with homogeneous
Dirichlet boundary conditions. Generalizations to higher dimension with a rectangle
U = [a, b]× [c, d] ⊂ R2 and a box U = [a, b]× [c, d]× [e, f ] ⊂ R3 are straightforward
for tensor product grids and the results remain valid without modifications. For
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d = 1, we have [27]

φt =
1

2
φxx − V (x)φ − β |φ|2φ, x ∈ U = (a, b), tn < t < tn+1, n ≥ 0, (3.20)

φ(x, tn+1)
4
= φ(x, t+n+1) =

φ(x, t−n+1)

‖φ(·, t−n+1)‖2
, a ≤ x ≤ b, n ≥ 0, (3.21)

φ(x, 0) = φ0(x), a ≤ x ≤ b, φ(a, t) = φ(b, t) = 0, t ≥ 0; (3.22)

with ‖φ0‖22 =
∫ b
a
φ20(x) dx = 1.

We choose the spatial mesh size h = ∆x > 0 with ∆x = (b − a)/M , choose the
time step τ = ∆t > 0 and define the index sets

TM = {j | j = 1, 2, . . . ,M − 1}, T 0
M = {j | j = 0, 1, 2, . . . ,M}. (3.23)

We denote grid points and time steps by

xj := a+ j h, j ∈ T 0
M ; tn := n τ, n = 0, 1, 2, · · · . (3.24)

Let φnj be the numerical approximation of φ(xj , tn) and φn the solution vector
at time t = tn = nτ with components φnj . Introduce the following finite difference
operators:

δ+x φ
n
j =

1

h
(φnj+1 − φnj ), δ−x φ

n
j =

1

h
(φnj − φnj−1), δxφ

n
j =

φnj+1 − φnj−1

2 h
,

δ+t φ
n
j =

1

τ
(φn+1
j − φnj ), δ−t φ

n
j =

1

τ
(φnj − φn−1

j ), δtφ
n
j =

φn+1
j − φn−1

j

2τ
,

δ2xφ
n
j =

φnj+1 − 2φnj + φnj−1

h2
, δ2t φ

n
j =

φn+1
j − 2φnj + φn−1

j

τ2
.

(3.25)

We denote

XM =
{
v = (vj)j∈T 0

M
| v0 = vM = 0

}
⊂ CM+1, (3.26)

and define the discrete lp, semi-H1 and l∞ norms over XM as

‖v‖pp = h

M−1∑

j=0

|vj |p, ‖δ+x v‖22 = h

M−1∑

j=0

∣∣δ+x vj
∣∣2 , ‖v‖∞ = sup

j∈T 0
M

|vj |,

(u, v) =

M−1∑

j=0

ujvj , 〈u, v〉 =
M−1∑

j=1

ujvj , ∀u, v ∈ XM .

(3.27)

The Backward Euler finite difference (BEFD) method is to use backward
Euler for time discretization and second-order centered finite difference for spatial
derivatives. The detailed scheme is [27]:

φ
(1)
j − φnj
τ

=
1

2
δ2xφ

(1)
j − V (xj)φ

(1)
j − β

(
φnj
)2
φ
(1)
j , j ∈ TM , (3.28)

φ
(1)
0 = φ

(1)
M = 0, φ0j = φ0(xj), φn+1

j =
φ
(1)
j

‖φ(1)‖2
, j ∈ T 0

M , n = 0, 1, · · · .

The above BEFD method is implicit and unconditionally stable. The discretized
system can be solved by Thomas’ algorithm. The memory cost is O(M) and com-
putational cost per time step is O(M). In higher dimensions (such as 2D or 3D),
the associated discretized system can be solved by iterative methods, for example
the Gauss-Seidel or conjugate gradient (CG) or multigrid (MG) iterative method
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[15, 27, 45]. With the approximation φn of φ by BEFD, the energy and chemical
potential can be computed as

E(φ(·, tn)) ≈ En = h

M−1∑

j=0

[
1

2

∣∣δ+x φnj
∣∣2 + V (xj)|φnj |2 +

β

2
|φnj |4

]
,

µ(φ(·, tn)) ≈ µn = En + h
M−1∑

j=0

β

2
|φnj |4, n ≥ 0.

For β = 0, i.e., linear case, the BEFD discretization (3.28) is energy diminishing
and monotone for any τ > 0 (see [27]).

3.3. Backward Euler pseudospectral method. Spectral method enjoys high
accuracy for smooth problems such as the ground state problems in BEC. Thus,
it is favorable to use spectral method in numerical computation of ground states.
For simplicity, we shall introduce the method in 1D (3.20)-(3.22), i.e. d = 1.
Generalization to d > 1 is straightforward for tensor product grids and the results
remain valid without modifications. We adopt the same mesh strategy and notations
as those in section 3.2.

For any function ψ(x) ∈ L2(U) (U = (a, b)), φ(x) ∈ C0(U), and vector φ =
(φ0, φ1, . . . , φM )T ∈ XM with M an even positive integer, denote finite dimensional
spaces

YM = span

{
Φl(x) = sin (µl(x− a)) , µl =

πl

b− a
, x ∈ U, l ∈ TM

}
. (3.29)

Let PM : L2 (U) → YM be the standard L2 projection onto YM and IM : C0(U) →
YM and IM : XM → YM be the standard sine interpolation operator as

(PMψ) (x) =
M−1∑

l=1

ψ̂l sin (µl(x− a)) , (IMφ) (x) =
M−1∑

l=1

φ̃l sin (µl(x− a)) , (3.30)

and the coefficients are given by

ψ̂l =
2

b − a

∫ b

a

ψ(x) sin (µl(x− a)) dx, φ̃l =
2

M

M−1∑

j=1

φj sin

(
jlπ

M

)
, l ∈ TM , (3.31)

where φj = φ(xj) when φ is a function instead of a vector.
The backward Euler sine spectral discretization for (3.5)-(3.7) reads [25]:

Find φn+1(x) ∈ YM (i.e. φ+(x) ∈ YM ) such that

φ+(x) − φn(x)

τ
=

1

2
∇2φ+(x) − PM

[(
V (x) + β|φn(x)|2

)
φ+(x)

]
, x ∈ U, (3.32)

φn+1(x) =
φ+(x)

‖φ+(x)‖2
, x ∈ U, n = 0, 1, · · · ; φ0(x) = PM (φ0(x)) . (3.33)

The above discretization can be solved in phase space and it is not suitable in
practice due to the difficulty of computing the integrals in (3.31). We now present
an efficient implementation by choosing φ0(x) as the interpolation of φ0(x) on the
grid points {xj , j ∈ T 0

M}, i.e φ0(xj) = φ0(xj) for j ∈ T 0
M , and approximating

the integrals in (3.31) by a quadrature rule on the grid points. Let φnj be the
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approximations of φ(xj , tn), which is the solution of (3.5)-(3.7). Backward Euler
sine pseudospectral (BESP) method for discretizing (3.5)-(3.7) reads [25]:

φ
(1)
j − φnj
τ

=
1

2
Ds
xxφ

(1)
∣∣∣
x=xj

− V (xj)φ
(1)
j − β|φnj |2φ

(1)
j , j ∈ TM , (3.34)

φ
(1)
0 = φ

(1)
M = 0, φ0j = φ0(xj), φ

n+1
j =

φ
(1)
j

‖φ(1)‖2
, j ∈ T 0

M , n = 0, 1, · · · . (3.35)

Here Ds
xx, a pseudospectral differential operator approximation of ∂xx, is defined as

Ds
xxu|x=xj

= −
M−1∑

l=1

µ2
l ũl sin(µl(xj − a)). j ∈ TM . (3.36)

In the discretization (3.34), at every time step, a nonlinear system has to be
solved. Here we present an efficient way to solve it iteratively by introducing a
stabilization term with constant coefficient and using discrete sine transform (DST):

φ
(1),m+1
j − φnj

τ
=

1

2
Ds
xxφ

(1),m+1
∣∣∣
x=xj

− αφ
(1),m+1
j +

(
α− V (xj)− β|φnj |2

)
φ
(1),m
j ,

(3.37)

where m ≥ 0, φ
(1),0
j = φnj and j ∈ T 0

M . Here α ≥ 0 is called as a stabilization

parameter to be determined. Taking discrete sine transform at both sides of (3.37),
we obtain

( ˜φ(1),m+1)l − (φ̃n)l
τ

= −
(
α+

1

2
µ2
l

)
( ˜φ(1),m+1)l + (G̃m)l, l ∈ TM , (3.38)

where (G̃m)l are the sine transform coefficients of the vector Gm = (Gm0 , · · · , GmM )T

defined as
Gmj =

(
α− V (xj)− β|φnj |2

)
φ
(1),m
j , j ∈ T 0

M . (3.39)

Solving (3.38), we get

( ˜φ(1),m+1)l =
2

2 + τ(2α+ µ2
l )

[
(φ̃n)l + τ (G̃m)l

]
, l ∈ TM . (3.40)

Taking inverse discrete sine transform for (3.40), we get the solution for (3.37)
immediately.

In order to make the iterative method (3.37) for solving (3.34) converges as fast
as possible, the ‘optimal’ stabilization parameter α in (3.37) is suggested as [36]:

αopt =
1

2
(bmax + bmin) , (3.41)

where

bmax = max
1≤j≤M−1

(
V (xj) + β|φnj |2

)
, bmin = min

1≤j≤M−1

(
V (xj) + β|φnj |2

)
. (3.42)

Similarly, with the approximation φn of φ by BESP, the energy and chemical
potential can be computed as

E(φ(·, tn)) ≈ En =
b− a

4

M−1∑

l=1

µ2
l |(̃φn)l|2 + h

M−1∑

j=0

[
V (xj)|φnj |2 +

β

2
|φnj |4

]
,

µ(φ(·, tn)) ≈ µn = En + h

M−1∑

j=0

β

2
|φnj |4, n ≥ 0.
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Remark 3.1. In practice, Fourier pseudospectral method or cosine pseudospectral
method can also be applied to spatial discretization for discretizing (3.20)-(3.22)
when the homogeneous Dirichlet boundary condition in (3.22) is replaced by pe-
riodic boundary condition or homogeneous Neumann boundary condition, respec-
tively.

3.4. Simplified methods under symmetric potentials. The ground state φg
of (2.11) shares the same symmetric properties with V (x) (x ∈ Rd) (d = 1, 2, 3). In
such cases, simplified numerical methods, especially with less memory requirement,
for computing the ground states are available.

Radial symmetry in 1D, 2D and 3D. When the potential V (x) is radially sym-
metric in d = 1, 2 and spherically symmetric in d = 3, the problem is reduced to
1D. Due to the symmetry, the GPE (2.1) essentially collapses to a 1D problem with
r = |x| ∈ [0,+∞) for ψ := ψ(r, t) (d = 1, 2, 3):

i∂tψ(r, t) =
−1

2rd−1

∂

∂r

(
rd−1 ∂

∂r
ψ

)
+
(
V (r) + β|ψ|2

)
ψ, r ∈ (0,+∞), (3.43)

∂ψ(0, t)

∂r
= 0, ψ(r, t) → 0, as r → ∞. (3.44)

The normalization condition (2.2) becomes

Nr(ψ) = ω(d)

∫ ∞

0

|ψ(r, t)|2rd−1 dr = 1. (3.45)

Here ω(d) is the area of unit sphere in d dimensions, where ω(1) = 2, ω(2) = 2π
and ω(3) = 4π. The energy (2.3) can be rewritten for radial wave function as

Er(ψ) = ω(d)

∫ ∞

0

(
1

2
|∂rψ(r, t)|2 + V (r)|ψ(r, t)|2 + β

2
|ψ(r, t)|4

)
rd−1 dr. (3.46)

Then, the minimization problem (2.11) collapses to :
Find ϕg ∈ Sr such that

Eg := Er(ϕg) = min
ϕ∈Sr

Er(ϕ), (3.47)

where Sr = {ϕ |ω(d)
∫∞
0

|ϕ(r)|2rd−1 dr = 1, Er(ϕ) <∞}.
The nonlinear eigenvalue problem (2.8) collapses to

µϕ(r) = − 1

2rd−1

d

dr

(
rd−1 d

dr
ϕ(r)

)
+V (r)ϕ(r)+β|ϕ(r)|2ϕ(r), r ∈ (0,+∞), (3.48)

with boundary conditions

ϕ′(0) = 0, ϕ(r) → 0, when r → ∞, (3.49)

under the normalization constraint (3.45) with ψ = ϕ.
The eigenvalue problem (3.48)-(3.49) is defined in a semi-infinite interval (0,+∞).

In practical computation, this is approximated by a problem defined on a finite in-
terval. Since the full wave function vanishes exponentially fast as r → ∞, choosing
R > 0 sufficiently large, then the eigenvalue problem (3.48)-(3.49) can be approxi-
mated by

µ ϕ(r) = − 1

2rd−1

d

dr

(
rd−1 d

dr
ϕ(r)

)
+ [V (r) + β|ϕ|2]ϕ(r), 0 < r < R, (3.50)

with boundary conditions

ϕ′(0) = 0, ϕ(R) = 0, (3.51)
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under the normalization

ω(d)

∫ R

0

|ϕ(r)|2rd−1 dr = 1. (3.52)

To compute the ground state ϕg, a method based on GFDN (3.5)-(3.7) can be sim-
plified. Here, we only present full discretization using a simplified BEFD method.

Choose time steps as (3.24), mesh size ∆r = 2R/(2M + 1) with positive integer
M and grid points as

rj = j∆r, rj+ 1
2
=

(
j +

1

2

)
∆r, j ∈ T 0

M . (3.53)

We adopt the same notation for finite difference operator as (3.25). Let ϕn
j+ 1

2

be

the numerical approximation of ϕ(rj+ 1
2
, tn) and ϕ

n be the solution vector at time

t = tn with components ϕn
j+ 1

2

. Then a simplified BEFD method for computing the

ground state of (3.47) by GFDN with an initial guess ϕ0(r) is given as [27]

ϕ
(1)

j+ 1
2

− ϕn
j+ 1

2

τ
=

[
1

2
δ2r,d − V (rj+ 1

2
)− β

(
ϕnj+ 1

2

)2]
ϕ
(1)

j+ 1
2

, j ∈ TM ∪ {0}, (3.54)

ϕ
(1)

− 1
2

= ϕ
(1)
1
2

, ϕ
(1)

M+ 1
2

= 0, ϕ0
j+ 1

2
= ϕ0(rj+ 1

2
), j ∈ T 0

M ,

ϕn+1
j+ 1

2

=
ϕ
(1)

j+ 1
2

‖ϕ(1)‖r
, j ∈ T 0

M , n = 0, 1, · · · , (3.55)

where

δ2r,d ϕ
(1)

j+ 1
2

=
1

(∆r)2rd−1
j+ 1

2

[
rd−1
j+1ϕ

(1)

j+ 3
2

− (rd−1
j+1 + rd−1

j )ϕ
(1)

j+ 1
2

+ rd−1
j ϕ

(1)

j− 1
2

]
,

and the norm is defined as

‖ϕ(1)‖2r = ω(d)∆r

M−1∑

j=0

|ϕ(1)

j+ 1
2

|2(rj+ 1
2
)d−1. (3.56)

Here, we have introduced a ghost point r− 1
2
so that the Neumann boundary con-

dition ϕ′(0) = 0 is approximated with second order accuracy. The linear system
(3.54) can be solved very efficiently by the Thomas’ algorithm, where the compu-
tational cost is O(M) per time step, for all dimensions d = 1, 2, 3. The memory
cost is O(M). This tremendously reduces memory and computation complexity in
higher dimensions (d = 2, 3) from O(Md) to O(M) compared with the proposed
BEFD (3.28) with Cartesian coordinates.

Cylindrical symmetry in 3D. For x = (x, y, z)T ∈ R3, when V is cylindrically

symmetric, i.e., V is of the form V (r, z) (r =
√
x2 + y2), the problem is reduced

to 2D. Due to the symmetry, the GPE (2.1) essentially collapses to a 2D problem
with r ∈ (0,+∞) and z ∈ R for ψ := ψ(r, z, t) :

i∂tψ(r, z, t) = −1

2

[
1

r

∂

∂r

(
r
∂ψ

∂r

)
+
∂2ψ

∂z2

]
+
(
V (r, z) + β|ψ|2

)
ψ, (3.57)

∂ψ(0, z, t)

∂r
= 0, z ∈ R, ψ(r, z, t) → 0, when r + |z| → ∞. (3.58)
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The normalization condition (2.2) becomes

Nc(ψ) = 2π

∫

R+

∫

R

|ψ(r, z, t)|2r dzdr = 1. (3.59)

Then, the minimization problem (2.11) collapses to :
Find ϕg ∈ Sc such that

Eg := Ec(ϕg) = min
ϕ∈Sc

Ec(ϕ), (3.60)

where

Ec(ϕ) = π

∫

R+

∫

R

(
|ϕr(r, z)|2 + |ϕz(r, z)|2 + 2V (r, z)|ϕ|2 + β|ϕ|4

)
r dzdr, (3.61)

and Sc = {ϕ |2π
∫
R+

∫
R
|ϕ(r, z)|2r dzdr = 1, Ec(ϕ) <∞}.

The nonlinear eigenvalue problem (2.8) collapses to

µϕ(r, z) = −1

2

[
1

r

∂

∂r

(
r
∂ϕ

∂r

)
+
∂2ϕ

∂z2

]
+
(
V (r, z) + β|ϕ|2

)
ϕ, r > 0, z ∈ R, (3.62)

with boundary conditions

∂ϕ(0, z, t)

∂r
= 0, z ∈ R, ϕ(r, z, t) → 0, when r + |z| → ∞, (3.63)

under the normalization constraint (3.59) with ψ = ϕ.
The eigenvalue problem (3.48)-(3.49) is defined in the r-z plane. In practical

computation, this is approximated by a problem defined on a bounded domain.
Since the full wave function vanishes exponentially fast as r + |z| → ∞, choosing
R > 0 and Z1 < Z2 with |Z1|, |Z2| and R sufficiently large, then the eigenvalue
problem (3.62)-(3.63) can be approximated for (r, z) ∈ (0, R)× (Z1, Z2),

µ ϕ(r, z) = −1

2

[
1

r

∂

∂r

(
r
∂ϕ

∂r

)
+
∂2ϕ

∂z2

]
+
(
V (r, z) + β|ϕ|2

)
ϕ, (3.64)

with boundary conditions

∂ϕ(0, z)

∂r
= 0, ϕ(R, z) = ϕ(r, Z1) = ϕ(r, Z2) = 0, z ∈ [Z1, Z2], r ∈ [0, R], (3.65)

under the normalization

2π

∫ R

0

∫ Z2

Z1

|ϕ(r, z)|2r dzdr = 1. (3.66)

To compute the ground state, the GFDN (3.5)-(3.7) collapses to a 2D problem. We
present a full finite difference discretization. Choose time steps as (3.24) and r-
grid points (3.53) for positive integer M > 0. For integer N > 0, choose mesh size
∆z = (Z2 − Z1)/N and define z- grid points zk = Z1 + k∆z for k ∈ T 0

N = {k | k =
0, 1, . . . , N}.

Let ϕn
j+ 1

2 k
be the numerical approximation of ϕ(rj+ 1

2
, zk, tn) and ϕn be the

solution vector at time t = tn with components ϕn
j+ 1

2 k
. Then a simplified BEFD

method for computing the ground state of (3.61) by GFDN with an initial guess
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ϕ0(r, z) is given below [27]:

ϕ
(1)

j+ 1
2 k

− ϕn
j+ 1

2k

τ
=

[
1

2
(δ2r + δ2z)− V (rj+ 1

2
, zk)− β

(
ϕnj+ 1

2 k

)2]
ϕ
(1)

j+ 1
2k
, (j, k) ∈ T ∗

MN ,

ϕ
(1)

− 1
2 k

= ϕ
(1)
1
2 k
, ϕ

(1)

M+ 1
2 k

= ϕ
(1)

j+ 1
2 0

= ϕ
(1)

j+ 1
2 N

= 0, (j, k) ∈ T 0
MN ,

ϕ0
j+ 1

2 k
= ϕ0(rj+ 1

2
, zk), ϕn+1

j+ 1
2 k

=
ϕ
(1)

j+ 1
2 k

‖ϕ(1)‖c
, (j, k) ∈ T 0

MN , n ≥ 0, (3.67)

where T ∗
MN = {(j, k) | 0 ≤ j ≤ M − 1, 1 ≤ k ≤ N − 1}, T 0

MN = {(j, k) | 0 ≤ j ≤
M, 0 ≤ k ≤ N} and

δ2rϕ
(1)

j+ 1
2 k

=
1

(∆r)2rj+ 1
2

[
rj+1ϕ

(1)

j+ 3
2 k

− (rj+1 + rj)ϕ
(1)

j+ 1
2 k

+ rjϕ
(1)

j− 1
2 k

]
,

δ2zϕ
(1)

j+ 1
2k

=
1

(∆z)2
[ϕ

(1)

j+ 1
2 k+1

− 2ϕ
(1)

j+ 1
2 k

+ ϕ
(1)

j+ 1
2 k−1

], (j, k) ∈ T ∗
MN ,

and the norm is defined by

‖ϕ(1)‖2c = 2π∆r∆z
M−1∑

j=0

N−1∑

k=0

|ϕ(1)

j+ 1
2 k

|2rj+ 1
2
. (3.68)

Here, we use ghost points to approximate the Neumann boundary conditions, which
is the same as the radially symmetric potential case.

Remark 3.2. When the potential V (x) is an even function, BEFD (3.28) and
BESP (3.34)-(3.35) can be used to compute the first excited states by choosing
proper initial guess (see [27, 36]).

3.5. Numerical results. In this section, we report numerical results on the ground
state by the proposed BEFD and BESP methods.

Example 3.1. Ground and first excited states (Remark 3.2) in 1D, i.e., we take
d = 1 in (2.1) and study two kinds of trapping potentials

Case I. A harmonic oscillator potential V (x) = x2

2 and β = 400;

Case II. An optical lattice potential V (x) = x2

2 + 25 sin2
(
πx
4

)
and β = 250.

The initial data (3.7) is chosen as φ0(x) = e−x
2/2/π1/4 for computing the ground

state, and resp., φ0(x) =
√
2x

π1/4 e
−x2/2 for computing the first excited state. We solve

the problem with BESP (3.34)-(3.35) on [−16, 16], i.e. a = −16 and b = 16, and
take time step τ = 0.05 for computing the ground state, and resp., τ = 0.001 for
computing the first excited state. The steady state solution in our computation is
reached when max1≤j≤M−1 |φn+1

j − φnj | < 10−12. Let φg and φ1 be the ‘exact’
ground state and first excited state, respectively, which are obtained numerically
by using BESP with a very fine mesh h = 1

32 and h = 1
128 , respectively. We denote

their energy and chemical potential as Eg := E(φg), E1 := E(φ1), and µg := µ(φg),
µ1 := µ(φ1). Let φ

SP
g,h and φSP1,h be the numerical ground state and first excited state

obtained by using BESP with mesh size h, respectively. Similarly, φFDg,h and φFD1,h
are obtained by using BEFD in a similar way. Tabs. 3.1 and 3.2 list the errors for
Case I, and Tabs. 3.3 and 3.4 show the errors for Case II. Furthermore, we compute
the energy and chemical potential for the ground state and first excited state based
on our ‘exact’ solution φg and φ1. For Case I, we have Eg := E(φg) = 21.3601
and µg := µ(φg) = 35.5775 for ground state, and E1 := E(φ1) = 22.0777 and
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µ1 := µ(φ1) = 36.2881 for the first excited state. Similarly, for Case II, we have
Eg = 26.0838, µg = 38.0692, E1 = 27.3408 and µ1 = 38.9195. Fig. 3.1 plots φg
and φ1 as well as their corresponding trapping potentials for Cases I&II. Fig. 3.2a
shows the excited states φ1 for potential in Case I with different β.

mesh size h = 1 h = 1/2 h = 1/4 h = 1/8
max |φg − φSPg,h| 1.310E-3 7.037E-5 1.954E-8 <E-12

‖φg − φSPg,h‖ 1.975E-3 7.425E-5 2.325E-8 <E-12

|Eg − E(φSPg,h)| 5.688E-5 2.642E-6 9E-12 <E-12

|µg − µ(φSPg,h)| 1.661E-2 8.705E-5 9.44E-10 4E-12

max |φg − φFDg,h| 2.063E-3 1.241E-3 2.890E-4 7.542E-5

‖φg − φFDg,h‖ 3.825E-3 1.439E-3 3.130E-4 7.705E-5

|Eg − E(φFDg,h)| 2.726E-3 9.650E-4 2.540E-4 6.439E-5

|µg − µ(φFDg,h)| 2.395E-2 6.040E-4 2.240E-4 5.694E-5

Table 3.1. Spatial resolution of BESP and BEFD for ground state
of Case I in Example 3.1.

Mesh size h = 1/4 h = 1/8 h = 1/16 h = 1/32
max |φ1 − φSP1,h| 2.064E-1 6.190E-4 2.099E-7 <E-12

‖φ1 − φSP1,h‖ 1.093E-1 3.200E-4 1.403E-7 <E-12

|E1 − E(φSP1,h)| 5.259E-2 3.510E-4 5.550E-9 <E-12

|µ1 − µ(φSP1,h)| 1.216E-1 1.509E-3 4.762E-8 <E-12

max |φ1 − φFD1,h| 2.348E-1 8.432E-3 2.267E-3 6.040E-4

‖φ1 − φFD1,h‖ 1.197E-1 4.298E-3 1.215E-3 2.950E-4

|E1 − E(φFD1,h)| 3.154E-1 5.212E-2 1.382E-2 3.449E-3

|µ1 − µ(φFD1,h)| 4.216E-1 5.884E-2 1.609E-2 3.999E-3

Table 3.2. Spatial resolution of BESP and BEFD for the first
excited state of Case I in Example 3.1.

Mesh size h = 1 h = 1/2 h = 1/4 h = 1/8
max |φg − φSPg,h| 7.982E-3 1.212E-3 2.219E-6 1.9E-11

‖φg − φSPg,h‖ 1.304E-2 1.313E-3 2.431E-6 2.8E-11

|Eg − E(φSPg,h)| 4.222E-4 1.957E-4 4.994E-8 <E-12

|µg − µ(φSPg,h)| 9.761E-2 4.114E-3 5.605E-7 <E-12

max |φg − φFDg,h| 1.019E-2 5.815E-3 1.001E-3 2.541E-4

‖φg − φFDg,h‖ 1.967E-2 7.051E-3 1.390E-3 3.387E-4

|Eg − E(φFDg,h)| 7.852E-2 2.961E-2 7.940E-3 2.027E-3

|µg − µ(φFDg,h)| 1.786E-1 1.716E-2 6.730E-3 1.728E-3

Table 3.3. Spatial resolution of BESP and BEFD for ground state
of Case II in Example 3.1.
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Mesh size h = 1/4 h = 1/8 h = 1/16 h = 1/32
max |φ1 − φSP1,h| 2.793E-1 1.010E-3 4.240E-7 2E-12

‖φ1 − φSP1,h‖ 1.477E-1 5.241E-4 2.784E-7 2E-12

|E1 − E(φSP1,h)| 1.145E-1 8.337E-4 1.943E-8 <E-12

|µ1 − µ(φSP1,h)| 1.593E-1 2.357E-3 1.097E-7 5E-12

max |φ1 − φFD1,h| 3.134E-1 1.124E-2 3.231E-3 8.450E-4

‖φ1 − φFD1,h‖ 1.599E-1 5.779E-3 1.701E-3 4.122E-4

|E1 − E(φFD1,h)| 6.011E-1 1.002E-1 2.688E-2 6.707E-3

|µ1 − µ(φFD1,h)| 6.315E-1 9.887E-2 2.742E-2 6.827E-3

Table 3.4. Spatial resolution of BESP and BEFD for the first
excited state of Case II in Example 3.1.
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Figure 3.1. Ground state φg (left column, solid lines) and first
excited state φ1 (right column, solid lines) as well as trapping po-
tentials (dashed lines) in Example 3.1. a): For Case I; b): For Case
II.

From Tabs. 3.1-3.4, Figs. 3.1 and 3.2a, we can draw the following conclusions.
For BESP, it is spectrally accurate in spatial discretization; where for BEFD, it
is only second-order accurate. The error in the ground and first excited states is
only due to the spatial discretization. Thus when high accuracy is required or the
solution has multiscale structure [37], BESP is much better than BEFD in terms
that it needs much less grid points. Therefore BESP can save a lot of memory and
computational time, especially in 2D & 3D.



40 WEIZHU BAO AND YONGYONG CAI

Example 3.2. Ground states in 2D with radial symmetric trap, i.e. we take d = 2
in (2.1) and

V (x, y) = V (r) =
1

2
r2, (x, y) ∈ R2, r =

√
x2 + y2 ≥ 0. (3.69)

The GFDN (3.5)-(3.7) is solved in polar coordinate with R = 8+1/128 under mesh
size ∆r = 1

64 and time step τ = 0.1 by using the simplified BEFD (3.54)-(3.55)

with initial data φ0(x, y) = φ0(r) = 1√
π
e−r

2/2. Fig. 3.2b shows the ground state

solution φg(r) with different β. Tab. 3.5 displays the values of φg(0), radius mean

square rrms =
√
2π
∫∞
0
r2|φg(r)|2rdr, energy E(φg) and chemical potential µg for

different β.

β φg(0) rrms E(φg) µg = µ(φg)
0 0.5642 1.0000 1.0000 1.0000
10 0.4104 1.2619 1.5923 2.0637
50 0.2832 1.7018 2.8960 4.1430
100 0.2381 1.9864 3.9459 5.7597
250 0.1892 2.4655 6.0789 9.0031
500 0.1590 2.9175 8.5118 12.6783

Table 3.5. Numerical results for radial symmetric ground states
in Example 3.2.
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Figure 3.2. (a). First excited state solution φ1(x) (an odd
function) in Example 3.1 with potential in Case I for different β =
0, 3.1371, 12.5484, 31.371, 62.742, 156.855, 313.71, 627.42, 1254.8
(with decreasing peak); and (b). 2D ground states φg(r) in Exam-
ple 3.2 for β = 0, 10, 50, 100, 250, 500 (with decreasing peak).

3.6. Comments of different methods. In literatures, different numerical meth-
ods have been introduced to compute ground states of BEC. In [160], Ruprecht
et al. used Crank-Nicolson finite difference method to compute the ground states
of BEC based on the Euler-Lagrange equation (2.8). Later, Edwards et al. pro-
posed a Runge-Kutta method to find the ground states in 1D and 3D with spherical
symmetry. Dodd [90] gave an analytical expansion of the energy E(φ) using the
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Hermite polynomials when the trap V is harmonic. By minimizing the energy in
terms of the expansion, approximated ground state results were reported in [90]. In
[78], Succi et al. used an imaginary time method (equivalent to GFDN) to compute
the ground states with centered finite-difference discretization in space and explicit
forward discretization in time. Lin et al. designed an iterative method in [77]. After
discretization in space, they transformed the problem to a minimization problem in
finite dimensional vector space. Gauss-Seidel iteration methods were proposed to
solve the corresponding problem. Bao and Tang proposed a finite element method
to find the ground state by directly minimizing the energy functional in [43]. In
[27, 36], Bao et al. developed the GFDN method to calculate the ground state,
which contains a gradient flow and a projection at each step. Different discretiza-
tions have been discussed, including the finite difference discretization or spectral
discretization in space, explicit (forward Euler) discretization or implicit (backward
Euler, Crank-Nicolson) discretization in time.

In the current studies of BEC, the most popular method for computing the
ground state is the GFDN method. In fact, imaginary time method [78] is the same
as the GFDN method, while imaginary time is preferred in the physics community.
There are many different discretizations for GFDN (3.5)-(3.7) [27, 36], including
backward Euler, Crank-Nicolson, forward Euler, backward Euler for linear part
and forward Euler for nonlinear part, time-splitting for the time discretization and
centered finite difference or spectral method for spatial discretization. From our
experience, among these discretizations, BEFD and BESP are very easy to use,
robust, very efficient and accurate in practical computation. Furthermore, energy
diminishing is observed in linear case under any time step τ > 0 and nonlinear case
when time step τ is not too big [27]. If high accuracy is crucial in computing ground
states in BEC, e.g. under an optical lattice potential or in a rotational frame, BESP
is recommended.

4. Numerical methods for computing dynamics of GPE. In this section,
we review different numerical methods to discretize the Cauchy problem of the
GPE (2.1) for computing the dynamics of BEC. In fact, many efficient and accu-
rate numerical methods have been proposed for discretizing the above GPE, or the
nonlinear Schrödinger equation (NLSE) in general, such as time-splitting sine pseu-
dospectral method [31, 33, 34, 47], time-splitting finite difference method [183, 42],
time-splitting Laguerre-Hermite pseudospectral method [40], conservative Crank-
Nicolson finite difference method [76, 21, 20], semi-implicit finite difference method
[21, 20], etc. Each method has its own advantages and disadvantages. Here we
present the detailed algorithms for some of these methods.

In practice, we truncate the problem on a bounded domain U ⊂ Rd (d = 1, 2, 3) as
Eq. (3.1), with either homogeneous Dirichlet boundary conditions (3.2) or periodic
boundary conditions when U is an interval (1D), a rectangle (2D) or a box (3D).
For simplicity of notation, we shall introduce the method in one space dimension
(d = 1). Generalizations to d > 1 are straightforward for tensor product grids and
the results remain valid without modifications. In 1D, the equation (3.1) becomes

i
∂ψ(x, t)

∂t
= −1

2
ψxx(x, t) + V (x)ψ(x, t) + β|ψ|2ψ(x, t), a < x < b, t > 0, (4.1)

ψ(x, t = 0) = ψ0(x), a ≤ x ≤ b, (4.2)
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with the homogenous Dirichlet boundary condition

ψ(a, t) = ψ(b, t) = 0, t > 0. (4.3)

The following periodic boundary condition

ψ(a, t) = ψ(b, t), ∂xψ(a, t) = ∂xψ(b, t), t > 0, (4.4)

or homogeneous Neumann boundary condition

∂xψ(a, t) = ∂xψ(b, t) = 0, t > 0, (4.5)

is also widely used in the literature.
To discretize Eq. (4.1), we use uniform grid points. Choose the spatial mesh

size h = ∆x > 0 with ∆x = (b − a)/M (M an even positive integer), the time step
τ , the grid points and the time step as in (3.24). Let ψnj be the approximation of

ψ(xj , tn) and ψ
n be the solution vector with components ψnj .

In the following, we will introduce two widely used schemes: the time-splitting
methods and the finite difference time domain (FDTD) methods.

4.1. Time splitting pseudospectral/finite difference method. The time split-
ting procedure was presented for differential equations in [174] and applied to
Schrödinger equations in [114, 178]. For the simplest two-step case, consider an
abstract initial value problem for u : [0, T ] → B (B Banach space),

d

dt
u(t) = (A+B)u(t), u(0) ∈ B, (4.6)

where A and B are two operators, the solution can be written in the abstract form
as u(t) = et(A+B)u(0). For a given time step τ > 0, let tn = nτ , n = 0, 1, . . ., and
un be the approximation of u(tn). The time-splitting approximation, or operator
splitting (split-step) is usually given as [174, 192]

un+1 = eτAeτBun, Lie-Trotter splitting, (4.7)

or

un+1 ≈ eτA/2eτBeτA/2un, Strang splitting. (4.8)

Formally, from Taylor expansion, it is easy to see that the approximation error of
Lie-Trotter splitting is of first order O(τ), and the error of Strang splitting is of
second order O(τ2). In principle, splitting approximations of higher order accuracy
can be constructed as [192]

un+1 ≈ ea1τAeb1τBea2τAeb2τB · · · eamτAebmτBun, m ≥ 1, (4.9)

where coefficients aj and bj (j = 1, · · · ,m) are chosen properly. One of the most
frequently used higher order splitting scheme is the fourth-order symplectic time
integrator (cf. [192, 40]) for (4.6) as:

u(1) = eθτA un, u(2) = e2θτB u(1), u(3) = e(0.5−θ)τA u(2),

u(4) = e(1−4θ)τB u(3), u(5) = e(0.5−θ)τA u(4), u(6) = e2θτB u(5),

un+1 = eθτA u(6),

(4.10)

where the coefficient θ can be calculated as

θ =
1

6

(
2 + 21/3 + 2−1/3

)
≈ 0.67560359597982881702. (4.11)
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4.1.1. Time splitting sine pseudospectral method. In this section we present a time-
splitting sine pseudospectral method, to numerically solve the GPE (4.1) with ho-
mogenous Dirichlet boundary condition (4.3). The merit of this method is that
it is unconditionally stable, time reversible, time-transverse invariant, and that it
conserves the total particle number.

Time-splitting sine pseudospectral (TSSP) method. From time t = tn to
t = tn+1, the GPE (4.1) is solved in two splitting steps. One solves first

iψt = −1

2
ψxx, (4.12)

for the time step of length τ , followed by solving

i
∂ψ(x, t)

∂t
= V (x)ψ(x, t) + β|ψ(x, t)|2ψ(x, t), (4.13)

for the same time step. Eq. (4.12) will be discretized in space by the sine spectral
method and integrated in time exactly. For t ∈ [tn, tn+1], the ODE (4.13) leaves |ψ|
invariant in t [31, 33] and therefore becomes

i
∂ψ(x, t)

∂t
= V (x)ψ(x, t) + β|ψ(x, tn)|2ψ(x, t) (4.14)

and thus can be integrated exactly. This is equivalent to choosing operators A, B
in (4.6) as

Aψ =
i

2
∂xxψ, Bψ = −i(V (x) + β|ψ|2)ψ. (4.15)

From time t = tn to t = tn+1, we combine the splitting steps via the standard
Strang splitting [31, 33, 47]:

ψ
(1)
j =

2

M

M−1∑

l=1

e−iτµ
2
l /4 (̃ψn)l sin(µl(xj − a)),

ψ
(2)
j = e−i(V (xj)+β|ψ(1)

j |2)τ ψ(1)
j , j ∈ TM ,

ψn+1
j =

2

M

M−1∑

l=1

e−iτµ
2
l /4 (̃ψ(2))l sin(µl(xj − a)), ψn+1

0 = ψn+1
M = 0,

(4.16)

where µl = lπ/(b−a) for l ∈ TM and (̃ψn)l and (̃ψ(2))l are the discrete sine transform

coefficients of ψn and ψ(2), respectively, which are defined in (3.31). One can also
exchange the order of the steps (4.13) and (4.14) in TSSP (4.16), and the numerical
results are almost the same.

Remark 4.1. For the GPE (4.1) truncated in a bounded domain with periodic
boundary condition (4.4) or homogenous Neumann boundary condition (4.5), a
time splitting Fourier or cosine pseudospectral method similar to TSSP (4.16) is
straightforward [44, 31, 33], i.e., solve the linear part (4.12) by Fourier or cosine
spectral discretization instead of sine spectral discretization.

4.1.2. Time splitting finite difference method. In section 4.1.1, a sine pseudospectral
method (or a Fourier pseudospectral method) is used to solve Eq. (4.12). Spectral
method is favorable in view of its high accuracy if the solution of continuous problem
(2.1) is smooth. For non-smooth potentials V (x) (random potential), the regularity
of the solution of the GPE (2.1) would be low. In such case, finite difference method
is suggested instead of spectral method.
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Time-splitting finite difference (TSFD) method From time t = tn to t =
tn+1, the GPE (4.1) with homogenous Dirichlet boundary condition (4.3) is solved
in two splitting steps, (4.12) and (4.14). As indicated in section 4.1.1, Eq. (4.14)
can be integrated exactly. For the linear part (4.12), we use Crank-Nicolson finite
difference method. From time t = tn to t = tn+1, we combine the splitting steps
via the standard Strang splitting [42]:

ψ
(1)
j = e−iτ(V (xj)+β|ψn

j |2)/2 ψnj , j ∈ T 0
M ,

i
ψ
(2)
j − ψ

(1)
j

τ
= −1

4
(δ2xψ

(2)
j + δ2xψ

(1)
j ), j ∈ TM , ψ

(2)
0 = ψ

(2)
M = 0,

ψn+1
j = e−iτ(V (xj)+β|ψ(2)

j |2)/2 ψ(2)
j , j ∈ T 0

M .

(4.17)

This method is also unconditionally stable, time reversible, time-transverse in-
variant, and it conserves the total particle number. The linear part of TSFD (4.17)
can be solved by the Thomas’ algorithm in 1D and discrete sine transform (DST)
in 2D and 3D. Thus, the computational costs of TSFD and TSSP are the same in
2D and 3D, while the cost of TSFD is cheaper in 1D due to the Thomas’ algorithm.

4.2. Finite difference time domain method. Finite difference time domain
(FDTD) methods for NLSE have been extensively studied in the literature [9, 76]
and are widely used. In this section, we present the most popular finite difference
discretizations for the GPE (4.1) with homogenous Dirichlet boundary condition
(4.3).

4.2.1. Crank-Nicolson finite difference method. The conservative Crank-Nicolson fi-

nite difference (CNFD) discretization of GPE (4.1) reads [76, 106, 34, 21, 20]

iδ+t ψ
n
j =

[
−1

2
δ2x + Vj +

β

2
(|ψn+1

j |2 + |ψnj |2)
]
ψ
n+1/2
j , j ∈ TM , n ≥ 0, (4.18)

where

Vj = V (xj), ψ
n+1/2
j =

1

2

(
ψn+1
j + ψnj

)
, j ∈ T 0

M , n = 0, 1, 2, . . . .

The boundary condition (4.3) is discretized as

ψn+1
0 = ψn+1

M = 0, n = 0, 1, . . . , (4.19)

and the initial condition (4.2) is discretized as

ψ0
j = ψ0(xj), j ∈ T 0

M . (4.20)

The above CNFD method conserves the mass and energy in the discretized level.
However, it is a fully implicit method, i.e., at each time step, a fully nonlinear system
must be solved, which may be very expensive, especially in 2D and 3D. In fact, if the
fully nonlinear system is not solved numerically to extremely high accuracy, e.g., at
machine accuracy, then the mass and energy of the numerical solution obtained in
practical computation are no longer conserved [21]. This motivates us also consider
the following semi-implicit discretization for the GPE.
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4.2.2. Semi-implicit finite difference method. The semi-implicit finite difference (SI-
FD) discretization of the GPE (4.1), is to use Crank-Nicolson/leap-frog schemes for
discretizing linear/nonlinear terms, respectively, as [21, 20]

iδtψ
n
j =

[
−1

2
δ2x + Vj

]
ψn+1
j + ψn−1

j

2
+ β|ψnj |2ψnj , j ∈ TM , n ≥ 1. (4.21)

Again, the boundary condition (4.3) and initial condition (4.2) are discretized in
(4.19) and (4.20), respectively. In addition, the first step can be computed by any
explicit second or higher order time integrator, e.g., the second-order modified Euler
method, as

ψ1
j = ψ0

j − iτ

[(
−1

2
δ2x + Vj

)
ψ
(1)
j + β|ψ(1)

j |2ψ(1)
j

]
, j ∈ TM , (4.22)

ψ
(1)
j = ψ0

j − i
τ

2

[(
−1

2
δ2x + Vj

)
ψ0
j + β|ψ0

j |2ψ0
j

]
.

For this SIFD method, at each time step, only a linear system is to be solved,
which is much more cheaper than that of the CNFD method in practical computa-
tion.

4.3. Simplified methods for symmetric potential and initial data. Similar
to section 3.4, when the potential V (x) (x ∈ Rd, d = 1, 2, 3) and the initial data ψ0

are symmetric, then the solution of the GPE (2.1) is symmetric. In such cases, sim-
plified numerical methods, especially with less memory requirement, are available
for computing the dynamics of GPE.

4.3.1. Radial symmetry in 1D, 2D and 3D. When potential V (x) and initial data
ψ(x, 0) = ψ0(x) are radially symmetric for d = 1, 2 and spherically symmetric for
d = 3, the problem is reduced to 1D. In such case, the GPE (2.1) collapse to the
1D equation (3.43) for ψ := ψ(r, t) with r = |x| ≥ 0.

In practical computation, the equation (3.43) is approximated on a finite interval.
Since the wave function vanishes as r → ∞, choosing R > 0 sufficiently large,
equation (3.43) can be approximated by

i∂tψ(r, t) = − 1

2rd−1

∂

∂r

(
rd−1 ∂

∂r
ψ

)
+ V (r)ψ + β|ψ|2ψ, 0 < r < R, (4.23)

with boundary conditions

∂rψ(0, t) = 0, ψ(R, t) = 0, t ≥ 0, (4.24)

and initial condition

ψ(r, 0) = ψ0(r), 0 ≤ r ≤ R. (4.25)

For this 1D problem, an efficient and accurate method is the time-splitting finite
difference (TSFD) method. Choose time steps as (3.24) and mesh size ∆r =
2R/(2M + 1) for some integer M > 0. We use the same notations for the grid
points as (3.53), and let ψn

j+ 1
2

be the numerical approximation of ψ(rj+ 1
2
, tn) and

ψn be the solution vector at time t = tn with components ψn
j+ 1

2

. The time-splitting
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finite difference (TSFD) discretization for (4.23) reads

ψ
(1)

j+ 1
2

= e
−iτβ|ψn

j+1
2
|2/2

ψnj+ 1
2
, j ∈ T 0

M ,

i
ψ
(2)

j+ 1
2

− ψ
(1)

j+ 1
2

τ
=

[
−1

2
δ2r,d + V (rj+ 1

2
)

] ψ(2)

j+ 1
2

+ ψ
(1)

j+ 1
2

2
, 0 ≤ j ≤M − 1,

ψ
(2)

− 1
2

= ψ
(2)
1
2

, ψ
(2)

M+ 1
2

= 0, ψ0
j+ 1

2
= ψ0(rj+ 1

2
), j ∈ T 0

M ,

ψn+1
j+ 1

2

= e
−iτβ|ψ(2)

j+1
2

|2/2
ψ
(2)

j+ 1
2

, j ∈ T 0
M , n ≥ 0. (4.26)

This method is second-order accurate in space and time, unconditionally stable and
it conserves the normalization in the discretized level. The memory cost is O(M)
and computational cost is O(M) per time step, which save significantly from O(Md)
and O(Md lnM), respectively, in 2D and 3D when the Cartesian coordinates is used
by TSSP.

4.3.2. Cylindrical symmetry in 3D. For x = (x, y, z)T ∈ R3, when V and ψ0 are
cylindrically symmetric, i.e., V and ψ0 are of the form V (r, z) and ψ0(r, z) (r =√
x2 + y2), respectively, the Cauchy problem of the GPE (2.1) is reduced to 2D.

Due to the symmetry, the GPE (2.1) essentially collapses to the 2D problem (3.57)
with r ∈ (0,+∞) and z ∈ R for ψ := ψ(r, z, t).

In practice, the GPE (3.57) is truncated on a bounded domain. Choosing R > 0
and Z1 < Z2 with |Z1|, |Z2| and R sufficiently large, then Eq. (3.57) can be
approximated for (r, z) ∈ (0, R)× (Z1, Z2) as,

i∂tψ(r, z, t) = −1

2

[
1

r

∂

∂r

(
r
∂ψ

∂r

)
+
∂2ψ

∂z2

]
+
(
V (r, z) + β|ψ|2

)
ψ, (4.27)

with boundary condition

∂ψ(0, z, t)

∂r
= 0, ψ(R, z, t) = ψ(r, Z1, t) = ψ(r, Z2, t) = 0, z ∈ [Z1, Z2], r ∈ [0, R],

(4.28)
and initial condition

ψ(r, z, 0) = ψ0(r, z), z ∈ [Z1, Z2], r ∈ [0, R]. (4.29)

Similar to section 3.4, choose time steps as (3.24) and r- grid points (3.53) for
positive integer M > 0. For integer N > 0, choose mesh size ∆z = (Z2 − Z1)/N
and define z- grid points zk = Z1 + k∆z for k ∈ T 0

N . Let ψn
j+ 1

2 k
be the numerical

approximation of ψ(rj+ 1
2
, zk, tn) and ψ

n be the solution vector at time t = tn with

components ψn
j+ 1

2 k
. Then the time-splitting finite difference (TSFD) discretization

for (4.27) reads

ψ
(1)

j+ 1
2 k

= e
−iτ [V (r

j+ 1
2
,zk)+β|ψn

j+1
2

k
|2]/2

ψnj+ 1
2 k
, (j, k) ∈ T 0

MN ,

i
ψ
(2)

j+ 1
2 k

− ψ
(1)

j+ 1
2 k

τ
= −1

4
(δ2r + δ2z)

(
ψ
(2)

j+ 1
2 k

+ ψ
(1)

j+ 1
2 k

)
, (j, k) ∈ T ∗

MN ,

ψ
(2)

− 1
2 k

= ψ
(2)
1
2 k
, ψ

(2)

M+ 1
2 k

= ψ
(2)

j+ 1
2 0

= ψ
(2)

j+ 1
2 N

= 0, (j, k) ∈ T 0
MN ,

ψn+1
j+ 1

2 k
= e

−iτ [V (r
j+ 1

2
,zk)+β|ψ(2)

j+1
2

k
|2]/2

ψ
(2)

j+ 1
2 k
, (j, k) ∈ T 0

MN , (4.30)



MATHEMATICS AND NUMERICS FOR BEC 47

with ψ0
j+ 1

2 k
= ψ0(rj+ 1

2
, zk) for (j, k) ∈ T 0

MN . This method is second-order ac-

curate in space and time, unconditionally stable and it conserves the normaliza-
tion in the discretized level. The memory cost is O(MN) and computational
cost is O(MN lnM) per time step, which save significantly from O(M2N) and
O(M2N lnM), respectively, when the Cartesian coordinates is used by TSSP.

4.4. Error estimates for SIFD and CNFD. In this section, we present the
error estimates for CNFD (4.18) and SIFD (4.21). The notations for finite difference
operators, related finite dimensional vector space and norms are given in section 3.2.
Specially, for real valued nonnegative potential V (x), we define the corresponding
discrete weighted l2 norm for u = (u0, u1, · · · , uM )T ∈ XM as:

‖u‖2V = h
M−1∑

j=0

Vj |uj |2. (4.31)

In the remaining part of this section, we use the notation p . q to represent that
there exists a generic constant C which is independent of time step τ and mesh size
h such that |p| ≤ C q.

To state the error bounds, we define the ‘error’ function en ∈ XM as

enj = ψ(xj , tn)− ψnj , j ∈ T 0
M , n ≥ 0, (4.32)

where ψ := ψ(x, t) is the exact solution of the GPE (4.1) and ψnj is the numerical
solution. We make the following assumption on the exact solution ψ, i.e., let 0 <
T < Tmax with Tmax the maximal existing time of the solution [73, 176]:

ψ ∈ C3([0, T ];W 1,∞) ∩ C2([0, T ];W 3,∞) ∩ C0([0, T ];W 5,∞ ∩H1
0 ), (4.33)

where the spatial norms are taken in the interval U = (a, b).
For the SIFD method, we have [21, 20]

Theorem 4.1. Assuming that (4.33) holds and that V (x) ∈ C1(U), there exist
h0 > 0 and 0 < τ0 ≤ 1

4 sufficiently small, when 0 < h ≤ h0 and 0 < τ ≤ τ0 ≤ 1
4 , we

have the following error estimates for the SIFD method (4.21) with (4.19), (4.20)
and (4.22)

‖en‖2 . h2+τ2, ‖δ+x en‖2 . h3/2+τ3/2, ‖ψn‖∞ ≤ 1+M1, 0 ≤ n ≤ T

τ
, (4.34)

whereM1 = max0≤t≤T ‖ψ(·, t)‖L∞(U). In addition, if either ∂nV (x)|Γ = 0 (Γ = ∂U ,

∂n is the outer normal derivative) or ψ ∈ C0([0, T ];H2
0 (U)), we have the optimal

error estimates

‖en‖2 + ‖δ+x en‖2 . h2 + τ2, ‖ψn‖∞ ≤ 1 +M1, 0 ≤ n ≤ T

τ
. (4.35)

Similarly, for the CNFD method, we have [21, 20]

Theorem 4.2. Assuming that (4.33) holds and that V (x) ∈ C1(U), there exists
h0 > 0 and τ0 > 0 sufficiently small, when 0 < h ≤ h0 and 0 < τ ≤ τ0, the
CNFD discretization (4.18) with (4.19) and (4.20) admits a unique solution ψn

(0 ≤ n ≤ T
τ ) such that the following error estimates hold,

‖en‖2 . h2+τ2, ‖δ+x en‖2 . h3/2+τ3/2, ‖ψn‖∞ ≤ 1+M1, 0 ≤ n ≤ T

τ
. (4.36)
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In addition, if either ∂nV (x)|Γ = 0 or ψ ∈ C0([0, T ];H2
0 (U)), we have the optimal

error estimates

‖en‖2 + ‖δ+x en‖2 . h2 + τ2, ‖ψn‖∞ ≤ 1 +M1, 0 ≤ n ≤ T

τ
. (4.37)

Error bounds of conservative CNFD method for NLSE in 1D (without potential
V (x)) was established in [76, 106]. In fact, their proofs for CNFD rely strongly
on the conservative property of the method and the discrete version of the Sobolev
inequality in 1D

‖f‖2L∞ ≤ ‖∇f‖L2 · ‖f‖L2, ∀f ∈ H1(U) with U ⊂ R, (4.38)

which immediately implies a priori uniform bound for ‖f‖L∞. However, the exten-
sion of the discrete version of the above Sobolev inequality is no longer valid in 2D
and 3D. Thus the techniques used in [76, 106] for obtaining error bounds of CNFD
for NLSE only work for conservative schemes in 1D and they cannot be extended
to either high dimensions or non-conservative finite difference scheme like SIFD.

Here, we are going to use different techniques to establish optimal error bounds
of CNFD and SIFD for the GPE (2.1) in 1D which can be directly generalized to 2D
and 3D. In the analysis, besides the standard techniques of the energy method, for
SIFD, we adopt the mathematical induction; for CNFD, we cut off the nonlinearity.

4.4.1. Convergence rate for SIFD. Firstly, SIFD (4.21) is uniquely solvable [20].

Lemma 4.1. (Solvability of the difference equations) Under the assumption (4.33),
for any given initial data ψ0 ∈ XM , there exists a unique solution ψn ∈ XM

of (4.22) for n = 1 and (4.21) for n > 1.

Define the local truncation error ηn ∈ XM of the SIFD method (4.21) with (4.19),
(4.20) and (4.22) for n ≥ 1 and j ∈ TM as

ηnj :=
(
iδt − β|ψ(xj , tn)|2

)
ψ(xj , tn) +

[
δ2x
2

− Vj

]
ψ(xj , tn−1) + ψ(xj , tn+1)

2
, (4.39)

and by noticing (4.20) for n = 0 as

η0j := iδ+t ψ(xj , 0)−
(
−1

2
δ2x + Vj

)
ψ
(1)
j − β|ψ(1)

j |2ψ(1)
j , j ∈ TM , (4.40)

ψ
(1)
j = ψ0(xj)− i

τ

2

[(
−1

2
δ2x + Vj

)
ψ0(xj) + β|ψ0(xj)|2ψ0(xj)

]
.

Then we have

Lemma 4.2. (Local truncation error) Assuming V (x) ∈ C(U), under the assump-
tion (4.33), we have

‖ηn‖∞ . τ2 + h2, 0 ≤ n ≤ T

τ
− 1, and ‖δ+x η0‖∞ . τ + h. (4.41)

In addition, assuming V (x) ∈ C1(U), we have for 1 ≤ n ≤ T
τ − 1

|δ+x ηnj | .
{
τ2 + h2, 1 ≤ j ≤M − 2,

τ + h, j = 0,M − 1.
(4.42)

Furthermore, assuming either ∂nV (x)|Γ = 0 or u ∈ C([0, T ];H2
0 (U)), we have

‖δ+x ηn‖∞ . τ2 + h2, 1 ≤ n ≤ T

τ
− 1. (4.43)
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Proof. First, we prove (4.41) and (4.42) when n = 0. Rewriting ψ
(1)
j and then using

Taylor’s expansion at (xj , 0), noticing (4.1) and (4.2), we get

ψ
(1)
j = ψ

(
xj ,

τ

2

)
+ i

τ

2

[(
δ2x
2

− Vj − β|ψ0(xj)|2
)
ψ0(xj) + i

ψ
(
xj ,

τ
2

)
− ψ0(xj)

τ/2

]

= ψ
(
xj ,

τ

2

)
+ i

τ

2

[
h2

2

∫ 1

0

∫ s1

0

∫ s2

0

∫ s3

−s3
∂xxxxψ0(xj + sh) ds ds3 ds2 ds1

+ i
τ

2

∫ 1

0

∫ θ

0

∂ttψ(xj , sτ/2) ds dθ

]
= ψ

(
xj ,

τ

2

)
+O

(
τ2 + τh2

)
, j ∈ TM .

Then, using Taylor expansion at (xj , τ/2) in (4.40), noticing (4.1), in view of triangle
inequality and the assumption (4.33), we have

|η0j | . τ2‖ψttt‖L∞ + hτ‖ψxxxxx‖L∞ + τ2‖ψttxx‖L∞ + τ(h2‖ψxxxx‖L∞ + τ‖ψtt‖L∞)

· (‖ψ‖L∞ + τh2‖ψxxxx‖L∞ + τ2‖ψtt‖L∞)2

. τ2 + h2, j ∈ TM ,

where the L∞-norm means ‖ψ‖L∞ := sup0≤t≤T supx∈U |ψ(x, t)|. This immediately
implies (4.41) when n = 0. Similarly, we can get

|δ+x η0j | . τ‖ψxxxxx‖L∞ + τ2‖ψtttx‖L∞ + τh‖ψxxxx‖L∞(‖ψ‖W 4,∞ + ‖ψtt‖L∞)2

+ τ2‖ψttx‖L∞(‖ψ‖W 4,∞ + ‖ψtt‖L∞)2

. τ + h, j ∈ TM ,

where for j = 0, we use equation (4.3) to deduce that ψtt(a, t) = ψttt(a, t) = 0.
Now we prove (4.41), (4.42) and (4.43) when n ≥ 1. Using Taylor’s expansion

at (xj , tn) in (4.39), noticing (4.1), using triangle inequality and assumption (4.33),

we have for 1 ≤ n ≤ T
τ − 1,

|ηnj | . h2‖ψxxxx‖L∞ + τ2 (‖ψttt‖L∞ + ‖ψttxx‖L∞) . τ2 + h2, j ∈ TM .

Thus, (4.41) is true. For j = 1, . . . ,M − 2, we know

|δ+x ηnj | . h2‖ψxxxxx‖L∞+τ2 (‖ψtttx‖L∞ + ‖ψttxxx‖L∞) . τ2+h2, 1 ≤ n ≤ T

τ
−1.

(4.44)
However, for j = 0,M − 1, we derive that ψtt, ψxx and ψttxx are all zero on the
boundary Γ, and it follows that for 1 ≤ n ≤ T

τ − 1 and j = 0,M − 1,

|δ+x ηnj | . h‖ψxxxx‖L∞ + τ2 (‖ψtttx‖L∞ + ‖ψttxxx‖L∞) . τ + h. (4.45)

(4.44) and (4.45) prove (4.42).
In the case of ∂nV (x)|Γ = 0 or u ∈ C([0, T ];H2

0 (U)), by differentiating (4.1),
we can show that ψxx|Γ = ψxxxx|Γ = ψttxx|Γ = ψtt|Γ = 0. Then (4.44) holds for
boundary case and (4.43) is correct. The proof is complete. �

Now, we are going to establish the estimates in Theorem 4.1 by mathematical
induction [20].

Proof of Theorem 4.1. We first prove the optimal discrete semi-H1 norm conver-
gence rate in the case of either ∂nV (x)|Γ = 0 or ψ ∈ C0([0, T ];H2

0 (U)). Since e0 = 0,
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(4.35) is true. For n = 1, using Lemma 4.2 and noticing e1j = ψ(xj , τ)−ψ1
j = −iτη0j

(j ∈ T 0
M ), we find that

‖e1‖2 + ‖δ+x e1‖2 . h2 + τ2. (4.46)

Recalling discrete Sobolev inequality which implies that ‖e1‖∞ ≤ C1‖δ+x e1‖2, for
sufficiently small h and τ , we derive

‖ψ1‖∞ ≤ ‖e1‖∞ + ‖ψ‖L∞ ≤M1 + 1. (4.47)

Now we assume that (4.35) is valid for all 0 ≤ n ≤ m− 1 ≤ T
τ − 1, then we need to

show that it is still valid when n = m. In order to do so, subtracting (4.39) from
(4.21), noticing (4.4) and (4.19), we obtain the following equation for the “error”
function en ∈ XM :

iδte
n
j =

[
−1

2
δ2x + Vj

]
en+1
j + en−1

j

2
+ ξnj + ηnj , j ∈ TM , n ≥ 1, (4.48)

where ξn ∈ XM (n ≥ 1) is defined as

ξnj = β|ψ(xj , tn)|2ψ(xj , tn)− β|ψnj |2ψnj , j ∈ TM . (4.49)

By the assumption of mathematical induction, we have [20]

‖ξn‖22 ≤ C2‖en‖22, ‖δ+x ξn‖22 ≤ C3‖δ+x en‖22 + ‖en‖22, 1 ≤ n ≤ m− 1, (4.50)

where C2 and C3 are constants only depending on M1 and β.

Multiplying both sides of (4.48) by en+1
j + en−1

j and summing all together for
j ∈ TM , taking imaginary parts, using the triangular and Cauchy inequalities,
noticing (4.41) and (4.50) , we have for 1 ≤ n ≤ m− 1

‖en+1‖22 − ‖en−1‖22 = 2τ Im
(
ξn + ηn, en+1 + en−1

)

≤ 2τ
[
‖en+1‖22 + ‖en−1‖22 + ‖ηn‖22 + ‖ξn‖22

]

≤ C4τ(h
2 + τ2)2 + 2τ

(
‖en+1‖22 + ‖en−1‖22

)
+ 2τC2‖en‖22.

Summing above inequality for n = 1, 2, . . . ,m− 1, for τ ≤ 1
4 , we get

‖em‖22 + ‖em−1‖22 ≤ C4T (h
2 + τ2)2 + C5τ

m−1∑

l=1

‖el‖22, 1 ≤ m ≤ T

τ
, (4.51)

with positive constants C4 > 0 and C5 > 0 independent of τ and h. In view of the
discrete Gronwall inequality [76, 106, 20] and noticing ‖e0‖2 = 0 and ‖e1‖2 . h2+τ2,
we immediately obtain ‖en‖2 . h2 + τ2 for n = m.

For the semi-H1 norm, define the discrete linear energy for en ∈ XM as

E(en) = 1

2
‖δ+x en‖2 + ‖en‖2V . (4.52)

Multiplying both sides of (4.48) by en+1
j − en−1

j , summing over index j ∈ TM and
performing summation by parts, taking real part, we have

E(en+1)− E(en−1) = −2 Re
〈
ξn + ηn, en+1 − en−1

〉
, 1 ≤ n ≤ m− 1. (4.53)

Rewriting (4.48) as

en+1
j − en−1

j = −2iτ
[
ξnj + ηnj + χnj

]
, j ∈ TM , (4.54)

where χn ∈ XM is defined as

χnj =

[
−1

2
δ2x + Vj

]
en+1
j + en−1

j

2
, j ∈ TM , (4.55)
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then plugging (4.54) into (4.53), we obtain

E(en+1)− E(en−1) = −4τ Im 〈ξn + ηn, ξn + ηn + χn〉
= −4τ Im 〈ξn + ηn, χn〉 , 1 ≤ n ≤ m− 1. (4.56)

From (4.55), (4.49) and summation by parts, we have

|〈ξn, χn〉| =
1

2

∣∣∣∣
〈
ξn,

(
−1

2
δ2x + V

)(
en+1 + en−1

)〉∣∣∣∣
.

∣∣〈δ+x ξn, δ+x
(
en+1 + en−1

)〉∣∣+
∣∣〈ξn, V

(
en+1 + en−1

)〉∣∣
. ‖δ+x en+1‖22 + ‖δ+x en‖22 + ‖δ+x en−1‖22 + ‖en+1‖22 + ‖en‖22 + ‖en−1‖22

+‖δ+x ξn‖22 + ‖ξn‖22
. ‖δ+x en+1‖22 + ‖δ+x en‖22 + ‖δ+x en−1‖22, 1 ≤ n ≤ m. (4.57)

Similarly, noticing (4.50), (4.41) and (4.43), we have

|〈ηn, χn〉| = 1

2

∣∣∣∣
〈
ηn,

(
−1

2
δ2x + V

)(
en+1 + en−1

)〉∣∣∣∣ (4.58)

.
∣∣〈δ+x ηn, δ+x

(
en+1 + en−1

)〉∣∣+
∣∣〈ηn, V

(
en+1 + en−1

)〉∣∣
. ‖δ+x en+1‖22 + ‖δ+x en‖22 + ‖δ+x en−1‖22 + ‖en+1‖22 + ‖en‖22 + ‖en−1‖22
+ ‖δ+x ηn‖22 + ‖ηn‖22

. ‖δ+x en+1‖22 + ‖δ+x en‖22 + ‖δ+x en−1‖22 + (τ2 + h2)2, 1 ≤ n ≤ m.

Plugging (4.57) and (4.58) into (4.56), we get

E(en+1)− E(en−1) . τ(τ2 + h2)2 + τ
[
‖δ+x en+1‖22 + ‖δ+x en‖22 + ‖δ+x en−1‖22

]

. τ(τ2 + h2)2 + τ
[
E(en+1) + E(en) + E(en−1)

]
, 1 ≤ n ≤ m.

Summing above inequality for 1 ≤ n ≤ m− 1, we get

E(en+1) + E(en) . T (τ2 + h2)2 + E(e1) + E(e0) + τ

n+1∑

l=1

E(el), 1 ≤ n ≤ m− 1.

Using the discrete Gronwall inequality [20, 76], we have

E(en+1)+E(en) . (τ2+h2)2+E(e1)+E(e0) . (τ2+h2)2, 1 ≤ n ≤ m−1. (4.59)

Thus E(em) . (τ2 + h2)2 and

‖δ+x em‖22 ≤ E(em) + ‖V ‖L∞(U)‖em‖22 . (τ2 + h2)2. (4.60)

In view of the discrete Sobolev inequality, we get

‖em‖∞ . ‖δ+x em‖2 . τ2 + h2. (4.61)

Noticing that in all the above inequalities, the appearing constants are independent
of h and τ . Hence, for sufficiently small τ and h, we conclude that

‖ψm‖∞ ≤ ‖ψ(·, tm)‖L∞(U) + ‖em‖∞ ≤M1 + 1. (4.62)

This completes the proof of (4.35) at n = m. Therefore the result is proved by
mathematical induction.

For the case of assumption (4.33) and V ∈ C1 without further assumptions, we
will lose half order convergence rate in the semi-H1 norm because of the boundary
(4.42). Notice that the reminder term is O(h2 + τ2)3/2 instead of O(h2 + τ2) in
(4.58), and that the remaining proof is the same. Hence, we will have the 3/2 order
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convergence rate for discrete semi-H1 norm. The proof is complete. �

Remark 4.2. Here we emphasis that the above approach can be extended to the
higher dimensions, e.g. 2D and 3D, directly. The key point is the discrete Sobolev
inequality in 2D and 3D as

‖uh‖∞ ≤ C| ln h| ‖uh‖H1
s
, ‖vh‖∞ ≤ Ch−1/2‖vh‖H1

s
, (4.63)

where uh and vh are 2D and 3D mesh functions with zero at the boundary, respec-
tively, and the discrete semi-H1 norm ‖ · ‖H1

s
and l∞ norm ‖ · ‖∞ can be defined

similarly as the discrete semi-H1 norm and the l∞ norm in (3.27). The same proof
works in 2D and 3D, with the above Sobolev inequalities and the additional tech-
nical assumption τ = o(1/| lnh|) in 2D and τ = o(h1/3) in 3D.

4.4.2. Convergence rate for CNFD. Let ψn ∈ XM be the numerical solution of the
CNFD (4.18) and en ∈ XM be the error function.

Lemma 4.3. (Conservation of mass and energy) For the CNFD scheme (4.18)
with (4.19) and (4.20), for any mesh size h > 0, time step τ > 0 and initial data
ψ0, it conserves the mass and energy in the discretized level, i.e.

‖ψn‖22 ≡ ‖ψ0‖22, Eh(ψ
n) ≡ Eh(ψ

0), n = 0, 1, 2, . . . , (4.64)

where the discrete energy is given by

Eh(ψ
n) =

1

2
‖δ+x ψn‖22 + ‖ψn‖2V +

β

2
‖ψn‖44. (4.65)

Proof. Follow the analogous arguments of the CNFD method for the NLSE [77, 106]
and we omit the details here for brevity. �

For the solvability, we have

Lemma 4.4. (Solvability of the difference equations) For any given ψn, there exists
a unique solution ψn+1 of the CNFD discretization (4.18) with (4.19).

Proof. The proof is standard [10, 20]. In higher dimensions (2D and 3D), additional
assumption is needed for uniqueness, i.e., time step τ is sufficiently small compared
with mesh size. �

Denote the local truncation error η̃n ∈ XM (n ≥ 0) of the CNFD scheme (4.18)
with (4.19) and (4.20) as

η̃nj : = iδ+t ψ(xj , tn)−
[
−1

2
δ2x + Vj +

β

2

(
|ψ(xj , tn+1)|2 + |ψ(xj , tn)|2

)]

×ψ(xj , tn) + ψ(xj , tn+1)

2
, j ∈ TM . (4.66)

Similar to Lemma 4.2, we have

Lemma 4.5. (Local truncation error) Assume V (x) ∈ C(U ) and under assumption
(4.33), we have

‖η̃n‖∞ . τ2 + h2, 0 ≤ n ≤ T

τ
− 1. (4.67)
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In addition, assuming V (x) ∈ C1(U), we have for 1 ≤ n ≤ T
τ − 1

|δ+x η̃nj | .
{
τ2 + h2, 1 ≤ j ≤M − 2,

τ + h, j = 0,M − 1.
(4.68)

In addition, if either ∂nV (x)|Γ = 0 or ψ ∈ C0([0, T ];H2
0 (U)), we have

‖δ+x η̃n‖∞ . τ2 + h2, 1 ≤ n ≤ T

τ
− 1. (4.69)

One main difficulty in deriving error bounds for CNFD in high dimensions is
the l∞ bounds for the finite difference solutions. In [20, 180, 10], this difficulty
was overcome by truncating the nonlinearity to a global Lipschitz function with
compact support in d-dimensions (d = 1, 2, 3). This cutoff would not change ψ(x, t)
and ψn if the continuous solution ψ(x, t) is bounded and the numerical solution ψn

is close to the continuous solution, i.e., if (4.36) or (4.37) holds.

Proof of Theorem 4.2. As in the proof of Theorem 4.1, we only prove the op-
timal convergence under assumptions (4.33) with either ∂nV (x)|Γ = 0 or ψ ∈
C0([0, T ];H2

0 (U)). Choose a smooth function ρ(s) ∈ C∞(R) such that

ρ(s) =





1, 0 ≤ |s| ≤ 1 ,
∈ [0, 1], 1 ≤ |s| ≤ 2 ,
0, |s| ≥ 2 .

(4.70)

Let us denote B = (M1 + 1)2 and denote

f
B
(s) = ρ(s/B)s, s ∈ R, (4.71)

then f
B
∈ C∞

0 (R). Choose φ0 = ψ0 ∈ XM and define φn ∈ XM (n ≥ 1) as

iδ+t φ
n
j =

[
−1

2
δ2x + Vj +

β

2

(
f
B
(|φn+1

j |2) + f
B

(
|φnj |2

))]
φ
n+1/2
j , j ∈ TM , (4.72)

where

φ
n+1/2
j =

1

2
(φn+1
j + φnj ), j ∈ T 0

M , n ≥ 0. (4.73)

In fact, φn can be viewed as another approximation of ψ(x, tn). Define the ‘error’
function ên ∈ XM (n ≥ 0) with components ênj = ψ(xj , tn) − φnj for j ∈ T 0

M and
denote the local truncation error η̂n ∈ XM as

η̂nj := iδ+t ψ(xj , tn)−
[
−1

2
δ2x + Vj +

β

2

(
f
B
(|ψ(xj , tn+1)|2) + f

B
(|ψ(xj , tn)|2)

)]

×ψ(xj , tn) + ψ(xj , tn+1)

2
, j ∈ TM , n ≥ 0. (4.74)

Similar as Lemma 4.5, we can prove

‖η̂n‖∞ + ‖δ+x η̂n‖∞ . τ2 + h2, 0 ≤ n ≤ T

τ
− 1. (4.75)

Subtracting (4.74) from (4.72), we obtain

iδ+t ê
n
j =

[
−1

2
δ2x + Vj

]
ê
n+1/2
j + ξ̂nj + η̂nj , j ∈ TM , n ≥ 0, (4.76)
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where ξ̂n ∈ XM defined as

ξ̂nj =
β

2

(
|ψ(xj , tn+1)|2 + |ψ(xj , tn)|2

) ψ(xj , tn+1) + ψ(xj , tn)

2
(4.77)

− β

2

(
f
B
(|φn+1

j |2) + f
B
(|φnj |2)

)
φ
n+1/2
j , j ∈ T 0

M . (4.78)

Recalling that f
B
∈ C∞

0 , for 0 ≤ n ≤ T
τ − 1, we can show that [20]

‖ξ̂n‖2 .
∑

k=n,n+1

‖êk‖2, ‖δ+x ξ̂n‖2 .
∑

k=n,n+1

(
‖êk‖2 + ‖δ+x êk‖2

)
. (4.79)

This property is similar to that of the SIFD case (4.50). The same proof for Theorem
4.1 works. However, there is no need to use mathematical induction here, as C∞

0

property of f
B
guarantees (4.79). For simplicity, we omit the details here. Finally,

we derive the following for sufficiently small h and τ ,

‖ên‖2 + ‖δ+x ên‖2 . h2 + τ2, ‖φn‖∞ ≤M1 + 1, 0 ≤ n ≤ T

τ
. (4.80)

From (4.80), we know that (4.72) collapses to CNFD (4.18), i.e., ψn = φn. Thus,
we prove error estimates (4.37) for CNFD (4.18).

Again, for the case of assumption (4.33) and V ∈ C1 without further assump-
tions, we will lose half order convergence rate in the semi-H1 norm. �

Remark 4.3. If the cubic nonlinear term β|ψ|2ψ in (4.1) is replaced by a general
nonlinearity f(|ψ|2)ψ, the numerical discretization CNFD and its error estimates in
l2-norm, l∞-norm and discrete H1-norm are still valid provided that the nonlinear
real-valued function f(ρ) ∈ C3([0,∞)). The higher dimensional case (2D or 3D) is
the same as Remark 4.2.

4.5. Error estimates for TSSP. From now on, we investigate the error bounds
for time-splitting method. In the last decade, there have been many studies on
the analysis of the splitting error for Schrödinger equations [54, 141, 179, 148, 88].
For NLSE, Besse et al. obtained order estimates for the Strang splitting error [54].
Later, Lubich introduced formal Lie derivatives to estimate the Strang splitting
error [141]. The formal Lie calculus enables a systematical approach for studying
splitting schemes.

In our consideration of the TSSP (4.16) for solving the GPE (4.1), we will restrict
ourselves to certain subspaces ofH1

0 (U). Let φ(x) ∈ Hm(U)∩H1
0 (U) be represented

in sine series as

φ(x) =

+∞∑

l=1

φ̂l sin(µl(x− a)), x ∈ U = (a, b), (4.81)

with φ̂l given in (3.36), define the subspace Hm
sin(U) ⊂ Hm ∩H1

0 equipped with the
norm

‖φ‖Hm
sin(U) =

( ∞∑

l=1

µ2m
l |φ̂l|2

) 1
2

, (4.82)

which is equivalent to the Hm norm in this subspace. We notice that Hm
sin(U) =

{φ ∈ Hm(U)|∂2kx φ(a) = ∂2kx φ(b) = 0, 0 ≤ 2k < m, k ∈ Z}. It is easy to see that
eit∆ will preserve the Hm

sin norm.
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The TSSP (4.16) can be thought as the full discretization of the following semi-
discretization scheme. Let ψ[n](x) be the numerical approximation of ψ(x, tn). From
time t = tn to t = tn+1, we use the standard Strang splitting:

ψ{1}(x) = eiτ∆/4ψ[n](x), ψ{2}(x) = e−i(V (x)+β|ψ{1}(x)|2)τ ψ{1}(x),

ψ[n+1](x) = eiτ∆/4ψ{2}(x), x ∈ U.
(4.83)

In order to guarantee that e−iτ(V+β|φ|2)φ is a flow in Hm
sin, we make the following

assumptions on the potential V (x)

V (x) ∈ Hm(U) and ∂xV (x) ∈ Hm−1
sin (U), m ≥ 1. (4.84)

To derive the optimal error bounds, we make the following assumption on the exact
solution ψ, i.e., let 0 < T < Tmax with Tmax the maximal existing time of the
solution [73, 176]:

ψ ∈ C
(
[0, T ];Hm(U) ∩H1

0 (U)
)
. (4.85)

It is easy to get that ψ is actually in Hm
sin under assumptions (4.84) and (4.85), by

showing that ∂2kx ψ|Γ = 0 (0 ≤ 2k < m) from the GPE (4.1).
Now, we could state the error estimates for the TSSP (4.16).

Theorem 4.3. Let ψn ∈ XM be the numerical approximation obtained by the TSSP
(4.16). Under assumptions (4.84) and (4.85), there exist constants 0 < τ0, h0 ≤ 1,
such that if 0 < h ≤ h0, 0 < τ ≤ τ0 and m ≥ 5, we have

‖ψ(x, tn)− IM (ψn)(x)‖L2(U) . hm + τ2, ‖ψn‖∞ ≤M1 + 1,

‖∇(ψ(x, tn)− IM (ψn)(x))‖L2(U) . hm−1 + τ2, 0 ≤ n ≤ T

τ
,

(4.86)

where the interpolation operator IM is given in (3.30) and
M1 = maxt∈[0,T ] ‖ψ(·, t)‖L∞.

By Parseval’s identity, we can easily get the following.

Lemma 4.6. (Conservation of mass) The TSSP (4.16) conserves the total mass,
i.e.,

‖ψn‖22 = ‖ψ0‖22, n ≥ 1. (4.87)

The proof of Theorem 4.3 is separated into two steps. The first step is to establish
the error estimates for semi-discretization (4.83). Then we analyze the error between
the semi-discretization (4.83) and the full discretization TSSP (4.16).

The H1 error bound for the semi-discretization (4.83) is the following.

Theorem 4.4. Let ψ[n](x) be the solution given by the splitting scheme (4.83).
Under assumption (4.84) and (4.85) with m ≥ 5, we have ψ[n](x) ∈ Hm

sin and

‖ψ[n](x) − ψ(x, tn)‖L2 + ‖∇(ψ[n](x)− ψ(x, tn))‖L2 . τ2, 0 ≤ n ≤ T

τ
. (4.88)

The semi-discretization (4.83) can be simplified as

ψ[n+1](x) = Sτ (ψ
[n](x)). (4.89)

Using the fact L∞(U) ⊂ H1(U) and following [141], we would easily obtain the H1
0

stability of the splitting (4.83).
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Lemma 4.7. (H1
0 -conditional L

2- and H1
0 stability). If ψ, φ ∈ H1

0 (U) with

‖ψ‖H1
0
≤M2, ‖φ‖H0

1
≤M2, (4.90)

then we have

‖Sτ (ψ)− Sτ (φ)‖L2 ≤ ec0τ‖ψ − φ‖L2 ,

‖Sτ (ψ)− Sτ (φ)‖H1
0
≤ ec1τ‖ψ − φ‖H1

0
,

(4.91)

where c0 and c1 depend on M2, V (x) and β.

To prove Theorem 4.4, we need the local error, which is the key point in analyzing
time-splitting methods.

Lemma 4.8. If ψ0 ∈ H5
sin, then the error after one step of (4.83) in H1

0 norm is
given by

‖ψ[1](x) − ψ(x, τ)‖L2 + ‖∇(ψ[1](x) − ψ(x, τ))‖L2 ≤ Cτ3, (4.92)

where C only depends on ‖ψ0‖H5
sin
, V (x) and β.

We use formal Lie derivative calculus to study the local error in Lemma 4.8. For
a general differential equation φt = F (φ) (φ ∈ H1

0 ), denote the evolution operator
ϕtF (v) as the solution at time t with initial value φ(0) = v. The Lie derivative DF

is given by [141]

(DFG)(v) =
d

dt
G(ϕtF (v))

∣∣
t=0

= G′(v)F (v), v ∈ H1
0 (U), (4.93)

where G is a vector field on H1
0 . Let T̂ (ψ) = i

2∆ψ, V̂ (ψ) = −i
(
V (x) + β|ψ|2

)
ψ

and Ĥ = T̂ + V̂ , and denote DT , DV and DH as the corresponding Lie derivatives

(cf. [141]) for T̂ , V̂ and Ĥ , respectively. Similar to [141], one can compute the
commutator

[T̂ , V̂ ](ψ) = T̂ ′(ψ)V̂ (ψ)− V̂ ′(ψ)T̂ (ψ)

=
i

2
(−i)∆(V (x)ψ + β|ψ|2ψ)−

[
−iV∆ψ

i

2
− iβ

(
2|ψ|2∆ψ i

2
− ψ2∆ψ

i

2

)]

=
1

2
ψ∆V +∇V · ∇ψ + βψ2∆ψ +

3

2
β|∇ψ|2ψ +

β

2
ψ∇ψ · ∇ψ.

Under assumption (4.84) on potential V (x) with m ≥ 5, following analogous argu-
ments in [141], we have

‖[T̂ , V̂ ](ψ)‖H1
0
≤ C‖ψ‖H3

sin
(1 + ‖ψ‖2H3

sin
), (4.94)

‖[T̂ , [T̂ , V̂ ]](ψ)‖H1
0
≤ C‖ψ‖H5

sin
(1 + ‖ψ‖2H5

sin
). (4.95)

Now, we can prove the local error.

Proof of Lemma 4.8. The proof is analogous to that in section 5 of [141]. Here,
we outline the main part. First of all, by using variation of constant formula (or
Duhamel’s principle), one can write the error as

ψ[1](x) − ψ(x, τ) = τf
(τ
2

)
−
∫ τ

0

f(s)ds+ r2 − r1, (4.96)
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where f(s) = exp((τ − s)DT )DV exp(sDT )Id(ψ0) (Id the identity operator), and
the remainder terms,

r1 =

∫ τ

0

∫ τ−s

0

exp((τ − s− σ)DH)DV exp(σDT )DV exp(sDT )Id(ψ0) dσds,

r2 = τ2
∫ 1

0

(1− θ) exp(
τ

2
DT ) exp(θτDT )D

2
V exp(

τ

2
DT )Id(ψ0) dθ.

For the principal part, we notice that the midpoint rule quadrature leads to

τf
(τ
2

)
−
∫ τ

0

f(s)ds = τ3
∫ 1

0

ker(θ)f ′′(θτ) dθ, (4.97)

where ker(θ) is the Peano kernel for midpoint rule and [141]

f ′′(s) = ei
τ
2 ∆[T̂ , [T̂ , V̂ ]](ei

τ−s
2 ∆ψ0). (4.98)

Hence the principal part is of order O(τ3). For r2 − r1, denote

g(s, σ) = exp((τ − s− σ)DT )DV exp(σDT )DV exp(sDT )Id(ψ0), (4.99)

then we have

r2 − r1 =
τ2

2
g
(τ
2
, 0
)
−
∫ τ

0

∫ τ−s

0

g(s, σ) dσds + r̃2 − r̃1, (4.100)

with

r̃2 = r2 −
τ2

2
g
(τ
2
, 0
)
, r̃1 = r1 −

∫ τ

0

∫ τ−s

0

g(s, σ) dσds. (4.101)

For r̃1, noticing that

exp(τDH)Id(ψ0) = exp(τDT )Id(ψ0) +

∫ τ

0

exp((τ − s)DH)DV exp(sDT )Id(ψ0),

we can derive from the definition of g(s, σ) and the form of r1 that

‖r̃1‖H1
0
≤ C̃1τ

3. (4.102)

Similarly, we get ‖r̃2‖H1
0
≤ C̃2τ

3. Here, C̃1 and C̃2 only depend on ‖ψ0‖H3
sin
, V and

β. The remainder term is also a quadrature rule and it follows that
∥∥∥∥
τ2

2
g
(τ
2
, 0
)
−
∫ τ

0

∫ τ−s

0

g(s, σ) dσds

∥∥∥∥
H1

0

≤ Crτ
3, (4.103)

where Cr depends on ‖ψ0‖H3
sin
, V and β. Combining the above results together, we

can get Lemma 4.8. �

Theorem 4.4 can be proved by a combination of Lemmas 4.7 and 4.8, using
induction [141], and we omit this part here.

Proof of Theorem 4.3. Having Theorem 4.4, we only need to compare the full dis-
cretization solution IM (ψn)(x) and the semi-discretization solution ψ[n](x) (0 ≤
n ≤ T

τ ),

IM (ψn)(x)−ψ[n](x) = IM (ψn)(x)−PM (ψ[n](x))+PM (ψ[n](x))−ψ[n](x). (4.104)

From Theorem 4.4, there exists some M2 > 0 such that ‖ψ[n]‖Hm
sin

≤M2. Hence

‖PM (ψ[n](x))−ψ[n](x)‖L2 . hm, ‖∇[PM (ψ[n](x))−ψ[n](x)]‖L2 . hm−1. (4.105)
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Denote enI (x) = IM (ψn)(x)−PM (ψ[n](x)), then e0I = IM (ψ0)(x)−PM (ψ[0])(x) and

‖e0I(x)‖L2 . hm, ‖∇e0I(x)‖L2 . hm−1, ‖e0I(x)‖H2 . hm−2. (4.106)

From the semi-discretization (4.83), there holds

PM (ψ{1})(x) = eiτ∆/4PM (ψ[n]), PM (ψ{2})(x) = PM (e−i(V (x)+β|ψ{1}|2)τ ψ{1})(x),

PM (ψ[n+1])(x) = PM (eiτ∆/4ψ{2})(x), x ∈ U.

Similarly, for the TSSP (4.16), there holds

IM (ψ(1))(x) = eiτ∆/4IM (ψn)(x), IM (ψ(2))(x) = IM (e−i(V (x)+β|ψ(1)(x)|2)τ ψ(1))(x),

IM (ψn+1)(x) = eiτ∆/4IM (ψ(2))(x), x ∈ U.

Noticing that eiτ∆ preserves Hm
sin norm, we find that

‖enI (x)‖Hm
sin

= ‖IM (ψ(1))(x) − PM (ψ{1})(x)‖Hm
sin
,

‖en+1
I (x)‖Hm

sin
= ‖IM (ψ(2))(x) − PM (ψ{2})(x)‖Hm

sin
.

Following the analogous mathematical induction for SIFD (Theroem 4.1), we can
assume that error estimates (4.86) holds for n ≤ T

τ − 1. For n + 1, using the
techniques and results in [22], we have

‖IM (ψ(2))(x) − PM (ψ{2})(x)‖L2 . τ‖IM (ψ(1))(x)− PM (ψ{1})(x)‖L2 + τhm,

‖IM (ψ(2))(x) − PM (ψ{2})(x)‖H1
0
. τ‖IM (ψ(1))(x) − PM (ψ{1})(x)‖H1

0
+ τhm−1.

Hence for n ≤ T
τ − 1,

‖en+1
I (x)‖L2 . τ‖enI (x)‖L2 +τhm, ‖en+1

I (x)‖H1
0
. τ‖enI (x)‖H1

0
+τhm−1. (4.107)

Then, mathematical induction and discrete Gronwall inequality would imply that
for all n ≤ T

τ − 1 and small τ ,

‖en+1
I (x)‖L2 . hm + τ2, ‖en+1

I (x)‖H1
0
. hm−1 + τ2. (4.108)

Hence ‖IM (ψn)(x)−ψ[n](x)‖H1
0
. hm−1+ τ2, and discrete Sobolev inequality gives

that ‖ψn‖∞ ≤ M1 + 1 (n ≤ T
τ ) (cf. proof of Theorem 4.1). This would complete

the proof of Theorem 4.3. �

Remark 4.4. Similar as Remark 4.2, results in Theorem 4.3 can be extended to
higher dimensions (2D and 3D) and the proof presented in this section is still valid
with small modification of Lemma 4.7, by using the fact that H2(Rd) ⊂ L∞(Rd)
(d = 2, 3).

For time splitting Fourier pseudospectral method and time splitting finite differ-
ence method (4.17), similar error estimates to Theorem 4.3 can be established.

4.6. Numerical results. In this section, we report numerical results of the pro-
posed numerical methods.

Example 4.1. 1D defocusing condensate, i.e. we choose d = 1 and consider GPE

i∂tψ = −1

2
∂xxψ +

x2

2
ψ + β|ψ|2ψ, (4.109)

with positive β = 50. The initial condition is taken as

ψ(x, 0) =
1

π1/4
e−x

2/2, x ∈ R. (4.110)
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We solve this problem on [−16, 16], i.e. a = −16 and b = 16 with homogenous
Dirichlet boundary conditions. Let ψ be the ‘exact’ solution which is obtained
numerically by using TSSP4 (fourth order time-splitting sine pseudospectral method
(4.10)) with a very fine mesh and time step, e.g., h = 1

1024 and τ = 0.0001, and
ψh,τ be the numerical solution obtained by using a method with mesh size h and
time step τ .

First we compare the discretization error in space. We choose a very small time
step, e.g., τ = 0.0001 for CNFD, TSSP4 and TSFD, τ = 0.00001 for TSSP2 such
that the error from the time discretization is negligible compared to the spatial
discretization error, and solve the GPE using different methods and various spatial
mesh sizes h. Tab. 4.1 lists the numerical errors ‖ψ(t) − ψh,τ (t)‖l2 at t = 1 for
various spatial mesh sizes h.

Mesh h = 1
4 h = 1

8 h = 1
16 h = 1

32 h = 1/64
TSSP2 9.318E-2 4.512E-7 <5.0E-10 <5.0E-10 <5.0E-10
TSSP4 9.318E-2 4.512E-7 <5.0E-10 <5.0E-10 <5.0E-10
TSFD 7.943E-1 3.147E-1 9.025E-2 2.239E-2 5.574E-3
CNFD 7.943E-1 3.147E-1 9.026E-2 2.240E-2 5.583E-3

Table 4.1. Spatial discretization error analysis: ‖ψ(t)−ψh,τ(t)‖l2
at time t = 1 under τ = 0.0001 for different numerical methods
including TSSP2 (4.16), TSFD (4.17), CNFD (4.18), and TSSP4
(fourth order time integrator (4.10) with sine pseudospectral
method).

Secondly, we test the discretization error in time. Tab. 4.2 shows the numerical
errors ‖ψ(t)− ψh,τ (t)‖l2 at t = 1 with a very small mesh size h = 1

1024 for different
time steps τ and different numerical methods.

Time step τ = 0.01 τ = 0.005 τ = 0.0025 τ = 0.00125
TSSP2 4.522E-4 1.129E-4 2.821E-5 7.051E-6
TSSP4 1.091E-5 6.756E-7 4.213E-8 2.630E-9
TSFD 3.332E-2 8.261E-3 2.071E-3 5.323E-4
CNFD 1.099E-1 2.884E-2 7.268E-3 1.835E-3

Table 4.2. Time discretization error analysis: ‖ψ(t) − ψh,τ (t)‖l2
at time t = 1 under h = 1

1024 .

From Tabs. 4.1-4.2, one can make the following observations: (i) Both TSSP2
and TSSP4 are spectral accurate in space and they share the same accuracy for
fixed mesh size h, and resp., TSFD and CNFD are second-order in space and they
share the same accuracy for fixed mesh size h. (ii) TSSP2, TSFD and CNFD are
second-order in time and TSSP4 is fourth-order in time. In general, for fixed time
step τ , the error from time discretization of TSSP2 is much smaller than that of
TSFD and CNFD, and the error from time discretization of TSFD is much smaller
than that of CNFD. From our computations, the error bounds for SIFD are similar
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to CNFD and we omit it here (cf. [21, 20]). For more comparisons, we refer to [42]
and references therein.

Among the above numerical methods: (i) TSSP is explicit with computational
cost per time step at O(M lnM) with M the total number of unknowns in 1D,
2D and 3D, TSFD and SIFD are implicit with computational cost per time step
O(M) and O(M lnM) in 1D and 2D/3D, respectively, CNFD is implicit which is
the most expensive one since it needs to solve a fully coupled nonlinear system per
time step. (ii) The storage requirement of TSSP is little less than those of TSFD,
CNFD and SIFD. (iii) TSSP, TSFD and CNFD are unconditionally stable and
SIFD is conditionally stable. (iv) TSSP and TSFD are time transverse invariant,
where CNFD and SIFD are not. (v) TSSP, TSFD and CNFD conserve the mass
in the discretized level, where SIFD doesn’t. (vi) CNFD conserves the energy in
the discretized level, where TSSP, TSFD and SIFD don’t. However, when the time
step is small, TSSP, TSFD and SIFD conserve the energy very well in practical
computation. (vii) Extension of all the numerical methods to 2D and 3D cases is
straightforward without additional numerical difficulty. Based on these compar-
isons, in order to solve the GPE numerically for computing the dynamics of BEC,
when the solution is smooth, we recommend to use TSSP method, and resp., when
the solution is not very smooth, e.g. with random potential, we recommend to use
TSFD.

4.7. Extension to damped Gross-Pitaevskii equations. In section 2.2.3, a
damping term is introduced in GPE to describe the collapse of focusing BEC. Our
numerical methods can be generalized to this damped GPE easily. For simplicity,
we will only consider 1D case and extensions to 2D and 3D are straightforward. For
d = 1, the general damped NLSE becomes [30, 32]

iψt = −1

2
ψxx + V (x)ψ + β|ψ|2σψ − i f(|ψ|2)ψ, a < x < b, t > 0, (4.111)

ψ(x, t = 0) = ψ0(x), a ≤ x ≤ b, ψ(a, t) = ψ(b, t) = 0, t ≥ 0. (4.112)

Due to the high performance of TSSP (4.16), we will extend it to solve damped
GPE and adopt the same notations and mesh strategy. From time t = tn to time
t = tn+1, the damped GPE (4.111) is solved in two steps. One solves

i ψt = −1

2
ψxx, (4.113)

for one time step, followed by solving

i ψt(x, t) = V (x)ψ(x, t) + β|ψ(x, t)|2σψ(x, t)− i f(|ψ(x, t)|2)ψ(x, t), (4.114)

again for the same time step. Equation (4.113) is discretized in space by the sine-
spectral method and integrated in time exactly. For t ∈ [tn, tn+1], multiplying the

ODE (4.114) by ψ(x, t), the conjugate of ψ(x, t), one obtains

i ψt(x, t)ψ(x, t) = V (x)|ψ(x, t)|2 + β|ψ(x, t)|2σ+2 − i f(|ψ(x, t)|2)|ψ(x, t)|2. (4.115)
Subtracting the conjugate of Eq. (4.115) from Eq. (4.115) and multiplying by −i
one obtains

d

dt
|ψ(x, t)|2 = ψt(x, t)ψ(x, t) + ψt(x, t)ψ(x, t) = −2f(|ψ(x, t)|2)|ψ(x, t)|2. (4.116)

Let

g(s) =

∫
1

s f(s)
ds, h(s, s′) =

{
g−1 (g(s)− 2s′) , s > 0, s′ ≥ 0,
0, s = 0, s′ ≥ 0.

(4.117)
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Then, if f(s) ≥ 0 for s ≥ 0, we find

0 ≤ h(s, s′) ≤ s, for s ≥ 0, s′ ≥ 0, (4.118)

and the solution of the ODE (4.116) can be expressed as (with s′ = t− tn)

0 ≤ ρ(t) = ρ(tn + s′) := |ψ(x, t)|2 = h
(
|ψ(x, tn)|2, t− tn

)
:= h (ρ(tn), s

′)

≤ ρ(tn) = |ψ(x, tn)|2, tn ≤ t ≤ tn+1. (4.119)

Combining Eq. (4.119) and Eq. (4.13) we obtain

i ψt(x, t) = V (x)ψ(x, t) + β
[
h
(
|ψ(x, tn)|2, t− tn

)]σ
ψ(x, t)

−i f
(
h
(
|ψ(x, tn)|2, t− tn

))
ψ(x, t), tn ≤ t ≤ tn+1. (4.120)

Integrating (4.120) from tn to t, we find

ψ(x, t) = exp
{
i
[
−V (x)(t − tn)−G

(
|ψ(x, tn)|2, t− tn

)]
− F

(
|ψ(x, tn)|2, t− tn

)}

× ψ(x, tn), tn ≤ t ≤ tn+1, (4.121)

where we have defined

F (s, η) =

∫ η

0

f(h(s, s′)) ds′ ≥ 0, G(s, η) =

∫ η

0

β [h(s, s′)]
σ
ds′. (4.122)

To find the time evolution between t = tn and t = tn+1, we combine the splitting
steps via the standard second-order Strang splitting (TSSP) for solving the damped
GPE (4.111). In detail, the steps for obtaining ψn+1

j from ψnj are given by

ψ
(1)
j = exp

{
−F

(
|ψnj |2,

τ

2

)
+ i
[
−V (xj)

τ

2
−G

(
|ψnj |2,

τ

2

)]}
ψnj ,

ψ
(2)
j =

2

M

M−1∑

l=1

e−iτµ
2
l /2 (̃ψ(1))l sin(µl(xj − a)), j ∈ TM , (4.123)

ψn+1
j = exp

{
−F

(
|ψ(2)
j |2, τ

2

)
+ i
[
−V (xj)

τ

2
−G

(
|ψ(2)
j |2, τ

2

)]}
ψ
(2)
j ,

where ũl are the sine-transform coefficients of a complex vector u = (u0, · · · , uM )T

with u0 = uM = 0 defined in (3.31), and

ψ0
j = ψ(xj , 0) = ψ0(xj), j = 0, 1, 2, · · · ,M. (4.124)

For some frequently used damping terms, the integrals in (4.117) and (4.122) can
be evaluated analytically (cf. [30]).

5. Theory for rotational BEC. In view of potential applications, the study of
quantized vortices, which are related to superfluid properties, is one of the key
issues. In fact, bulk superfluids are distinguished from normal fluids by their ability
to support dissipationless flow. Such persistent currents are intimately related to
the existence of quantized vortices, which are localized phase singularities with
integer topological charge [97]. The superfluid vortex is an example of a topological
defect that is well known in superconductors and in liquid helium. Currently, one
of the most popular ways to generate quantized vortices from BEC ground state
is the following: impose a laser beam rotating with an angular velocity on the
magnetic trap holding the atoms to create a harmonic anisotropic potential. Various
experiments have confirmed the observation of quantized vortices in BEC under a
rotational frame [1, 142, 68].
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5.1. GPE with an angular momentum rotation term. At temperatures T
much smaller than the critical temperature Tc, following the mean field theory
(cf. section 1.2), BEC in a rotational frame is well described by the macroscopic
wave function ψ(x, t), whose evolution is governed by the Gross-Pitaevskii equa-
tion (GPE) with an angular momentum rotation term [40, 41, 44, 97, 5], (w.l.o.g.)
assuming the rotation being around the z-axis:

i~
∂ψ(x, t)

∂t
=

(
− ~2

2m
∇2 + V (x) +Ng|ψ(x, t)|2 − ΩLz

)
ψ(x, t), (5.1)

where x = (x, y, z)T ∈ R3 is the spatial coordinate vector, and

Lz = −i~ (x∂y − y∂x) (5.2)

is the z-component of the angular momentum operator L = (Lx, Ly, Lz)
T given by

L = −i~(x ∧ ∇). The appearance of the angular momentum term means that we
are using a reference frame where the trap is at rest. The energy functional per
particle E(ψ) is defined as

E(ψ) =

∫

R3

[
~2

2m
|∇ψ|2 + V (x)|ψ|2 + Ng

2
|ψ|4 − ΩψLzψ

]
dx, (5.3)

and wave function is normalized as∫

R3

|ψ(x, t)|2 dx = 1. (5.4)

5.1.1. Dimensionless form. For the conventional harmonic potential case, by intro-
ducing the dimensionless variables: t → t/ω0 with ω0 = min{ωx, ωy, ωz}, x → xxs

with xs =
√
~/mω0, ψ → ψ/x

3/2
s , Ω → Ωω0 and E(·) → ~ω0Eβ,Ω(·), we get the

dimensionless GPE

i
∂ψ(x, t)

∂t
=

(
−1

2
∇2 + V (x) + κ |ψ(x, t)|2 − ΩLz

)
ψ(x, t), (5.5)

where κ = gN
x3
s~ω0

= 4πasN
xs

, Lz = −i(x∂y − y∂x) (L = −i(x ∧ ∇)), V (x) =
1
2

(
γ2xx

2 + γ2yy
2 + γ2zz

2
)
with γx = ωx

ω0
, γy =

ωy

ω0
and γz =

ωz

ω0
.

In a disk-shaped condensate with parameters ωx ≈ ωy and ωz � ωx (⇐⇒ γx = 1,
γy ≈ 1 and γz � 1 with choosing ω0 = ωx), the 3D GPE (5.5) can be reduced to a
2D GPE with x = (x, y)T (cf. section 1.3.3):

i
∂ψ(x, t)

∂t
= −1

2
∇2ψ + V2(x, y)ψ + c2κ|ψ|2ψ − ΩLzψ, (5.6)

where c2 =
√
γz/2π and V2(x, y) =

1
2

(
γ2xx

2 + γ2yy
2
)
[44, 46, 20, 97].

Thus here we consider the dimensionless GPE under a rotational frame in d-
dimensions (d = 2, 3):

i
∂ψ(x, t)

∂t
= −1

2
∇2ψ + V (x)ψ + β|ψ|2ψ − ΩLzψ, x ∈ Rd, t > 0, (5.7)

where

β = κ

{√
γz/2π,

1,
V (x) =

{
1
2

(
γ2xx

2 + γ2yy
2
)
, d = 2,

1
2

(
γ2xx

2 + γ2yy
2 + γ2zz

2
)
, d = 3.

(5.8)

Then the dimensionless energy functional per particle Eβ,Ω(ψ) is defined as

Eβ,Ω(ψ) =

∫

Rd

[
1

2
|∇ψ(x, t)|2 + V (x)|ψ|2 + β

2
|ψ|4 − Ωψ Lzψ

]
dx, (5.9)
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and the normalization is given by

‖ψ(·, t)‖2L2(Rd) = ‖ψ(·, 0)‖2L2(Rd) = 1. (5.10)

The vortex structure of rotating BEC in 3D is very complicated [4, 97] due to the
presence of vortex lines, while in 2D, the structure is relatively simple as the vortex
center is only a point. As a result, most investigations start from the 2D case.

5.2. Theory for ground states. Similar to section 2, the ground state wave func-
tion φg := φg(x) of a rotating BEC satisfies the nonlinear eigenvalue problem (Euler-
Lagrange equation)

µ φ(x) =

[
−1

2
∇2 + V (x) + β|φ|2 − ΩLz

]
φ(x), x ∈ Rd, d = 2, 3, (5.11)

under the normalization condition

‖φ‖22 =
∫

Rd

|φ(x)|2 dx = 1, (5.12)

with eigenvalue (or chemical potential) µ given by

µ = Eβ,Ω(φ) +
β

2

∫

Rd

|φ(x)|4 dx. (5.13)

The eigenfunction φ(x) of (5.11) under the constraint (5.12) with least energy
is called ground state. The ground state can be found by minimizing the energy
functional Eβ,Ω(φ) (5.9) over the unit sphere S = {φ | ‖φ‖2 = 1, Eβ,Ω(φ) <∞}:

(I) Find (µgβ,Ω, φg ∈ S) such that

Egβ,Ω := Egβ,Ω(φg) = min
φ∈S

Eβ,Ω(φ), µgβ,Ω := µgβ,Ω(φg). (5.14)

Any eigenfunction φ(x) of (5.11) under constraint (5.12) whose energy Eβ,Ω(φ) >
Eβ,Ω(φg) is usually called as an excited state in the physics literature.

Existence/nonexistence results of ground state depend on the magnitude |Ω| of
the angular velocity relative to the trapping frequencies [165, 46, 64].

For the existence and simple properties of ground state for rotating BEC, we
have the following [46, 165].

Theorem 5.1. Suppose that V (x) is given in (5.8), then we have the conclusions
below.

i) In 2D, if φβ,Ω(x, y) ∈ S is a ground state of the energy functional Eβ,Ω(φ),
then φβ,Ω(x,−y) ∈ S and φβ,Ω(−x, y) ∈ S are ground states of the energy functional
Eβ,−Ω(φ). Furthermore

Egβ,Ω = Egβ,−Ω, µgβ,Ω = µgβ,−Ω. (5.15)

ii) In 3D, if φβ,Ω(x, y, z) ∈ S is a ground state of the energy functional Eβ,Ω(φ),
then φβ,Ω(x,−y, z) ∈ S and φβ,Ω(−x, y, z) ∈ S are ground states of the energy
functional Eβ,−Ω(φ), and (5.15) is also valid.

iii) When |Ω| < min{γx, γy} and β ≥ 0 in 3D or β > −Cb in 2D (Cb given in
(2.12)), there exists a minimizer for the minimization problem (5.14), i.e. there
exist ground state.

Theorem 5.1 is a direct consequence of the below observation and the theory for
non-rotating BEC (cf. section 2).
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Lemma 5.1. Under the conditions of Theorem 5.1, the following results hold.
i) In 2D, we have

Eβ,−Ω(φ(x,−y)) = Eβ,Ω(φ(x, y)), Eβ,−Ω(φ(−x, y)) = Eβ,Ω(φ(x, y)), φ ∈ S.

ii) In 3D, we have

Eβ,−Ω(φ(x,−y, z)) = Eβ,Ω(φ(x, y, z)), Eβ,−Ω(φ(−x, y, z)) = Eβ,Ω(φ(x, y, z)), φ ∈ S.

iii) In 2D and 3D, we have
∫

Rd

[
1− |Ω|

2
|∇φ(x)|2 +

(
V (x)− |Ω|

2
(x2 + y2)

)
|φ|2 + β

2
|φ|4

]
dx ≤ Eβ,Ω(φ)

≤
∫

Rd

[
1 + |Ω|

2
|∇φ(x)|2 +

(
V (x) +

|Ω|
2

(x2 + y2)

)
|φ|2 + β

2
|φ|4

]
dx. (5.16)

For understanding the uniqueness question, note that Eβ,Ω(αφ
g
β,Ω) = Eβ,Ω(φ

g
β,Ω)

for all α ∈ C with |α| = 1. Thus an additional constraint has to be introduced to
show uniqueness. For non-rotating BEC, i.e. Ω = 0, the unique positive minimizer
is usually taken as the ground state. In fact, the ground state is unique up to a
constant α with |α| = 1, i.e. density of the ground state is unique, when Ω = 0.
For rotating BEC under |Ω| < min{γx, γy}, the density of the ground state may be
no longer unique when |Ω| > Ωc with Ωc a critical angular rotation speed.

When rotational speed exceeds the trap frequency in x- or y- direction, i.e. Ω >
min{γx, γy}, there will be no ground state [64, 46].

Theorem 5.2. (nonexistence) Suppose that V (x) is given in (5.8), then there exists
no minimizer for problem (5.14) if one of the following holds:

(i) β < 0 in 3D or β < −Cb (Cb given in (2.12)) in 2D;
(ii) |Ω| > min{γx, γy}.

5.3. Critical speeds for quantized vortices. From Theorems 5.1 and 5.2, only
the case of 0 ≤ Ω < min{γx, γy} is interesting for considering the ground state of a
rotating BEC and we will assume Ω ≥ 0 in the subsequent discussions. In particular,
the vortex appears in the ground state only if the rotational speed exceeds certain
critical value. Various experiments and mathematical studies confirm the existence
of such critical speeds.

In [165], for a radially symmetric potential in 2D, Seiringer proved that there
exists critical velocity Ω0 > 0 that a state containing vortices is energetically favor-
able for Ω > Ω0. The point is that, as Ω increases from 0 to min{γx, γy}, the first
ground state with vortex should be the central vortex state, i.e., a state containing
central vortex (vortex line) in the rotational center (axis).

In 2D with radially symmetric potential V (r) (r = |x|, x ∈ R2), the symmetric
state (m = 0) and central vortex state with index (or winding number or circulation)
0 6= m ∈ Z is the solution of the nonlinear eigenvalue problem (5.11)-(5.13) with
the form

φ(x) = φm(r)eimθ , where (r, θ) is the polar coordinate. (5.17)

In polar coordinate, the angular momentum term (5.2) becomes Lz = −i ∂∂θ . In or-

der to find the above central vortex states with indexm (m 6= 0), φ(x) = φm(r)eimθ ,
we need to find a real nonnegative function φm(r) := φmβ,Ω(r) which minimizes the
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energy functional

Emβ,Ω(φ(r)) = Eβ,Ω(φ(r)e
imθ)

= π

∫ ∞

0

[
|φ′(r)|2 +

(
2V (r) +

m2

r2

)
|φ(r)|2 + β|φ(r)|4 − 2mΩ|φ(r)|2

]
r dr

= Enβ,0(φ(r)) −mΩ, Ω ≥ 0, m ≥ 0, (5.18)

over the set Sr = {φ(r) ∈ R | 2π
∫∞
0

|φ(r)|2r dr = 1, Emβ,0(φ) <∞, φ′(0) = 0 (m =

0), and resp. φ(0) = 0(m 6= 0)}. The existence and uniqueness of nonnegative
minimizer for this minimization problem can be obtained similarly as for the ground
state when Ω = 0 [134, 165]. It is clear from (5.18) that contribution of rotation in
the energy (5.18) is fixed with index m and the central vortex state with index m
is independent of Ω. In fact, let us denote

Em(φ(r)) = Emβ,Ω(φ(r)) +mΩ, (5.19)

and the central vortex state can be found as the minimizer of energy Em(φ) which
is independent of Ω.

Similarly, in order to find the cylindrically symmetric state (m = 0), and resp.
central vortex line states (m 6= 0), in 3D with cylindrical symmetry, i.e. d = 3 and
V (x) = V (r, z) in (5.7), we solve the nonlinear eigenvalue problem (5.11)-(5.13)
with the special form of wave function as

φ(x) = φm(x, y, z) = φm(r, z)eimθ, (5.20)

where (r, θ, z) is the cylindrical coordinate, m is an integer and called as index
when m 6= 0. φm(r, z) is a real function independent of angle. It is equivalent to
computing a real nonnegative function φm(r, z) := φmβ,Ω(r, z) which minimizes the
energy functional

Emβ,Ω(φ(r, z)) = Eβ,Ω(φ(r, z)e
imθ) (5.21)

= π

∫ ∞

0

∫ ∞

−∞

[
|∂rφ|2 + |∂zφ|2 +

(
2V (r, z) +

m2

r2
− 2mΩ

)
|φ|2 + β|φ|4

]
r dzdr,

over the set Sc = {φ ∈ R | 2π
∫∞
0

∫∞
−∞ |φ(r, z)|2r dzdr = 1, Emβ,0(φ) <∞, ∂rφ(0, r)

= 0 (m = 0), and resp. φ(0, z) = 0 (m 6= 0), −∞ < z <∞}.
For 2D case, by carefully studying the energy functional (5.18), Seiringer [165]

established the estimates of critical velocity Ωm (m ≥ 0) when a central vortex φ(r)
with index m + 1 is energetically favorable to a central vortex state with index m
for Ω > Ωm, i.e., Em+1

β,Ω (φ(r)) < Emβ,Ω(φ(r)). The critical speed is given by

Ωm = min
φ∈Sr

Em+1(φ(r)) − min
φ∈Sr

Em(φ(r)) > 0. (5.22)

The estimates for Ωm is the following.

Theorem 5.3. (cf. [165]) In 2D, assume potential V (r) = 1
2r

2 (r = |x|, x ∈ Rd),
for positive β > 0 and m ≥ 0, then the following bounds on Ωm hold,

Ωm ≤ (2m+ 1)
2πe

β

(
1 +

√
2β

π

)
(
3 +

[
ln(β/(2πe2))

])
, (5.23)

Ωm ≥ 2m+ 1

(m+ 2)
√
1 + β

bm+1(m+2)

, (5.24)
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where bm = 2×4mπ(m!)2

(2m)! . In addition, there is a relation between the critical velocities

as Ωm+1 ≤ 2m+3
2m+1Ωm.

In particular, we notice that Ω0 is the critical velocity for the appearance of
vortex in the ground state. For large Ω, the central vortex state (5.17) will no
longer be the right ansatz for ground state due to the symmetry breaking [165].

Theorem 5.4. (cf. [165]) In 2D, assume potential V (r) = 1
2γ

2
rr

2 (r = |x|, x ∈ Rd),
for fixed rotational speed 0 < Ω < γr, there exists a constant βΩ, such that if β ≥ βΩ,
no ground state of problem (5.14) is an eigenfunction of the angular momentum
operator Lz (5.2). Let φg be the ground state of (5.14) when β ≥ βΩ, then |φg| is
not radially symmetric.

For small rotational speed Ω with radial potential V (r), the minimizer of problem
(5.14) remains the same as the ground state of the non-rotating case, i.e., the ground
state of small Ω is the same as that of Ω = 0. This observation is recently proved
rigourously by Aftalion et al. [7].

Theorem 5.5. (cf. [7]) In 2D, assuming potential V (r) = 1
2γ

2
rr

2 (r = |x|, x ∈ Rd),
let φgβ,Ω(x) be the solution of the minimization problem (5.14) with rotational speed

Ω and φgβ,0(r) be the unique positive minimizer for (5.14) with Ω = 0 (see section

2). There exists β0 ≥ 0, such that when β ≥ β0, for 0 ≤ Ω ≤ Ωβ (constant Ωβ
depends on β), φgβ,Ω = eiθφgβ,0 for some constant θ ∈ R.

All these results are valid for general potential V (r) [165, 7].
When Ω increases, the number of vortices in the ground state will also increase

and the vortices interact. At high rotational speed, vortices will form a lattice,
known as an Abrikosov lattice [5, 97, 4]. For the fast rotational speeds, Correggi
[83] studied the expansion of energy (5.9) and proved that the vortices will be
asymptotically equidistributed, which means that the vortices will form a triangle
lattice. For general harmonic potentials in 2D, i.e., γx 6= γy, Ignat et al. estimated
the critical angular velocity for the existence of n vortices in the ground state as
well as the location of the vortex centers [119, 120].

If an anharmonic potential, i.e. V (x) = V (r) = O(r4) when r → ∞, is considered
instead of harmonic potentials, there exists another phase transition [81, 82]. When
Ω increases, the ground state of a rotating BEC with anharmonic potential will first
undergo a phase transition to the vortex state, and then become a vortex lattice.
If the velocity Ω keeps increasing, the vortex lattice will disappear, and the density
will be depleted near the trap center. Then all the vortices will be pushed away
from the center and form a giant vortex (or vortex ring) [159]. Thus, there are three
typical critical speeds that can be identified with these kinds of phase transitions in
rotating BEC [81]. In the study of the critical speeds, a more widely used scaling
is different from the one adopted here [5] (cf. section 7).

5.4. Well-posedness of Cauchy problem. This section is devoted to the well-
posedness of Cauchy problem for the rotating GPE (5.7). We use the same notations
for function spaces as those in section 2.

Like the non-rotating case (Ω = 0) (cf. section 2), the key part is to establish the
dispersive estimates like Lemma 2.4 for the evolutionary operator eitLR generated
by the linear operator

LR = −1

2
∇2 + V (x) − ΩLz, x ∈ Rd, d = 2, 3. (5.25)



MATHEMATICS AND NUMERICS FOR BEC 67

For the special case V (x) = ω2

2 |x|2 and Ω = ω, Hao et al. obtained the dispersive

estimates for eitLR using a generalization of Mehler’s formula for the kernel of eitLR

[111, 112, 73]. Later, Antonelli et al. found another approach to establish the
dispersive estimates for eitLR without those assumptions on Ω and V in [111, 112].
It turns out that the rotational term Lz does not affect the dispersive behavior (in
short time), and the dispersive estimates for eitLR are then analogous to those in
Lemma 2.4 for harmonic potentials. Then the well-posedness of the rotational GPE
(5.7) follows from the classical arguments [73, 176].

Theorem 5.6. (cf. [13]) Assume that V (x) is given by (5.8) and denote γmin =
min{γα} (γα > 0; α = x, y for d = 2, and α = x, y, z for d = 3), then we have the
following results.

(i) For any initial data ψ(x, t = 0) = ψ0(x) ∈ X(Rd) (d = 2, 3), there exists
a Tmax ∈ (0,+∞] such that the Cauchy problem of (5.7) has a unique maximal
solution ψ ∈ C ([0, Tmax), X). It is maximal in the sense that if Tmax < ∞, then
‖ψ(·, t)‖X → ∞ when t→ T−

max.
(ii) As long as the solution ψ(x, t) remains in the energy space X, the L2-norm

‖ψ(·, t)‖2 and energy Eβ,Ω(ψ(·, t)) in (5.9) are conserved for t ∈ [0, Tmax).
(iii) The solution of the Cauchy problem for (5.7) is global in time, i.e., Tmax =

∞, if β ≥ 0.
(iv) If β < 0 in 2D and 3D, and if either:

(1) V (x) is axially symmetric, i.e., ΩLzV (x) = 0;

(2) ΩLzV (x) 6= 0 and d
√
(1− (Ω/γmin)2 ≥ 1 with |Ω| ≤ γmin (d = 2, 3).

Then there exists ψ0 ∈ X(Rd) such that finite time blow-up happens for the solution
of the corresponding Cauchy problem (5.7).

5.5. Dynamical laws. In this section, we present results on the dynamical prop-
erties of rotating BEC governed by GPE with an angular momentum term (5.7).

For the dynamics of angular momentum expectation in rotating BEC, we have
the following lemmas [28]:

Lemma 5.2. Suppose ψ(x, t) is the solution to the Cauchy problem of (5.7), then
we have

d〈Lz〉(t)
dt

=
(
γ2x − γ2y

)
δxy(t), where δxy(t) =

∫

Rd

xy|ψ(x, t)|2dx, t ≥ 0 . (5.26)

Consequently, the angular momentum expectation and energy for non-rotating part
are conserved, that is, for any given initial data ψ(x, 0) = ψ0(x),

〈Lz〉(t) ≡ 〈Lz〉(0), Eβ,0(ψ) ≡ Eβ,0(ψ0), t ≥ 0, (5.27)

at least for radially symmetric trap in 2D or cylindrically symmetric trap in 3D,
i.e. γx = γy.

For the condensate width defined by δα(·) in (2.54), we can obtain similar results
to that in Lemma 2.6 [28].
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Lemma 5.3. Suppose ψ(x, t) is the solution of the problem (5.7), then we have

δ̈α(t) =

∫

Rd

[
(∂yα− ∂xα)

(
4iΩψ(x∂y + y∂x)ψ + 2Ω2(x2 − y2)|ψ|2

)

+2|∂αψ|2 + β|ψ|4 − 2α|ψ|2∂αV (x)

]
dx, t ≥ 0, (5.28)

δα(0) = δ(0)α =

∫

Rd

α2|ψ0(x)|2dx, α = x, y, z, (5.29)

δ̇α(0) = δ(1)α = 2

∫

Rd

α
[
−Ω|ψ0|2 (x∂y − y∂x)α+ Im

(
ψ0∂αψ0

)]
dx.(5.30)

Lemma 5.4. (i) In 2D with a radially symmetric trap, i.e. d = 2 and γx = γy := γr
in (5.7), for any initial data ψ(x, y, 0) = ψ0 = ψ0(x, y), we have for any t ≥ 0,

δr(t) =
Eβ,Ω(ψ0) + Ω〈Lz〉(0)

γ2r
[1− cos(2γrt)]+δ

(0)
r cos(2γrt)+

δ
(1)
r

2γr
sin(2γrt), (5.31)

where δr(t) = δx(t) + δy(t), δ
(0)
r := δx(0) + δy(0), and δ

(1)
r := δ̇x(0) + δ̇y(0). Fur-

thermore, when the initial condition ψ0(x, y) satisfies

ψ0(x, y) = f(r)eimθ with m ∈ Z and f(0) = 0 when m 6= 0, (5.32)

we have, for any t ≥ 0,

δx(t) =δy(t) =
1

2
δr(t)

=
Eβ,Ω(ψ0) +mΩ

2γ2x
[1− cos(2γxt)] + δ(0)x cos(2γxt) +

δ
(1)
x

2γx
sin(2γxt). (5.33)

This and (2.54) imply that

σx = σy =

√
Eβ,Ω(ψ0) +mΩ

2γ2x
[1− cos(2γxt)] + δ

(0)
x cos(2γxt) +

δ
(1)
x

2γx
sin(2γxt).

Thus in this case, the condensate widths σx(t) and σy(t) are periodic functions with
frequency doubling the trapping frequency.

(ii) For all other cases, we have, for any t ≥ 0

δα(t) =
Eβ,Ω(ψ0)

γ2α
+

(
δ(0)α − Eβ,Ω(ψ0)

γ2α

)
cos(2γαt) +

δ
(1)
α

2γα
sin(2γαt) + fα(t),

(5.34)
where fα(t) is the solution of the following second-order ODE:

f̈α(t) + 4γ2α fα(t) = Fα(t), fα(0) = ḟα(0) = 0, (5.35)

with

Fα(t) =

∫

Rd

[
2|∂αψ|2 − 2|∇ψ|2 − β|ψ|4 +

(
2γ2αα

2 − 4V (x)
)
|ψ|2 + 4ΩψLzψ

+(∂yα− ∂xα)
(
4iΩψ (x∂y + y∂x)ψ + 2Ω2(x2 − y2)|ψ|2

) ]
dx.

Let φe(x) be a stationary state of the GPE (5.7) with a chemical potential µe,
i.e., (µe, φe) satisfies the nonlinear eigenvalue problem (5.11)-(5.12). If the initial
data ψ0(x) for the Cauchy problem of (5.7) is chosen as a stationary state with a
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shift in its center, one can construct an exact solution of the GPE with an angular
momentum term (5.7), which is similar to Lemma 2.9 [28].

Lemma 5.5. Suppose V (x) is given by (5.8), if the initial data ψ0(x) for the
Cauchy problem of (5.7) is chosen as

ψ0(x) = φe(x− x0), x ∈ Rd, (5.36)

where x0 is a given point in Rd, then the exact solution of (5.7) satisfies:

ψ(x, t) = φe(x− xc(t)) e
−iµet eiw(x,t), x ∈ Rd, t ≥ 0, (5.37)

where for any time t ≥ 0, w(x, t) is linear for x, i.e.

w(x, t) = c(t) ·x+ g(t), c(t) = (c1(t), · · · , cd(t))T , x ∈ Rd, t ≥ 0, (5.38)

and xc(t) = (xc(t), yc(t))
T in 2D, and resp., xc(t) = (xc(t), yc(t), zc(t))

T in 3D,
satisfies the following second-order ODE system:

ẍc(t)− 2Ωẏc(t) +
(
γ2x − Ω2

)
xc(t) = 0, (5.39)

ÿc(t) + 2Ωẋc(t) +
(
γ2y − Ω2

)
yc(t) = 0, t ≥ 0, (5.40)

xc(0) = x0, yc(0) = y0, ẋc(0) = Ωy0, ẏc(0) = −Ωx0. (5.41)

Moreover, if in 3D, another ODE needs to be added:

z̈c(t) + γ2zzc(t) = 0, zc(0) = z0, żc(0) = 0. (5.42)

We note that the above ODE system (5.39)-(5.41) can be solved analytically [28].

6. Numerical methods for rotational BEC. In this section, we first present
efficient and accurate numerical methods for computing ground states, as well as the
central vortex states (5.17) of rotating BEC modeled by the GPE with an angular
momentum term (5.7). To compute the dynamics of rotating BEC based on GPE
(5.7), there are new difficulties due to the angular momentum term Lz in (5.7). We
will show how to design efficient numerical methods for simulating the dynamics of
the rotational GPE (5.7). In most cases, we consider the potential V (x) given as
(5.8) if no further clarification.

6.1. Computing ground states. In order to find the ground state for rotational
GPE (5.7), we need to solve the minimization problem (5.14). Analogous to the non-
rotating case (cf. section 3), we adopt the gradient flow with discrete normalization
(GFDN) method (or imaginary time method) [45].

φt = −δEβ,Ω(φ)
δφ

=
1

2
∇2φ− V (x)φ − β |φ|2φ+Ω Lzφ, tn < t < tn+1, (6.1)

φ(x, tn+1)
4
= φ(x, t+n+1) =

φ(x, t−n+1)

‖φ(·, t−n+1)‖2
, x ∈ Rd, d = 2, 3, n ≥ 0, (6.2)

φ(x, 0) = φ0(x), x ∈ Rd with ‖φ0‖2 = 1; (6.3)

where 0 = t0 < t1 < t2 < · · · < tn < · · · with τn = tn+1 − tn > 0 and τ =
maxn≥0 τn, and φ(x, t±n ) = limt→t±n

φ(x, t). As stated in section 3, the gradient

flow (6.1) can be viewed as applying the steepest descent method to the energy
functional Eβ,Ω(φ) (5.9) without constraint and (6.2) then projects the solution
back to the unit sphere in order to satisfy the constraint (5.12).

In non-rotating BEC, i.e. Ω = 0, the unique real valued nonnegative ground
state solution φg(x) ≥ 0 for all x ∈ Rd is obtained by choosing a positive initial
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datum φ0(x) ≥ 0 for x ∈ Rd, e.g., the ground state solution of linear Schrödinger
equation with a harmonic oscillator potential [15, 27]. For rotating BEC, e.g.,
|Ω| < min{γx, γy}, our numerical experiences suggest that the initial data can be
chosen as a linear combination of the ground state and central vortex ground state
with index m = 1 of (5.7) when β = 0 and Ω = 0, which are given explicitly in
section 6.5.

6.1.1. Backward Euler finite difference method. In order to derive a full discretiza-
tion of the GFDN (6.1)-(6.3), we first truncate the physical domain of the problem
to a rectangle in 2D or a box in 3D with homogeneous Dirichlet boundary condition,
and then apply backward Euler for time discretization and second-order centered
finite difference for spatial derivatives. The backward Euler finite difference method
is similar to the BEFD discretization for non-rotating BEC in section 3.2 and we
omit the details here for brevity [45].

6.1.2. Backward Euler Fourier pseudospectral method. Computing the ground state
of rotating BEC is a very challenging problem, especially for fast rotational speed
Ω close to min{γx, γy}, where many vortices exist in the ground state. In order
to achieve high resolution for the vortex structure, a very fine mesh must be used
if BEFD is used for discretizing the GFDN (6.1)-(6.3), when Ω is large. Here, we
propose a Fourier pseudospectral discretization in space for the GFDN (6.1)-(6.3)
to maintain the accuracy for high rotational speed Ω with less computational cost.

We first truncate the problem (6.1)-(6.3) in 2D on a rectangle U = [a, b]× [c, d],
and resp. in 3D on a box U = [a, b] × [c, d] × [e, f ] with homogeneous Dirichlet
boundary condition:

φt =

[
1

2
∇2 − V (x) − β|φ|2 +Ω Lz

]
φ, tn < t < tn+1, x ∈ U, (6.4)

φ(x, tn+1)
4
= φ(x, t+n+1) =

φ(x, t−n+1)

‖φ(·, t−n+1)‖L2(U)

, x ∈ U, n ≥ 0, (6.5)

φ(x, ·)|∂U = 0, φ(x, 0) = φ0(x), x ∈ U with ‖φ0‖L2(U) = 1; (6.6)

where φ(x, t±n ) = limt→t±n
φ(x, t).

For the simplicity of notation, we only present the methods in 2D. Generalizations
to d = 3 are straightforward for tensor product grids and the results remain valid
without modifications. Choose mesh sizes ∆x := b−a

M and ∆y := d−c
N with M and

N two even positive integers and denote the grid points as

xj := a+ j∆x, j = 0, 1, . . . ,M ; yk := c+ k∆y, k = 0, 1, . . . , N. (6.7)

Define the index sets

TMN = {(j, k) | j = 1, 2, . . . ,M − 1, k = 1, 2, . . . , N − 1},
T 0
MN = {(j, k) | j = 0, 1, 2 . . . ,M, k = 0, 1, 2 . . . , N}.

Let φnjk be the numerical approximation of the solution φ(xj , yk, tn) of the GFDN

(6.4)-(6.6) for (j, k) ∈ T 0
MN and n ≥ 0, and denote φn ∈ C(M+1)×(N+1) to be the

numerical approximate solution at time t = tn. Define

λxp =
2pπ

b− a
, λyq =

2qπ

d− c
, p = −M

2
, . . . ,

M

2
− 1, q = −N

2
, . . . ,

N

2
− 1. (6.8)
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Then the backward Euler Fourier pseudospectral (BEFP) discretization for solv-
ing GFDN (6.4)-(6.6) reads as [45, 26, 194]

φ
(1)
jk − φnjk

τ
=

1

2
∇2
sφ

(1)
∣∣
jk

+ iΩ
(
y∂sxφ

(1) − x∂syφ
(1)
) ∣∣

jk
−
[
β|φnjk|2 + Vjk

]
φ
(1)
jk ,

(6.9)

φn+1
jk =

φ
(1)
jk

‖φ(1)jk ‖2
, φ0jk = φ0(xj , yk), (j, k) ∈ T 0

MN , (6.10)

where Vjk = V (xj , yk) for (j, k) ∈ T 0
MN , ‖φ(1)‖2 denotes the discrete l2 norm given

by ‖φ(1)‖22 = ∆x∆y
M−1∑
j=0

N−1∑
k=0

|φ(1)jk |2, and ∇2
s, ∂

s
x and ∂sy are the Fourier pseudospec-

tral approximations of ∇2, ∂x and ∂y, respectively, which can be written as

(
∇2
sφ
)
jk

=
−1

MN

M/2−1∑

p=−M/2

N/2−1∑

q=−N/2

[
(λxp)

2 + (λyq )
2
]
φ̂pqe

iλx
p(xj−a)eiλ

y
q (yk−c), (6.11)

(∂sxφ)jk =
i

MN

M/2−1∑

p=−M/2

N/2−1∑

q=−N/2
λxp φ̂pqe

iλx
p(xj−a)eiλ

y
q (yk−c), (6.12)

(
∂syφ

)
jk

=
i

MN

M/2−1∑

p=−M/2

N/2−1∑

q=−N/2
λyq φ̂pqe

iλx
p(xj−a)eiλ

y
q (yk−c), (6.13)

for −M/2 ≤ p ≤ M/2 − 1, −K/2 ≤ q ≤ K/2 − 1. Here φ̂pq denotes the Fourier
coefficients of mesh function φjk as

φ̂pq =

M−1∑

j=0

N−1∑

k=0

φjke
−i 2jpπM e−i

2kqπ
N =

M−1∑

j=0

N−1∑

k=0

φjke
−iλx

p(xj−a)e−iλ
y
q (yk−c). (6.14)

Similar to those in section 3.3, at every time step, we can design an iterative method
to solve the linear system (6.9) for φ(1) via discrete Fourier transform with a stabi-
lization term. We omit the details here for brevity.

Remark 6.1. For large Ω, there exists many local minimums for the energy (5.9).
To calculate the energy accurately, when the pseudospectral discretization BEFP
(6.9) is used, the terms involving derivatives in energy (5.9) should use the pseu-
dospectral approximations like (6.11)-(6.13). For a numerical approximation φnjk
given by the BEFP (6.9), the discretized energy Ehβ,Ω(φ

n) can be computed as

Ehβ,Ω(φ
n) =∆x∆y

M−1∑

j=0

N−1∑

k=0

[1
2
|(∂sxφn)jk|2 +

1

2
|(∂syφn)jk|2 + V (xj , yk)|φnjk|2

+ iΩ
(
xj(∂

s
yφ

n)jk − yk(∂
s
xφ

n)jk
)
φ
n

jk +
β

2
|φnjk|2

]
. (6.15)

6.2. Central vortex states with polar/cylindrical symmetry. As shown in
Theorem 5.4, if the potential is radially symmetric, the ground state density of a
rotating BEC may be no longer radially symmetric. Thus, those simplified finite
difference methods for computing ground states of non-rotating BEC with radially
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symmetric or cylindrically symmetric potentials in section 3.4 can not be directly
used for computing ground states of rotational GPE (5.7).

For central vortex state (5.17) and central vortex line state (5.20), when potential
V is radially symmetric in 2D or cylindrically symmetric in 3D, finding the central
vortex state (5.17) in 2D or the central line vortex state (5.20) in 3D, is almost the
same as computing the radially symmetric (2D) or cylindrically symmetric (3D)
ground states in section 3.4. Simplified backward Euler finite difference method
can be directly used here.

6.2.1. Formulation of the problem with cylindrical symmetry. When we consider the
harmonic potential V (x) (5.8), the polar and cylindrical symmetries lead to new
efficient and accurate numerical methods. Since angular momentum rotation does
not affect the central vortex states, here we will only consider the GPE (5.7) with
Ω = 0. In particular, for 3D, we consider GPE

i
∂

∂t
ψ =

[
−1

2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ V (x, y, z) + β|ψ|2

]
ψ, (6.16)

where V (x) = 1
2 (γ

2
r (x

2+y2)+γ2zz
2)+W (z), and ψ := ψ(x, y, z, t) is the normalized

wave function of the condensate with

‖ψ(x, y, z, t)‖22 =
∫

R3

|ψ(x, y, z, t)|2 dxdydz = 1. (6.17)

To find cylindrically symmetric states (m = 0) and central vortex line states with
index or winding number m (m 6= 0) for the BEC, we write [46]

ψ(x, y, z, t) = e−iµmtφm(x, y, z) = e−iµmtφm(r, z)eimθ, (6.18)

where (r, θ, z) is the cylindrical coordinates, µm is the chemical potential, φm =
φm(r, z) is a function independent of time t and angle θ. Denote

Brmφ :=
1

2

[
−1

r

∂

∂r

(
r
∂

∂r

)
+ γ2rr

2 +
m2

r2

]
φ, Bzφ :=

1

2

[
− ∂2

∂z2
+ γ2zz

2

]
φ,

Bm := Brm +Bz .

(6.19)

Plugging (6.18) into the GPE (6.16) and the normalization condition (6.17), we
obtain (see [47, 48, 46, 41] for more details)

µm φm =
[
Bm +W (z) + β|φm|2

]
φm, (r, z) ∈ (0,+∞)× (−∞,+∞), (6.20)

φm(0, z) = 0 (for m 6= 0), −∞ < z <∞, (6.21)

lim
r→∞

φm(r, z) = 0, −∞ < z <∞, lim
|z|→∞

φm(r, z) = 0, 0 ≤ r <∞, (6.22)

under the normalization condition

‖φm‖2c = 2π

∫ ∞

0

∫ ∞

−∞
|φm(r, z)|2 r dzdr = 1. (6.23)

From a mathematical point of view, the symmetric states (m = 0) and central
vortex line states with index m (m 6= 0) of the BEC are defined as the minimizer
of the nonconvex minimization problem (5.21).
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To compute the symmetric states and central vortex line states of BEC, we use
the gradient flow with discrete normalization (GFDN) method [41]:

∂

∂t
φ(r, z, t) = −Bmφ−

[
W (z) + β|φ|2

]
φ, tn ≤ t < tn+1, n ≥ 0,(6.24)

φ(0, z, t) = 0 (for m 6= 0), z ∈ R, , t ≥ 0, (6.25)

lim
r→∞

φ(r, z, t) = 0, z ∈ R, lim
|z|→∞

φ(r, z, t) = 0, r ∈ R+ = (0,∞), (6.26)

φ(r, z, tn+1) := φ(r, z, t+n+1) =
φ(r, z, t−n+1)

‖φ(·, t−n+1)‖c
, (6.27)

φ(r, z, 0) = φ0(r, z), with ‖φ0(·)‖c = 1; (6.28)

where 0 = t0 < t1 < · · · , ‖φ(·)‖2c = 2π
∫∞
0

∫∞
−∞ |φ(r, z)|2 r dzdr, and φ(r, z, t±n ) =

limt→t±n
φ(r, z, t).

For the time discretization of (6.24)-(6.28), we adopt the following backward
Euler scheme with projection:

Given φ0, find φ̃n+1 and φn+1
MN such that

φ̃n+1(r, z)− φn(r, z)

τ
= −Bm φ̃n+1 −

(
W (z) + β |φn|2

)
φ̃n+1, (6.29)

φn+1(r, z) =
φ̃n+1(r, z)

‖φ̃n+1‖c
. (6.30)

For β = 0, it is shown in section 3 (cf. [27]) that the scheme (6.29) is en-
ergy diminishing. However, (6.29) involves non-constant coefficients so it can not
be solved by a direct fast spectral solver. Therefore, we propose to solve (6.29)
iteratively (for p = 0, 1, 2, . . .) by introducing a stabilization term with constant
coefficient (cf. section 3.3)

φ̃n+1,p+1 − φn

τ
= −(Bm + αn)φ̃

n+1,p+1 +
(
αn −W (z)− β|φn|2

)
φ̃n+1,p, (6.31)

φ̃n+1,0 = φn, φ̃n+1 = lim
p→∞

φ̃n+1,p, φn+1 =
φ̃n+1

‖φ̃n+1‖c
. (6.32)

The stabilization factor αn is chosen such that the convergence of the iteration is
‘optimal’ and αn should be chosen as (cf. section 3.3 and [25]) αn = 1

2 (b
n
min + bnmax)

with

bnmin = min
(r,z)∈R

+×R

[
W (z) + β|φn(r, z)|2

]
, bnmax = max

(r,z)∈R
+×R

[
W (z) + β|φn(r, z)|2

]
.

6.2.2. Eigenfunctions of Bm. The numerical scheme for (6.24)-(6.28) requires solv-
ing, repeatedly, (6.31). Therefore, it is most convenient to use eigenfunctions of Bm
as basis functions. Thanks to (6.19), we only need to find eigenfunctions of Brm
and Bz. We shall construct these eigenfunctions by properly scaling the Hermite
polynomials and generalized Laguerre polynomials.

We start with Bz . LetHl(z) (l = 0, 1, 2, . . .) be the standard Hermite polynomials
of degree l satisfying [40, 41, 35]

H ′′
l (z)− 2z H ′

l(z) + 2l Hl(z) = 0, z ∈ R, l = 0, 1, 2, . . . , (6.33)
∫ ∞

−∞
Hl(z) Hl′(z) e

−z2 dz =
√
π 2l l! δll′ , l, l′ = 0, 1, 2, . . . , (6.34)

where δll′ is the Kronecker delta.
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Define the scaled Hermite functions

hl(z) = e−γzz
2/2 Hl (

√
γzz) /

√
2l l!(γz/π)

1/4, z ∈ R. (6.35)

It is clear that lim|z|→∞ hl(z) = 0.
Plugging (6.35) into (6.33) and (6.34), a simple computation shows

Bzhl(z) = −1

2
h′′l (z) +

1

2
γ2zz

2hl(z) =

(
l +

1

2

)
γz hl(z), z ∈ R, l ≥ 0, (6.36)

∫ ∞

−∞
hl(z) hl′(z) dz = δll′ , l, l′ = 0, 1, 2, . . . . (6.37)

Hence {hl}∞l=0 are eigenfunctions of the linear operator Bz in (6.19).
We now consider Brm. To this end, we recall the definition for the generalized

Laguerre polynomials.
For any fixedm (m = 0, 1, 2, . . .), let L̂mk (r) (k = 0, 1, 2, . . .) be the the generalized-

Laguerre polynomials of degree k satisfying [177]

(
r
d2

dr2
+ (m+ 1− r)

d

dr

)
L̂mk (r) + k L̂mk (r) = 0, k = 0, 1, 2, . . . , (6.38)

∫ ∞

0

rm e−r L̂mk (r) L̂mk′(r) dr = Cmk δkk′ , k, k′ = 0, 1, 2, . . . , (6.39)

where

Cmk = Γ(m+ 1)

(
k +m
k

)
=

m∏

j=1

(k + j), k = 0, 1, 2, . . . .

We define the scaled generalized-Laguerre functions Lmk by

Lmk (r) =
γ
(m+1)/2
r√
πCmk

rm e−γrr
2/2 L̂mk (γrr

2). (6.40)

Plugging (6.40) into (6.38) and (6.39), direct computation leads to

BrmL
m
k (r) = γr(2k +m+ 1)Lmk (r), (6.41)

2π

∫ ∞

0

Lmk (r) Lmk′(r) r dr = δkk′ . (6.42)

Hence {Lmk }∞k=0 are eigenfunctions of Brm.
Finally we derive from the above that [40, 41, 35]

Bm(Lmk (r)hl(z)) = hl(z)B
r
mL

m
k (r) + Lmk (r)Bzhl(z) (6.43)

= γr(2k +m+ 1)Lmk (r)hl(z) + γz

(
l +

1

2

)
Lmk (r)hl(z)

=

[
γr(2k +m+ 1) + γz

(
l +

1

2

)]
Lmk (r)hl(z). (6.44)

Hence, {Lmk (r)hl(z)}∞k,l=0 are eigenfunctions of the operator Bm defined in (6.19).
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6.2.3. Interpolation operators. In order to efficiently deal with the term |φn|2φ̃n+1,p

in (6.31), a proper interpolation operator should be used. We shall define below
scaled interpolation operators in both r, z directions and in the (r, z) space.

Let {ẑs}Ns=0 be the Hermite-Gauss points, i.e., they are the N + 1 roots of the
Hermite polynomial HN+1(z), and let {ω̂zs}Ns=0 be the associated Hermite-Gauss
quadrature weights [177]. We have

N∑

s=0

ω̂zs
Hl(ẑs)

π1/4
√
2l l!

Hl′(ẑs)

π1/4
√
2l′ l′!

= δll′ , l, l′ = 0, 1, . . . , N. (6.45)

We then define the scaled Hermite-Gauss points and weights by

zs =
ẑs√
γz
, ωzs =

ω̂zs e
ẑ2s

√
γz

, s = 0, 1, 2, . . . , N. (6.46)

We derive from (6.35) and (6.45) that

N∑

s=0

ωzs hl(zs) hl′(zs) = δll′ , l, l′ = 0, 1, . . . , N. (6.47)

Let us denote

Y hN = span{hk : k = 0, 1, · · · , N}. (6.48)

We define

IzN : C(R) → Y hN such that (IzNf)(zs) = f(zs), 0 ≤ s ≤ N, ∀f ∈ C(R). (6.49)

Now, let {r̂mj }Mj=0 be the generalized-Laguerre-Gauss points [177, 166, 41]; i.e.

they are the M + 1 roots of the polynomial L̂mM+1(r), and let {ω̂mj }Mj=0 be the
weights associated with the generalized-Laguerre-Gauss quadrature [177, 166, 41].
Then, we have

M∑

j=0

ω̂mj
L̂mk (r̂mj )√

Cmk

L̂mk′(r̂
m
j )√

Cmk′
= δkk′ , k, k′ = 0, 1, . . . ,M. (6.50)

We then define the scaled generalized-Laguerre-Gauss points and weights by

rmj =

√
r̂mj
γr
, ωmj =

π ω̂mj er̂
m
j

γr
(
r̂mj
)m , j = 0, 1, . . . ,M. (6.51)

We derive from (6.40) and (6.50) that

M∑

j=0

ωmj Lmk (rmj ) Lmk′(r
m
j ) =

M∑

j=0

π ω̂mj er̂
m
j

γr
(
r̂mj
)m Lmk

(√
r̂mj /γr

)
Lmk′

(√
r̂mj /γr

)

=
M∑

j=0

ω̂mj
L̂mk (r̂mj )√

Cmk

L̂mk′(r̂
m
j )√

Cmk′

= δkk′ , k, k′ = 0, 1, . . . ,M. (6.52)

Let us denote

Xm
M = span{Lmk : k = 0, 1, · · · ,M}. (6.53)

We define

ImM : C(R+) → Xm
M such that (ImMf)(r

m
j ) = f(rmj ), 0 ≤ j ≤M, ∀f ∈ C(R+).

(6.54)
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Finally, let

Xm
MN = span{Lmk (r)hl(z) : k = 0, 1, 2, . . . ,M, l = 0, 1, 2, . . . , N}. (6.55)

we define ImMN : C(R+ × R) → Xm
MN such that

(ImMN f)(r
m
j , zs) = f(rmj , zs), j = 0, 1, · · · ,M, s = 0, 1, · · · , N, ∀f ∈ C(R+ × R).

(6.56)
It is clear that ImMN = ImM ◦ IzN .

Note that the computation of the weights {ωmj , ωzs} from (6.51) and (6.46) is not
a stable process for large m, M and N . However, they can be computed in a stable
way as suggested in the Appendix of [166].

6.2.4. A Hermite pseudospectral method in 1D. In this section, we introduce a Her-
mite pseudospectral method for computing ground states of 1D BEC. In fact, when
γr � γz in (6.16), the 3D GPE (6.16) can be approximated by a 1D GPE (cf.
section 1.3.3). In this case, the stationary states satisfy

µ φ =

[
−1

2

∂2

∂z2
+

1

2
γ2zz

2 +W (z) + β|φ|2
]
φ, (6.57)

under the normalization condition

‖φ‖22 =
∫ ∞

−∞
|φ(z)|2 dz = 1, (6.58)

where φ = φ(z). The stationary states can be viewed as the Euler-Lagrange equa-
tions of the energy functional E(φ), defined as

E(φ) =

∫ ∞

−∞

[
1

2
|∂zφ|2 +

(
1

2
γ2zz

2 +W (z)

)
|φ|2 + β

2
|φ|4

]
dz, (6.59)

under the constraint (6.58). Similarly, in this case, the normalized gradient flow
(6.24)-(6.28) collapses to [40, 41, 35]

∂

∂t
φ(z, t) = −Bzφ−W (z)φ− β|φ|2φ, (6.60)

lim
|z|→∞

φ(z, t) = 0, t ≥ 0, (6.61)

φ(z, tn+1) := φ(z, t+n+1) =
φ(z, t−n+1)

‖φ(·, t−n+1)‖2
, (6.62)

φ(z, 0) = φ0(z), z ∈ R with ‖φ0(·)‖2 = 1, (6.63)

where φ(z, t±n ) = limt→t±n
φ(z, t), ‖φ(·)‖22 =

∫∞
−∞ |φ(z)|2 dz.

Similarly, the scheme (6.31) in this case becomes:

φ̃n+1,p+1(z)− φn(z)

τ
= −(Bz + αn)φ̃

n+1,p+1 +
(
αn −W (z)− β|φn|2

)
φ̃n+1,p.

(6.64)
We now describe a pseudo-spectral method based on the scaled Hermite functions
{hl(z)} for (6.64)-(6.32).

Let (u, v)R =
∫
R
u vdz and φ0N ∈ Y hN . For n = 0, 1, · · · , set φ̃n+1,0

N = φnN and

αn = 1
2 (b

n
min + bnmax) with

bnmin = min
−∞<z<∞

[
W (z) + β|φnN (z)|2

]
, bnmax = max

−∞<z<∞

[
W (z) + β|φnN (z)|2

]
.
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Then, the Hermite pseudospectral method for (6.64)-(6.32) is:

Find φ̃n+1,p+1
N ∈ Y hN such that

(
φ̃n+1,p+1
N − φnN

τ
+ (Bz + αn)φ̃

n+1,p+1
N , hl

)

R

=
(
IzN [(αn −W − β|φnN )|2)φ̃n+1,p

N ], hl

)
R

, 0 ≤ l ≤ N, p = 0, 1, · · · ,

φ̃n+1
N = lim

p→∞
φ̃n+1,p
N , φn+1

N =
φ̃n+1
N

‖φ̃n+1
N ‖2

.

(6.65)

We note that φ̃n+1,p+1
N can be easily determined from (6.65) as follows:

We write the expansion

φ̃n+1,p+1
N (z) =

N∑

l=0

φ̂n+1,p+1
l hl(z), φnN (z) =

N∑

l=0

φ̂nl hl(z), (6.66)

and

gn,p(z) = IzN

[(
αn −W (z)− β|φnN (z)|2

)
φ̃n+1,p
N (z)

]
=

N∑

l=0

ĝn,pl hl(z),

where the coefficients {ĝn,pl }Nl=0 can be computed from the known function values
{gn,p(zs)}Ns=0 through the discrete Hermite transform using (6.47), i.e.,

ĝn,pl =
N∑

s=0

gn,p(zs) hl(zs) ω
z
s . (6.67)

Thanks to (6.36)-(6.37), we find from (6.65) that

φ̂n+1,p+1
l − φ̂nl

τ
= −

[
γz

(
l +

1

2

)
+ αn

]
φ̂n+1,p+1
l + ĝn,pl , l = 0, 1, . . . , N, (6.68)

from which we derive

φ̂n+1,p+1
l =

φ̂nl + τ ĝn,pl
1 + τ

[
αn + γz

(
l + 1

2

)] , l = 0, 1, . . . , N. (6.69)

Then, φ̃n+1
N and φn+1

N can be determined from the second equation in (6.65).

6.2.5. A generalized-Laguerre pseudospectral method in 2D. We now consider the
2D BEC with radial symmetry. The physical motivation is that when γz � γr in
(6.16), the 3D GPE (6.16) can be approximated by a 2D GPE (cf. section 1.3.3).
In this case, the radial symmetric state (m = 0) and central vortex state with index
m (m 6= 0) satisfy

µm φm =
1

2

[
−1

r

∂

∂r

(
r
∂

∂r

)
+ γ2rr

2 +
m2

r2
+ 2β|φm|2

]
φm, (6.70)

φm(0) = 0 (for m 6= 0), lim
r→∞

φm(r) = 0, (6.71)

under the normalization condition

‖φm‖2r = 2π

∫ ∞

0

|φm(r)|2 r dr = 1, (6.72)
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where φm = φm(r). Again, this nonlinear eigenvalue problem (6.70)-(6.72) can also
be viewed as the Euler-Lagrange equations of the energy functional E(φm), defined
by

E(φm) = π

∫ ∞

0

[
|∂rφm|2 +

(
γ2rr

2 +
m2

r2

)
|φm|2 + β |φm|4

]
r dr, (6.73)

under the constraint (6.72). Accordingly, the normalized gradient flow (6.24)-(6.28)
collapses to [40, 41, 35]

∂

∂t
φ(r, t) = −Brmφ− β|φ|2φ, (6.74)

φ(0, t) = 0 (for m 6= 0), lim
r→∞

φ(r, t) = 0, t ≥ 0, (6.75)

φ(r, tn+1) := φ(r, t+n+1) =
φ(r, t−n+1)

‖φ(·, t−n+1)‖r
, (6.76)

φ(r, 0) = φ0(r), 0 ≤ r <∞, with ‖φ0(·)‖r = 1, (6.77)

where φ(r, t±n ) = limt→t±n
φ(r, t), ‖φ(·)‖2r = 2π

∫∞
0 |φ(r)|2 r dr. The scheme (6.31)

in this case becomes:

φ̃n+1,p+1 − φn(r)

τ
= −(Brm + αn)φ̃

n+1,p+1 +
(
αn − β|φn|2

)
φ̃n+1,p. (6.78)

We now describe a pseudo-spectral method based on the scaled generalized-Laguerre
functions {Lmk (r)} for (6.78)-(6.32).

Let (u, v)r,R+ =
∫
R+ u v r dr and φ0M ∈ Xm

M . For n = 0, 1, · · · , set φ̃n+1,0
M = φnM

and αn = 1
2 (b

n
min + bnmax) with

bnmin = min
0≤r<∞

[
β|φnM (r)|2

]
, bnmax = max

0≤r<∞

[
β|φnM (r)|2

]
.

Then, the generalized-Laguerre pseudospectral method for (6.78)-(6.32) is:

Find φ̃n+1,p+1
M ∈ Xm

M such that
(
φ̃n+1,p+1
M − φnM

τ
+ (Brm + αn)φ̃

n+1,p+1
M , Lmk

)

r,R+

=
(
ImM [(αn − β|φnM )|2)φ̃n+1,p

M ], Lmk

)
r,R+

, 0 ≤ k ≤M, p = 0, 1, · · · ,

φ̃n+1
M = lim

p→∞
φ̃n+1,p
M , φn+1

M =
φ̃n+1
M

‖φ̃n+1
M ‖r

.

(6.79)

The function φ̃n+1,p+1
M can be easily determined from (6.79) as follows:

We write the expansion

φ̃n+1,p+1
M (r) =

M∑

k=0

φ̂n+1,p+1
k Lmk (r), φnM (r) =

M∑

k=0

φ̂nk L
m
k (r), (6.80)

gn,p(z) = ImM

[(
αn − β|φnM (r)|2

)
φ̃n+1,p
M (r)

]
=

M∑

k=0

ĝn,pk Lmk (r),

where the coefficients {ĝn,pk }Mk=0 can be computed from the known function values
{gn,p(rmj )}Mj=0 through the discrete generalized-Laguerre transform using (6.52),
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i.e.,

ĝn,pk =

M∑

j=0

gn,p(rmj ) Lmk (r
m
j ) ωrj . (6.81)

Thanks to (6.41)-(6.42), we find from (6.79) that

φ̂n+1,p+1
k − φ̂nk

τ
= − [γr (2k +m+ 1) + αn] φ̂

n+1,p+1
k + ĝn,pk , k = 0, . . . , N, (6.82)

from which we derive

φ̂n+1,p+1
k =

φ̂nk + τ ĝn,pk
1 + τ [αn + γr (2k +m+ 1)]

, k = 0, 1, . . . , N. (6.83)

Then, φ̃n+1
M and φn+1

M can be determined from the second equation in (6.79).

6.2.6. A generalized-Laguerre-Hermite pseudospectral method in 3D. We are now
in position to describe the generalized-Laguerre-Hermite pseudo-spectral method
for computing symmetric and central vortex line states of 3D BEC with cylindrical
symmetry [40, 41, 35].

Let (u, v)r,R+×R =
∫
R

∫
R+ u v r dr dz and φ0MN ∈ Xm

MN . For n = 0, 1, · · · , set
φ̃n+1,0
MN = φnMN and αn = 1

2 (b
n
min + bnmax) with U = R+ × R,

bnmin = min
(r,z)∈U

[
W (z) + β|φnMN (r, z)|2

]
, bnmax = max

(r,z)∈U

[
W (z) + β|φnMN (r, z)|2

]
.

Then, the generalized-Laguerre-Hermite pseudo-spectral method for (6.31)-(6.32)

is: find φ̃n+1,p+1
MN ∈ Xm

MN such that for 0 ≤ k ≤M, 0 ≤ l ≤ N, p = 0, 1, · · · ,
(
φ̃n+1,p+1
MN − φnMN

τ
+ (Bm + αn)φ̃

n+1,p+1
MN , Lmk (r)hl(z)

)

r,R+×R

=
(
ImMN [(αn −W (z)− β|φnMN |2)φ̃n+1,p

MN ], Lmk (r)hl(z)
)
r,R+×R

,

φ̃n+1
MN = lim

p→∞
φ̃n+1,p
MN , φn+1

MN =
φ̃n+1
MN

‖φ̃n+1
MN‖c

.

(6.84)

The function φ̃n+1,p+1
MN can be easily determined from (6.84) as follows:

We write the expansion

φ̃n+1,p+1
MN =

M∑

k=0

N∑

l=0

φ̂n+1,p+1
kl Lmk (r)hl(z), φ

n
MN =

M∑

k=0

N∑

l=0

φ̂nklL
m
k (r)hl(z), (6.85)

and

gn,p(r, z) = ImMN

[(
αn −W (z)− β|φnMN |2

)
φ̃n+1,p
MN

]
=

M∑

k=0

N∑

l=0

ĝn,pkl Lmk (r)hl(z),

where the coefficients {ĝn,pkl } can be computed from the known function values
{gn,p(rmj , zs)} through the discrete generalized-Laguerre transform and discrete

Hermite transform using (6.52) and (6.47), i.e.,

ĝn,pkl =
N∑

s=0

M∑

j=0

gn,p(rmj , zs) L
m
k (rmj ) hl(zs) ω

r
j ω

z
s . (6.86)
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Thanks to (6.41)-(6.42) and (6.36)-(6.37), we find from (6.84) that

φ̂n+1,p+1
kl − φ̂nkl

τ
= −

[
γr(2k +m+ 1)γz

(
l +

1

2

)
+ αn

]
φ̂n+1,p+1
kl + ĝn,pkl , (6.87)

from which we derive

φ̂n+1,p+1
kl =

φ̂nkl + τ ĝn,pkl
1 + τ

[
αn + γr(2k +m+ 1) + γz

(
l + 1

2

)] . (6.88)

Then, φ̃n+1
MN and φn+1

MN can be determined from the second equation in (6.84).

6.3. Numerical methods for dynamics. In this section, we consider different
numerical methods for solving the GPE (5.5) with an angular momentum rotation
term in d-dimensions (d = 2, 3) for the dynamics of rotating BEC:

i
∂ψ(x, t)

∂t
= −1

2
∇2ψ + V (x)ψ + β|ψ|2ψ − ΩLzψ, x ∈ Rd, t > 0, (6.89)

ψ(x, 0) = ψ0(x), x ∈ Rd, ‖ψ0‖2 = 1, (6.90)

where Lz = −i(x∂y − y∂x) and V (x) in d dimensions is given in (5.8).
In fact, many efficient and accurate numerical methods have been proposed

for discretizing the above GPE, such as the time-splitting Fourier pseudospectral
method via the alternating direction implicit (ADI) to decouple the angular mo-
mentum rotation term [44], time-splitting finite element method based on polar
and cylindrical coordinates in 2D and 3D, respectively, such that the angular mo-
mentum rotation term becomes constant coefficient [28], time-splitting generalized
Laguerre-Hermite pseudospectral method via eigen-expansion of the linear opera-
tor [35], finite difference time domain methods [21], etc. Each method has its own
advantages and disadvantages. Here we present the detailed algorithms for some of
these methods.

6.3.1. Time splitting Fourier pseudospectral method via an ADI technique. Due to
the external trapping potential V (x), the solution ψ(x, t) of (6.89)-(6.90) decays
to zero exponentially fast when |x| → ∞. Thus in practical computation, we can
truncate the problem (6.89)-(6.90) into a bounded computational domain:

i∂tψ(x, t) = −1

2
∇2ψ +

[
V (x) + β|ψ|2 − ΩLz

]
ψ, x ∈ U, t > 0, (6.91)

ψ(x, 0) = ψ0(x), x ∈ U ; (6.92)

with periodic boundary condition. Here we choose U = [a, b] × [c, d] in 2D, and
resp., U = [a, b] × [c, d] × [e, f ] in 3D, with |a|, |b|, |c|, |d|, |e| and |f | sufficiently
large.

We choose a time step size τ > 0. For n = 0, 1, 2, · · · , similar to the case of
non-rotating GPE in section 4.1.1, from time t = tn = nτ to t = tn+1 = tn + τ , the
GPE (6.91) is solved in two splitting steps. One solves first [44]

i ∂tψ(x, t) = −1

2
∇2ψ(x, t)− ΩLzψ(x, t) (6.93)

for the time step of length τ , followed by solving

i ∂tψ(x, t) = V (x)ψ(x, t) + β|ψ(x, t)|2ψ(x, t), (6.94)
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for the same time step. (6.94) can be integrated exactly [28, 44], and we find for
x ∈ U and tn ≤ t ≤ tn+1:

ψ(x, t) = e−i[V (x)+β|ψ(x,tn)|2](t−tn) ψ(x, tn). (6.95)

To discretize (6.93) in space, compared with non-rotating BEC (cf. section 4), i.e.
Ω = 0 in (6.89), the main difficulty is that the coefficients in Lz are not constants
which causes big trouble in applying sine or Fourier pseudospectral discretization.
Due to the special structure in the angular momentum rotation term Lz, we will
apply the alternating direction implicit (ADI) technique and decouple the operator
− 1

2∇2 − ΩLz into two one dimensional operators such that each operator becomes
a summation of terms with constant coefficients in that dimension. Therefore, they
can be discretized in space by Fourier pseudospectral method and the ODEs in
phase space can be integrated analytically.

Discretization in 2D. When d = 2 in (6.93), we choose mesh sizes ∆x > 0 and
∆y > 0 with ∆x = (b − a)/M and ∆y = (d − c)/N for M and N even positive
integers, and let the grid points be

xj = a+ j∆x, j = 0, 1, 2, · · · ,M ; yk = c+ k∆y, k = 0, 1, 2, · · · , N. (6.96)

Let ψnjk be the approximation of ψ(xj , yk, tn) and ψn be the solution vector with
component ψnjk.

From time t = tn to t = tn+1, we solve (6.93) first

i ∂tψ(x, t) = −1

2
∂xxψ(x, t) − iΩy∂xψ(x, t), (6.97)

for the time step of length τ , followed by solving

i ∂tψ(x, t) = −1

2
∂yyψ(x, t) + iΩx∂yψ(x, t), (6.98)

for the same time step. Using the standard second order Strang splitting, a time
splitting Fourier pseudospectral (TSSP) method for solving (6.91)-(6.92) can be
written as [44]:

ψ
(1)
jk =

M/2−1∑

p=−M/2

e−iτ(µ
2
p+2Ωykµp)/4 (̂ψnk )p e

iµp(xj−a), (j, k) ∈ T 0
MN ,

ψ
(2)
jk =

N/2−1∑

q=−N/2
e−iτ(λ

2
q−2Ωxjλq)/4 ̂

(ψ
(1)
j )

q
eiλq(yk−c), (j, k) ∈ T 0

MN ,

ψ
(3)
jk = e−iτ [V (xj,yk)+β|ψ(2)

jk |2] ψ(2)
jk , (j, k) ∈ T 0

MN ,

ψ
(4)
jk =

N/2−1∑

q=−N/2
e−iτ(λ

2
q−2Ωxjλq)/4 ̂

(ψ
(3)
j )

q
eiλq(yk−c), (j, k) ∈ T 0

MN ,

ψn+1
jk =

M/2−1∑

p=−M/2

e−iτ(µ
2
p+2Ωykµp)/4 ̂

(ψ
(4)
k )p e

iµp(xj−a), (j, k) ∈ T 0
MN ,

(6.99)
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where for each fixed k, (̂ψαk )p (p = −M
2 , · · · , M2 − 1) with an index α, the Fourier

coefficients of the vector ψαk = (ψα0k, ψ
α
1k, · · · , ψα(M−1)k)

T , are defined as

(̂ψαk )p =
1

M

M−1∑

j=0

ψαjk e
−iµp(xj−a), µp =

2pπ

b− a
, p = −M

2
, · · · , M

2
− 1; (6.100)

similarly, for each fixed j, (̂ψαj )q (q = −N
2 , · · · , N2 − 1), the Fourier coefficients of

the vector ψαj = (ψαj0, ψ
α
j1, · · · , ψαj(N−1))

T , are defined as

(̂ψαj )q =
1

N

N−1∑

k=0

ψαjk e
−iλq(yk−c), λp =

2qπ

d− c
, q = −N

2
, · · · , N

2
− 1. (6.101)

For the TSSP (6.99), the total memory requirement is O(MN) and the total com-
putational cost per time step is O(MN ln(MN)). The scheme is time reversible
just as it holds for the GPE (6.91), i.e. the scheme is unchanged if we interchange
n↔ n+ 1 and τ ↔ −τ in (6.99). Also, a main advantage of the numerical method
is its time-transverse invariance, just as it holds for the GPE (6.91) itself. If a con-
stant α is added to the external potential V , then the discrete wave functions ψn+1

jk

obtained from (6.99) get multiplied by the phase factor e−iα(n+1)τ , which leaves the
discrete quadratic observable |ψn+1

jk |2 unchanged.

Discretization in 3D. When d = 3 in (6.93), we choose mesh sizes ∆x > 0,
∆y > 0 and ∆z > 0 with ∆x = (b − a)/M , ∆y = (d − c)/N and ∆z = (f − e)/L
for even positive integers M , N and L, and let the grid points be

xj = a+ j∆x, yk = c+ k∆y, (j, k) ∈ T 0
MN ; zl = e+ l∆z, 0 ≤ l ≤ L. (6.102)

Let ψnjkl be the approximation of ψ(xj , yk, zl, tn) and ψ
n be the solution vector with

component ψnjkl.

Similar as those for 2D case, from time t = tn to t = tn+1, we solve (6.93) first

i ∂tψ(x, t) =

(
−1

2
∂xx −

1

4
∂zz − iΩy∂x

)
ψ(x, t), (6.103)

for the time step of length τ , followed by solving

i ∂tψ(x, t) =

(
−1

2
∂yy −

1

4
∂zz + iΩx∂y

)
ψ(x, t), (6.104)
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for the same time step. A second order time splitting Fourier pseudospectral (TSSP)
method for solving (6.91)-(6.92) can be written as [44]:

ψ
(1)
jkl =

M/2−1∑

p=−M/2

L/2−1∑

s=−L/2
e−iτ(2µ

2
p+γ

2
s+4Ωykµp)/8 (̂ψnk )ps e

iµp(xj−a) eiγs(zl−e),

ψ
(2)
jkl =

N/2−1∑

q=−N/2

L/2−1∑

s=−L/2
e−iτ(2λ

2
q+γ

2
s−4Ωxjλq)/8 ̂

(ψ
(1)
j )

qs
eiλq(yk−c) eiγs(zl−e),

ψ
(3)
jkl = e−iτ [V (xj,yk,zl)+β|ψ(2)

jkl
|2] ψ

(2)
jkl, (j, k, l) ∈ T 0

MNL, (6.105)

ψ
(4)
jkl =

N/2−1∑

q=−N/2

L/2−1∑

s=−L/2
e−iτ(2λ

2
q+γ

2
s−4Ωxjλq)/8̂(ψ

(3)
j )

qs
eiλq(yk−c) eiγs(zl−e),

ψn+1
jkl =

M/2−1∑

p=−M/2

L/2−1∑

s=−L/2
e−iτ(2µ

2
p+γ

2
s+4Ωykµp)/8 ̂

(ψ
(4)
k )ps e

iµp(xj−a) eiγs(zl−e),

where

T 0
MNL = {(j, k, l) | j = 0, 1, . . . ,M, k = 0, 1, . . . , N, l = 0, 1, . . . , L},

and for each fixed k, (̂ψαk )ps (−M/2 ≤ p ≤ M/2 − 1, −L/2 ≤ s ≤ L/2 − 1) with

an index α, the Fourier coefficients of the vector ψαjkl (0 ≤ j < M , 0 ≤ l < L), are
defined as

(̂ψαk )ps =
1

ML

M−1∑

j=0

L−1∑

l=0

ψαjkl e
−iµp(xj−a) e−iγs(zl−e), −M

2
≤ p <

M

2
, −L

2
≤ s <

L

2
;

similarly, for each fixed j, (̂ψαj )qs (−N/1 ≤ q ≤ N/2− 1, −L/2 ≤ s ≤ L/2− 1) with

an index α, the Fourier coefficients of the vector ψαjkl (k = 0, · · · , N , l = 0, · · · , L),
are defined as

(̂ψαj )qs =
1

NL

N−1∑

m=0

L−1∑

l=0

ψαjkl e
−iλq(yk−c) e−iγs(zl−e), −N

2
≤ q <

N

2
, −L

2
≤ s <

L

2
,

with γs = 2πs
f−e for s = −L/2, · · · , L/2 − 1. For the scheme (6.105), the total

memory requirement is O(MNL) and the total computational cost per time step
is O(MNL ln(MNL)). Furthermore, the discretization is time reversible and time
transverse invariant in the discretized level.

6.3.2. Time-splitting finite element method based on polar/cylindrical coordinates.
As noticed in [28, 21], the angular momentum rotation is a constant coefficient in
2D with polar coordinates and 3D with cylindrical coordinates. Thus the original
problem of GPE with an angular momentum rotation term defined in Rd (d = 2, 3)
for rotating BEC can also be truncated on a disk in 2D and a cylinder in 3D as
bounded computational domain with homogeneous Dirichlet boundary condition:

i∂tψ(x, t) = −1

2
∇2ψ +

[
V (x) + β|ψ|2 − ΩLz

]
ψ, x ∈ U, t > 0, (6.106)

ψ(x, t) = 0, x ∈ Γ = ∂U, t ≥ 0, ψ(x, 0) = ψ0(x), x ∈ U ; (6.107)
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where we choose U = {x = (x, y) | r =
√
x2 + y2 < R} in 2D, and resp., U = {x =

(x, y, z) | r =
√
x2 + y2 < R, Z1 < z < Z2} in 3D with R, |Z1|, |Z2| sufficiently

large.
We choose a time step size τ > 0. For n = 0, 1, 2, · · · , from time t = tn = nτ to

t = tn+1 = tn + τ , the GPE (6.106) is solved in two splitting steps. One solves first

i ∂tψ(x, t) = −1

2
∇2ψ(x, t)− ΩLzψ(x, t) (6.108)

for the time step of length τ , followed by solving

i ∂tψ(x, t) = V (x)ψ(x, t) + β|ψ(x, t)|2ψ(x, t), (6.109)

for the same time step. (6.109) can be integrated exactly [44], and we find for x ∈ U
and tn ≤ t ≤ tn+1:

ψ(x, t) = e−i[V (x)+β|ψ(x,tn)|2](t−tn) ψ(x, tn). (6.110)

Discretization in 2D. To solve (6.108), we try to formulate the equation in a
variable separable form. When d = 2, we use the polar coordinate (r, θ), and
discretize in the θ-direction by a Fourier pseudo-spectral method, in the r-direction
by a finite element method (FEM) and in time by a Crank-Nicolson (C-N) scheme.
Assume [28]

ψ(r, θ, t) =

L/2−1∑

l=−L/2
ψ̂l(r, t) e

ilθ, (6.111)

where L is an even positive integer and ψ̂l(r, t) is the Fourier coefficient for the
l-th mode. Plugging (6.111) into (6.108), noticing the orthogonality of the Fourier
functions, we obtain for −L

2 ≤ l ≤ L
2 − 1 and 0 < r < R:

i∂tψ̂l(r, t) = − 1

2r

∂

∂r

(
r
∂ψ̂l(r, t)

∂r

)
+

(
l2

2r2
− lΩ

)
ψ̂l(r, t), (6.112)

ψ̂l(R, t) = 0 (for all l), ψ̂l(0, t) = 0 (for l 6= 0). (6.113)

Let P k denote all polynomials with degree at most k, M > 0 be a chosen integer,
0 = r0 < r1 < r2 < · · · < rM = R be a partition for the interval [0, R] with a mesh
size h = max0≤m<M {rm+1 − rm}. Define a FEM subspace by

Uh =
{
uh ∈ C[0, R] | uh

∣∣
[rm,rm+1]

∈ P k, 0 ≤ m < M, uh(R) = 0
}

for l = 0, and for l 6= 0,

Uh =
{
uh ∈ C[0, R] | uh

∣∣
[rm,rm+1]

∈ P k, 0 ≤ m < M, uh(0) = uh(R) = 0
}
,

then we obtain the FEM approximation for (6.112)-(6.113): Find ψ̂hl = ψ̂hl (·, t) ∈ Uh

such that for all φh ∈ Uh and tn ≤ t ≤ tn+1,

i
d

dt
A(ψ̂hl (·, t), φh) = B(ψ̂hl (·, t), φh) + l2C(ψ̂hl , φ

h)− lΩA(ψ̂hl , φ
h), (6.114)

where

A(uh, vh) =

∫ R

0

r uh(r) vh(r) dr, B(uh, vh) =

∫ R

0

r

2

duh(r)

dr

dvh(r)

dr
dr,

C(uh, vh) =

∫ R

0

1

2r
uh(r) vh(r) dr, uh, vh ∈ Uh.
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The ODE system (6.114) is then discretized by the standard Crank-Nicolson scheme
in time. Although an implicit time discretization is applied for (6.114), the 1D
nature of the problem makes the coefficient matrix for the linear system band-
limited. For example, if the piecewise linear polynomial is used, i.e. k = 1 in Uh,
the matrix is tridiagonal. Fast algorithms can be applied to solve the resulting
linear systems.

In practice, we always use the second-order Strang splitting [174], i.e. from time
t = tn to t = tn+1: i) first evolve (6.109) for half time step τ/2 with initial data
given at t = tn; ii) then evolve (6.108) for one time step τ starting with the new
data; iii) and evolve (6.109) for half time step τ/2 with the newer data. For the
discretization considered here, the total memory requirement is O(ML) and the
total computational cost per time step is O(ML lnL). Furthermore, it conserves
the total density in the discretized level.

Discretization in 3D. When d = 3 in (6.108), we use the cylindrical coordinate
(r, θ, z), and discretize in the θ-direction by the Fourier pseudo-spectral method, in
the z-direction by the sine pseudo-spectral method, and in the r-direction by finite
element or finite difference method and in time by the C-N scheme. Assume that,

ψ(r, θ, z, t) =

L/2−1∑

l=−L/2

K−1∑

k=1

ψ̂l,k(r, t) e
ilθ sin(µk(z − a)), (6.115)

where L and K are two even positive integers, µk = πk
b−a (k = 1, · · · ,K − 1) and

ψ̂l,k(r, t) is the Fourier-sine coefficient for the (l, k)th mode. Plugging (6.115) into
(6.108) with d = 3, noticing the orthogonality of the Fourier-sine modes, we obtain,
for −L

2 ≤ l ≤ L
2 − 1, 1 ≤ k ≤ K − 1 and 0 < r < R, that [28]:

i∂tψ̂l,k(r, t) = − 1

2r

∂

∂r

(
r
∂ψ̂l,k(r, t)

∂r

)
+

(
l2

2r2
+
µ2
k

2
− lΩ

)
ψ̂l,k(r, t), (6.116)

with essential boundary conditions

ψ̂l,k(R, t) = 0 (for all l), ψ̂l,k(0, t) = 0 (for l 6= 0). (6.117)

The discretization of (6.116)-(6.117) is similar as that for (6.112)-(6.113) and it is
omitted here.

For the algorithm in 3D, the total memory requirement is O(MLK) and the
total computational cost per time step is O(MLK ln(LK)).

6.4. A generalized Laguerre-Fourier-Hermite pseudospectral method. Li-
ke section 6.2, for polar coordinate in 2D and cylindrical coordinate in 3D, a similar
Laguerre-Hermite pseudospectral method can be designed for computing dynamics
for rotating BEC (6.89)-(6.90). Here, we assume that the potential V (x) in (6.89)-
(6.90) is given as [35]

V (x) = Vh(x) +W (x), Vh(x) =

{
1
2 (γ

2
r (x

2 + y2) + γ2zz
2), d = 3,

1
2γ

2
r (x

2 + y2), d = 2,
(6.118)

where W (x) is a real potential.
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Denoting

B⊥φ =

[
−1

2

(
∂2

∂x2
+

∂2

∂y2

)
+

1

2
γ2r (x

2 + y2)− ΩLz

]
φ, (6.119)

Bzφ =

[
−1

2

∂2

∂z2
+

1

2
γ2zz

2

]
φ, (6.120)

Aφ =
[
W (x) + β|φ|2

]
φ, Bφ =

{
B⊥φ, d = 2,
(B⊥ +Bz)φ, d = 3,

(6.121)

then the GPE (6.89) becomes

i∂tψ(x, t) = Aψ +Bψ, x ∈ Rd, t > 0. (6.122)

For n = 0, 1, 2, . . . , let ψn := ψn(x) be the approximation of ψ(x, tn). A standard
Strang splitting second-order symplectic time integrator for (6.122) is as follows

ψ(1) = e−iτA/2ψn, ψ(2) = e−iτBψ(1), ψn+1 = e−iτA/2ψ(2). (6.123)

Thus the key for an efficient implementation of (6.123) is to solve efficiently the
following two subproblems:

i∂tψ(x, t) = Aψ(x, t) =
[
W (x) + β|ψ(x, t)|2

]
ψ(x, t), x ∈ Rd, (6.124)

and

i∂tψ(x, t) = Bψ(x, t) =

[
−1

2
∇2 + Vh(x) − ΩLz

]
ψ(x, t), x ∈ Rd,

lim
|x|→+∞

ψ(x, t) = 0.
(6.125)

The decaying condition in (6.125) is necessary for satisfying the mass conservation.

6.4.1. Discretization in 2D. In the 2D case, we use the polar coordinates (r, θ), and
write the solutions of (6.125) as ψ(r, θ, t) . Therefore, for t ≥ ts (ts is any given
time), (6.125) collapses to [35]

i∂tψ(r, θ, t) =

[
− 1

2r

∂

∂r

(
r
∂

∂r

)
− 1

2r2
∂2

∂θ2
+

1

2
γ2rr

2 + iΩ∂θ

]
ψ(r, θ, t)

:= B⊥ψ(r, θ, t),

ψ(r, θ + 2π, t) = ψ(r, θ, t), r ∈ (0,∞), θ ∈ (0, 2π), lim
r→∞

ψ(r, θ, t) = 0.

(6.126)

For any fixed m (m = 0,±1,±2, . . .), recalling the scaled generalized-Laguerre func-
tions Lnk (6.40) (n ≥ 0), a simple calculation shows that

B⊥
(
L
|m|
k (r) eimθ

)
= µkm L

|m|
k (r)eimθ , k = 0, 1, 2, . . . . (6.127)

where

µkm = γr(2k + |m|+ 1)−mΩ, k = 0, 1, 2, . . . . (6.128)

This immediately implies that {L|m|
k (r) eimθ , k = 0, 1, · · · , m = 0,±1,±2, · · · } are

eigenfunctions of the linear operator B⊥.
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For fixed even integerM > 0 and integer K > 0, let XKM = span{L|m|
k (r) eimθ :

k = 0, 1, . . . ,K, m = −M/2,−M/2+1, . . . ,−1, 0, 1, . . . ,M/2−1}. The generalized-
Laguerre-Fourier spectral method for (6.126) is to find ψKM (r, θ, t) ∈ XKM , i.e.

ψKM (r, θ, t) =

M/2−1∑

m=−M/2

[
eimθ

K∑

k=0

ψ̂km(t)L
|m|
k (r)

]
, 0 ≤ r <∞, 0 ≤ θ ≤ 2π,

(6.129)
such that

i
∂ψKM (r, θ, t)

∂t
=

[
− 1

2r

∂

∂r

(
r
∂

∂r

)
− 1

2r2
∂2

∂θ2
+

1

2
γ2rr

2 + iΩ∂θ

]
ψ(r, θ, t)

= B⊥ψKM (r, θ, t), 0 < r <∞, 0 < θ < 2π. (6.130)

Noting that limr→∞ L
|m|
k (r) = 0 for k = 0, 1, 2, . . . and m = 0,±1,±2, . . . [177];

hence, limr→∞ ψKM (r, θ, t) = 0 is automatically satisfied. In addition, the ex-
pansions in r- and θ-directions for (6.129) do not commute. Plugging (6.129)
into (6.130), thanks to (6.127), noticing the orthogonality of the Fourier series,
for k = 0, 1, . . . ,K and m = −M/2,−M/2− 1, . . . ,−1, 0, 1, . . . ,M/2− 1, we find

i
dψ̂km(t)

dt
= µkm ψ̂km(t) = [γr(2k + |m|+ 1)−mΩ] ψ̂km(t). (6.131)

The above linear ODE can be integrated exactly and the solution is given by

ψ̂km(t) = e−iµkm(t−ts) ψ̂km(ts), t ≥ ts. (6.132)

Plugging (6.132) into (6.129), we obtain the solution of (6.130) as

ψKM (r, θ, t) =e−iB⊥(t−ts)ψKM (r, θ, ts)

=

M/2−1∑

m=−M/2

[
eimθ

K∑

k=0

e−iµkm(t−ts) ψ̂km(ts)L
|m|
k (r)

]
, t ≥ ts, (6.133)

with

ψ̂km(ts) =
1

2π

∫ 2π

0

[
e−imθ

∫ ∞

0

ψKM (r, θ, ts)L
|m|
k (r)r dr

]
dθ. (6.134)

To summarize, a second-order time-splitting generalized-Laguerre-Fourier spectral
method for the GPE (6.89) with d = 2 is as follows:

Let ψ0 = ΠKMψ0 where ΠKM is the L2 projection operator from L2((0,∞) ×
(0, 2π)) onto XKM , we determine ψn+1 (n = 0, 1, · · · ) by [35]

ψ(1)(r, θ) = e−iτ [W (r,θ)+β|ψn(r,θ)|2]/2ψn(r, θ),

ψ(2)(r, θ) =

M/2−1∑

m=−M/2

[
eimθ

K∑

k=0

e−iτµkm ψ̂(1)
km L

|m|
k (r)

]
,

ψn+1(r, θ) = e−iτ [W (r,θ)+β|ψ(2)(r,θ)|2]/2ψ(2)(r, θ),

(6.135)

with

ψ̂(1)
km =

1

2π

∫ 2π

0

[
e−imθ

∫ ∞

0

ψ(1)(r, θ)L
|m|
k (r)r dr

]
dθ. (6.136)

The scheme (6.135) is not suitable in practice due to the difficulty to compute
the initial data ψ0

KM = ΠKMψ0 and the integrals in (6.136). We now present an
efficient implementation by choosing ψ0

KM (r, θ) as the interpolation of ψ(r, θ, 0) on
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a suitable grid, and approximating (6.136) (for all m) by a quadrature rule on this
grid.

It is clear that the optimal quadrature rule, hence the collocation points, for the
r-integral in (6.136) depends on m [40, 41]. However, we have to use the same set of
collocation points for all m to form a tensorial grid in the (r, θ) domain. Therefore,

let {r̂j}K+M/2
j=0 be the Laguerre-Gauss points [177, 166]; i.e. they are the K+M/2+1

roots of the standard Laguerre polynomial L̂0
K+M/2+1(r) := L̂K+M/2+1(r). Let

{ω̂j}K+M/2
j=0 be the corresponding weights associated with the generalized-Laguerre-

Gauss quadrature (6.50). We then define the scaled generalized-Laguerre-Gauss
points and weights rj and ωj (j = 0, 1, . . . ,K+M/2) as in (6.51) and the appendix
of [166].

Let θs = 2sπ
M (s = 0, 1, · · · ,M − 1). For any given set of values {ψjs, 0 ≤ j ≤

K+M/2; 0 ≤ s ≤M−1}, we can define a unique function ψ in XKM interpolating
this set, i.e.,

ψ(r, θ) =

M/2−1∑

m=−M/2

K∑

k=0

ψ̂km L
|m|
k (r)eimθ such that

ψ(rj , θs) = ψjs, 0 ≤ j ≤ K +M/2; 0 ≤ s ≤M − 1.

(6.137)

By using the discrete orthogonality relation (6.52) for the scaled generalized La-
guerre functions and the discrete Fourier orthogonality relation

1

M

M−1∑

s=0

eikθse−ik
′θs = δkk′ , |k|, |k′| ≤M/2, (6.138)

we find that

ψ̂km =
1

M

M−1∑

s=0


e−imθs

K+M/2∑

j=0

ωj ψjs L
|m|
k (rj)


 , (6.139)

and that

‖ψ‖22 :=
∫ 2π

0

∫ ∞

0

|ψ|2r dr dθ = 2π

M/2−1∑

m=−M/2

K∑

k=0

|ψ̂km|2 =
2π

M

K+M/2∑

j=0

M−1∑

s=0

|ψjs|2ωj.

We can now describe the second-order time-splitting generalized-Laguerre-Fourier
pseudospectral (TSGLFP2) method for the GPE (6.89) with d = 2 as follows:

Let ψ0
js = ψ0(rj , θs) for 0 ≤ j ≤ K+M/2 and 0 ≤ s ≤M−1. For n = 0, 1, 2, · · · ,

we compute ψn+1
js (0 ≤ j ≤ K +M/2, 0 ≤ s ≤M − 1) by [35]

ψ
(1)
js = e−iτ [W (rj,θs)+β|ψn

js|2]/2ψnjs,

ψ
(2)
js =

M/2−1∑

m=−M/2

[
eimθs

K∑

k=0

e−iτµkm (̂ψ(1))km L
|m|
k (rj)

]
,

ψn+1
js = e−iτ [W (rj,θs)+β|ψ(2)

js |2]/2ψ(2)
js ,

(6.140)

where {(̂ψ(1))km} are the expansion coefficients of ψ(1) given by (6.139).
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6.4.2. Discretization in 3D. In the 3D case, by using the cylindrical coordinates
(r, θ, z), we can write the solutions of (6.125) as ψ(r, θ, z, t). Therefore, for t ≥ ts
(ts is any given time), (6.125) collapses to [35]

i∂tψ(r, θ, z, t) =
1

2

[
−1

r

∂

∂r

(
r
∂

∂r

)
− 1

r2
∂2

∂θ2
− ∂2

∂z2
+ γ2rr

2 + γzz
2 + 2iΩ∂θ

]
ψ,

= (B⊥ +Bz)ψ(r, θ, z, t) = B ψ(r, θ, z, t),

ψ(r, θ + 2π, z, t) = ψ(r, θ, z, t), 0 < r <∞, 0 < θ < 2π, z ∈ R,

lim
r→∞

ψ(r, θ, z, t) = 0, −∞ < z <∞, t ≥ ts.

Let the scaled Hermite functions hl(z) (l = 0, 1, . . . ,) be given in (6.35). For any
fixed m (m = 0,±1,±2, . . .), we find that [35]

B
(
L
|m|
k (r) eimθ hl(z)

)
= (µkm + λl)L

|m|
k (r) eimθ hl(z), λl = (l +

1

2
)γz. (6.141)

Hence, {L|m|
k (r) eimθ hl(z), k, l = 0, 1, · · · , m = 0,±1,±2, · · · } are eigenfunctions

of the linear operator B = B⊥ +Bz defined in (6.121) for d = 3.
Then a second-order time-splitting generalized-Laguerre-Fourier-Hermite spec-

tral method for the GPE (6.89) with d = 3 can be constructed analogously to
(6.135). Here, we only present pseudospectral method generalizing TSGLFP2
(6.140).

Define the scaled Hermite-Gauss points zp and weights ωzp (0 ≤ p ≤ L) by (6.46).
For any given set of values {ψjsp, 0 ≤ j ≤ K +M/2; 0 ≤ s ≤M − 1; 0 ≤ p ≤ L},
we can define a unique function ψ in YKML = span{L|m|

k (r) eimθ hl(z) : 0 ≤ k ≤
K, −M/2 ≤ m ≤M/2− 1, 0 ≤ l ≤ L} interpolating this set, i.e.,

ψ(r, θ, z) =

M/2−1∑

m=−M/2

K∑

k=0

L∑

l=0

ψ̂kml L
|m|
k (r)eimθhl(z) such that

ψ(rj , θs, zp) = ψjsp, 0 ≤ j ≤ K +M/2; 0 ≤ s ≤M − 1; 0 ≤ p ≤ L.

(6.142)

By using the discrete orthogonality relations (6.52), (6.138) and (6.47), we find
that

ψ̂kml =
1

M

L∑

p=0


hl(zp)ωzp

M−1∑

s=0


e−imθs

K+M/2∑

j=0

ωj ψjsp L
|m|
k (rj)




 , (6.143)

and that

‖ψ‖22 :=
∫ ∞

−∞

∫ ∞

0

∫ 2π

0

|ψ(r, θ, z)|2r dθdrdz

= 2π

M/2−1∑

m=−M/2

K∑

k=0

L∑

l=0

|ψ̂kml|2 =
2π

M

K+M/2∑

j=0

M−1∑

s=0

L∑

p=0

|ψjsp|2ωjωzp.
(6.144)

Then the second-order time-splitting generalized-Laguerre-Fourier-Hermite pseu-
dospectral (TSGLFHP2) method for the GPE (6.89) with d = 3 is as follows:
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Let ψ0
jsp = ψ0(rj , θs, zp) for 0 ≤ j ≤ K +M/2, 0 ≤ s ≤ M − 1 and 0 ≤ p ≤ L.

For n = 0, 1, · · · , we compute ψn+1
jsp by [35]

ψ
(1)
jsp = e−iτ [W (rj ,θs,zp)+β|ψn

jsp|2]/2ψnjsp,

ψ
(2)
jsp =

L∑

l=0


hl(zp)

M/2−1∑

m=−M/2

(
eimθs

K∑

k=0

e−iτ(µkm+λl) (̂ψ(1))kml L
|m|
k (rj)

)
 ,

ψn+1
jsp = e−iτ [W (rj,θs,zp)+β|ψ(2)

jsp|
2]/2ψ

(2)
jsp,

(6.145)

where {(̂ψ(1))kml} are the expansion coefficients of ψ(1) given by (6.143).

6.5. Numerical results. In this section, we report numerical examples for ground
states and central vortex states as well as dynamics for rotating BEC.

Example 6.1. Ground, symmetric and central vortex states, as well as their en-
ergy configurations, in 2D, i.e. we take d = 2 and γx = γy = 1 in (5.7). Fig. 6.1
plots surface of the ground state φg(x, y) := φgΩ(x, y) with β = 100 for differ-
ent Ω. Fig. 6.2 plots the symmetric state φ0(r) := φ00(r) and first three central
vortex states φm(r) := φm0 (r) (m = 1, 2, 3) for different interaction rate β. Back-
ward Euler finite difference method is used here with a bounded computational
domain U = [−6, 6] × [−6, 6] and initial data for GFDN (6.1)-(6.3) is chosen as

φ0(x, y) =
(1−Ω)φho(x,y)+Ωφv

ho(x,y)
‖(1−Ω)φho(x,y)+Ωφv

ho(x,y)‖2
, (x, y) ∈ U , where φvho(x, y) =

x+iy√
π
e−(x2+y2)/2

and φho(x, y) =
1√
π
e−(x2+y2)/2. The steady state solution is obtained numerically

when ‖φn+1 − φn‖∞ := max(j,l) |φn+1
j l − φnj l| < ε = 10−7.

Example 6.2. Dynamics of a rotating BEC in 2D, i.e. we take d = 2, β = 100,
Ω = 0.5 and W (x) ≡ 0 in (6.89). The initial data in (6.89) is chosen as

ψ0(x, y) =
x+ iy√

π
e−(x2+y2)/2, (x, y) ∈ R2. (6.146)

We solve the problem by the scheme (6.140) with τ = 0.0005, M = 128 and K =
200. Fig. 6.3 depicts time evolution of the normalization N(ψ), energy Eβ,Ω(ψ),
condensate width δr(t) and angular momentum expectation 〈Lz〉(t) for three sets
of parameters in (6.89): (i) γx = γy = 2, (ii) γx = γy = 0.8, and (iii) γx = 0.8,
γy = 1.2.

From Fig. 6.3, we can draw the following conclusions: (i) the normalizationN(ψ)
and energy Eβ,Ω(ψ) are conserved well in the computation (cf. Fig. 6.3a&b); (ii) the
angular momentum expectation 〈Lz〉(t) is conserved when γx = γy (cf. Fig. 6.3d),
i.e. the trapping is radially symmetric, which again confirms the analytical results
in section 5.5 ; (iii) the condensate width δr(t) is a periodic function when γx = γy
(cf. Fig. 6.3c), which again confirms the analytical results in section 5.5.

7. Semiclassical scaling and limit. In section 1.3, we have introduced the scal-
ing in the GPE (1.11) to obtain the dimensionless form which has been widely
adopted in physics literatures. For BEC with or without the rotational frame (cf.
section 5), the dimensionless GPE in d-dimensions (d = 1, 2, 3) (lower dimensions
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Figure 6.1. Surface plots of ground state density function
|φgΩ(x, y)|2 in 2D with γx = γy = 1 and β = 100 for different
Ω in Example 6.1.

with d = 1, 2 are treated as from 3D GPE by dimension reduction) can be written
as

i∂tψ(x, t) =

[
−1

2
∇2 + V (x)− ΩLz + β|ψ|2

]
ψ, x ∈ U ⊆ Rd, t > 0, (7.1)
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Figure 6.2. Symmetric and central vortex states in 2D with γx =
γy = 1 for β = 0, 10, 100, 1000, 10000 (in the order of decreasing
of peak) in Example 6.1. Symmetric state φ0(r): a); and central
vortex states φm(r): b). m = 1, c). m = 2 and d). m = 3.

with normalization condition

‖ψ(·, t)‖22 =

∫

Rd

|ψ(x, t)|2 dx = 1, (7.2)

where ψ := ψ(x, t) is the macroscopic wave function, U = [0, 1]d for box potentials,
U = Rd for harmonic potential and other confining potentials (cf. section 1.3),
Lz = −i(y∂x − x∂y) for d = 2, 3, and Ω = 0 for d = 1. The energy E(ψ) for (7.1) is
given by

E(ψ(·, t)) =
∫

U

[
1

2
|∇ψ(x, t)|2 + V (x)|ψ|2 + β

2
|ψ|4 − Ωψ Lzψ

]
dx. (7.3)

The ground state φg of the GPE (7.1) is the minimizer of the energy E(φ) (7.3)
over the unit sphere S = {φ | ‖φ‖2 = 1, E(φ) < ∞}. It can also be characterized
by the nonlinear eigenvalue problem:

µ φ(x) = −1

2
∆φ(x) + V (x)φ(x) − ΩLzφ+ β|φ(x)|2φ(x), x ∈ U, (7.4)

φ(x)|∂U = 0,

under the normalization condition (7.2) with ψ = φ. Here, the nonlinear eigenvalue
(or chemical potential) µ can be computed from its corresponding eigenfunction
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Figure 6.3. Time evolution of a few quantities for the dynamics
of rotating BEC in 2D with three sets of parameters: (a) normal-
ization N(ψ), (b) energy Eβ,Ω(ψ), (c) condensate width δr(t), and
(d) angular momentum expectation 〈Lz〉(t).

φ(x) by

µ = µ(φ) =

∫

U

[
1

2
|∇φ(x)|2 + V (x)|φ(x)|2 + β|φ(x)|4 − ΩφLzφ

]
dx

= E(φ) +

∫

U

β

2
|φ(x)|4dx. (7.5)

7.1. Semiclassical scaling in the whole space. When U = Rd, β � 1 and
V (x) = V0(x) +W (x) satisfies

V0(λx) = |λ|αV0(x), ∀λ ∈ R, lim
|x|→∞

V0(x) = ∞, lim
|x|→∞

W (x)

V0(x)
= 0, (7.6)

where x ∈ Rd and α > 0, another scaling (under the normalization (7.2) with
ψ being replaced by ψε) – semiclassical scaling – for (7.1) is also very useful in
practice by choosing, t→ tε(α−2)/(α+2), x → xε−2/(2+α), and ψ = ψε εd/(2+α) with
ε = 1/β(α+2)/2(d+α) [47, 28, 24]:

iε
∂ψε(x, t)

∂t
=

[
−ε

2

2
∇2 − ε

2α
2+αΩLz

]
ψε + (V0(x) +W ε(x))ψε + |ψε|2ψε, x ∈ Rd,

(7.7)
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where W ε(x) = ε2α/(2+α)W (x/ε2/(2+α)) and the energy functional Eε(ψε) is de-
fined as

Eε(ψε) =

∫

Rd

[
ε2

2
|∇ψε|2 − ε

2α
2+αΩψεLzψ

ε + (V0 +W ε)|ψε|2 + |ψε|4
2

]
dx = O(1).

(7.8)
Similarly, the nonlinear eigenvalue problem (7.4) (under the normalization (7.2)

with ψ = φε) reads

µεφε(x) = −ε
2

2
∆φε + (V0(x) +W ε(x))φε − ε

2α
2+αΩLzφ

ε + |φε|2φε, x ∈ Rd, (7.9)

where eigenvalue µε can be computed from its corresponding eigenfunction φε by

µε = µε(φε) = Eε(φε) +
1

2

∫

Rd

|φε|4 dx = O(1). (7.10)

Based on this re-scaling, it is easy to get the leading asymptotics of the energy
functional E(ψ) in (7.3) and the chemical potential (7.5) when β � 1 from this
scaling [47, 28, 24]:

E(ψ) = ε−2α/(2+α)Eε(ψε) = O
(
ε−2α/(2+α)

)
= O

(
βα/(d+α)

)
, (7.11)

µ(φ) = ε−2α/(2+α)µε(φε) = O
(
ε−2α/(2+α)

)
= O

(
βα/(d+α)

)
. (7.12)

In [70, 172], a different rescaling for the nonlinear Schrödinger equation subject to
smooth, lattice-periodic potentials was used in the semiclassical regime. There they
studied Bloch waves dynamics in BEC on optical lattices.

7.2. Semiclassical scaling in bounded domain. When U = (0, 1)d ⊂ Rd is a
bounded domain, β � 1, we use the following scaling (under the normalization
(7.2)) with ψ being replaced by ψε) – semiclassical scaling – for (7.1) by choosing
t→ tε−1, and ψ = ψε with ε = 1/

√
β [24]:

iε
∂ψε(x, t)

∂t
=

[
−ε

2

2
∇2 − ε2ΩLz

]
ψε + V ε(x)ψε + |ψε|2ψε, x ∈ U, (7.13)

where V ε(x) = ε2V (x) and the energy functional Eε(ψε) is defined as

Eε(ψε) =

∫

U

[
ε2

2
|∇ψε|2 − ε2ΩψεLzψ

ε + V ε|ψε|2 + |ψε|4
2

]
dx = O(1). (7.14)

We can derive the leading asymptotics of the energy functional E(ψ) in (7.3) and
the chemical potential (7.5) when β � 1 from this scaling in the bounded domain
case [24]:

E(ψ) = ε−2Eε(ψε) = O
(
ε−2
)
= O(β), (7.15)

µ(φ) = ε−2µε(φε) = O
(
ε−2
)
= O(β). (7.16)

For comparison, Tabs. 7.1 and 7.1 display dimensionless units and several im-
portant quantities to obtain the GPE (7.1) under the standard physical scaling and
(7.7) or (7.13) under the semiclassical scaling for a BEC in the whole space with har-
monic potential (1.13) (ωx = min{ωx, ωy, ωz}) and in a bounded domain with box
potential (1.17), respectively. Again, the dimensionless GPE in lower dimensions
with d = 1, 2 are treated as from 3D GPE by dimension reduction.
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Quantities Physical scaling Semiclassical scaling

time unit ts
1
ωx

1
ωx

length unit xs

√
~

mωx
:= a0

a0
ε1/2

energy unit Es ~ωx
~ωx

ε

wave amplitude unit ψs a
−3/2
0 a

−3/2
0 εd/4

healing length ξh O(β−1/(2+d)) O(ε)

energy Eg O(β2/(d+2)) O(1)

chemical potential µg O(β2/(d+2)) O(1)

Thomas-Fermi radius RTF
g O(β1/(d+2)) O(1)

wave amplitude φmax
g O(β−d/2(d+2)) O(1)

Table 7.1. Comparison of dimensionless units and several impor-

tant quantities under the standard physical scaling and semiclas-

sical scaling. Here ts is time unit, xs is length unit, Es is energy

unit, ψs is wave function unit, where m, ~, as and N are the mass,

Planck constant, s-wave scattering length and total particle num-

ber, respectively (cf. 1.3). ξh is the healing length [151], Eg is

the energy of ground state, µg is the chemical potential of ground

state, RTF
g is the Thomas-Fermi radius of the ground state, φmax

g

is the maximum value of ground state. (a) For a BEC in the whole

space with a harmonic potential (1.13) (ωx = min{ωx, ωy, ωz}), β
is given in (1.40) and ε = 1/β2/(2+d).

Quantities Physical scaling Semiclassical scaling

time unit ts
mL2

~

mL2

~ε2

length unit xs L L

energy unit Es
~
2

mL2
~
2

mε2L2

wave amplitude unit ψs L−3/2 L−3/2

healing length ξh O(β−1/2) O(ε)
energy Eg O(β) O(1)

Chemical potential µg O(β) O(1)
Thomas-Fermi radius RTF

g O(1) O(1)
wave amplitude φmax

g O(1) O(1)

Table 7.1. (Con’t) (b) For a BEC in the box potential (1.17) with
L the size of box potential. β = 4πasN/L and ε = β−1/2.

7.3. Semiclassical limits and geometric optics. Suppose V ε(x) = V0(x) +
W ε(x) in (7.7), and we set

ψε(x, t) =
√
ρε(x, t) exp

(
i

ε
Sε(x, t)

)
, (7.17)
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where ρε = |ψε|2 and Sε are the density and phase of the wave function, respectively.
Inserting (7.17) into the GPE (7.7) and separating real and imaginary parts give
[104, 103, 28, 69, 195, 137]

ρεt + div (ρε ∇Sε) + ΩL̂zρ
ε = 0, (7.18)

Sεt +
1

2
|∇Sε|2 + ρε + V ε(x) + ΩL̂zS

ε =
ε2

2

1√
ρε

∆
√
ρε, (7.19)

where L̂z = (x∂y−y∂x). The equation (7.18) is the transport equation for the atom
density and (7.19) the Hamilton-Jacobi equation for the phase.

By formally passing to the limit ε→ 0 (cf. [102]), we obtain the system

ρ0t + div (ρ0 ∇S0) + ΩL̂zρ
0 = 0, (7.20)

S0
t +

1

2
|∇S0|2 + ρ0 + V0(x) + ΩL̂zS

0 = 0. (7.21)

It is well known that this limit process is only correct in the defocusing case β > 0
before caustic onset, i.e. in time-intervals where the solution of the Hamilton-
Jacobian equation (7.19) coupled with the atom-number conservation equation
(7.18) is smooth. After the breakdown of regularity, oscillations occur, which make

the term ε2

2
1√
ρε

∆
√
ρε at least O(1) such that the validity of the formal limit pro-

cess is destroyed. The limiting behavior after caustics onset is not understood yet
except in 1D case without confinement, see [122]. Also, the focusing case β < 0 is
not fully understood yet.

Furthermore, by defining the current densities

Jε(x, t) = ρε∇Sε = ε Im
[
ψε∇ψε

]
, (7.22)

we can rewrite (7.18)-(7.19) as a coupled Euler system with third-order dispersion
terms [104, 103, 28, 69, 195, 137]

∂tρ
ε + divJε + ΩL̂zρ

ε = 0, (7.23)

∂tJ
ε + div

(
J
ε ⊗ J

ε

ρε

)
+ ρ

ε∇V ε(x) +
1

2
∇ (ρε)2 +ΩL̂zJ

ε =
ε2

4
∇

(
ρ
ε∇2 ln ρε

)
. (7.24)

Letting ε → 0+ in (7.23)-(7.24), formally we get an Euler system coupling
through the pressures [104, 103, 28, 69, 195, 137]

∂tρ
0 + divJ0 +ΩL̂zρ

0 = 0, (7.25)

∂tJ
0 + div

(
J0 ⊗ J0

ρ0

)
+ ρ0∇V0(x) +

1

2
∇
(
ρ0
)2

+ΩL̂zJ
0 = 0, (7.26)

where J0(x, t) = ρ0∇S0. The system (7.25)-(7.26) is a coupled isotropic Euler sys-
tem with quadratic pressure-density constitutive relations in the rotational frame.
The formal asymptotics is supposed to hold up to caustic onset time [103, 104].

8. Mathematical theory and numerical methods for dipolar BEC. In the
last several years, there has been a quest for realizing a novel kind of quantum gases
with the dipolar interaction, acting between particles having a permanent magnetic
or electric dipole moment. In 2005, the first dipolar BEC with 52Cr atoms was
successfully realized in experiments at the Stuttgart University [107]. Later in
2011, a dipolar BEC with 164Dy atoms, whose dipole-dipole interaction is much
stronger than that of 52Cr, was achieved in experiments at the Stanford University
[140]. Very recently in 2012, a dipolar BEC of 168Er atoms has been produced in
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Innsbruck University [8]. These successes of experiments have renewed interests in
theoretically studying dipolar BECs.

8.1. GPE with dipole-dipole interaction. At temperature T much smaller than
the critical temperature Tc, a dipolar BEC is well described by the macroscopic
wave function ψ = ψ(x, t) whose evolution is governed by the 3D Gross-Pitaevskii
equation (GPE) [190, 164, 49]

i~∂tψ(x, t) =

[
− ~2

2m
∇2 + V (x) + g|ψ|2 +

(
Vdip ∗ |ψ|2

)]
ψ, x ∈ R3, t > 0, (8.1)

where x = (x, y, z)T ∈ R3 is the Cartesian coordinate and a harmonic trap potential

V (x) is considered here. g = 4π~2as
m describes local (or short-range) interaction

between dipoles in the condensate with as the s-wave scattering length. The long-
range dipolar interaction potential between two dipoles is given by

Vdip(x) =
µ0µ

2
dip

4π

1− 3(x · n)2/|x|2
|x|3 =

µ0µ
2
dip

4π

1− 3 cos2(θ)

|x|3 , x ∈ R3, (8.2)

where µ0 is the vacuum magnetic permeability, µdip is permanent magnetic dipole
moment (e.g. µdip = 6µB for 52Cr with µB being the Bohr magneton), n =
(n1, n2, n3)

T ∈ R3 is the dipole axis (or dipole moment) which is a given unit

vector, i.e. |n| =
√
n2
1 + n2

2 + n3
3 = 1, and θ is the angle between the dipole axis n

and the vector x. The wave function is normalized according to

‖ψ‖22 :=
∫

R3

|ψ(x, t)|2 dx = N, (8.3)

where N is the total number of dipolar particles in the dipolar BEC.
By introducing the dimensionless variables, t → t

ω0
with ω0 = min{ωx, ωy, ωz},

x → xsx with xs =
√

~

mω0
, ψ →

√
Nψ

x
3/2
s

, we obtain the dimensionless GPE in 3D

from (8.1) as :

i∂tψ(x, t) =

[
−1

2
∇2 + V (x) + β|ψ|2 + λ

(
Udip ∗ |ψ|2

)]
ψ, x ∈ R3, t > 0, (8.4)

where β = Ng
~ω0x3

s
= 4πasN

xs
, λ =

mNµ0µ
2
dip

3~2xs
, V (x) = 1

2 (γ
2
xx

2 + γ2yy
2 + γ2zz

2) is the

dimensionless harmonic trapping potential with γx = ωx

ω0
, γy =

ωy

ω0
and γz = ωz

ω0
,

and the dimensionless long-range dipolar interaction potential Udip(x) is given as

Udip(x) =
3

4π

1− 3(x · n)2/|x|2
|x|3 =

3

4π

1− 3 cos2(θ)

|x|3 , x ∈ R3. (8.5)

Although the kernel Udip is highly singular near the origin, the convolution is well-
defined for ρ ∈ Lp(R3) with Udip ∗ ρ ∈ Lp(R3) for p ∈ (1,∞) [70].

Denote the differential operators ∂n = n · ∇ and ∂nn = ∂n∂n, and notice the
identity [23]

Udip(x) =
3

4π|x|3
(
1− 3(x · n)2

|x|2
)

= −δ(r)− 3∂nn

(
1

4π|x|

)
, x ∈ R3, (8.6)
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we can re-formulate the GPE (8.4) as the following Gross-Pitaevskii-Poisson system
(GPPS) [23, 18, 65]

i∂tψ(x, t) =

[
−1

2
∇2 + V (x) + (β − λ)|ψ|2 − 3λ∂nnϕ

]
ψ, x ∈ R3, t > 0, (8.7)

∇2ϕ(x, t) = −|ψ(x, t)|2, x ∈ R3, lim
|x|→∞

ϕ(x, t) = 0, t ≥ 0. (8.8)

The above GPPS in 3D conserves the mass, or the normalization condition,

N(ψ(·, t)) := ‖ψ(·, t)‖22 =

∫

R3

|ψ(x, t)|2 dx ≡
∫

R3

|ψ(x, 0)|2 dx = 1, t ≥ 0, (8.9)

and energy per particle with ϕ = 1
4π|x| ∗ |ψ|2,

E3D(ψ) =

∫

R3

[
1

2
|∇ψ|2 + V (x)|ψ|2 + β − λ

2
|ψ|4 + 3λ

2
|∂n∇ϕ|2

]
dx. (8.10)

From (8.6), it is straightforward to get the Fourier transform of Udip(x) as

(̂Udip)(ξ) = −1 +
3 (n · ξ)2

|ξ|2 , ξ ∈ R3. (8.11)

8.2. Dimension reduction. In many physical experiments of dipolar BECs, the
condensates are confined with strong harmonic trap in one or two axis directions,
resulting in a disk- or cigar-shaped dipolar BEC, respectively. Mathematically
speaking, this corresponds to the anisotropic potentials V (x) of the form:

Case I (disk-shaped), potential is strongly confined in vertical z direction with

V (x) = V2(x, y) +
z2

2ε4
, x ∈ R3, (8.12)

Case II (cigar-shaped), potential is strongly confined in horizontal x⊥ = (x, y)T ∈
R2 plane with

V (x) = V1(z) +
x2 + y2

2ε4
, x ∈ R3, (8.13)

where 0 < ε� 1 (ε = 1/γz in Case I and ε = 1/γr with γx = γy = γr in Case II) is
a small parameter describing the strength of confinement. In such cases, the above
GPPS in 3D can be formally reduced to 2D and 1D, respectively [65].

In Case I, when ε→ 0+, evolution of the solution ψ(x, t) of GPPS (8.7)-(8.8) in

z-direction would essentially occur in the ground state mode of − 1
2∂zz +

z2

2ε4 , which

is spanned by wε(z) = ε−1/2π−1/4e−
z2

2ε2 [65, 18]. By taking the ansatz

ψ(x⊥, z, t) = e−it/2ε
2

φ(x⊥, t)wε(z), (x⊥, z)
T = (x, y, z)T ∈ R3, t ≥ 0,

(8.14)
the 3D GPPS (8.7)-(8.8) can be formally reduced to a quasi-2D equation I [65, 18]:

i∂tφ =

[
−1

2
∇2 + V2 + β2D|φ|2 −

3λ

2
(∂n⊥n⊥ − n2

3∇2)ϕ2D

]
φ, (8.15)

where β2D =
β−λ+3λn2

3√
2π ε

, n⊥ = (n1, n2)
T , ∂n⊥ = n⊥ · ∇ = n⊥ · (∂x, ∂y)T , ∂n⊥n⊥ =

∂n⊥(∂n⊥), ∇2 = ∂xx + ∂yy and

ϕ2D(x, y, t) = U2D
ε ∗ |φ|2, U2D

ε (x, y) =
1

2
√
2π3/2

∫

R

e−s
2/2

√
x2 + y2 + ε2s2

ds. (8.16)



MATHEMATICS AND NUMERICS FOR BEC 99

In addition, as ε→ 0+, ϕ2D can be approximated by ϕ2D
∞ [65] as :

ϕ2D
∞ (x⊥, t) = U2D

dip ∗ |φ|2, with U2D
dip(x⊥) =

1

2π|x⊥|
, (8.17)

which can be re-written as a fractional Poisson equation

(−∇2)1/2ϕ2D
∞ (x⊥t) = |φ(x⊥, t)|2, lim

|x⊥|→∞
ϕ2D
∞ (x⊥, t) = 0, t ≥ 0. (8.18)

Thus an alternative quasi-2D equation II can be obtained as:

i∂tφ =

(
−1

2
∇2 + V2 + β2D|φ|2 −

3λ

2
(∂n⊥n⊥ − n2

3∇2)(−∇2)−
1
2 (|φ|2)

)
φ. (8.19)

Similarly, in Case II, evolution of the solution ψ(x, y, z, t) of GPPS (8.7)-(8.8) in
(x, y) plane would essentially occur in the ground state mode of − 1

2 (∂xx + ∂yy) +

x2+y2

2ε4 , which is spanned by wε(x, y) = ε−1π−1/2e−
x2+y2

2ε2 [18, 65]. Again, by taking
the ansatz

ψ(x, y, z, t) = e−it/ε
2

φ(z, t)wε(x, y), t ≥ 0, (8.20)

the 3D GPPS (8.7)-(8.8) can be formally reduced to a quasi-1D equation:

i∂tφ =

[
−1

2
∂zz + V1 + β1D|φ|2 −

3λ(3n2
3 − 1)

8
√
2π ε

∂zzϕ
1D

]
φ, z ∈ R, t > 0, (8.21)

where β1D =
β+ 1

2λ(1−3n2
3)

2πε2 and

ϕ1D(z, t) = U1D
ε ∗ |φ|2, U1D

ε (z) =

√
2ez

2/2ε2

√
π ε

∫ ∞

|z|
e−s

2/2ε2 ds. (8.22)

Remark 8.1. To describe a rotating dipolar BEC, we only need to include the
angular momentum term (5.2) in the dipolar GPE (8.1). Therefore, dimensionless
rotating dipolar GPEs in 3D and quasi-2D regime are straightforward.

8.3. Theory for ground states. In this section, we report results for ground state
of dipolar BECs. Denote unit sphere

S = X ∩
{
u ∈ L2(Rd)

∣∣ ‖u‖L2(Rd) = 1
}
, (8.23)

where X is the energy space associated with corresponding potential (2.6).

8.3.1. 3D case. In 3D, the ground state of GPPS (8.7)-(8.8) is the minimizer of
energy E3D (8.10) over the nonconvex set S [23].

Theorem 8.1. Assume V (x) ≥ 0 for x ∈ R3 and lim
|x|→∞

V (x) = ∞ (i.e., confining

potential) in GPPS (8.7)-(8.8), then we have:
(i) If β ≥ 0 and − 1

2β ≤ λ ≤ β, there exists a ground state φg ∈ S, and the

positive ground state |φg| is unique. Moreover, φg = eiθ0 |φg| for some constant
θ0 ∈ R.

(ii) If β < 0, or β ≥ 0 and λ < − 1
2β or λ > β, there exists no ground state, i.e.,

inf
φ∈S

E3D(φ) = −∞.

By splitting the total energy E3D(·) in (8.10) into kinetic, potential, interaction
and dipolar energies, i.e.

E3D(φ) = Ekin(φ) + Epot(φ) + Eint(φ) + Edip(φ), (8.24)
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where

Ekin(φ) =
1

2

∫

R3

|∇φ(x)|2dx, Epot(φ) =

∫

R3

V (x)|φ(x)|2dx, Eint(φ) =
β

2

∫

R3

|φ(x)|4dx,

Edip(φ) =
λ

2

∫

R3

(
Udip ∗ |φ|2

)
|φ(x)|2dx =

λ

2

∫

R3

|φ(x)|2
[
−|φ(x)|2 − 3∂nnϕ

]
dx (8.25)

=
λ

2

∫

R3

[
−|φ(x)|4 + 3(∇2

ϕ)(∂nnϕ)
]
dx =

λ

2

∫

R3

[
−|φ(x)|4 + 3 |∂n∇ϕ|

2
]
dx,

with ϕ = 1
4π|x| ∗ |φ|2, we have the following Viral identity [23]:

Proposition 8.1. Suppose V (λx) = λ2V (x) for all λ ∈ R and φg is the ground
state of a dipolar BEC, i.e., the minimizer of energy (8.10) under the normalization
constraint (8.9), then we have

2Ekin(φe)− 2Epot(φe) + 3Eint(φe) + 3Edip(φe) = 0. (8.26)

8.3.2. Quasi-2D case I. Associated to the quasi-2D equation I (8.15)-(8.16), the
energy is

E2D(φ) =

∫

R2

[
1

2
|∇φ|2 + V2(x⊥)|φ|2 + β2D|φ|4 −

3λ

4
|φ|2ϕ̃2D

]
dx⊥, φ ∈ X,

(8.27)

where β2D =
β−λ+3λn2

3√
2π ε

and

ϕ̃2D =
(
∂n⊥n⊥ − n2

3∇2
)
ϕ2D, ϕ2D = U2D

ε ∗ |φ|2. (8.28)

The ground state φg ∈ S of (8.15) is the minimizer of the nonconvex minimization
problem [18]:

Find φg ∈ S, such that E2D(φg) = min
φ∈S

E2D(φ). (8.29)

Theorem 8.2. Assume 0 ≤ V2(x⊥) and lim
|x⊥|→∞

V2(x⊥) = ∞, then we have

(i) There exists a ground state φg ∈ S of the system (8.15)-(8.16) if one of the
following conditions holds

(A1) λ ≥ 0 and β − λ > −
√
2πCb ε;

(A2) λ < 0 and β + 1
2 (1 + 3|2n2

3 − 1|)λ > −
√
2πCb ε,

where Cb is given in (2.12).
(ii) The positive ground state |φg| is unique under one of the following conditions:

(A1′) λ ≥ 0 and β − λ ≥ 0;
(A2′) λ < 0 and β + 1

2 (1 + 3|2n2
3 − 1|)λ ≥ 0.

Moreover, any ground state is of the form φg = eiθ0 |φg| for some constant θ0 ∈ R.

(iii) If β + 1
2λ(1− 3n2

3) < −
√
2πCb ε, there exists no ground state of Eq. (8.15).

8.3.3. Quasi-2D case II. Associated to the quasi-2D equation II (8.19), the energy
is

Ẽ2D(φ) =

∫

R2

[
1

2
|∇φ|2 + V2(x⊥)|φ|2 + β2D|φ|4 −

3λ

4
|φ|2ϕ

]
dx, φ ∈ X, (8.30)

where
ϕ(x⊥) =

(
∂n⊥n⊥ − n2

3∇2
)
((−∇2)−1/2|φ|2). (8.31)

The ground state φg ∈ S of the equation (8.19) is defined as the minimizer of the
nonconvex minimization problem:

Find φg ∈ S, such that Ẽ2D(φg) = min
φ∈S

Ẽ2D(φ). (8.32)
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For the above ground state, we have the following results [18].

Theorem 8.3. Assume 0 ≤ V2(x⊥) and lim
|x⊥|→∞

V2(x⊥) = ∞, then we have

(i) There exists a ground state φg ∈ S of the equation (8.19) if one of the following
conditions holds

(B1) λ = 0 and β > −
√
2πCb ε;

(B2) λ > 0, n3 = 0 and β − λ > −
√
2πCb ε;

(B3) λ < 0, n2
3 ≥ 1

2 and β − (1− 3n2
3)λ > −

√
2πCb ε.

(ii) The positive ground state |φg| is unique under one of the following conditions

(B1′) λ = 0 and β ≥ 0;
(B2′) λ > 0, n3 = 0 and β ≥ λ;
(B3′) λ < 0, n2

3 ≥ 1
2 and β − (1 − 3n2

3)λ ≥ 0.

Moreover, any ground state φg = eiθ0 |φg| for some constant θ0 ∈ R.
(iii) There exists no ground state of the equation (8.19) if one of the following

conditions holds

(B1′′) λ > 0 and n3 6= 0;
(B2′′) λ < 0 and n2

3 <
1
2 ;

(B3′′) λ = 0 and β < −
√
2πCb ε.

8.3.4. Quasi-1D case. Associated to the quasi-1D equation (8.21), the energy is

E1D(φ) =

∫

R

[
1

2
|∂zφ|2 + V1(z)|φ|2 +

1

2
β1D|φ|4 +

3λ(1− 3n2
3)

16
√
2π ε

|φ|2ϕ
]
dz, (8.33)

where β1D =
β+ 1

2λ(1−3n2
3)

2πε2 and

ϕ(z) = ∂zz(U
1D
ε ∗ |φ|2), U1D

ε (z) =
2e

z2

2ε2

√
π

∫ ∞

|z|
e−

s2

2ε2 ds. (8.34)

Again, the ground state φg ∈ S of the equation (8.21) is defined as the minimizer
of the nonconvex minimization problem:

Find φg ∈ S, such that E1D(φg) = min
φ∈S

E1D(φ). (8.35)

For the above ground state, we have the following results [18].

Theorem 8.4. (Existence and uniqueness of ground state) Assume 0 ≤ V1(z) and
lim|z|→∞ V1(z) = ∞, for any parameter β, λ and ε, there exists a ground state
φg ∈ S of the quasi-1D equation (8.21)-(8.22), and the positive ground state |φg| is
unique under one of the following conditions:

(C1) λ(1− 3n2
3) ≥ 0 and β − (1− 3n2

3)λ ≥ 0;
(C2) λ(1− 3n2

3) < 0 and β + λ
2 (1− 3n2

3) ≥ 0.

Moreover, φg = eiθ0 |φg| for some constant θ0 ∈ R.

8.4. Well-posedness for dynamics. In this section, we study the well-posedness
for dynamics of dipolar BECs.

8.4.1. 3D case. In 3D, we have the following results for GPPS (8.7)-(8.8) [23].

Theorem 8.5. (Well-posedness) Suppose the real-valued trap potential V (x) ∈
C∞(R3) such that V (x) ≥ 0 for x ∈ R3 and DαV (x) ∈ L∞(R3) for all α ∈
N3

0 with |α| ≥ 2. For any initial data ψ(x, t = 0) = ψ0(x) ∈ X, there exists
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Tmax ∈ (0,+∞] such that the problem (8.7)-(8.8) has a unique maximal solu-
tion ψ ∈ C ([0, Tmax), X). It is maximal in the sense that if Tmax < ∞, then
‖ψ(·, t)‖X → ∞ when t → T−

max. Moreover, the mass N(ψ(·, t)) and energy

E3D(ψ(·, t)) defined in (8.9) and (8.10), respectively, are conserved for t ∈ [0, Tmax).
Specifically, if β ≥ 0 and − 1

2β ≤ λ ≤ β, the solution to (8.7)-(8.8) is global in time,
i.e., Tmax = ∞.

Theorem 8.6. (Finite time blow-up) If β < 0, or β ≥ 0 and λ < − 1
2β or λ > β,

and assume V (x) satisfies 3V (x) + x · ∇V (x) ≥ 0 for x ∈ R3. For any initial data
ψ(x, t = 0) = ψ0(x) ∈ X to the problem (8.7)-(8.8), there exists finite time blow-up,
i.e., Tmax <∞, if one of the following holds:

(i) E3D(ψ0) < 0;

(ii) E3D(ψ0) = 0 and Im
(∫

R3 ψ0(x) (x · ∇ψ0(x)) dx
)
< 0;

(iii) E3D(ψ0) > 0 and Im
(∫

R3 ψ0(x) (x · ∇ψ0(x)) dx
)
< −

√
3E3D(ψ0)‖xψ0‖L2.

8.4.2. Quasi-2D case I. For quasi-2D equation I (8.15)-(8.16), we have the following
results [18].

Theorem 8.7. (Well-posedness of Cauchy problem) Suppose the real-valued trap
potential satisfies V2(x⊥) ≥ 0 for x⊥ ∈ R2 and

V2(x⊥) ∈ C∞(R2) and DkV2(x⊥) ∈ L∞(R2), for all k ∈ N2
0 with |k| ≥ 2,

(8.36)
then we have

(i) For any initial data φ(x⊥, t = 0) = φ0(x⊥) ∈ X, there exists a Tmax ∈
(0,+∞] such that the problem (8.15)-(8.16) has a unique maximal solution φ ∈
C ([0, Tmax), X). It is maximal in the sense that if Tmax <∞, then ‖φ(·, t)‖X → ∞
when t→ T−

max.
(ii) As long as the solution φ(x⊥, t) remains in the energy space X, the L2-norm

‖φ(·, t)‖2 and energy E2D(φ(·, t)) in (8.27) are conserved for t ∈ [0, Tmax).
(iii) Under either condition (A1) or (A2) in Theorem 8.2 with constant Cb being

replaced by Cb/‖φ0‖22, the solution of (8.15)-(8.16) is global in time, i.e., Tmax = ∞.

Theorem 8.8. (Finite time blow-up) For any initial data φ(x⊥, t = 0) = φ0(x⊥) ∈
X with

∫
R2 |x⊥|2|φ0(x⊥)|2 dx⊥ <∞, if conditions (A1) and (A2) with constant Cb

being replaced by Cb/‖φ0‖22 are not satisfied and assume V2(x⊥) satisfies 2V2(x⊥)+
x⊥ · ∇V2(x⊥) ≥ 0, and let φ := φ(x⊥, t) be the solution of the problem (8.15), there
exists finite time blow-up, i.e., Tmax < ∞, if λ = 0, or λ > 0 and n2

3 ≥ 1
2 , and one

of the following holds:
(i) E2D(φ0) < 0;
(ii) E2D(φ0) = 0 and Im

(∫
R2 φ0(x⊥) (x⊥ · ∇φ0(x⊥)) dx⊥

)
< 0;

(iii) E2D(φ0) > 0 and Im
(∫

R2 φ0(x⊥) (x⊥ · ∇φ0(x⊥)) dx⊥
)
< −

√
2E2D(φ0)

‖x⊥φ0‖2.
8.4.3. Quasi-2D case II. For quasi-2D equation II (8.19), noticing the nonlinearity
φ(∂n⊥n⊥−n2

3∇2)((−∇2)−1/2|φ|2) is actually a derivative nonlinearity, it would bring
significant difficulty in analyzing the dynamic behavior. The Cauchy problem of the
Schrödinger equation with derivative nonlinearity has been investigated extensively
in the literatures [115, 125]. We are able to prove the existence results in the energy
space with the special structure of our nonlinearity [18].

Theorem 8.9. (Existence for Cauchy problem) Suppose the real potential V2(x⊥)
satisfies (8.36) and lim|x⊥|→∞ V2(x⊥) = ∞, and initial value φ0(x⊥) ∈ X, either
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condition (B2) or (B3) in Theorem 8.3 holds with constant Cb being replaced by
Cb/‖φ0‖22, then there exists a solution φ ∈ L∞([0,∞);X) ∩W 1,∞([0,∞);X∗) for
the Cauchy problem of (8.19). Here X∗ denotes the dual space of X. Moreover,

there holds for L2 norm and energy Ẽ2D (8.30) conservation, i.e.

‖φ(·, t)‖L2(R2) = ‖φ0‖L2(R2), Ẽ2D(φ(·, t)) ≤ Ẽ2D(φ0), ∀t ≥ 0. (8.37)

Next, we discuss possible finite time blow-up for the continuous solutions of
the quasi-2D equation II (8.19). To this purpose, the following assumptions are
introduced:

(A) Assumption on the trap and coefficient of the cubic term, i.e. V2(x⊥) satisfies

3V2(x⊥) +x⊥ · ∇V2(x⊥) ≥ 0,
β−λ+3λn2

3√
2π ε

≥ − Cb

‖φ0‖2
2
, with φ0 being the initial data of

equation (8.19);
(B) Assumption on the trap and coefficient of the nonlocal term, i.e. V2(x⊥)

satisfies 2V2(x⊥) + x⊥ · ∇V2(x⊥) ≥ 0, λ = 0 or λ > 0 and n2
3 ≥ 1

2 .

Theorem 8.10. (Finite time blow-up) For any initial data φ(x⊥, t = 0) = φ0(x⊥) ∈
X with finite variance δ0V =

∫
R2 |x⊥|2|φ0(x⊥)|2 dx⊥ < ∞, if conditions (B1),

(B2) and (B3) with constant Cb being replaced by Cb/‖φ0‖22 are not satisfied, let
φ := φ(x⊥, t) ∈ C([0, Tmax), X) solution of the problem (8.19) with L2 norm and
energy conservation, then there exists finite time blow-up, i.e., Tmax <∞, if one of
the following condition holds:

(i) Ẽ2D(φ0) < 0, and either Assumption (A) or (B) holds;

(ii) Ẽ2D(φ0) = 0 and Im
(∫

R2 φ0(x⊥) (x⊥ · ∇φ0(x⊥)) dx⊥
)
< 0, and either As-

sumption (A) or (B) holds;

(iii) Ẽ2D(φ0) > 0, and Im
(∫

R2 φ0(x⊥) (x⊥ · ∇φ0(x⊥)) dx⊥
)
< −(3Ẽ0

2D)
1/2δ0V if

Assumption (A) holds, or Im
(∫

R2 φ0(x⊥) (x⊥ · ∇φ0(x⊥)) dx⊥
)
< −(2Ẽ0

2D)
1/2δ0V if

Assumption (B) holds. Here Ẽ0
2D = Ẽ2D(φ0).

8.4.4. Quasi-1D case. Concerning the Cauchy problem, similar results as Theorem
8.7 can be obtained for the equation (8.21) [18].

Theorem 8.11. (Well-posedness for Cauchy problem) Suppose the real-valued trap
potential satisfies V1(z) ≥ 0 for z ∈ R and V1(z) ∈ C∞(R), DkV1(z) ∈ L∞(R)
for all integers k ≥ 2, for any initial data φ(z, t = 0) = φ0(z) ∈ X, there exists
a unique solution φ ∈ C ([0,∞), X) ∩ C1 ([0,∞), X∗) to the Cauchy problem of
equation (8.21).

8.5. Convergence rate of dimension reduction. In this section, we discuss the
dimension reduction of 3D GPPS to lower dimensions. In lower dimensions, we
require that in the quasi-2D case, β = O(ε), λ = O(ε), and in the quasi-1D case,
β = O(ε2), λ = O(ε2), i.e. we are considering the weak interaction regime, then
we would get an ε-independent limiting equation. In this regime, we will see that
GPPS will reduce to a regular GPE in lower dimensions [18].

8.5.1. Reduction to 2D. We consider the weak interaction regime, i.e., β → εβ,
λ → ελ. In Case I (8.12), for full 3D GPPS (8.7)-(8.8), introduce the re-scaling
z → εz, ψ → ε−1/2ψε which preserves the normalization, then

i∂tψ
ε(x⊥, z, t) =

[
HV

x⊥
+

1

ε2
Hz + (β − λ)|ψε|2 − 3ελ∂nεnεϕ

ε

]
ψε, (8.38)
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where x⊥ = (x, y) ∈ R2 and

HV
x⊥

= −1

2
(∂xx + ∂yy) + V2(x, y), Hz = −1

2
∂zz +

z2

2
, (8.39)

nε = (n1, n2, n3/ε), ∂nε = nε · ∇, ∂nεnε = ∂nε(∂nε), (8.40)

(−∂xx − ∂yy −
1

ε2
∂zz)ϕ

ε =
1

ε
|ψε|2, lim

|x|→∞
ϕε(x⊥, z, t) = 0. (8.41)

It is well-known that Hz has eigenvalues µk = k + 1/2 with corresponding eigen-
function wk(z) (k = 0, 1, . . .), where {wk}∞k=0 forms an orthornormal basis of L2(R)

[177], specifically, w0(z) =
1

π1/4 e
−z2/2. It is convenient to consider the initial data

concentrated on the ground mode of Hz, i.e.,

ψε(x⊥, z, 0) = φ0(x⊥)w0(z), φ0 ∈ X(R2) and ‖φ0‖L2(R2) = 1. (8.42)

In Case I (8.12), when ε→ 0+, quasi-2D equation I (8.15), II (8.19) will yield an
ε-independent equation in the weak interaction regime,

i∂tφ(x⊥, , t) = HV
x⊥
φ+

β − (1− 3n2
3)λ√

2π
|φ|2φ, x⊥ = (x, y) ∈ R2, (8.43)

with initial condition φ(x⊥, 0) = φ0(x⊥).

Theorem 8.12. (Dimension reduction to 2D) Suppose V2 satisfies condition (8.36),

−β
2 ≤ λ ≤ β and β ≥ 0, let ψε ∈ C([0,∞);X(R3)) and φ ∈ C([0,∞);X(R2)) be the

unique solutions of equations (8.38)-(8.42) and (8.43), respectively, then for any
T > 0, there exists CT > 0 such that

∥∥∥ψε(x⊥, z, t)− e−i
µ0t

ε2 φ(x⊥, t)w0(z)
∥∥∥
L2(R3)

≤ CT ε, ∀t ∈ [0, T ]. (8.44)

8.5.2. Reduction to 1D. In this case, we again consider the weak interaction regime
β → ε2β, λ→ ε2λ. In Case II (8.13), for the full 3D GPPS (8.7)-(8.8), introducing
the re-scaling x→ εx, y → εy, ψ → ε−1ψε which preserves the normalization, then

i∂tψ
ε(x⊥, z, t) =

[
HV
z +

1

ε2
Hx⊥ + (β − λ)|ψε|2 − 3ελ∂ñεñε

ϕε
]
ψε, (8.45)

where x⊥ = (x, y) ∈ R2, z ∈ R and

HV
z = −1

2
∂zz + V1(z), Hx⊥ = −1

2
(∂xx + ∂yy + x2 + y2), (8.46)

ñε = (n1/ε, n2/ε, n3), ∂ñε
= ñε · ∇, ∂ñεñε

= ∂ñε
(∂ñε

), (8.47)

(− 1

ε2
∂xx −

1

ε2
∂yy − ∂zz)ϕ

ε =
1

ε2
|ψε|2, lim

|x|→∞
ϕε(x⊥, z, t) = 0. (8.48)

Note that the ground state mode of Hx⊥ is given by w0(x)w0(y) with eigenvalue 1,
and the initial data is then assumed to be

ψε(x⊥, z, 0) = φ0(z)w0(x)w0(y), φ0 ∈ X(R) and ‖φ0‖L2(R) = 1. (8.49)

In Case II (8.13), when ε → 0+, the quasi-1D equation (8.21) will lead to an
ε-independent equation in the weak interaction regime,

i∂tφ(z, t) = HV
z φ+

β + 1
2λ(1− 3n2

3)

2π
|φ|2φ, z ∈ R, t > 0, (8.50)

with the initial condition φ(z, 0) = φ0(z).
We can prove the following results [18].
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Theorem 8.13. (Dimension reduction to 1D) Suppose the real-valued trap potential
satisfies V1(z) ≥ 0 for z ∈ R and V1(z) ∈ C∞(R), DkV1(z) ∈ L∞(R) for all

k ≥ 2. Assume −β
2 ≤ λ ≤ β and β ≥ 0, and let ψε ∈ C([0,∞);X(R3)) and

φ ∈ C([0,∞);X(R)) be the unique solutions of the equations (8.45)-(8.49) and
(8.50), respectively, then for any T > 0, there exists CT > 0 such that

∥∥∥ψε(x⊥, z, t)− e−it/ε
2

φ(z, t)w0(x)w0(y)
∥∥∥
L2(R3)

≤ CT ε, ∀t ∈ [0, T ]. (8.51)

8.6. Numerical methods for computing ground states. In this section, we
present efficient and accurate numerical methods for computing ground states of
dipolar BECs, based on the new formulation GPPS (8.7)-(8.8) of dipolar GPE (8.4)
in 3D.

The difficulty of computing dipolar GPE mainly comes from the dipolar term.
In most of the numerical methods used in the literatures for theoretically and/or
numerically studying the ground states of dipolar BECs, the way to deal with the
convolution in (8.4) is usually to use the Fourier transform [157, 189]. However,
due to the high singularity in the dipolar interaction potential (8.5), there are two
drawbacks in these numerical methods: (i) the Fourier transforms of the dipolar
interaction potential (8.5) and the density function |ψ|2 are usually carried out in
the continuous level on the whole space R3 and in the discrete level on a bounded
computational domain U , respectively, and due to this mismatch, there is a locking
phenomena in practical computation as observed in [157]; (ii) the second term in
the Fourier transform of the dipolar interaction potential is 0

0 -type for 0-mode, i.e
when ξ = 0 (see (8.11) for details), and it is artificially omitted when ξ = 0 in
practical computation [157, 191, 189] thus this may cause some numerical problems
too. With formulation (8.7)-(8.8), new numerical methods for computing ground
states and dynamics of dipolar BECs can be constructed, which can avoid the above
two drawbacks and thus they are more accurate than those currently used in the
literatures.

Based on the new mathematical formulation for the energy associated with GPPS
(8.7)-(8.8) in (8.10), we will present an efficient and accurate backward Euler sine
pseudospectral (BESP) method for computing the ground states of a dipolar BEC.

In practice, the whole space problem is usually truncated into a bounded compu-
tational domain U = [a, b]× [c, d]× [e, f ] with homogeneous Dirichlet boundary con-
dition. We adopt the method of gradient flow with discrete normalization (GFDN)
as in section 3: choose a time step τ > 0 and set tn = n τ for n = 0, 1, . . . Applying
the steepest decent method to the energy functional E3D(φ) in (8.10) without the
normalization constraint (8.9), and then projecting the solution back to the unit
sphere S at the end of each time interval [tn, tn+1] in order to satisfy the constraint
(8.9). Then GFDN for computing ground state of the GPPS (8.7)-(8.8) is [23]:

∂tφ(x, t) =

[
1

2
∇2 − V (x) − (β − λ)|φ(x, t)|2 + 3λ∂nnϕ(x, t)

]
φ(x, t), (8.52)

∇2ϕ(x, t) = −|φ(x, t)|2, x ∈ U, tn ≤ t < tn+1, (8.53)

φ(x, tn+1) := φ(x, t+n+1) =
φ(x, t−n+1)

‖φ(·, t−n+1)‖2
, x ∈ U, n ≥ 0, (8.54)

φ(x, t)|x∈∂U = ϕ(x, t)|x∈∂U = 0, t ≥ 0, (8.55)

φ(x, 0) = φ0(x), with ‖φ0‖2 = 1; (8.56)
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where φ(x, t±n ) = lim
t→t±n

φ(x, t).

Let M , K and L be even positive integers and define the index sets

TMKL = {(j, k, l) | j = 1, 2, . . . ,M − 1, k = 1, 2, . . . ,K − 1, l = 1, 2, . . . , L− 1},
T 0
MKL = {(j, k, l) | j = 0, 1, . . . ,M, k = 0, 1, . . . ,K, l = 0, 1, . . . , L}.

Choose the spatial mesh sizes as hx = b−a
M , hy = d−c

K and hz =
f−e
L and define

xj := a+ j hx, yk = c+ k hy, zl = e + l hz, (j, k, l) ∈ T 0
MKL.

Denote the space

YMKL = span{Φjkl(x), (j, k, l) ∈ TMKL},

with

Φjkl(x) = sin
(
µxj (x− a)

)
sin (µyk(y − c)) sin (µzl (z − e)) , x ∈ U, (8.57)

µxj =
πj

b− a
, µyk =

πk

d− c
, µzl =

πl

f − e
, (j, k, l) ∈ TMKL;

and PMKL : Y = {ϕ ∈ C(U) | ϕ(x)|x∈∂U = 0} → YMKL be the standard project
operator, i.e.

(PMKLv)(x) =

M−1∑

p=1

K−1∑

q=1

L−1∑

s=1

v̂pqs Φpqs(x), x ∈ U, ∀v ∈ Y,

with

v̂pqs =

∫

U

v(x) Φpqs(x) dx, (p, q, s) ∈ TMKL. (8.58)

Then a backward Euler sine spectral discretization for (8.52)-(8.56) reads:
Find φn+1(x) ∈ YMKL (i.e. φ+(x) ∈ YMKL) and ϕ

n(x) ∈ YMKL such that

φ+(x)− φn(x)

τ
=− PMKL

{[
V (x) + (β − λ)|φn(x)|2 − 3λ∂nnϕ

n(x)
]
φ+(x)

}

+
1

2
∇2φ+(x), (8.59)

∇2ϕn(x) =− PMKL

(
|φn(x)|2

)
, φn+1(x) =

φ+(x)

‖φ+(x)‖2
, x ∈ U, (8.60)

where n ≥ 0 and φ0(x) = PMKL (φ0(x)) is given.
The above discretization can be solved in phase space and it is not suitable in

practice due to the difficulty of computing the integrals in (8.58). We now present
an efficient implementation by choosing φ0(x) as the interpolation of φ0(x) on the
grid points {(xj , yk, zl), (j, k, l) ∈ T 0

MKL}, i.e. φ0(xj , yk, zl) = φ0(xj , yk, zl) for
(j, k, l) ∈ T 0

MKL, and approximating the integrals in (8.58) by a quadrature rule
on the grid points. Let φnjkl and ϕ

n
jkl be the approximations of φ(xj , yk, zl, tn) and

ϕ(xj , yk, zl, tn), respectively, which are the solutions of (8.52)-(8.56); denote Vjkl =
V (xj , yk.zl), ρ

n
jkl = |φnjkl|2 and choose φ0jkl = φ0(xj , yk, zl) for (j, k, l) ∈ T 0

MKL.

For n = 0, 1, . . ., a backward Euler sine pseudospectral (BESP) discretization for
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(8.52)-(8.56) reads [23]:

φ+jkl − φnjkl
τ

= −
[
Vjkl + (β − λ)

∣∣φnjkl
∣∣2 − 3λ (∂snnϕ

n)|jkl
]
φ+jkl

+
1

2

(
∇2
sφ

+
)∣∣
jkl
, (j, k, l) ∈ TMKL, (8.61)

−
(
∇2
sϕ

n
)∣∣
jkl

= |φnj,k,l|2 = ρnjkl, φn+1
jkl =

φ+jkl
‖φ+‖2

, (j, k, l) ∈ TMKL, (8.62)

φn+1
0kl = φn+1

Mkl = φn+1
j0l = φn+1

jKl = φn+1
jk0 = φn+1

jkL = 0, (j, k, l) ∈ T 0
MKL, (8.63)

ϕn0kl = ϕnMkl = ϕnj0l = ϕnjKl = ϕnjk0 = ϕnjkL = 0, (j, k, l) ∈ T 0
MKL; (8.64)

where ∇2
s and ∂snn are sine pseudospectral approximations of ∇2 and ∂nn, respec-

tively, defined for (j, k, l) ∈ TMKL as

(
∇2
sφ
n
)∣∣
jkl

= −
M−1∑

p=1

K−1∑

q=1

L−1∑

s=1

λpqs(̃φn)pqs sin

(
jpπ

M

)
sin

(
kqπ

K

)
sin

(
lsπ

L

)
,

(∂snnϕ
n)|jkl =

M−1∑

p=1

K−1∑

q=1

L−1∑

s=1

(̃ρn)pqs
(µxp)2 + (µyq )2 + (µzs)2

(∂nnΦpqs(x))|(xj ,yk,zl) , (8.65)

with λpqs = (µxp)
2 + (µyq)

2 + (µzs)
2, (̃φn)pqs ((p, q, s) ∈ TMKL) the discrete sine

transform coefficients of the vector φn for (p, q, s) ∈ TMKl as

(̃φn)pqs =
8

MKL

M−1∑

j=1

K−1∑

k=1

L−1∑

l=1

φ
n
jkl sin

(
jpπ

M

)
sin

(
kqπ

K

)
sin

(
lsπ

L

)
, (8.66)

and the discrete norm is defined as

‖φ+‖22 = hxhyhz

M−1∑

j=1

N−1∑

k=1

L−1∑

l=1

|φ+jkl|2.

Similar as those in section 3.3 (cf. [25]), the linear system (8.61)-(8.64) can be
iteratively solved in phase space very efficiently via discrete sine transform and we
omit the details here for brevity.

8.7. Time splitting scheme for dynamics. Similarly, based on the new Gross-
Pitaevskii-Poisson type system (8.7)-(8.8), we will present an efficient and accurate
time-splitting sine pseudospectral (TSSP) method for computing the dynamics of
a dipolar BEC.

Again, in practice, the whole space problem is truncated into a bounded com-
putational domain U = [a, b]× [c, d]× [e, f ] with homogeneous Dirichlet boundary
condition. From time t = tn to time t = tn+1, the Gross-Pitaevskii-Poisson type
system (8.7)-(8.8) is solved in two steps. One solves first

i∂tψ(x, t) = −1

2
∇2ψ(x, t), x ∈ U, ψ(x, t)|x∈∂U = 0, tn ≤ t ≤ tn+1, (8.67)

for the time step of length τ , followed by solving

i∂tψ(x, t) =
[
V (x) + (β − λ)|ψ(x, t)|2 − 3λ∂nnϕ(x, t)

]
ψ(x, t), (8.68)

∇2ϕ(x, t) = −|ψ(x, t)|2, x ∈ U, tn ≤ t ≤ tn+1; (8.69)

ϕ(x, t)|x∈∂U = 0, ψ(x, t)|x∈∂U = 0, tn ≤ t ≤ tn+1; (8.70)
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for the same time step. Eq. (8.67) will be discretized in space by sine pseudospectral
method and integrated in time exactly. For t ∈ [tn, tn+1], the equations (8.68)-(8.70)
leave |ψ| and ϕ invariant in t and therefore they collapses to

i∂tψ(x, t) =
[
V (x) + (β − λ)|ψ(x, tn)|

2 − 3λ∂nnϕ(x, tn)
]
ψ(x, t), tn ≤ t ≤ tn+1, (8.71)

∇2
ϕ(x, tn) = −|ψ(x, tn)|

2
, x ∈ U. (8.72)

Again, equation (8.72) will be discretized in space by sine pseudospectral method
[47, 167, 168, 23] and the linear ODE (8.71) can be integrated in time exactly.

Let ψnjkl and ϕ
n
jkl be the approximations of ψ(xj , yk, zl, tn) and ϕ(xj , yk, zl, tn),

respectively, which are the solutions of (8.7)-(8.8); and choose ψ0
jkl = ψ0(xj , yk, zl)

for (j, k, l) ∈ T 0
MKL. For n = 0, 1, . . ., a second-order TSSP method for solving

(8.7)-(8.8) via the standard Strang splitting is [23]

ψ
(1)
jkl =

M−1∑

p=1

K−1∑

q=1

L−1∑

s=1

e
−iτ

(µx
p )2+(µ

y
q )2+(µz

r )2

4 (̃ψn)pqs sin

(
jpπ

M

)
sin

(
kqπ

K

)
sin

(
lsπ

L

)
,

ψ
(2)
jkl = e

−iτ
[

V (xj ,yk,zl)+(β−λ)|ψ
(1)
jkl

|2−3λ (∂snn
ϕ(1))|

jkl

]

ψ
(1)
jkl, (j, k, l) ∈ T 0

MKL, (8.73)

ψ
n+1
jkl =

M−1∑

p=1

K−1∑

q=1

L−1∑

s=1

e
−iτ

(µx
p )2+(µ

y
q )2+(µz

r)2

4 (̃ψ(2))pqs sin

(
jpπ

M

)
sin

(
kqπ

K

)
sin

(
lsπ

L

)
;

where (̃ψn)pqs and (̃ψ(2))pqs ((p, q, s) ∈ TMKL) are the discrete sine transform

coefficients of the vectors ψn and ψ(2), respectively (defined similarly as those in

(8.66)); and
(
∂snnϕ

(1)
)∣∣
jkl

can be computed as in (8.65) with ρnjkl = ρ
(1)
jkl := |ψ(1)

jkl|2
for (j, k, l) ∈ T 0

MKL.
The above method is explicit and unconditionally stable. The memory cost is

O(MKL) and the computational cost per time step is O (MKL ln(MKL)).

8.8. Numerical results. In this section, we first compare our new methods and
the standard method used in the literatures [191, 189] to evaluate numerically the
dipolar energy and then report ground states and dynamics of dipolar BECs by
using our new numerical methods.

Case I Case II Case III
DST DFT DST DFT DST DFT

h = 1 2.756E-2 2.756E-2 3.555E-18 1.279E-4 0.1018 0.1020
h = 0.5 1.629E-3 1.614E-3 9.154E-18 1.278E-4 9.788E-5 2.269E-4
h = 0.25 1.243E-7 1.588E-5 7.454E-17 1.278E-4 6.406E-7 1.284E-4

Table 8.1. Comparison for evaluating dipolar energy under dif-
ferent mesh sizes h.

Example 8.1. Comparison of different methods. Let

φ := φ(x) = π−3/4γ1/2x γ1/4z e−
1
2 (γx(x

2+y2)+γzz
2), x ∈ R3. (8.74)
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Then the dipolar energy Edip(φ) in (8.25) can be evaluated analytically as [181]

Edip(φ) = −λγx
√
γz

4π
√
2π





1+2χ2

1−χ2 −
3χ2arctan

(√
χ2−1

)

(1−χ2)
√
χ2−1

, χ > 1,

0, χ = 1,

1+2χ2

1−χ2 − 1.5χ2

(1−χ2)
√

1−χ2
ln

(
1+

√
1−χ2

1−
√

1−χ2

)
, χ < 1,

(8.75)

with χ =
√

γz
γx
. This provides a perfect example to test the efficiency of different nu-

merical methods to deal with the dipolar potential. Based on our new formulation,
the dipolar energy can be evaluated via discrete sine transform (DST) as

Edip(φ) ≈
λhxhyhz

2

M−1∑

j=1

K−1∑

k=1

L−1∑

l=1

|φ(xj , yk, zl)|2
[
−|φ(xj , yk, zl)|2 − 3 (∂snnϕ

n)|jkl
]
,

where (∂snnϕ
n)|jkl is computed as in (8.65) with ρnjkl = |φ(xj , yk, zl)|2 for (j, k, l) ∈

T 0
MKL. In the literatures [191, 189], this dipolar energy is usually calculated via

discrete Fourier transform (DFT) as

Edip(φ) ≈
λhxhyhz

2

M−1∑

j=0

K−1∑

k=0

L−1∑

l=0

|φ(xj , yk, zl)|
2
[
F−1
jkl

(
(̂Udip)(2µ

x
p , 2µ

y
q , 2µ

z
s) · Fpqs(|φ|

2)
)]
,

where F and F−1 are the discrete Fourier and inverse Fourier transforms over the
grid points {(xj , yk, zl), (j, k, l) ∈ T 0

MKL}, respectively [189]. We take λ = 8π/3,
the bounded computational domain U = [−16, 16]3,M = K = L and thus h = hx =

hy = hz = 32
M . Tab. 8.1 lists the errors e :=

∣∣∣Edip(φ)− Ehdip

∣∣∣ with Ehdip computed

numerically via either DST (8.76) or DFT with mesh size h for three cases:

• Case I. γx = 0.25 and γz = 1, χ = 2.0 and Edip(φ) = 0.0386708614;
• Case II. γx = γz = 1, χ = 1.0 and Edip(φ) = 0;

• Case III. γx = 2 and γz = 1, χ =
√
0.5 and Edip(φ) = −0.1386449741.

Example 8.2. Ground states of dipolar BEC. Here we report the ground states of
a dipolar BEC (e.g., 52Cr [150]) with different parameters and trapping potentials
by using the numerical method (8.61)-(8.64). In our computation and results, we
always use the dimensionless quantities. We take M = K = L = 128, time step
τ = 0.01, dipolar direction n = (0, 0, 1)T and the bounded computational domain
U = [−8, 8]3 for all cases except U = [−16, 16]3 for the cases N

10000 = 1, 5, 10 and

U = [−20, 20]3 for the cases N
10000 = 50, 100 in Tab. 8.2. The ground state φg is

reached numerically when ‖φn+1 − φn‖∞ := max
0≤j≤M, 0≤k≤K, 0≤l≤L

|φn+1
jkl − φnjkl | ≤

ε := 10−6 in (8.61)-(8.64). Tab. 8.2 shows the energy Eg := E3D(φg), chemical
potential µg := µ(φg), kinetic energy Egkin := Ekin(φg), potential energy E

g
pot :=

Epot(φg), interaction energy Egint := Eint(φg), dipolar energy Egdip := Edip(φg),

condensate widths σgx := σx(φg) and σgz := σz(φg) in (2.54) and central density
ρg(0) := |φg(0, 0, 0)|2 with harmonic potential V (x, y, z) = 1

2

(
x2 + y2 + 0.25z2

)
for

different β = 0.20716N and λ = 0.033146N with N the total number of particles
in the condensate; and Tab. 8.3 lists similar results with β = 207.16 for different
values of −0.5 ≤ λ

β ≤ 1. In addition, Fig. 8.1 depicts the ground state φg(x), e.g.

surface plots of |φg(x, 0, z)|2 and isosurface plots of |φg(x)| = 0.01, of a dipolar BEC
with β = 401.432 and λ = 0.16β for harmonic potential V (x) = 1

2

(
x2 + y2 + z2

)
,
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double-well potential V (x) = 1
2

(
x2 + y2 + z2

)
+4e−z

2/2 and optical lattice potential

V (x) = 1
2

(
x2 + y2 + z2

)
+ 100

[
sin2

(
π
2x
)
+ sin2

(
π
2 y
)
+ sin2

(
π
2 z
)]
.

N
10000 Eg µg Egkin Egpot Egint Egdip σgx σgz ρg(0)

0.1 1.567 1.813 0.477 0.844 0.262 -0.015 0.796 1.299 0.06139
0.5 2.225 2.837 0.349 1.264 0.659 -0.047 0.940 1.745 0.02675
1 2.728 3.583 0.296 1.577 0.925 -0.070 1.035 2.009 0.01779
5 4.745 6.488 0.195 2.806 1.894 -0.151 1.354 2.790 0.00673
10 6.147 8.479 0.161 3.654 2.536 -0.204 1.538 3.212 0.00442
50 11.47 15.98 0.101 6.853 4.909 -0.398 2.095 4.441 0.00168
100 15.07 21.04 0.082 9.017 6.498 -0.526 2.400 5.103 0.00111

Table 8.2. Different quantities of the ground states of a dipolar
BEC for β = 0.20716N and λ = 0.033146N with different number
of particles N .

λ
β Eg µg Egkin Egpot Egint Egdip σgx σgz ρg(0)

-0.5 2.957 3.927 0.265 1.721 0.839 0.131 1.153 1.770 0.01575
-0.25 2.883 3.817 0.274 1.675 0.853 0.081 1.111 1.879 0.01605
0 2.794 3.684 0.286 1.618 0.890 0.000 1.066 1.962 0.01693

0.25 2.689 3.525 0.303 1.550 0.950 -0.114 1.017 2.030 0.01842
0.5 2.563 3.332 0.327 1.468 1.047 -0.278 0.960 2.089 0.02087
0.75 2.406 3.084 0.364 1.363 1.212 -0.534 0.889 2.141 0.02536
1.0 2.193 2.726 0.443 1.217 1.575 -1.041 0.786 2.189 0.03630

Table 8.3. Different quantities of the ground states of a dipolar
BEC with different values of λβ with β = 207.16.

Example 8.3. Dynamics of a dipolar BEC. Here we compute the dynamics of a
dipolar BEC (e.g., 52Cr [150]) by using our numerical method (8.73). Again, in the
computation and results, we always use the dimensionless quantities. We take the
bounded computational domain U = [−8, 8]2 × [−4, 4], M = K = L = 128, i.e.
h = hx = hy = 1/8, hz = 1/16, time step τ = 0.001. The initial data ψ(x, 0) =
ψ0(x) is chosen as the ground state of a dipolar BEC computed numerically by our
numerical method with n = (0, 0, 1)T , V (x) = 1

2 (x
2 + y2 + 25z2), β = 103.58 and

λ = 0.8β = 82.864.
We study the dynamics of suddenly changing the dipolar direction from n =

(0, 0, 1)T to n = (1, 0, 0)T at t = 0 and keeping all other quantities unchanged.
Fig. 8.2 depicts the time evolution of the energy E3D(t) := E3D(ψ(·, t)), chemical
potential µ(t) = µ(ψ(·, t)), kinetic energy Ekin(t) := Ekin(ψ(·, t)), potential energy
Epot(t) := Epot(ψ(·, t)), interaction energy Eint(t) := Eint(ψ(·, t)), dipolar energy
Edip(t) := Edip(ψ(·, t)), condensate widths σx(t) := σx(ψ(·, t)), σz(t) := σz(ψ(·, t)),
and central density ρ(t) := |ψ(0, t)|2, as well as the isosurface of the density function
ρ(x, t) := |ψ(x, t)|2 = 0.01 for different times.
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Figure 8.1. Surface plots of |φg(x, 0, z)|2 (left column) and iso-
surface plots of |φg(x, y, z)| = 0.01 (right column) for the ground
state of a dipolar BEC with β = 401.432 and λ = 0.16β for har-
monic potential (top row), double-well potential (middle row) and
optical lattice potential (bottom row).

From the above numerical results, we can see that the numerical methods based
on the GPPS (8.7)-(8.8) are much more efficient and accurate than those used in
the literatures based on (8.1).

8.9. Extensions in lower dimensions. Here, we consider the numerical methods
for computing ground states and dynamics for dipolar BECs in 2D and 1D. The
difficulties arise from the nonlocal terms, i.e., the dipolar terms in quasi-2D equation
I (8.15), quasi-2D equation II (8.19) and quasi-1D equation (8.21). It is obvious
that those methods introduced in sections 3 and 4 can be extended here, provided
that the nonlocal terms can be computed properly.
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Figure 8.2. Time evolution of different quantities and isosurface
plots of the density function ρ(x, t) := |ψ(x, t)|2 = 0.01 at different
times for a dipolar BEC when the dipolar direction is suddenly
changed from n = (0, 0, 1)T to (1, 0, 0)T at time t = 0.

We propose to compute the convolution terms in (8.15), (8.19) and (8.21) by
Fourier transform. Unlike the 3D case, there are no singularities for convolution
kernels at origin, thus discrete Fourier transform is accurate in these cases.

Lemma 8.1. (Kernels U2D
ε in (8.16) and U1D

ε (8.22) ) For any real function f(x)
in the Schwartz space S(R2), we have

Û2D
ε ∗ f(ξ) = f̂(ξ) Û2D

ε (ξ) =
f̂(ξ)

π

∫

R

e−ε
2s2/2

|ξ|2 + s2
ds, f ∈ S(R2). (8.76)
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For any g(z) in the Schwartz space S(R), we have

Û1D
ε ∗ g(ξ) = ĝ(ξ)Û1D

ε (ξ) =

√
2 εĝ(ξ)√
π

∫ ∞

0

e−ε
2s/2

|ξ|2 + s
ds, ξ ∈ R. (8.77)

Here f̂ and ĝ denote the Fourier transforms of f and g, respectively.

The Fourier transforms of U2D
ε and U1D

ε can be written in terms of the second
kind Bessel functions [65].

9. Mathematical theory and numerical methods for two component BEC.
In view of potential applications, such as the generation of bright beams of coherent
matter waves (atom laser), a central goal in the study of BEC has been the formation
of condensate with the number of atoms being as large as possible. It is thus of
particular interest to study a scenario where this goal is achieved by uniting two (or
more) independently grown condensates to form one large single condensate. The
first experiment involving the uniting of multiple-component BEC was performed
with atoms evaporatively cooled in the |F = 2,mf = 2〉 and |1,−1〉 spin states
of 87Rb [144]. It demonstrated the possibility of producing long-lived multiple
condensate systems, and that the condensate wave function is dramatically affected
by the presence of inter-component interactions.

9.1. Coupled Gross-Pitaevskii equations. At temperatures T much smaller
than the critical temperature Tc [153], a two-component BEC with an internal
atomic Josephson junction (or an external driving field) can be well described by
the coupled Gross-Pitaevskii equations (CGPEs) [135, 132, 188, 198, 19],

i~∂tψ1 =

[
− ~2

2m
∇2 + V (x) + ~δ + g11|ψ1|2 + g12|ψ2|2

]
ψ1 + λ~ψ2,

i~∂tψ2 =

[
− ~2

2m
∇2 + V (x) + g21|ψ1|2 + g22|ψ2|2

]
ψ2 + λ~ψ1, x ∈ R3.

(9.1)

Here Ψ := Ψ(x, t) = (ψ1(x, t), ψ2(x, t))
T is the complex-valued macroscopic wave

function, V (x) is the real-valued external trapping potential, λ is the effective Rabi
frequency describing the strength to realize the internal atomic Josephson junction
(JJ) by a Raman transition, δ is the Raman transition constant. The interactions

of particles are described by gjl =
4π~2ajl
m with ajl = alj (j, l = 1, 2) being the s-

wave scattering lengths between the jth and lth component (positive for repulsive
interaction and negative for attractive interaction). It is necessary to ensure that
the wave function is properly normalized. Especially, we require

∫

R3

[
|ψ1(x, t)|2 + |ψ2(x, t)|2

]
dx = N = N0

1 +N0
2 , (9.2)

where

N0
j =

∫

R3

|ψj(x, 0)|2dx,

is the particle number of the jth (j = 1, 2) component at time t = 0 and N the
total number of particle in the two-component BEC.

By properly nondimensionalization and dimension reduction, we can obtain the
following dimensionless CGPEs in d-dimensions (d = 1, 2, 3) for a two-component
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BEC [198, 19]

i∂tψ1 =

[
−1

2
∇2 + V (x) + δ + (β11|ψ1|2 + β12|ψ2|2)

]
ψ1 + λψ2, x ∈ Rd,

i∂tψ2 =

[
−1

2
∇2 + V (x) + (β12|ψ1|2 + β22|ψ2|2)

]
ψ2 + λψ1, x ∈ Rd.

(9.3)

Here Ψ := Ψ(x, t) = (ψ1(x, t), ψ2(x, t))
T is the dimensionless complex-valued macro-

scopic wave function, V (x) is the dimensionless real-valued external trapping po-
tential, β11, β12 = β21, β22 are dimensionless interaction constants, δ and λ are
dimensionless constants. In addition, the wave function is normalized as

‖Ψ‖22 :=
∫

Rd

[
|ψ1(x, t)|2 + |ψ2(x, t)|2

]
dx = 1. (9.4)

The dimensionless CGPEs (9.3) conserves the total mass or normalization, i.e.

N(t) := ‖Ψ(·, t)‖2 = N1(t) +N2(t) ≡ ‖Ψ(·, 0)‖2 = 1, t ≥ 0, (9.5)

with

Nj(t) = ‖ψj(x, t)‖22 := ‖ψj(x, t)‖22 =

∫

Rd

|ψj(x, t)|2 dx, t ≥ 0, j = 1, 2, (9.6)

and the energy

E(Ψ) =

∫

Rd

[
1

2

(
|∇ψ1|2 + |∇ψ2|2

)
+ V (x)(|ψ1|2 + |ψ2|2) + δ|ψ1|2 +

1

2
β11|ψ1|4

+
1

2
β22|ψ2|4 + β12|ψ1|2|ψ2|2 + 2λ ·Re(ψ1ψ2)

]
dx. (9.7)

In addition, if there is no internal Josephson junction in (9.3), i.e. λ = 0, the mass
of each component is also conserved, i.e.

N1(t) ≡
∫

Rd

|ψ1(x, 0)|2 dx := α, N2(t) ≡
∫

Rd

|ψ2(x, 0)|2 dx := 1− α, (9.8)

with 0 ≤ α ≤ 1 a given constant.

9.2. Ground states for the case without Josephson junction. If there is no
external driving field in (9.3), i.e. λ = 0, for any given α ∈ [0, 1], the ground state
Φαg (x) = (φα1 (x), φ

α
2 (x))

T of the two-component BEC is defined as the minimizer of
the following nonconvex minimization problem:
Find

(
Φαg ∈ Sα

)
, such that

Eαg := E0

(
Φαg
)
= min

Φ∈Sα

E0 (Φ) , (9.9)

where Sα is a nonconvex set defined as

Sα :=
{
Φ = (φ1, φ2)

T | ‖φ1‖22 = α, ‖φ2‖22 = 1− α, E0(Φ) <∞
}
, (9.10)

and the energy functional E0(Φ) is defined as

E0(Φ) =

∫

Rd

[
1

2

(
|∇φ1|2 + |∇φ2|2

)
+ V (x)(|φ1|2 + |φ2|2) + δ|φ1|2 +

1

2
β11|φ1|4

+
1

2
β22|φ2|4 + β12|φ1|2|φ2|2

]
dx. (9.11)
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Again, it is easy to see that the ground state Φαg satisfies the following Euler-
Lagrange equations,

µ1 φ1 =

[
−1

2
∇2 + V (x) + δ + (β11|φ1|2 + β12|φ2|2)

]
φ1, x ∈ Rd,

µ2 φ2 =

[
−1

2
∇2 + V (x) + (β12|φ1|2 + β22|φ2|2)

]
φ2, x ∈ Rd,

(9.12)

under the two constraints

‖φ1‖22 :=

∫

Rd

|φ1(x)|2 dx = α, ‖φ2‖22 :=

∫

Rd

|φ2(x)|2 dx = 1− α, (9.13)

with µ1 and µ2 being the Lagrange multipliers or chemical potentials corresponding
to the two constraints (9.13). Again, the above time-independent CGPEs (9.12) can
also be obtained from the CGPEs (9.3) with λ = 0 by substituting the ansatz

ψ1(x, t) = e−iµ1tφ1(x), ψ2(x, t) = e−iµ2tφ2(x). (9.14)

Considering the case α ∈ (0, 1) in minimization problem (9.9), denote

β′
11 := αβ11, β′

22 := (1− α)β22, β′
12 :=

√
α(1 − α)β12, α′ := α(1 − α),

and

B =

(
β11 β12
β21 β22

)
, B′ =

(
β′
11 β′

12

β′
21 β′

22

)
.

Then the following conclusions can be drawn [19].

Theorem 9.1. (Existence and uniqueness of (9.9)) Suppose V (x) ≥ 0 satisfying
lim|x|→∞ V (x) = ∞ and at least one of the following condition holds,

(i) d = 1;

(ii) d = 2 and β′
11 ≥ −Cb, β′

22 ≥ −Cb, and β′
12 ≥ −

√
(Cb + β′

11)(Cb + β′
22);

(iii) d = 3 and B is either positive semi-definite or nonnegative,

then there exists a ground state Φg = (φg1 , φ
g
2)
T of (9.9). In addition, Φ̃g :=

(eiθ1 |φg1|, eiθ2 |φg2|) is also a ground state of (9.9) with two constants θ1 and θ2. Fur-
thermore, if the matrix B′ is positive semi-definite, the ground state (|φg1 |, |φg2|)T of
(9.9) is unique. In contrast, if one of the following conditions holds,

(i) d = 2 and β′
11 < −Cb or β′

22 < −Cb or β′
12 < − 1

2
√
α′

(αβ′
11 + (1 − α)β′

22 + Cb);

(ii) d = 3 and β11 < 0 or β22 < 0 or β12 < − 1
2α′ (α

2β11 + (1 − α)2β22).

there exists no ground states of (9.9).

9.3. Ground states for the case with Josephson junction. The ground state
Φg(x) = (φg1(x), φ

g
2(x))

T of the two-component BEC with an internal Josephson
junction (9.3) is defined as the minimizer of the following nonconvex minimization
problem:
Find (Φg ∈ S), such that

Eg := E (Φg) = min
Φ∈S

E (Φ) , (9.15)

where S is a nonconvex set defined as

S :=

{
Φ = (φ1, φ2)

T
∣∣
∫

Rd

(
|φ1(x)|2 + |φ2(x)|2

)
dx = 1, E(Φ) <∞

}
. (9.16)
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It is easy to see that the ground state Φg satisfies the following Euler-Lagrange
equations,

µφ1 =

[
−1

2
∇2 + V (x) + δ + (β11|φ1|2 + β12|φ2|2)

]
φ1 + λφ2, x ∈ Rd,

µ φ2 =

[
−1

2
∇2 + V (x) + (β12|φ1|2 + β22|φ2|2)

]
φ2 + λφ1, x ∈ Rd,

(9.17)

under the constraint

‖Φ‖22 := ‖Φ‖22 =
∫

Rd

[
|φ1(x)|2 + |φ2(x)|2

]
dx = 1, (9.18)

with the eigenvalue µ being the Lagrange multiplier or chemical potential corre-
sponding to the constraint (9.18), which can be computed as

µ = µ(Φ) =

∫

Rd

[
1

2

(
|∇φ1|2 + |∇φ2|2

)
+ V (x)(|φ1|2 + |φ2|2) + δ|φ1|2 + β11|φ1|4

+β22|φ2|4 + 2β12|φ1|2|φ2|2 + 2λ · Re(φ1φ2)
]
dx. (9.19)

In fact, the above time-independent CGPEs (9.17) can also be obtained from the
CGPEs (9.3) by substituting the ansatz

ψ1(x, t) = e−iµtφ1(x), ψ2(x, t) = e−iµtφ2(x). (9.20)

The eigenfunctions of the nonlinear eigenvalue problem (9.17) under the normaliza-
tion (9.18) are usually called as stationary states of the two-component BEC (9.3).
Among them, the eigenfunction with minimum energy is the ground state and those
whose energy are larger than that of the ground state are usually called as excited
states.

It is easy to see that the ground state Φg defined in (9.15) is equivalent to the
following:
Find (Φg ∈ S), such that

E (Φg) = min
Φ∈S

E (Φ) = min
α∈[0,1]

E(α), E(α) = min
Φ∈Sα

E(Φ). (9.21)

Denote

D =
{
Φ = (φ1, φ2)

T |V |φj |2 ∈ L1(Rd), φj ∈ H1(Rd) ∩ L4(Rd), j = 1, 2
}
, (9.22)

then the ground state Φg of (9.15) is also given by the following:
Find (Φg ∈ D1), such that

Eg := E (Φg) = min
Φ∈D1

E (Φ) , (9.23)

where

D1 = D ∩
{
Φ = (φ1, φ2)

T | ‖Φ‖2 =
∫

Rd

(|φ1(x)|2 + |φ2(x)|2) dx = 1

}
. (9.24)

In addition, we introduce the auxiliary energy functional

Ẽ(Φ) =

∫

Rd

{
1

2

(
|∇φ1|2 + |∇φ2|2

)
+
[
V (x)

(
|φ1|2 + |φ2|2

)
+ δ|φ1|2

]
(9.25)

+

(
1

2
β11|φ1|4 +

1

2
β22|φ2|4 + β12|φ1|2|φ2|2

)
− 2|λ| · |φ1| · |φ2|

}
dx,
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and the auxiliary nonconvex minimization problem:
Find (Φg ∈ D1), such that

Ẽ (Φg) = min
Φ∈D1

Ẽ (Φ) . (9.26)

For Φ = (φ1, φ2)
T , we write E(φ1, φ2) = E(Φ) and Ẽ(φ1, φ2) = Ẽ(Φ). Then we

have the following lemmas [19]:

Lemma 9.1. For the minimizers Φg(x) = (φg1(x), φ
g
2(x))

T of the nonconvex mini-
mization problems (9.23) and (9.26), we have

(i). If Φg is a minimizer of (9.23), then φg1(x) = eiθ1 |φg1(x)| and φg2(x) =
eiθ2 |φg2(x)| with θ1 and θ2 two constants satisfying θ1 = θ2 if λ < 0; and θ1 = θ2±π
if λ > 0. In addition, Φ̃g =

(
eiθ3φg1, e

iθ4φg2
)T

with θ3 and θ4 two constants satisfying
θ3 = θ4 if λ < 0; and θ3 = θ4 ± π if λ > 0 is also a minimizer of (9.23).

(ii). If Φg is a minimizer of (9.26), then φg1(x) = eiθ1 |φg1(x)| and φg2(x) =

eiθ2 |φg2(x)| with θ1 and θ2 two constants. In addition, Φ̃g =
(
eiθ3φg1, e

iθ4φg2
)T

with
θ3 and θ4 two constants is also a minimizer of (9.26).

(iii). If Φg is a minimizer of (9.23), then Φg is also a minimizer of (9.26).

(iv). If Φg is a minimizer of (9.26), then Φ̃g = (|φg1|,−sign(λ)|φg2 |)
T

is a mini-
mizer of (9.23).

For the auxiliary minimization problem (9.26), we have the following results
generalizing the single component BEC case in section 2.

Theorem 9.2. (Existence and uniqueness of (9.26) [19]) Suppose V (x) ≥ 0 sat-
isfying lim

|x|→∞
V (x) = ∞, then there exists a minimizer Φ∞ = (φ∞1 , φ

∞
2 )T ∈ D1 of

(9.26) if one of the following conditions holds,

(i) d = 1;
(ii) d = 2 and β11 ≥ −Cb, β22 ≥ −Cb, β12 ≥ −Cb −

√
Cb + β11

√
Cb + β22;

(iii) d = 3 and B is either positive semi-definite or nonnegative,

where Cb is given in (2.12). In addition, if the matrix B is positive semi-definite
and at least one of the parameters δ, λ, γ1 and γ2 are nonzero, then the minimizer
(|φ∞1 |, |φ∞2 |)T is unique.

Combining Theorem 9.2 and Lemma 9.1, we draw the conclusions [19]:

Theorem 9.3. (Existence and uniqueness of (9.15)) Suppose V (x) ≥ 0 satisfying
lim

|x|→∞
V (x) = ∞ and at least one of the following condition holds,

(i) d = 1;
(ii) d = 2 and β11 ≥ −Cb, β22 ≥ −Cb, and β12 ≥ −Cb −

√
Cb + β11

√
Cb + β22;

(iii) d = 3 and B is either positive semi-definite or nonnegative,

there exists a ground state Φg = (φg1 , φ
g
2)
T of (9.15). In addition, Φ̃g := (eiθ1 |φg1 |,

eiθ2 |φg2|) is also a ground state of (9.15) with θ1 and θ2 two constants satisfying
θ1 − θ2 = ±π when λ > 0 and θ1 − θ2 = 0 when λ < 0, respectively. Furthermore,
if the matrix B is positive semi-definite and at least one of the parameters δ, λ,
γ1 and γ2 are nonzero, then the ground state (|φg1|,−sign(λ)|φg2 |)T is unique. In
contrast, if one of the following conditions holds,

(i) d = 2 and β11 < −Cb or β22 < −Cb or β12 < −Cb −
√
Cb + β11

√
Cb + β22 ;

(ii) d = 3 and β11 < 0 or β22 < 0 or β12 < 0 with β2
12 > β11β22;

there exists no ground state of (9.15).
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When either |δ| or |λ| goes to infinity, the two component ground state problem
(9.15) will collapse to a single component ground state problem in section 2 [19].

For fixed β11 ≥ 0 and β22 ≥ 0, when β12 → ∞, the phase of two components of
the ground state Φg = (φg1, φ

g
2)
T will be segregated [63, 66, 92], i.e. Φg will converge

to a state such that φg1 · φg2 = 0.

Remark 9.1. If the potential V (x) in the two equations in (9.3) is chosen to be
different in different equations, i.e. Vj(x) in the jth (j = 1, 2) equation, and they
satisfy Vj(x) ≥ 0, lim

|x|→∞
Vj(x) = ∞ (j = 1, 2), then the conclusions in the above

Lemmas and Theorems 9.2-9.3 are still valid under the similar conditions.

9.4. Dynamical properties. Well-posedness of Cauchy problem of the CGPEs
(9.3) in energy space is quite similar to that of single GPE (cf. section 2), and we
omit the results here. If there is no internal Josephson junction, i.e. λ = 0, the
density of each component is conserved. With an internal Josephson junction, we
have the following lemmas for the dynamics of the density of each component [198]:

Lemma 9.2. Suppose (ψ1(x, t), ψ2(x, t)) is the solution of the CGPEs (9.3) with
potential V (x) + δ for the first component ψ1 replaced by V1(x) and potential V (x)
for the second component ψ2 replaced by V2(x); then we have, for j = 1, 2

N̈j(t) = −2λ2 [2Nj(t)− 1] + Fj(t), t ≥ 0, (9.27)

with initial conditions

Nj(0) = N
(0)
j =

∫

Rd

|ψ0
j (x)|2 dx =

N0
j

N
, (9.28)

Ṅj(0) = N
(1)
j = 2λ

∫

Rd

Im
[
ψ0
j (x)

(
ψ0
kj
(x)
)]

dx; (9.29)

where k1 = 2, k2 = 1 and for t ≥ 0,

Fj(t) = λ

∫

Rd

(
ψjψkj + ψjψkj

) [
Vkj (x) − Vj(x)

−(βjj − βkjj)|ψj |2 + (βkjkj − βjkj )|ψkj |2
]
dx, t ≥ 0.

From this lemma, we have [198]

Lemma 9.3. If δ = 0 and β11 = β12 = β21 = β22 in (9.3), for any initial data
Ψ(x, t = 0) = (ψ0

1(x), ψ
0
2(x))

T , we have, for t ≥ 0,

Nj(t) = ‖ψj(·, t)‖22 =

(
N

(0)
j − 1

2

)
cos(2λt) +

N
(1)
j

2λ
sin(2λt) +

1

2
, j = 1, 2. (9.30)

Thus in this case, the density of each component is a periodic function with period
T = π/|λ| depending only on λ.

9.5. Numerical methods for computing ground states. To find the ground
state, we first present a continuous normalized gradient flow (CNGF) method dis-
cussed in section 3.1 and then propose a GFDN method based on discretization of
CNGF.
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9.5.1. Continuous normalized gradient flow and its discretization. In order to com-
pute the ground state of two-component BEC with an internal Josephson junction
(9.15), we construct the following CNGF [19]:

∂φ1(x, t)

∂t
=

[
1

2
∇2 − V (x)− δ − (β11|φ1|2 + β12|φ2|2)

]
φ1 − λφ2 + µΦ(t)φ1,

∂φ2(x, t)

∂t
=

[
1

2
∇2 − V (x)− (β12|φ1|2 + β22|φ2|2)

]
φ2 − λφ1 + µΦ(t)φ2,

(9.31)

where Φ(x, t) = (φ1(x, t), φ2(x, t))
T and µΦ(t) is chosen such that the above CNGF

is mass or normalization conservative and it is given as

µΦ(t) =
1

‖Φ(·, t)‖22

∫

Rd

[
1

2

(
|∇φ1|2 + |∇φ2|2

)
+ V (x)(|φ1|2 + |φ2|2) + δ|φ1|2

+β11|φ1|4 + β22|φ2|4 + 2β12|φ1|2|φ2|2 + 2λ Re(φ1φ2)

]
dx

=
µ(Φ(·, t))
‖Φ(·, t)‖22

, t ≥ 0. (9.32)

For the above CNGF, we have [19]

Theorem 9.4. For any given initial data

Φ(x, 0) = (φ01(x), φ
0
2(x))

T := Φ(0)(x), x ∈ Rd, (9.33)

satisfying ‖Φ(0)‖22 = 1, the CNGF (9.31) is mass or normalization conservative and
energy diminishing, i.e.

‖Φ(·, t)‖22 ≡ ‖Φ(0)‖22 = 1, E(Φ(·, t)) ≤ E(Φ(·, s)), 0 ≤ s ≤ t. (9.34)

For practical computation, here we also present a second-order in both space
and time full discretization for the above CNGF (9.31). For simplicity of notation,
we introduce the method for the case of one spatial dimension (1D) in a bounded
domain U = (a, b) with homogeneous Dirichlet boundary condition

Φ(a, t) = Φ(b, t) = 0, t ≥ 0. (9.35)

Generalizations to higher dimensions are straightforward for tensor product grids.
Let Φnj = (φn1,j , φ

n
2,j)

T be the numerical approximation of Φ(xj , tn) and Φn be the

solution vector with component Φnj . In addition, denote Φ
n+1/2
j = (φ

n+1/2
1,j , φ

n+1/2
2,j )T

with

φ
n+1/2
l,j =

1

2

(
φn+1
l,j + φnl,j

)
, j = 0, 1, 2, . . . ,M, l = 1, 2. (9.36)
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Then a second-order full discretization for the CNGF (9.31) is given, for j =
1, 2, . . . ,M − 1 and n ≥ 0, as

φn+1
1,j − φn1,j

τ

=
φ
n+1/2
1,j+1 − 2φ

n+1/2
1,j + φ

n+1/2
1,j−1

2h2
−
[
V (xj) + δ − µ

n+1/2
Φ,h

]
φ
n+1/2
1,j − λφ

n+1/2
2,j

− 1

2

[
β11
(
|φn+1

1,j |2 + |φn1,j |2
)
+ β12

(
|φn+1

2,j |2 + |φn2,j |2
)]
φ
n+1/2
1,j ,

φn+1
2,j − φn2,j

τ

=
φ
n+1/2
2,j+1 − 2φ

n+1/2
2,j + φ

n+1/2
2,j−1

2h2
−
[
V (xj)− µ

n+1/2
Φ,h

]
φ
n+1/2
2,j − λφ

n+1/2
1,j

− 1

2

[
β12
(
|φn+1

1,j |2 + |φn1,j |2
)
+ β22

(
|φn+1

2,j |2 + |φn2,j |2
)]
φ
n+1/2
2,j ,

where

µ
n+1/2
Φ,h =

D
n+1/2
Φ,h

h
M−1∑
j=0

(
|φn+1/2

1,j |2 + |φn+1/2
2,j |2

) , n ≥ 0, (9.37)

with

D
n+1/2
Φ,h = h

M−1∑

j=0

{ 2∑

l=1

(
1

2h2
|φn+1/2
l,j+1 − φ

n+1/2
l,j |2 + V (xj)|φn+1/2

l,j |2
)
+ δ|φn+1/2

1,j |2

+
1

2
β11(|φn+1

1,j |2|+ |φn1,j |2)|φ
n+1/2
1,j |2 + 1

2
β22(|φn+1

2,j |2 + |φn2,j |2)|φ
n+1/2
2,j |2

+
1

2
β12

[
(|φn+1

2,j |2 + |φn2,j |2)|φ
n+1/2
1,j |2 + (|φn+1

1,j |2|+ |φn1,j |2)|φ
n+1/2
2,j |2

]

+2λ Re
(
φ
n+1/2
1,j φ

n+1/2

2,j

)}
. (9.38)

The boundary condition (9.35) is discretized as

φn+1
1,0 = φn+1

1,M = φn+1
2,0 = φn+1

2,M = 0, n = 0, 1, 2, . . . . (9.39)

The initial data (9.33) is discretized as

φ01,j = φ01(xj), φ02,j = φ02(xj), j = 0, 1, . . . ,M. (9.40)

In the above full discretization, at every time step, we need to solve a fully nonlinear
system which is very tedious in practical computation. Below we present a more
efficient discretization for the CNGF (9.31) for computing the ground states.

9.5.2. Gradient flow with discrete normalization. Another more efficient way to dis-
cretize the CNGF (9.31) is through the construction of the following GFDN [19]:

∂φ1
∂t

=

[
1

2
∇2 − V (x)− δ − (β11|φ1|2 + β12|φ2|2)

]
φ1 − λφ2,

∂φ2
∂t

=

[
1

2
∇2 − V (x) − (β12|φ1|2 + β22|φ2|2)

]
φ2 − λφ1, t ∈ (tn, tn+1),

(9.41)



MATHEMATICS AND NUMERICS FOR BEC 121

followed by a projection step as

φl(x, tn+1) := φl(x, t
+
n+1) = σn+1

l φl(x , t
−
n+1), l = 1, 2, n ≥ 0, (9.42)

where φl(x, t
±
n+1) = lim

t→t±n+1

φl(x, t) (l = 1, 2) and σn+1
l (l = 1, 2) are chosen such

that

‖Φ(x, tn+1)‖2 = ‖φ1(x, tn+1)‖22 + ‖φ2(x, tn+1)‖22 = 1, n ≥ 0. (9.43)

The above GFDN (9.41)-(9.42) can be viewed as applying the first-order splitting
method to the CNGF (9.31) and the projection step (9.42) is equivalent to solving
the following ordinary differential equations (ODEs)

∂φ1(x, t)

∂t
= µΦ(t)φ1,

∂φ2(x, t)

∂t
= µΦ(t)φ2, tn ≤ t ≤ tn+1, (9.44)

which immediately suggests that the projection constants in (9.42) are chosen as

σn+1
1 = σn+1

2 , n ≥ 0. (9.45)

Plugging (9.45) and (9.42) into (9.43), we obtain

σn+1
1 = σn+1

2 =
1

‖Φ(·, t−n+1)‖2
=

1√
‖φ1(·, t−n+1)‖22 + ‖φ2(·, t−n+1)‖22

, n ≥ 0. (9.46)

Then, BEFD in section 3.2 can be used to discretize the GFDN (9.41)-(9.42) and
we omit the detailed scheme here, as the generalization is straightforward.

9.6. Numerical methods for computing dynamics. To compute dynamics of
a two component BEC, finite difference time domain methods in section 4.2 can be
directly extended to solve the CGPEs (9.3). Here we focus on the time splitting
methods. For n = 0, 1, . . . , from time t = tn = nτ to t = tn+1 = tn+ τ , the CGPEs
(9.3) are solved in three splitting steps [198, 184, 186]. One first solves

i
∂ψj
∂t

= −1

2
∇2ψj , j = 1, 2, (9.47)

for the time step of length τ , followed by solving

i
∂ψj
∂t

= Vj(x)ψj +
2∑

l=1

βjl|ψl|2ψj , j = 1, 2, (9.48)

for the same time step with V1(x) = V (x) + δ and V2(x) = V (x), and then by
solving

i
∂ψ1

∂t
= −λψ2, i

∂ψ2

∂t
= −λψ1, (9.49)

for the same time step. For time t ∈ [tn, tn+1], the ODE system (9.48) leaves
|ψ1(x, t)| and |ψ2(x, t)| invariant in t, and thus it can be integrated exactly to
obtain [33, 31, 47, 48, 196], for j = 1, 2 and t ∈ [tn, tn+1]

ψj(x, t) = ψj(x, tn) exp

[
−i
(
Vj(x) +

2∑

l=1

βjl |ψl(x, tn)|2
)
(t− tn)

]
. (9.50)

For the ODE system (9.49), we can rewrite it as

i
∂Ψ

∂t
= −λAΨ, with A =

(
0 1
1 0

)
and Ψ =

(
ψ1

ψ2

)
. (9.51)
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Figure 9.1. Ground states Φg = (φ1, φ2)
T in Example 9.1 when

δ = 0 and λ = −1 for different β.

Since A is a real and symmetric matrix, it can be diagonalized and integrated
exactly, and then we obtain [15, 198], for t ∈ [tn, tn+1]

Ψ(x, t) = eiλA (t−tn)Ψ(x, tn) =

(
cos (λ(t− tn)) i sin (λ(t− tn))
i sin (λ(t− tn)) cos (λ(t − tn))

)
Ψ(x, tn).

Then, time splitting spectral method introduced in sections 4 and 6 can be applied
to compute the dynamics of the CGPEs (9.3), by a suitable composition of the
above three steps (cf. section 4.1). The detailed scheme is omitted here for brevity.

9.7. Numerical results. In this section, we will report the ground states of (9.15),
computed by our numerical methods.

Example 9.1. Ground states of a two-component BEC with an external driving
field when B is positive definite, i.e. we take d = 1, V (x) = 1

2x
2 and β11 : β12 :

β22 = (1 : 0.94 : 0.97)β in (9.15) [15, 19]. In this case, since λ ≤ 0 and B is positive
definite when β > 0, thus we know that the positive ground state Φg = (φ1, φ2)

T

is unique. In our computations, we take the computational domain U = [−16, 16]
with mesh size h = 1

32 and time step τ = 0.1. The initial data in (9.33) is chosen as

φ01(x) = φ02(x) =
1

π1/4
√
2
e−x

2/2, x ∈ R. (9.52)

Fig. 9.1 plots the ground states Φg when δ = 0 and λ = −1 for different β. Fig. 9.2
shows mass of each component N(φj) = ‖φj‖2 (j = 1, 2), energy E := E(Φg) and
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Figure 9.2. Mass of each component N(φj) = ‖φj‖2 (j = 1, 2),
energy E := E(Φg) and chemical potential µ := µ(Φg) of the
ground states in Example 9.1 when β = 100 and δ = 0, 1 for differ-
ent λ.

chemical potential µ := µ(Φg) of the ground states when β = 100 and δ = 0, 1 for
different λ, and Fig. 9.3 depicts similar results when β = 100 and λ = 0,−5 for
different δ.

10. Perspectives and challenges. So far, we have introduced mathematical re-
sults and numerical methods for ground states and dynamics of a single/two compo-
nent rotating/nonrotating BEC with/without dipole-dipole interactions described
by mean field GPE. Despite these BEC systems, much progress has been made to-
wards realizing other kinds of gaseous BEC, such as spinor condensates, condensates
at finite temperature, Bose-Fermi mixtures, etc. These achievements have brought
great challenges to atomic physics community and scientific computing community
for modeling, simulating and understanding various interesting phenomenons.

10.1. Spin-1 BEC. In earlier BEC experiments, the atoms were confined in mag-
netic trap [12, 86, 59], in which the spin degrees of freedom is frozen. In recent
years, experimental achievement of spin-1 and spin-2 condensates [50, 124] offers
new regimes to study various quantum phenomena that are generally absent in a sin-
gle component condensate. The spinor condensate is achieved experimentally when
an optical trap, instead of a magnetic trap, is used to provide equal confinement for
all hyperfine states.
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Figure 9.3. Mass of each component N(φj) = ‖φj‖2 (j = 1, 2),
energy E := E(Φg) and chemical potential µ := µ(Φg) of the
ground states in Example 9.1 when β = 100 and λ = 0,−5 for
different δ.

The theoretical studies of spinor condensate have been carried out in several pa-
pers since the achievement of it in experiments [115, 129]. In contrast to single com-
ponent condensate, a spin-F (F ∈ N) condensate is described by a generalized cou-
pled GPEs which consists of 2F+1 equations, each governing one of the 2F+1 hyper-
fine states (mF = −F,−F+1, ..., F−1, F ) within the mean-field approximation. For
a spin-1 condensate, at temperature much lower than the critical temperature Tc,
the three-components wave function Ψ := Ψ(x, t) = (ψ1(x, t), ψ0(x, t), ψ−1(x, t))

T

are well described by the following coupled GPEs [124, 36],

i~ ∂tψ1(x, t) =

[
− ~2

2m
∇2 + V (x) + (c0 + c2)

(
|ψ1|2 + |ψ0|2

)
+ (c0 − c2)|ψ−1|2

]
ψ1

+ c2 ψ−1 ψ
2
0 , (10.1)

i~ ∂tψ0(x, t) =

[
− ~2

2m
∇2 + V (x) + (c0 + c2)

(
|ψ1|2 + |ψ−1|2

)
+ c0|ψ0|2

]
ψ0

+ 2c2 ψ−1 ψ0 ψ1, (10.2)

i~ ∂tψ−1(x, t) =

[
− ~2

2m
∇2 + V (x) + (c0 + c2)

(
|ψ−1|2 + |ψ0|2

)
+ (c0 − c2)|ψ1|2

]
ψ−1

+ c2 ψ
2
0 ψ1, x = (x, y, z)T ∈ R3. (10.3)
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Here V (x) is an external trapping potential. There are two atomic collision terms,

c0 = 4π~2

3m (a0+2a2) and c2 = 4π~2

3m (a2−a0), expressed in terms of the s-wave scatter-
ing lengths, a0 and a2, for scattering channel of total hyperfine spin 0 (anti-parallel
spin collision) and spin 2 (parallel spin collision), respectively. The usual mean-field
interaction, c0, is positive for repulsive interaction and negative for attractive inter-
action. The spin-exchange interaction, c2, is positive for antiferromagnetic interac-
tion and negative for ferromagnetic interaction. The wave function is normalized
according to

‖Ψ‖22 :=
∫

R3

|Ψ(x, t)|2 dx =

∫

R3

1∑

l=−1

|ψl(x, t)|2 dx :=

1∑

l=−1

‖ψl‖22 = N, (10.4)

where N is the total number of particles in the condensate. This normalization is
conserved by coupled GPEs (10.1)-(10.3), and so are the magnetization

M(Ψ(·, t)) :=
∫

R3

[
|ψ1(x, t)|2 − |ψ−1(x, t)|2

]
dx ≡M(Ψ(·, 0)) =M (10.5)

and the energy per particle

E(Ψ(·, t)) =

∫

R3

{ 1∑

l=−1

(
~2

2m
|∇ψl|2 + V (x)|ψl|2

)
+ (c0 − c2)|ψ1|2|ψ−1|2

+
c0
2
|ψ0|4 +

c0 + c2
2

[
|ψ1|4 + |ψ−1|4 + 2|ψ0|2

(
|ψ1|2 + |ψ−1|2

)]

+c2

(
ψ−1ψ

2
0ψ1 + ψ−1ψ

2

0ψ1

)}
dx ≡ E(Ψ(·, 0)), t ≥ 0. (10.6)

Then ground states of spin-1 BEC can be defined as the minimizer of energy E
under the normalization and magnetization constraints [36, 45, 26]. In particular,
when the external traps for all the components are the same, ground states for
ferromagnetic and antiferromagnetic spin-1 BECs can be simplified [26]. Generally
speaking, for spin-F BEC, the complicated nonlinear terms in (10.1)-(10.3) lead to
new difficulties for mathematical analysis and numerical simulation [185]. Much
work needs to be done in future, especially when rotational frame and dipole-dipole
interactions are taken into account in spin-F BECs [124].

10.2. Bogoliubov excitation. The theory of interacting Bose gases, developed
by Bogoliubov in 1947, is very useful and important to understand BEC in dilute
atomic gases. One of the key issue is the Bogoliubov excitation.

To describe the condensate, we have the lowest order approximation, i.e., the
Gross-Pitaevskii energy by assuming that all particles are in the ground state. How-
ever, due to the interactions between the atoms, there is a small portion occupying
the excited states. Thus, if a higher order approximation of the ground state en-
ergy is considered, excitations have to be included. Using a perturbation technique,
Bogoliubov has investigated this problem and shown that the excited states of a
system of interacting Bose particles can be described by a system of noninteracting
quasi-particles satisfying the Bogoliubov dispersion relation.

To determine the Bogoliubov excitation spectrum, we consider small perturba-
tions around the ground state of Eq. (1.19). For simplicity we assume a vanishing
harmonic potential V (x) = 0 and homogeneous density ν. A stationary state of the
GPE (1.19) is given by ψ(x, t) = ψ(t) = e−iµt

√
ν with the chemical potential

µ = βν. (10.7)
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Now we add a local perturbation ξ(x, t) to the stationary state ψ(t), that is,
ψ(x, t) = e−iµt[

√
ν + ξ(x, t)]. We expand the perturbation in a plane wave ba-

sis as ξ(x, t) =
∫
R3

(
uqe

i(q·x−ωqt) + vqe
−i(q·x−ωqt)

)
dq and insert ψ(x, t) into Eq.

(1.19). Here, ωq are the excitation frequencies of quasimomentum q and uq, vq are
the mode functions. Keeping terms linear in the excitations uq and vq we find the
Bogoliubov-de Gennes equations

ωquq =
q2

2
uq + νβ(vq + uq),

−ωqvq =
q2

2
vq + νβ(vq + uq).

(10.8)

Then we can find the eigenenergies of Eq. (10.8) by solving the eigenvalue problem.
The resulting Bogoliubov energy EB(q) = ωq is determined by

E2
B(q) =

q2

2

(
q2

2
+ 2βν

)
. (10.9)

When an external potential is considered, the Bogoliubov energy would be more
complicated. In 1999, the Bogoliubov excitation spectrum was observed for the
first time in atomic BEC [173], using light scattering. Later in 2008, observation of
Bogoliubov excitations was announced in exciton-polariton condensates [182]. Such
elementary excitations are crucial in understanding various phenomenon in BEC.

10.3. BEC at finite temperature. The process of creating a BEC in a trap by
means of evaporative cooling starts in a regime covered by the quantum Boltzmann
equation (QBE) and finishes in a regime where the GPE is expected to be valid.
The GPE is capable to describe the main properties of the condensate at very low
temperatures, it treats the condensate as a classical field and neglects quantum
and thermal fluctuations. As a consequence, the theory breaks down at higher
temperatures where the non-condensed fraction of the gas cloud is significant. An
approach which allows the treatment of both condensate and noncondensate parts
simultaneously was developed in [193, 39].

The resulting equations of motion reduce to a generalized GPE for the condensate
wave function coupled with a semiclassical QBE for the thermal cloud:

i~∂tψ(x, t) =

[
− ~2

2m
∇2 + (nc(x, t) + 2n(x, t))g − iR(x, t)

]
ψ,

∂F

∂t
+

p

m
· ∇xF −∇xU · ∇pF = Q(F ) +Qc(F ),

(10.10)

where nc(x, t) = |ψ(x, t)|2 is the condensate density, F := F (x,p, t) describes the
distribution of thermal atoms in the phase space and it gives the particle num-
ber with momentum p at position x and time t in the thermal cloud. n(x, t) =∫
R3 F (x,p, t)/(2π~)

3dp, V (x) is the confining potential and g = 4π~2as/m. The
collision integral Q(F ) is given by

Q(F ) =
2g2

(2π)5~7

∫

R3×R3×R3

δ(p+ p∗ − p′ − p′
∗)× δ(ε + ε∗ − ε′ − ε′∗)

× [(1 + F )(1 + F∗)F
′F ′

∗ − FF∗(1 + F ′)(1 + F ′
∗)] dp∗ dp

′ dp′
∗,

where ε = U(x, t) + p2/2m, U(x, t) = V (x) + 2gnc(x, t) + 2gn(x, t) and δ(·) is the
Dirac distribution. Qc(F ) which describes collisions between condensate and non
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condensate particles is given by

Qc(F ) =
2g2nc
(2π)2~4

∫

R3×R3×R3

δ(mvc + p∗ − p′ − p′
∗)

× δ(εc + ε∗ − ε′ − ε′∗)[δ(p − p∗)− δ(p− p′)− δ(p− p′
∗)]

× [(1 + F∗)F
′F ′

∗ − F∗(1 + F ′)(1 + F ′
∗)] dp∗ dp

′ dp′
∗,

where

εc(x, t) =
1

2
mvc(x, t)

2 + µc(x, t), (10.11)

and vc is the quantum hydrodynamic velocity, µc is the effective potential acting
on the condensate [193, 108]. R(x, t) is then written as

R(x, t) =
~

2nc

∫

R3

Qc(F )

(2π~)3
dp. (10.12)

Note that for low temperatures T → 0 we have n,R → 0 and we recover the
conventional GPE. The system (10.10) is normalized asNc(0) = N0

c andNt(0) = N0
t

with

Nc(t) =

∫

R3

|ψ(x, t)|2 dx, Nt(t) =

∫

R3

|n(x, t)|2dx, t ≥ 0, (10.13)

where N0
c and N0

t are the number of particles in the condensate and thermal cloud
at time t = 0, respectively. It is easy to see from the equations (10.10) that the
total number of particles defined as Ntotal(t) = Nc(t)+Nt(t) = N0

total = N0
c +N

0
t is

conserved. For this set of equations, the GPE part can be solved efficiently, and the
main trouble comes from the Boltzmann equation part. Alternatively, projected
GPE model is also used for simulating BEC at finite temperature [85, 87].
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