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Abstract

In recent years, the great success of Wikipedia and the progress in information extraction

techniques led to automatic construction of large scale knowledge bases which have

Subject-Predicate-Object style facts extracted from both semi-structured and natural

language text of Wikipedia articles. Those knowledge bases consist of millions of entities,

relations about them and their semantic types. Unfortunately, most of the current

knowledge bases focus on static facts and ignore their temporal dimension, although,

the vast majority of facts are evolving with time and are valid during a particular time

period.

In this thesis, we introduce a complete information extraction framework which harvests

temporal facts and events from semi-structured and free text of Wikipedia articles to

enrich a temporal ontology (T-YAGO). Furthermore, this thesis discusses methods for

introducing a temporal dimension to time-agnostic knowledge bases. In addition, several

experiments and evaluations are presented to show the effectiveness of the methods

proposed.
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Chapter 1

Introduction

1.1 Motivation

In recent years, the great success of Wikipedia and the progress in information extrac-

tion techniques led to automatic construction of large scale knowledge bases which have

Subject-Predicate-Object style facts extracted from both semi-structured and natural

language text of Wikipedia articles. DBpedia [ABK+07], KnowItAll[ECD+04b], In-

telligence In Wikipedia [WWA+08], and YAGO [SKW07a] can be given as significant

examples of such knowledge bases. Those machine readable knowledge bases consist of

millions of entities, relations about them and their semantic types. Unfortunately, most

of the current knowledge bases focus on static facts and ignore their temporal dimension,

although, the vast majority of facts are evolving with time and are valid during a partic-

ular time period. For instance, the fact Jacques Chirac holdsPoliticalPosition Pres-

ident of France is less helpful then the fact Jacques Chirac holdsPoliticalPosition

President of France with the temporal scope “17-05-1995, 16-05-2007”.

Introducing a temporal dimension to knowledge bases will lead to many rich applications,

such as visualizing timelines of important people or events, querying the knowledge base

for a certain time interval, capturing the ordering of closeness or relatedness of important

events. Such a rich knowledge base will be a great asset for historians, media analysts,

social researchers, etc.

1.2 Problem Statement

Extraction of static facts is different than extracting temporal facts, since ontologi-

cal temporal facts are higher order facts (facts about facts), whereas, static facts mostly

1



Chapter 1. Introduction 2

stand in binary relations. For instance, the fact Jacques Chirac holdsPoliticalPosition

President of France can be created from free text once the entities Jacques Chirac, Pres-

ident of France are detected and the semantic relation between them is correctly mapped

to the pre-defined relation holdsPoliticalPosition. However, detecting the correct

time period about previous fact, and connecting it to the fact is much harder than

constructing the previous fact, since the temporal scope of previous fact might occur

in many different forms. Moreover, the granularity of date expressions, relative time

expressions, and adverbial phrases makes our job more difficult.

Our goal is to enrich a temporal ontology (T-YAGO)1 via using advanced temporal

fact extraction techniques from semi-structured parts of Wikipedia. We further exploit

T-YAGO as a dictionary to bootstrap the extraction from free text of Wikipedia articles.

1.3 Contributions

We make the following contributions:

1. We define a complete methodology to extract temporal facts from Wikipedia ar-

ticles, so as to create (or enrich) a temporal ontology.

2. We develop an information extraction framework which extracts temporal facts

and events from semi-structured parts of Wikipedia.

3. We introduce an automatic pattern induction method to create patterns and to

rank them based on their frequency statistics.

4. We presented a pattern-based extraction technique to harvest temporal facts from

free text by normalizing explicit dates.

5. We utilize our temporal knowledge base in order to normalize implicit temporal

phrases in free text, which we name as dictionary based temporal information

extraction.

6. We present a novel method to introduce a temporal dimension to already existing

facts.

7. We finally provide experimental results showing the efficiency of our approaches.
1T-YAGO is probably the first work in the line of temporal fact extraction. It extends the YAGO

ontology by introducing new predicates to capture the temporal aspects of existing facts. T-YAGO
contains around 300K temporal facts extracted from semi-structured part of Wikipedia.
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1.4 Outline

The rest of this thesis is organized as follows: In Chapter 2, we give background informa-

tion and discuss the related work. In Chapter 3, we present the data model used in T-

YAGO. Chapter 4 describes the extraction of temporal facts from semi-structured parts

of Wikipedia articles. In Chapter 5, we introduce our pattern-based and dictionary-based

extraction frameworks. Chapter 6 describes the experiments we used for evaluating our

approaches and their results. Finally, in Chapter 7, we summarize our work and propose

directions for future work.





Chapter 2

Background and Related Work

2.1 Knowledge Bases and Ontologies

A knowledge base is a special kind of database for knowledge management, providing

the means for the computerized collection, organization, and retrieval of knowledge.1

Knowledge bases contain a set of data, often in the form of rules that describe the

knowledge in a logically consistent manner.

An ontology is a formal representation of knowledge as a set of concepts and the rela-

tionships between those concepts. Informally, ontologies are the structural frameworks

for the organization of information. An ontology can define the structure of the data of

a knowledge base.

Why an Ontology Is Important?

As the knowledge is formally described in ontologies, ambiguity of concepts is avoided

since entities and classes are unique. In addition to that, all ontologies use a formal

language with specific vocabulary, which enables reasoning. Moreover, ontologies enable

the reuse of the domain knowledge. For example, different domains may need to repre-

sent the notion of time. This representation includes the notions of time intervals, time

points, granularity of time, measures of time, and so on. If there is an ontology which

represents the notion of time in details, then other ontologies can simply reuse it.

There are domain-specific ontologies which are restricted to a certain topic [BCS06,

HL93, Ont08], and also domain-independent ontologies (upper ontologies) which contain

general knowledge about the world [Mil95, Len95, NP01].
1http://en.wikipedia.org/wiki/Knowledge base

5
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Most of the widely employed ontologies are man-made such as [Mil95, Len95, NP01]

requiring huge amount of manual effort and domain experts. Recently, the idea of au-

tomatically creating ontologies from web sources is emerging. The ontologies created

in this way have an acceptable accuracy and contain millions of facts [SKW07a, HSB+,

ABK+07, WW07, WW08]. These ontologies use advanced information extraction meth-

ods to gather high amount of precise facts.

2.2 Information Extraction

Information extraction is the subdiscipline of artificial intelligence that tries to extract

information from semi-structured or un-structured machine readable documents and

store it in a structured way that can be queried directly. Traditionally, information ex-

traction is associated with template based extraction from natural language documents,

which was a popular task of the Message Understanding Conferences (MUC) [Sun92].

MUC was the first large scale effort to encourage research into automatic information

extraction (IE). During Message Understanding Conferences, theregradually arose set

of typical IE tasks:

• Named entity recognition: This is probably one of the most popular IE task

which aims to recognize person names, organizations, locations, date, time, num-

bers, money and percentages.

• Event extraction: The goal of event extraction is recognizing events, their par-

ticipants and their settings. It goes further by linking the individual events in a

story line.

• Coreference resolution: This aims to detect coreference and anaphoric links

between the entities in text. Informally, it aims to determine whether two expres-

sions in natural language text refer to the same entity, person, time, place and

event.

• Relation extraction: The task of relation extraction tries to identify relations

between entities.

From an ontological point of view, information extraction serves for fact extraction. Un-

like manual approaches such as, [Mil95, Len95, NP01], information extraction methods

try to gather facts from text documents in an automatic manner. During the process

of fact extraction, IE approaches use a wide variety of models and methods, including

linguistic, machine learning and rule-based (template-based) approaches [Sar08]. These
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approaches usually start with a given set of target relations and try to extract as many

facts belonging to the relations as possible via bootstrapping the extraction with example

seeds.

DIPRE [Bri99], KnowItAll [ECD+04b], Snowball and its variations [AG00, LNYW10,

ZNL+09] are among the most renowned projects of this type. They harvest manually

specified seed facts (example facts) of a given relation in order to find textual patterns

that can possibly express the relation. Then the best patterns are statistically deter-

mined and applied on the text to find new facts from occurrences of these patterns.

LEILA [SIW06] improved this method via using counter-examples in addition to exam-

ple facts as seeds. TextRunner [YCB+07] is even more ambitious to extract all instances

of all meaningful relations from Web documents, a task called as Open IE or Explorative

IE. SOFIE [SSW09] combines the pattern-based IE methods of LEILA with entity dis-

ambiguation features and ontological consistency constraints to harvest ontological facts

with high precision. PROSPERA [NTW11] goes one step further via introducing notion

of ngram-itemsets for richer patterns which are statistically weighted.

2.2.1 Wikipedia-based IE

Recently, Wikipedia has attracted the attention of information extraction community,

due to its high quality and unique structure. Wikipedia has several attributes that make

it very convenient for information extraction:

URI: Wikipedia assigns a unique identifier for each concept. The URI of an article

only maps to one concept.

Infoboxes: Wikipedia articles have special table-style sections, called infoboxes, which

summarize the important points of an article.

Categories: Each article has a category section which provides membership informa-

tion for the article. An article may have more than one category. Categories are

also grouped into super-categories, forming in this way a hierarchical network.

Disambiguation pages: A disambiguation page provides alternative meanings for an

ambiguous title. Disambiguation pages are valuable resources for the entity dis-

ambiguation task that we have mentioned earlier.

Redirect pages: A redirect page has no content itself, but is a pointer for one term to

another article. Redirect pages are used for synonymy detection.

In this section we have discussed about IE centric approaches to create ontologies.

DBpedia [ABK+07] and YAGO [SKW07a] extensively exploit semi-structured part of
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Wikipedia articles (infoboxes and categories) to construct full-fledged ontologies. Kylin

and Kylin Ontology Generator [WW07, WW08] do not only use semi-structured parts

of Wikipedia but also use freetext of Wikipedia articles to create an ontology.

2.3 Temporal Information and Fact Extraction

Research on information extraction aims to harvest facts from either semi-structured or

unstructured text, such as from Web documents. However, all of the IE work that we

discussed till now focus on static facts encoded as binary relations. In real world, most of

the facts are time-dependent, which results in a new information extraction area, called

temporal fact extraction. Although the idea of temporal information extraction is still

new, equipping facts with temporal information has already attracted lots of attention.

Especially, predominantly temporal sources such as, news archives or Wikipeda create

a fruitful research area for temporal fact extraction.

The closest work on temporal fact extraction is the event extraction task introduced

in TempEval Challenge [VGS+07] workshops and TimeML [PV09]. It basically focuses

on tasks which involve identifying event-time and event-event temporal relations. In

TempEval Challenge, only a restricted set of Allen-style [All83] temporal relations are

used. The state-of-the-art system in the field of temporal information extraction is

TARSQI [VP08] which succeeded in detecting temporal expressions by marking events

and generating temporal associations between times and events. Another system called

TIE [LW10] did not only detect the temporal relationships between times and events,

but also used probabilistic inference so as to bound the time points of the beginning and

the end of each event.

2.3.1 Temporal Expressions

Extracting temporal information from documents requires deep understanding of tem-

poral expressions and their structure. In this section, we present an overview of temporal

expressions.

In [AGBY07], the authors distinguish three classes of temporal expressions:

Explicit: Explicit temporal expressions have an immediate interpretation such as “23

February 1985 ”, December 2003, 1997, etc.

Implicit: Implicit temporal expressions require a background knowledge (a dictionary)

to be interpreted. “Christmas of 2001 ”, Valentine Day of 2002, etc. are examples

for implicit temporal expressions.



Chapter 2. Background and Related Work 9

Relative: These include temporal expressions which require a reference point in order

to be interpreted such as, “yesterday”, last year, next week, etc.

Although this classification seem to be enough, we extend it via adding the notion of

“temporal phrases” which is different than temporal adverbs, such as “last year”, after

two years, etc.

Temporal phrase: In our case, we define a temporal phrase which contains special

events that has to be interpreted, such as “during French Revolution”, after the

Battle of Waterloo, before death of mayor Achille Peretti, etc. The interpretation

of such phrases requires a deep background knowledge. We solve this problem via

creating a large temporal knowledge base which knows events and temporal facts,

and then employing this knowledge base as a dictionary to interpret temporal

phrases.

The extraction of temporal expressions can be separated into an identification phase and

an interpretation phase. In the identification phase, parts of the text that constitute

the temporal expressions are identified. In the interpretation phase, the meaning of the

identified temporal expressions is determined by mapping them onto the timeline. For

relative temporal expressions this includes determining the right temporal anchor and

resolving the temporal expression relative to this anchor. Notice that the separation

into these two phases is only conceptual - actual tools may interleave the two phases or

put more intermediate phases.

2.3.2 TimeML and TARSQI

The state of the art tool for extracting temporal expressions is TARSQI [VP08] which

uses TimeML [PV09] specification language. TIMEML is a markup language to annotate

temporal expressions and event expressions in free text. TimeML annotates temporal

expressions by decorating them with the TIMEX3 tag. Figure 2.1 shows an excerpt from

a news article which is annotated by TARSQI2.

TimeML distinguishes different types of temporal expressions such as DURATION, DATE,

SET, TIME. TARSQI uses the current time as reference time, unless it is provided with

the publication time of the document. The normalized value of a temporal expression

is shown by the VAL attribute.
2Figure is taken from [Ber10]
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In order to have a better understanding of temporal expressions, we conducted a deep

analysis about temporal expression types, resulting in a classification of temporal ex-

pressions, their types, TimeML support, and TARSQI support. This classification can

be found in Appendix A.

It is important to note that the concept of event in the above systems or tasks is differ-

ent from our concept of fact or event. Rather than checking relationships of base facts,

systems like TARSQI or TIE focus on extracting time information either by time-events

or by event-events. Here, events are defined as verb forms with tenses, adjectives, and

nouns that describe the temporal aspects of the events. In the example of “Obama ac-

cepted the award in Oslo last year.”, systems like TARSQI consider the verb “accepted”

to be an event, and adverbial phrase “last year” to be a time point. And they explore

the relation between “accepted” and “last year”, so-called event-time relation. This

task however is very different from our notion of events and temporal facts referring to

entities and relations, which is detailly explained in details in Chapter 4.
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Figure 2.1: New York Times article annotated by using TARSQI





Chapter 3

Data Model

In our work, we need to store extracted temporal facts in a machine-readable knowledge

base which describes the knowledge in a logically consistent manner.

Actually, this is studied under the field of Artificial Intelligence called knowledge repre-

sentation. Knowledge representation aims to form the knowledge in a way that facilitates

reasoning and inferencing from knowledge. Currently, the most common knowledge rep-

resentation model is Resource Description Framework (RDF) which is the underlying

model in many ontological knowledge bases. We used an RDF-style knowledge repre-

sentation model which we name T-YAGO model. T-YAGO model extends the YAGO

model by introducing temporal concepts.

In this section, we first introduce the original RDF model and its variants and then

explain the YAGO model and its differences from RDF. Finally, we will introduce T-

YAGO model which can also represent temporal concepts in an ontology.

3.1 Resource Description Framework-RDF

RDF was designed for describing relationships between resources, using specific vocab-

ularies, so that knowledge models we have in the real world can be better correlated for

information re-use. RDF uses statements about resources in the form of subject-predicite-

object expressions. These expressions are called SPO triples in RDF terminology, or facts

in ontology terminology. The subject denotes the resource, and the predicate expresses

a relationship between the subject and the object. For example, one way to represent

the fact “Albert Einstein is a German scientist” in RDF is as a triple with:

• a subject denoting “Albert Einstein”: Albert Einstein

13
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• a predicate representing “is a” : isA

• and an object denoting “German scientist”: German Scientist

One of the most important aspects of RDF is that everything (people, locations, events,

artifacts, concepts, etc.) is uniquely represented by a resource. Each resource is identified

by a Uniform Resource Identifier (URI).

URI: A URI is a string which follows a certain syntax specification to represent re-

sources, or entities from an ontological point of view. A particular URI can refer

to one and only one entity, whereas an entity can be referred by multiple URIs.

For example, http://mpii.de/yago/Albert Einstein is the URI identifying the en-

tity “Albert Einstein”.

In order to denote facts, RDF uses statements between entities, which can be seen as

binary assertions or relations about entities.

Statement: An RDF statement is an assertion expressing that two a subject and an

object stand in a binary relation represented by a predicate. For example, to state

that Albert Einstein was born in Ulm as an ontological fact, we write the following

statement:

• subject:http://mpii.de/yago/Albert Einstein

• predicate:http://mpii.de/yago/wasBornIn

• object:http://mpii.de/yago/Ulm

For the sake of simplicity, we can omit the URI of the entities when representing

statements. For example, the previous statement can be also represented as:

• Albert Einstein wasBornIn Ulm

For the rest of this thesis, we will omit the URI form of the entities. Note that the

object of a statement can also be a literal instead of an entity.

Literal: A literal is a string that represents a value, which may belong to a particular

data type. For instance, the string “1985 ” represents the date value 1985. Thus,

the fact “Albert Einstein was born on 14-03-1879 ” can be represented as:

• Albert Einstein wasBornOnDate ‘‘14-03-1879 ’’
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Another property that RDF provides us with is to reify statements, ie., to make state-

ments about statements. Formally, each statement is assigned a URI and is treated

as a resource, about which additional statements can be made. For instance, assume

that we want to provide additional information about the fact Albert Einstein was-

BornIn Ulm and we want to say that it is extracted from Wikipedia rather than an

arbitrary web source. First, we should create the URI AlbertEinsteinBornUlm for the

fact Albert Einstein wasBornIn Ulm, then we can reify it as:

• AlbertEinsteinBornUlm wasExtractedFrom Wikipedia.

RDFS: RDF was extended by Resource Description Framework Schema with new spec-

ifications and vocabularies to strengthen the expressiveness of RDF. RDFS[BG04]

allows super classes for entities as well as enables literals to have certain data

types.

For the sake of clarity, hereafter we use noun in plain format to indicate entities, verb

phrases in italic to indicate relation names, and quoted strings to indicate literals.

3.2 The YAGO Model

3.2.1 Introduction

YAGO is a large ontology, which is automatically generated by information extraction

techniques [Suc]. It knows 2 million entities, such as famous people, cities, historical

events, movies, companies, etc. and knows around 20 million facts about these entities.

The knowledge of YAGO is extracted from Wikipedia. YAGO has a systematic approach

to harvest knowledge from infoboxes and categories of Wikipedia articles, in order to

generate a vast amount of highly precise facts. The YAGO extractors use declarative

information extraction approaches by defining rules and heuristics to harvest infoboxes

and categories. YAGO is reported to have around 95% precision which is almost the

same as human quality. In addition to infoboxes and categories, YAGO exploits the

redirect and disambiguation pages of Wikipedia in order to get information about several

meanings and abbreviations of entity names.

YAGO links the information extracted from Wikipedia to the information from Word-

Net [Mil95], in order to create a clean ontological taxonomy. Therefore, each entity is

guaranteed to have a type and each relation is guaranteed to have domain and range

types, which is exploited for a quality control mechanism for facts. YAGO uses canon-

icalization to make each fact and each entity unique in the entire ontology. It further
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ensures type checking to eliminate individuals which do not have a pre-defined YAGO

class. Type checking also verifies the plausability of newly extracted facts which do not

obey the domain and range constraints of their relation.

3.2.2 Knowledge Representation Model

YAGO introduces a novel knowledge representation model which builds on RDFS. It

extends RDFS by giving more importance on reification of statements. The YAGO

model identifies concepts and objects in the knowledge base as entities which have unique

identifiers, just as RDFS does. However, instead of using URIs for describing resources

(entities), YAGO uses simple, local identifiers. It adopts the SPO style of RDF, in order

to represent entities standing in a binary relation. Furthermore, the YAGO model assigns

fact identifiers to every fact. Thus, each fact can stand in a higher order relation, i.e.,

any fact can be subject of another fact via its fact identifier. However, RDFS requires

creating a new URI for a fact which is to be reified. The fact identifiers of YAGO, simply

literals of type Integer, are created automatically during the extraction process and are

locally stored in the knowledge base. The reification of a YAGO fact is shown below:

• #12 Albert Einstein hasWonPrize Nobel Prize in Physics

• #13 #12 happenedOnDate ‘‘1921 ’’

where #12 and #13 represent the fact identifiers of particular facts.

In addition to common entities (classes and all individuals) and fact identifiers, relations

are also classified as entities in the YAGO model. The YAGO relations have pre-defined

names and semantics.

Formally, a YAGO ontology can be described as a reification graph which has entities

as nodes and edges as relations. Edges do not only connect two nodes, but also can

connect a node and an edge or even two edges. Figure 3.1 shows an excerpt of YAGO

RDF graph, where the red nodes represent classes, blue nodes represent individuals and

labeled edges represent relations between entities.

Data Types

Since RDFS uses the data types defined by XML schema, which are machine-oriented

and not always semantically intuitive [BM+01], YAGO introduces its own data types.

YAGO groups all data types, such as Number, String, TimeInterval, Quantity, etc. into

the class literal. These literal classes have subclasses. For example, the TimeInterval
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Figure 3.1: An excerpt of YAGO RDF graph.

Figure 3.2: YAGO data types.

literal class has Date, TimePoint, and Year as subclasses. YAGO literals can be seen

in Figure 3.2. 1

1Figure is taken from [Suc].
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3.3 The T-YAGO Model

The T-YAGO knowledge representation model extends the YAGO model by introducing

the temporal dimension for facts. The T-YAGO model, adopts all the specification of

YAGO model for relations, classes, literals, and statements (facts).

The YAGO model was proven to be very valuable for knowledge exploration and query-

ing. However, it is mostly blind to the temporal dimension of facts. It may store birth

dates and death dates of people, but is largely unaware of the temporal properties of

events. For example, YAGO may store that a particular person is the prime minister of

a particular country, but it does not store the time interval in which this perwon was

prime minister. Since, facts change over time, T-YAGO introduces the concept of tem-

poral facts, as explained in Chapter 1. A temporal fact is a relation with an associated

validity time. It may be valid at a time point or within a time interval.

Although YAGO does not introduce a temporal dimension for facts, its representation

model allows us to represent temporal facts via reification. T-YAGO extensively utilizes

reification in order to represent temporal facts which are higher-order facts.

Higher-order fact: A higher order fact is a statement which contains a fact as the

subject of the statement. Informally, higher order facts are statements about

statements. In order to support the binary relation model of YAGO, T-YAGO

decomposes a higher order fact into a base fact and several associated facts tem-

porally qualifying the base fact. The T-YAGO model assigns a fact identifer to

a base fact, and then the associated facts are represented as the relation between

the identifier and the remaining arguments. For example, the fact “Abdullah Gül

was prime minister of Turkey from 2002 to 2003.” is represented in T-YAGO as

follows:

• #14 Abdullah Gül holdsPoliticalPosition Prime Minister of Turkey

• #15 #14 startedOnDate ‘‘2002 ’’

• #16 #14 endedOnDate ‘‘2003 ’’

where the fact #14 Abdullah Gül holdsPoliticalPosition Prime Minister of Turkey

is the base fact and the others are associated facts temporally qualifying the base

fact.

For higher-order temporal facts T-YAGO uses three temporal relations to show the valid-

ity time of the facts; startedOnDate, endedOnDate, happenedOndate. For the temporal

facts that are valid during a time period, T-YAGO uses startedOnDate to represent
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Figure 3.3: T-YAGO date data type.

the starting point of a time interval and uses endedOnDate for ending point of a time

interval. For the temporal facts valid only at a time point, T-YAGO uses the relation

happenedOnDate.

Apart from higher-order temporal facts, T-YAGO also introduces the notion of binary

temporal facts, in order to avoid the computational complexity of reification. Whenever,

a temporal fact can be represented in a binary relation, T-YAGO prefers this. For

example, the temporal fact “Max Planck Gesellschaft was founded on 1948 ” can be

represented without reification as:

• #17 Max Planck Gesellschaft wasEstablishedOnDate ‘‘1948 ’’

Sometimes it is impossible to extract accurate time points, or sometimes T-YAGO ex-

tractors may only extract the starting or ending point of time of a temporal fact, but

not both. For these situations, the T-YAGO model uses the earliest-latest data type to

extend YAGO’s date literal.

Earliest-latest data type: T-YAGO introduces the earliest-latest data type for time

points with the earliest and latest possible time to constrain the range of the

true time point. The granularity of the date literal, that T-YAGO accepts, is an

exact day, such as 23-12-1985. T-YAGO extractors use place holders for incomplete

data. For example, the fact #18 Max Planck Gesellschaft wasEstablishedOnDate

‘‘1948 ’’ does not obey the T-YAGO date constraints. Thus, the date value

‘‘1948 ’’ is normalized as ‘‘1948-##-## ’’ via introducing place holders. Then,

the fact is stored in T-YAGO knowledge base as #18 Max Planck Gesellschaft

wasEstablishedOnDate [1948-01-01, 1948-12-31] by determining the earliest

and latest bounds of the year 19482.

If we later have an evidence that Max Planck Gesellschaft was founded on 26 February

1948, then the particular date in the fact will be refined as #18 Max Planck Gesellschaft

2However, in the rest of this thesis, we will write temporal facts like as #18 Max Planck Gesellschaft

wasEstablishedOnDate 1948-##-## by omitting the boundary dates for the sake of clearity.
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Figure 3.4: T-YAGO representation of time points and durations. “On Time
Point, Since Time Point, Until Time Point” are associated with the relations

happenedOnDate, startedOnDate, endedOnDate, respectively.

wasEstablishedOnDate [1948-02-26, 1948-02-26]. Figures 3.3 and 3.4 summarize

how T-YAGO represents validity times of facts.

YAGO2

YAGO2 [HSB+] is an extension of the YAGO knowledge base, in which entities, facts,

and events are anchored in both time and space. It is inspired by T-YAGO project to

create a temporal knowledge base. Moreover, it also has the location dimension. YAGO2

is built automatically from Wikipedia, GeoNames, and WordNet. It contains 80 million

facts about 10 million entities with an accuracy of 95% [HSB+]. YAGO2 has a novel

knowledge representation model which is an extension of SPO triple model. The details

about YAGO2 go beyond of this thesis.

Since YAGO2 has a vast amount of precise facts and entities, we utilize it during har-

vesting free text as it is explained in Chapter 5



Chapter 4

Temporal Fact and Event

Extraction from Semi-structured

Text

The temporal fact extraction from Wikipedia consists of two main phases, extraction

from semi-structured text and extraction from free text. The former is accomplished

via harvesting infoboxes and categories of Wikipedia articles, and the latter is achieved

by harvesting free text of Wikipedia articles. As shown in [ABL+07], infoboxes can be

exploited in order to have large amount of precise facts. Moreover, the category pages,

which are lists of articles that belong to a particular category, can be exploited to yield

high number of facts as it is shown in [Kin05]. In this chapter we investigate methods

to harvest infoboxes and categories in a systematic and automatic fashion.

Before diving into the extraction part, we give definitions of temporal facts (simply t-

facts) and events in Section 4.1. Then, we will discuss temporal fact and event extraction

from infoboxes and categories in Section 4.2 and in Section 4.3.

4.1 Definition of T-fact and Event

Definition: A temporal fact is an RDF triple having a relation which has a temporal

value as object. For example the relations such as wasCreatedOnDate, wasBornOn-

Date, publishedOnDate, etc. have temporal value as object of the relation.

Example facts:

21
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• f1: Bob_Marley wasBornOnDate 06-02-1945.

• f2: A_Beautiful_Mind_(book) publishedOnDate 1998-##-##.

• f3: Hagia_Sophia wasCreatedOnDate 537-##-##.

The relations hasWonPrize, playsForTeam, holdsPoliticalPosition, isMarriedTo, etc. do

not have temporal information as objects. However, those relations can be reified with

direct temporal relations such as happenedOnDate, occursSince, occursUntil.

Example facts:

• f11: Arnold_Schwarzenegger holdsPoliticalPosition Governor_of_California.

• f12: f11 occursSince 17-11-2003.

• f13: f11 occursUntil 03-01-2011.

• f33: Orhan_Pamuk hasWonPrize Nobel_Prize_in_Literature.

• f34: f33 happenedOnDate 07-12-2006.

Although there is no universal definiton of event, some examplary definitions can be

given, such as Wordnet which has three different definitions of event:

• something that happens at a given place and time

• a special set of circumstances.

• a phenomenon located at a single point in space-time.

According to the Cambridge English Dictionary, an event is “anything that happens,

especially something important or unusual”. In philosophy, events are objects in time

or instantiations of properties in objects. However, a definite definition has not been

reached, as multiple theories exist concerning events.

In our case we define an event as follows:

Definition: An event is a semantic concept which implies a certain starting or ending

time point of a temporal fact. An event is not explicitly encoded in our knowledge

base. However, we mention it as a semantic notion.
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For example the fact Bob_Marley wasBornOnDate 06-02-1945 implies the Birth Of Bob Marley

which is an event. We take such implications into account during event detection from

free text. We convert some temporal facts into its semantic event, since events frequently

occur in adverbial phrases, such as “after birth of Frank Zappa, before presidency of

Obama, etc.”. (See Chapter 5 for more details)

There is also notion of named event.

Definition: A named event is an entity which has a certain time period or time

point directly attached to itself, such as French Revolution, World War II, Treaty

of Lausanne, FIFA World Cup 2006, 37th G8 summit, 23rd Grammy Awards, etc.

In general, named events are important historical events, such as wars, conferences,

sport events, treaties, etc. Named events are explicitly encoded in T-YAGO, and

their type is T-YAGOEvent. We focus on named events during infobox harvesting,

since most of the articles talking about named events have infoboxes.

4.2 Extraction from Infoboxes

As many systems such as YAGO [SKW07b] and DBpedia [ABK+07] use infoboxes as the

most valuable source of information in Wikipedia articles, we also exploited infoboxes

in the framework of temporal fact extraction. Wikipedia infoboxes are essentially typed

records of attribute-value pairs. Infoboxes usually contain the most significant informa-

tion about the entity described by the article. For example, the infobox of the Wikipedia

article about French Revolution, as in Table 4.1, contains information about the name

of the event, its location, its date, the participants of the event, and more.

A major challenge in harvesting infoboxes is the structural diversity that infoboxes

have. Every infobox object has a related Wikipedia template which renders it into

HTML format. During the evolution of Wikipedia, a large variety of templates has been

used to represent the same or similar information. This results in different types of

infoboxes with different attributes and different units of measurements for representing

equivalent information. There are about 2,500 distinct infobox types and each of them

has about 20 pairs of attribute and value on average [BC10]. However, there is a long

tail in the distribution of the number of occurrences of the infobox types as it is shown in

[BC10]. Thus, it is plausable to take the most popular infobox types into consideration

to generate a set of rules for extraction. In this section, we focus on infoboxes of named

events such as French Revolution, Turkish War of Independence, 2010 FIFA World Cup,

French legislative election, 2007, etc. Our aim is to extract as many named events as

possible from infoboxes. Each infobox has a particular type, such as Historical event,
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{{Infobox Historical event
| Event Name = The French Revolution
| Image Name = Prise de la Bastille.jpg
| Image Caption = The storming of the Bastille, 14 July 1789
| Participants = French society
| Location = [[France]]
| Date start = 1789
| Date end = 1799
| Result = [[Proclamation of the abolition of the monarchy]]
}}
The French Revolution began in 1789 with the convocation of
the [[Estates-General of 1789| Estates-General]] in May.
The first year of the Revolution witnessed members of the [[Third Estate]]
proclaiming the [[Tennis Court Oath]] in June,
the [[Storming of the Bastille | assault on the Bastille]] in July, the passage
of the [[Declaration of the Rights of Man and of the Citizen]] in August, and
an [[The Women’s March on Versailles|epic march]] on [[Versailles]] that forced
the royal court back to [[Paris]] in October.
etc.
[[Category:French Revolution]]
[[Category:18th-century rebellions]]
[[Category:18th-century revolutions]]

Table 4.1: Wikipedia Markup Language

Election, Military conflict, Competition, etc. For example, the infobox in table 4.1 has

type Historical event. These infobox types are useful in order to understand whether

an entity is a named event. In other words, they will be used to construct a particular

fact about the entity via type relation. The infoboxes are harvested by the help of an

attribute map as it is explained in [Suc]. A complete list of named event infoboxes are

shown in Table 6.2.

Definition: Attribute Map

An attribute map is a function which maps an infobox attribute to a pre-defined relation.

An attribute map takes several attributes, such as, date, year started, term start, etc.

and maps each of them to a target relation, such as happenedOnDate, occursSince,

occursUntil. Each relation has a specific domain and range. One attribute maps to

one and only one relation, whereas a relation might have many attributes mapped to it.

The date value of a particular attribute has to be normalized in order to be consistent

with the T-YAGO data model. Moreover, the type of the infobox is checked to identify

whether the entity is a named event. Then, the system will connect the entity to T-

YAGO literal TYAGOEvent via the relation type. Thus, each named event entity will
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have the type TYAGOEvent.Example event facts that can be extracted from an infobox

would be as follows:

• f1: French_Revolution type TYAGOEvent.

• f2: f1 occursSince 1789-##-##.

• f3: f1 occursUntil 1799-##-##.

Algorithm 1 Harvesting Infoboxes for Named Events
1: procedure harvest events(Wikipedia corpus W )
2: F ← ∅, . Facts about named events
3: create set of infobox types T for named events
4: create attribute map A
5: for all w ∈W do . for all articles w
6: if w.hasInfobox()&(w.getInfoboxType() ∈ T ) then
7: entity ← createEntity(w), . create the entity associated to article w
8: fact← createFact(w, type, TY AGOEvent), . create the event fact
9: F ← F ∪ fact, . Store fact

10: for all attributei ∈ w.infobox do . for all attributes in infobox of w
11: if A.contains(attributei) then
12: relation← A.getTargetRelation(attributei) . The target relation is

determined
13: value← parseV alueOf(attributei) . Value of attributei is parsed
14: if value is in range of relation then
15: F ← F ∪ createFact(fact, relation, value) . The event fact is reified with

value and by relation

The process for harvesting event facts from infoboxes is shown in Algorithm 1. The

algorithm traverses all Wikiedia articles. If it detects an infobox, it checks whether the

infobox is in the list of named event infoboxes. If so, then the algorithm creates the

type fact showing that the entity is a named event. Then, it goes through all attributes

of the infobox. For each attribute, it looks up the manually created attribute map to

check whether the attribute is listed in the map 1. If the attribute map contains the

attribute, the algorithm parses the value of the attribute and checks whether it is in

the range of the target relation of the attribute. If the value of the attribute is in the

range of the relation, then the event fact is reified by the target relation and value of

the attribute, which results in another fact. For example, if the infobox in 4.1 is given

to the algorithm, then it will create the event fact

f1: French_Revolution type TYAGOEvent.

by detecting infobox type. Next, the attribute Date_start will be mapped to relation

occursSince which has the range yagoDate.And a regular expression based date parser

is used to parse the value of attribute Date_start to get date 1789-##-## which is in
1See Table 6.2 for list of attributes
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Infobox Type Attribute having the tem-
poral information

Military Conflict date
Election election date
Treaty date signed
Olympic event dates
Historical Event Date
Film released
Football match date
UN resolution date
MMA event date
Wrestling event date
Music festival dates
Awards year
Attack date
Accident dates
Swimming event dates
Competition year
Congress start|end
Tournament fromdate|todate

Table 4.2: Event infobox types and attributes. An attribute map contains all the
attributes of event infoboxes.

the range of yagoDate . Here we use the date parser from [SIW06]. Then, the event

fact f1 is reified with normalized date to create new temporal fact as below.

f2: f1 occursSince 1789-##-##.

4.3 Extraction from Categories

Each Wikipedia article contains a part called categories. All categories form a hierar-

chical structure called Wikipedia Category Graph. Each category may have many

subcategories and articles. A subcategory is created due to a hyphonymy or meronymy

relation. To illustrate, a category named Civil rights movement during the Lyndon B.

Johnson Administration is a subcategory of Civil rights movement. Each article may

link to a number of semantically related categories. For example, the article named

Luso-Chinese agreement is under the category Treaties of the Kingdom of Portugal and

also under the category History of Macau.

In order to gather information from categories of Wikipedia, one could select one or

more top nodes which best describe the information required and then iteratively fetch

the subcategories. However, this approach will fail due to the fact that Wikipedia does
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not impose a crips hierarchical structure[ZG07]. Furthermore, it may have disconnected

or dangling categories, too. Besides the challenges mentioned so far, Wikipedia does not

convey a clear classification of categories. Some categories may occur under unrelated

categories. For instance, the category Low-carbon economy and the category Vehicles

by fuel are under the same category named Electric vehicles.

Among more than 500 thousand categories of Wikipedia, about 70 thousand contain

temporal information, such as Conflicts in 2008, 1997 in international relations, Can-

didates for the French presedential election 2007, etc. (See Figure 3.1.) The problems

mentioned earlier are also valid for temporal categories of Wikipedia. For example, the

article 23rd G8 Summit is under the category 1997 in the United States, 20th Century

Conferences and also under the category History of Denver-Colorado. Therefore, it is

not easy to establish a canonical form of temporal expressions appearing in categories

for harvesting. Moreover, the syntactic structure of categories shows many variations.

Although, many categories include temporal information, they hide this temporal infor-

mation in many forms. This difficulty pushed us to investigate and analyze categories of

Wikipedia so as to declare efficient rules for harvesting temporal categories of Wikipedia.

2010 data dump of Wikipedia contains more than 500K categories. Among those cate-

gories, around 70K categories are heuristically extracted as having temporal information.

The heuristics employed here are types of regular expressions which check each category

whether it has a month, year, or century pattern. The accuracy of these heuristics are

shown in Chapter 6. An analysis of temporal categories showed us that an important

fraction of temporal categories follows some implicit semantic patterns, which allow us

to construct rules in order to extract important temporal facts and events. The analysis

yielded 13 conceptual categories which have important events and are clean enough. To

illustrate, the category 1834 elections in the United States has only the elections held

on 1834 such as, New York gubernatorial election. And the name of the category shows

that it includes named events, basically elections held on 1834. However, the temporal

category History of Poland (1945-1989) contains important people of that era, battles,

disasters, and so on. Therefore, the temporal category History of Poland (1945-1989)

does not contain a certain type of articles, which causes noise during extraction. For

this reason, we developed rules only focus on temporal categories for which we can de-

velop canonical forms to create temporal and event facts. These temporal categories are

divided into 13 conceptual classes as below:

• Politicial events, such as elections, battles, conflicts, etc

• Establishments, such as establishment of important instutions, parties, etc.

• Disestablishments, such as disestablishment of important instutions, parties, etc.
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Figure 4.1: Categories belonging Nicolas Sarkozy’s Wikipedia article

• Discoveries, such as geographycal places, inventions, etc.

• Disasters, such as earthquakes, fires, floods etc

• Accidents, such as transportation accidents, submarine accidents, etc.

• Architectural events, such as construction of important buildings.

• Laws, such as important orders, acts, resolutions, etc.

• Important releases, such as music albums, movies, etc.

• Important publications, such as books, novels, etc.

• Artistic works, such as, operas, musicals, paintings, etc.

• Births

• Deaths

These conceptual categories are employed for extraction of events and temporal facts.

Connecting the temporal information extracted from a temporal category to an entity

belonging to that category requires some elegancy. It is obvious that 23rd G8 Sum-

mit, Turkish War of Independence are named events, whereas entity Michael Jackson,

which appears under category 2009 deaths, is neither a named event nor a temporal fact.

However, we can combine the conceptual class of the category and the entity to deter-

mine the relation diedOnDate, and we can create the fact Michael Jackson diedOnDate

2009-##-#-#. Here we employ a Category-relation map to extract the proper relations

from categories.

Definition: Category-relation map

A Category-relation map is a function which maps a conceptual class to correspond-

ing pre-defined relation by looking at the keywords occurring in the category name. To
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illustrate, the temporal category Vehicles introduced in 1999 is first mapped to Discov-

eries conceptual class, since the category Vehicles introduced in 1999 has the keyword

introduced. Then, Category-relation map gets the target relation wasDiscoveredOnDate

for the conceptual class Discoveries. For a detailed mapping of conceptual classes and

relations, please see Table 4.3.

After applying Category-relation map to a category, we construct some example tempo-

ral facts as below:

• f1: Michael_Jackson diedOnDate 2009-##-##.

• f2: Audi_S3 wasCreatedOnDate 1999-##-##.

Another approach is to combine temporal information directly to the entity via a proper

relation without reification, as below.

• f12: Michael_Jackson diedOnDate 2009-##-## .

• f13: Audi_S3wasIntroducedOnDate 1999-##-## .

Harvesting Categories

Temporal fact and event extraction from categories can be done in two ways: First,

extracting all categories of Wikipedia and traversing them to create temporal facts.

Second, traversing all articles and looking at categories of them to construct temporal

facts. The first approach has the advantage of modularity; it can be run anytime to

extract facts from categories without parsing the entire article dump of Wikipedia. In

contrast, the second approach has to be merged into the whole extraction procedure,

extraction from infobox and categories. That is the reason why YAGO chose the second

approach. YAGO uses declared rules to extract temporal facts from categories of the

article at hand. However, in the first approach, the articles do not have to be processsed,

which makes it faster. Here, we will explain the first approach.

First of all, temporal categories of Wikipedia are extracted by simple heuristics which are

around 70K out of 500K categories. By employing semantic word similarity, the temporal

categories are classified into 13 conceptual classes which are explained above. The

temporal information that is used as time point of facts are extracted from categories by

employing a regular expression based date extractor and normalizer. For each temporal

category, the entities belonging to it are fetched and processed by Category-relation map

to determine the target relation. Finally, the facts are constructed via joining temporal
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Conceptual
Class of Events

Keywords Target Relation

Political events election, war, bat-
tle

happenedOnDate

Disasters disaster happenedOnDate
Events related to
legislations

law happenedOnDate

Establishments establishment,
commission, open

wasCreatedOnDate

Disestablishments disestablishment,
scuttle, close

wasDestroyedOnDate

Discoveries discovery, de-
scription, notifi-
cation, introduc-
tion

wasDiscoveredOnDate

Accidents accident, incident happenedOnDate
Architectural
Events

construction wasCreatedOnDate

Important re-
leases

release wasCreatedOnDate

Important publi-
cations

publication wasCreatedOnDate

Artistic works Work wasCreatedOnDate
Births birth wasBornOnDate
Deaths death diedOnDate

Table 4.3: Category-relation map

information provided by the particular category and the entity. The overall process is

depicted via a flowchart in Figure 4.2, where rectangular nodes represent the particular

data and edges represent the data flow. The diamond node represents Category-relation

map, and the sylyndirical node represents our knowledge base T-YAGO.

4.4 Conclusion

In this chapter, we have presented the difference and similarity between events and tem-

poral facts. Then we explored methods to harvest infoboxes and categories of Wikipedia

articles. Since, infoboxes and categories supply us semi-structured data, we used rule

based methods to extract temporal facts and events from infoboxes and categories. The

main focus of infobox harvesting is named events. However, most of the Wikipedia

articles do not have infoboxes, which causes low recall. To come over the challenge

of low recall, we introduced techniques about how to extract more temporal facts and
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Figure 4.2: The process of harvesting temporal facts and events from Wikipedia
categories



Chapter 3. Temporal Fact and Event Extraction from Semi-structured Text 32

events from Wikipedia categories. We gathered large amount of facts from Wikipedia

categories which are shown in Experiments section in details.



Chapter 5

Temporal Fact and Event

Extraction from Free Text

In the previous chapter it is shown that categories and infoboxes of Wikipedia articles

can be harvested by declarative IE approaches, which yields highly precise temporal

facts. However, since the high quality semi-structured data is often limited and most

web sources are unstructured, it is necessary to extract temporal facts from arbitrary

free texts (in our case the text source of Wikipedia articles).

The 2007 TempEval Challenge [VGS+07] is an established workshop in the field of tem-

poral information extraction from free text. It focuses on tasks which involve identifying

event-time and event-event temporal relations. In TempEval Challenge only a restricted

set of Allen-style [All83] temporal relations are used. The state-of-the-art system in the

field of temporal information extraction is TARSQI [VP08] which succeeded in detecting

temporal expressions by marking events and generating temporal associations between

times and events. Another system called TIE [LW10] did not only detect the temporal

relationships between times and events, but also used probabilistic inference so as to

bound the time points of the beginning and the end of each event. It is important to

note that the concept of event in the above systems or tasks is different from our concept

of fact or event. Rather than checking relationships of base facts, both systems focused

on extracting time information either by time-events or by event-events. Here, events

are defined as verb forms with tenses, adjectives, and nouns that describe the temporal

aspects of the events. In the example of “Obama accepted the award in Oslo last year.”,

systems like TARSQI consider the verb “accepted” to be an event, and adverbial phrase

“last year” to be a time point. This task however is very different from our notion of

events and temporal facts referring to entities and relations, as defined in Chapter 4.

33
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In this chapter, we present techniques to extract temporal facts and events from the

free text of Wikipedia articles. We first introduce pattern-based extraction by normal-

izing explicit temporal expressions. Next, we discuss dictionary-based extraction by

normalizing implicit time expressions.

5.1 Pattern-based Extraction by Normalizing explicit Dates

In this section we present how to exploit T-YAGO for its own growth by using trusted

facts as the basis for generating good text patterns. Applying those patterns on free

text will generate new temporal facts. Extracting new facts by patterns has challenges

regarding correct pattern selection, entity disambiguation, coreference resolution and

type checking, respectively.

Pattern Selection: Temporal facts are extracted from free text by finding meaningful

patterns in the text. The precision of this technique strictly depends on having

a variety of meaningful patterns. Thus, discovering and assessing patterns is a

significant task of IE.

We propose a pattern generation algorithm which benefits from the knowledge base.

Moreover, the frequency of patterns are statistically assessed in order to have

frequent patterns which will result in high recall and high precision.

Entity Disambiguation: For ontology oriented information extraction, the phrases

from text have to be mapped to correct entities in the ontology. In most of the

cases, this mapping is ambigous, which makes finding the intended meaning of a

phrase difficult. For example, the word “Andrew” may map to Andrew Jackson

or Andrew Johnson.

We use heuristics to disambiguate entities. First, our system can understand the current

Wikipedia article (recall that each article maps to one only one entity) which is

being processed. Then it determines possible words that can map to entity by

tokenizing the entity. For example, if the entity is Michael Jackson, then the word

Michael or the word Jackson is mapped to the entity Michael Jackson. However,

if both words occur adjacent, then it is directly mapped to the entity.

Coreference Resolution: In natural language documents, there are multiple expres-

sions in a sentence or document referring to the same thing. For example, in “John

is married to Mary. He loves her so much.” The word “He” refers to “John”. In

order to derive the correct interpretation of text, or even to estimate the relative



Chapter 4. Temporal Fact and Event Extraction from Free Text 35

importance of various mentioned subjects, pronouns and other referring expres-

sions need to be connected to the right individuals. Although there are tools for

anaphora resolution such as [PK04, VPP+08, QKC04], they have complex algo-

rithms which causes degradation in performance. Moreover, the results have a

typical precision less than 70 %.

We use basic pronoun heuristics to overcome the problem of coreference resolution.

Since our system can determine the current article (entity) at hand, we replace

the pronouns such as his, her, he, she, him with the name of the entity. It is

intuitive, since in most of the cases a Wikipedia article uses pronouns referring to

the entity itself. This pronoun heuristics, surprisingly works with a fair level of

precision (See experiments and evaluation section).

Type Checking: An ontology is not a simple collection of facts, but it is a collection

of typed entities and facts creating a taxonomical structure. The newly extracted

facts have to be consistent with the domain and range of the relations. To illustrate,

while the fact f1: Nicolas Sarkozy isMayorOf Neuilly-sur-Seine is correctly typed,

i.e., the entities are in the domain and range of the particular relation, the fact

f2: Nicolas Sarkozy isMayorOf French Economy is not correctly typed because

French Economy is not in the range of isMayorOf relation. Therefore, f2 has to

be pruned.

In order to overcome the challenge of type checking, we keep a list of entities that are

in the range of the given relation. If the newly extracted fact has an argument

which is not in the range, then the fact is pruned.

Although there are pattern-based systems such as SOFIE [SSW09] and PROSPERA

[NTW11] to extract RDF style facts from free text, they only focus on extracting base

facts rather than extracting higher-order temporal facts. Extraction of higher-order

temporal facts is more difficult, since temporal facts have to be reified with correct

temporal value qualifying the base fact. To illustrate, from the sentence “Jacques Chirac,

born on 29 November 1932, is a French Politician who served as President of France from

1995 to 2007 and served as Prime Minister of France between the years 1974-1976 and

from 1986 to 1988.” f1: Jacques_Chirac holdsPoliticalPositon President_of_France

is a base fact and can be extracted via human engineered rules which will search for

a certain pattern. However, if we want to extract the time interval for the fact f1,

then we have to determine the correct date qualifying f1 and connect it to f1 as f2:

f1startedOnDate 17-05-1995,f3: f1endedOnDate 16-05-2007.

The temporal fact extraction has 2 phases:
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1. Phase 1: Detection and normalization of temporal expressions

2. Phase 2: Extraction of base facts and reifying the base facts with correct temporal

information

For the first phase, we use a regular expression based date parser [SIW06] to parse and

normalize large variety of temporal expressions. For the second phase, we suggest to use

a pattern-based extraction. We automatically create patterns which have place holders

for base facts and also for temporal information qualifying the base fact. Thus, instances

of such patterns can be used to create base facts and refied fact. As an example, the

pattern <politician> served as <political office> from <date> to <date> will extract

the fact f1: Jacques_Chirac holdsPoliticalPositon President_of_France and reify

it as f2: f1 startedOnDate 17-05-1995,f3: f1 endedOnDate 16-05-2007 from the

sentence “Jacques Chirac, born on 29 November 1932, is a French Politician who served

as President of France from 1995 to 2007 and etc.”

Our pattern-based temporal fact extraction model consists of two consecutive stages:

1. Automatic Pattern Induction: Automatically creating patterns via using the

already built temporal knowledge base (T-YAGO)

2. Application of Patterns: Applying patterns on free text to create new temporal

facts.

Before explaining pattern-based temporal extraction, we give definitions for seed entity,

pattern, and pattern matching.

Definition: A seed entity is an entity manually given to the pattern induction pro-

cess, in order to learn the possible patterns that creates the known facts about the

entity.

Definition: A pattern is a set of string tokens which are defined in a specific template.

Definition: Pattern matching is the act of extraction of string sequences which

obeys to a certain template.

1) Automatic Pattern Induction

In this part, our goal is to automatically create patterns for given relations by using

T-YAGO. The process is bootstrapped by arbitrary seed entities. For each seed en-

tity, all temporal facts having the seed entity as subject and the particular relation are
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fetched. Each temporal fact is decomposed to its arguments, such as entity 1, entity 2.

Moreover, the temporal interval of facts are retrieved and attached to arguments as en-

tity 1, entity 2, date 1, date 2 where date 1 is the time that the particular fact started

existing and date 2 is the time that the particular fact ended existing. We put entity 1,

entity 2, date 1, date 2 in a data structure called args. For each seed entity, the sen-

tences in which those arguments occur together are extracted from Wikipedia articles of

the seed entities. The words or phrases between arguments are kept to be used to create

a pattern, whereas, the words appearing before the argument entity 1 and after date 2

are omitted. All the patterns are put in patterns vector which maintains the frequency

information of patterns. The process is completed for all seed entities. Finally, only the

most frequent patterns are selected to be applied on entire corpus to get new temporal

facts.

2) Application of Patterns

Having the frequent patterns in hand, it is possible to get new temporal facts. The pat-

terns are used to find the relation between entities and also the dates. Hence, via using

the relation and the entities together, we can create a base fact. Then the base fact will

be refified with particular dates obtained by the pattern. As an example, the pattern

<politician> was inaugurated as <political office> on <date> is created for the relation

holdsPoliticalPosition. If this pattern is applied to the sentence “Barack Obama

was inaugurated as President of the United States on 20 January 2009.”, then the place

holder <politician> will be matched to Barack Obama, <political office> will be matched

to President of the United States, and the palce holder <date> will be matched to 20

January 2009. Next, the base fact f23: Barack Obama holdsPoliticialPosition

President of the United States is created by using the two entities Barack Obama, Pres-

ident of the United States where Barack Obama is subject and President of the United

States is object and the relation is given as holdsPoliticalPosition. Next, after nor-

malization of the date 20 January 2009 as 20-01-2009, the base fact f23 will be reified

as f24: f23 startedOnDate 20-01-2009

A naive explicit match application of patterns will result in a very low recall. To illus-

trate, if the pattern“<politicianEntity> also served as <politicalOffice> from <date>

until <date>” is applied to the sentence “Nicolas Sarkozy who is 55 years old served as

Minister of the Interior from 2 June 2005 until 26 March 2007”, then we will not ex-

tract the fact f1: Nicolas Sarkozy holdsPoliticialPosition Minister of the Interior

due to seeking for explicit match. However being tolerant to some extent of noise be-

tween arguments of the pattern will yield a better recall, yet not sacrificing precision too

much. For this reason, we need to change the explicit match function to an approximate
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match function which tolerates noise up to a pre-defined threshold. We use word level

levenshtein distance as a metric for approximate matching. In previous example, if our

tolerance threshold was 5 words, then it would be possible to extract the following facts

f1: Nicolas Sarkozy holdsPoliticialPosition Minister of the Interior

f2: f1 startedOnDate 02-06-2005

f3: f1 endedOnDate 26-03-2007

from the sentence “Nicolas Sarkozy who is 55 years old served as Minister of the Interior

from 2 June 2005 until 26 March 2007 ”.

The overal procedure of temporal fact extraction is described in Algorithm 2. We boot-

strap the extraction by taking a set of seed entities S and temporal relations R in order to

induce patterns. All facts belong to seed entities for given relations R are retrieved from

the knowledge base K and put in set F2. Before inducing patterns, a subcorpus W2 is

created by retrieving the articles belonging to the seed entities from Wikipedia corpus.

(Since W2 is much smaller than the entire corpus, the process of inducing patterns will be

faster.) Then, each reified temporal fact f ∈ F is decomposed to its arguments, as like as

the quadruple <entity 1, entity 2, date 1, date 2> . For example, a fact and its reifica-

tions such as, f1: Nicolas Sarkozy holdsPoliticialPosition Minister of the Interior,

f2: f1 startedOnDate 02-06-2005, and f3: f1 endsOnDate 26-03-2007 is decomposed

to the quadraple <Nicolas Sarkozy, Minister of the Interior, 02-06-2005, 26-03-2007>.

All quadruples (or triples in some cases) are stored in a data structure called args. Then,

each itemi ∈ args, is applied to text and for all satisfying strings of W2 new patterns

are induced by replacing arguments of itemi with place holders. A small excerpt from

the table of patterns for the relation holdsPoliticalPosition can be seen in 6.8. Such

patterns are able to capture base facts and the dates that qualifying the facts. Moreover,

a ranked vector representation of patterns v(P ) is created by using frequency statistics

of patterns. Then, for each article w ∈W , we approximately apply patterns P by using

word-based Levenshtein distance to get facts as final output.

5.2 Dictionary-Based Extraction by Normalizing Implicit

Dates

As pointed out in the previous section, there is a high amount of temporal information

buried in natural language text. To illustrate, although the latest version of YAGO

knows the fact Nicolas Sarkozy holdsPoliticialPosition Minister of the Interior, it

does not know the fact Nicolas Sarkozy holdsPoliticialPosition Minister of the Budget.
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Algorithm 2 Temporal Fact Extraction
1: procedure harvest temporal facts(seed entities S, corpus W , knowledge base KB,

relation R )
2: P ← induce patterns(S, W, KB, R) . collect large numbers of patterns
3: create and rank pattern vector v(P ) using patterns in P
4: F ← extract facts({fi}, P, M) . collect large numbers of facts
5: return all facts F . facts as final output
6: procedure induce patterns(seed entities S,corpus W , knowledge base KB, relation R )
7: P ← ∅ . set of patterns
8: F ← get facts from knowledgebase(S, KB, R) . get facts about seed entities

from knowledge base for relation R
9: W2← create subcorpus of seed entities(S, W ) . get articles of seed entities

from entire corpus
10: for all f ∈ F do . for each fact f
11: args← args ∪ {(argi(f))} . get all arguments, quadruples of the fact
12: for all argi ∈ args do . for each quadruple
13: P ← P ∪ {createpattern(argi, W2)} . for each satisfying strings of W2, replace

argi with place holders
14: return patterns P

15: procedure extract facts(corpus W , patterns vector V )
16: F ← ∅ . set of new facts
17: for all w ∈W do . for all articles in W
18: for all p ∈ V do . for all patterns
19: for all s ∈W do . retrieve strings s in w approximately matching the pattern p
20: F ← F ∪ {(create fact(w, p, s))} . creating fact about associated entity of

w by applying p on s

21: return F . facts created by approximately matching ranked patterns P on W

Automatically Generated Patterns

<politician> was <political office> from <date> to <date>
<politician> served as <political office> from <date> to <date>
<politician> was the <political office> serving from <date> until <date>
<politician> was inaugurated as <political office> on <date>
<politician> notably served as <political office> from <date> to <date>
<politician> was appointed <political office> on <date>
<politician> was elected <political office> in <date>
<politician> was sworn in as <political office> on <date>
<politician> is a politician who was the <political office> from <date> to <date>

Table 5.1: Patterns for the relation holdsPoliticalPosition

However, there exists an interesting sentence in the Wikipedia article about Sarkozy,

“Nicolas Sarkozy was Minister of the Budget in the government of Edouard Balladur,

during Francois Mitterrand’s last term.” which shows that the fact Nicolas Sarkozy

holdsPoliticalPosition Minister of the Budget can be created with valid time inter-

vals once the implicit temporal phrase “in the government of Edouard Balladur” or

“during Francois Mitterrand’s last term” are detected and normalized correctly. Since

T-YAGO knows the facts
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• f214: Edouard Balladur holdsPoliticialPosition Prime Minister of France

• f215: f214 startedOnDate 29-03-1993

• f216: f214 endedOnDate 10-05-1995

our proposal is to employ T-YAGO in order to resolve dates of such implicit expressions.

We analyzed Wikipedia articles and found that implicit time phrases frequently appear in

adverbial phrases. Therefore, we focus on normalization of temporal adverbial phrases.

In this section our focus is to output a set of matchings M from implicit temporal phrases

P to temporal facts which exist in knowledge base. We call this process as Dictionary

Based Event Detection and Extraction. The remainder of the section is organized as

follows. Part 5.2.1 explains how to map temporal phrases to already existing temporal

facts. And in part 5.2.2, we present how to use those mappings to give a temporal

dimension to the existing base facts.

5.2.1 Mapping Temporal Phrases to T-facts

As it is mentioned in chapter 2, there are three types of temporal expressions, explicit

date expressions, relative time expressions and implicit time expressions. In order to ex-

tract temporal facts from free text with a high precision and recall, all kinds of temporal

expressions have to be normalized and connected to facts. Although our fact extractors

can succesfully detect and annotate explicit date expressions (1998, 23rd January 1976,

etc.) via our regular expression based date normalizer and relative time expressions (last

year, next week, etc.) can be normalized by TARSQI, detection and normalization of

temporal adverbial phrases are untouched so far. There is research related to detection

and normalization of temporal adverbial phrases [KM10, PV09, LW10, VMS+05], how-

ever, they focus on the temporal clauses such as a year ago, two weeks later, etc. They

ignore the adverbial phrases which implicitly contains temporal facts such as during

Chirac’s presidency, before Second World War, after his last term, etc. Since relative

time expressions are not suitable for encyclopedic content, Wikipedia articles do not con-

tain relative time expressions. However, explicit time expressions and temporal adverbial

phrases are extensively used, which forced us to investigate methods for normalization

of temporal adverbial phrases.

Concisely, given a phrase, we aim to find what the most likely target is for mapping the

phrase to a temporal fact which represents that phrase. This mapping process is done

in three steps, identification, interpretation and normalization respectively. Each

step is explained as follows.
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Table 5.2: Patterns for candidate event detection

Pattern

<during>, <Noun Phrase>
<after>, <Noun Phrase>
<before>, <Noun Phrase>

5.2.1.1 Identification of Temporal Expressions

In order to have a precise mapping from implicit temporal phrases to t-facts, we need

to identify good candidate phrases from text. For this reason, we bootstrap the iden-

tification step starting out with a set of manually defined patterns to detect candidate

temporal clauses. After a short analysis of Wikipedia articles, we find out that temporal

adverbial phrases usually have the “<adverbial keyword>, <Noun Phrase>” structure.

Hence, a pattern in the form of “<adverbial keyword>, <Noun Phrase>” will find all

noun phrases occuring in a temporal adverbial phrase. An instance of such a pattern

would be similar to “<during>,<Noun Phrase>” which will find candidate phrases, such

as, “during, French Revolution”, “during, Mitterrand’s presidency”, etc.

We manually defined a set of patterns listed in Table 5.2. Each pattern has two crucial

parts, a temporal keyword such as during, after, before and a noun phrase part.

Applying patterns requires identifying both parts of the patterns in the text. Although

identifying the adverbial keyword is easy, identifying the noun phrase occuring in the

adverbial phrase is more challenging. Here, we use a dependency parser in order to

get the complete noun phrase occuring in the adverbial clause. A dependency parser

assigns a given sentence to a linkage (a syntactic structure), which consists of a set of

labeled links connecting pairs of words based on link grammar. For example for the

sentence “After his re-election as President of the French Republic, Chirac appointed

Sarkozy as French Minister of the Interior.”, a dependency parser will yield the linkage

as in the figure 5.1. A constituent tree is generated from the linkage output as in figure

5.2. The constituent tree shows the noun phrases in NP tags, such as (NP his re-

election), (NP (NP the French) Republic), etc. Therefore, by taking the noun phrases

occuring in adverbial clause, the temporal phrase “After his re-election” is identified

by instantiating the pattern “<adverbial keyword>, <Noun Phrase>” on the sentence

“After his re-election as President of the French Republic, Chirac appointed Sarkozy as

French Minister of the Interior.”.

We use the state of the art tool The Link Grammar Parser [ST95]. The Link Grammar is

a robust system which covers almost all aspects of English grammar. It uses a dictionary

of English words which has around 60,000 words. Although it is a dictionary based
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Figure 5.1: The linkage found for the sentence “After his re-election as President of
the French Republic, Chirac appointed Sarkozy as French Minister of the Interior.” by

The Link Grammar Parser

system, it can handle sentences impressively well even if they have one or two words

which are not in the dictionary. Moreover, it can predict the part-of-speech for these

words with a fair degree of accuracy.

As a summary, by using pre-defined patterns and running dependency parser, the iden-

tification stage outputs the candidate phrases which will be used as the input of inter-

pretation stage.

5.2.1.2 Interpretation

Here we aim to map a given candidate temporal phrase to an existing temporal fact in

our knowledge base. Formally we define the process of this mapping as follows:

Given a knowledge base K, the purpose of the interpretation stage is to map the candi-

date temporal phrases found by identification stage to the most similar fact in K.

For this reason, we developed two dictionary based systems, Rich Dictionary System

(RDS) and Context Aware System (CAS), respectively. Any dictionary d can answer

a query q with a confidence score where q is a candidate temporal phrase found by

identification stage. Each dictionary uses an approximate matching procedure to return

answers to queries.
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Figure 5.2: The constituent tree produced from the linkage shown in figure 5.1

1) Rich Dictionary System

In this system, we are eager to answer each query1 by using the entire T-YAGO as

a dictionary. We also added more temporal facts from latest version of YAGO after

omitting generic entity-time relations, in order to avoid duplications in our dictionary.

For example,YAGO has the fact Frank Zappa wasBornOnDate 21-12-1940 and the fact

Frank Zappa startsExistingOnDate 21-12-1940. In such cases we avoid second fact

since it subsumes the previous one. Furthermore, we turn the fact into a noun phrase

so that it is more likely to be seen in an adverbial phrase. To illustrate, we convert the

fact Frank Zappa wasBornOnDate 21-12-1940 to the noun phrase birth of Frank Zappa.

Whenever we can map a phrase in text to birth of Frank Zappa, then we will replace it

by the date 21-12-1940. The convertions of facts to noun phrases are shown in the table

5.2.1.2. This system uses Jaccard similarity over character q-grams for measuring the

similarity between a particular query and a temporal fact.

Our goal in this baseline system is to return a temporal fact mapping to a query (a

candidate phrase), as much as possible.
1A query is a temporal candidate phrase issued to our dictionary based systems, so as to map it to

an existing temporal fact.
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Relation Noun form
wasCreatedOnDate creation of, establishment of,

commission of, open of, con-
struction of, publication of

wasDestroyedOnDate disestablishment of, scuttle of,
close of

wasDiscoveredOnDate discovery of, description of,
notification of, introduction
of

wasBornOnDate birth of
wasDiedOnDate death of

Table 5.3: Convertions from facts to noun phrases based on the relation

2) Context Aware System

In this system, we have the same system as RDS except that we include contextual

information into the dictionary. RDS uses a dictionary with more than one million tem-

poral facts taken from T-YAGO. However, such a dictionary of facts is large enough to

contain a lot of irrelevant facts for a given query, which may cause noise during mapping

process. In Context Aware Dictionary, we aim to exploit contextual information so as

to decrease the size of the dictionary, yet using more relevant facts. First of all, the

system can understand the Wikipedia article being processed. Each Wikipedia article

(except redirection pages, talk and template pages) is associated with one and only one

entity. Therefore, the system knows the entity which is under process by the time being.

CAS takes Wikipedia Hyperlink Graph (WHG) as input in order to detect the first

neighbours of the current entity by looking at the outgoing links from the current entity

to other entities. (Wikipedia Hyperlink Graph is implicitly encoded in YAGO by the

relation hasInternalWikipediaLinkTo which shows an article having a link to another

one. Hence, WHG can be generated automatically by traversing YAGO entities.) Then

it loads all facts about the current entity which is under process and all facts about first

neighbours of the entity. Then it builds the dictionary which is much smaller than RDS.

For example a subgraph of Wikipedia Hyperlink Graph can be seen in figure 5.2.1.2 in

which the entity Nicolas Sarkozy and its first neighbours are shown. The edges in the

graph represent hyperlinks and nodes represent articles (recall that each article is asso-

ciated witn one and only one entity). If our current article under process is the article of

Nicolas Sarkozy then CAS creates a dictionary of temporal facts by taking all temporal

facts about the entity Nicolas Sarkozy and all temporal facts about its first neighbours.

First neighbours of Nicolas Sarkozy are shown in figure 5.2.1.2. When CAS finishes

processing an article, it clears the dictionary then builds a new dictionary in the same

way for the next article. CAS also uses the same similarity metric as RDS for measuring
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Figure 5.3: An excerpt from Wikipedia Hyperlink Graph

the similarity between a particular query and a temporal fact. It also uses the same

techniques to convert a temporal fact into a noun phrase which is more possible to occur

in an adverbial phrase.

In this system we aim to map a temporal phrase to a temporal fact at the first neigh-

bourhood of the current entity. Since CAS creates a small dictionary for each entity

by loading facts related to it, it provides a precise dictionary. However, creating a new

dictionary for each entity may cause some degradation in performance.

The interpretation stage outputs temporal which facts are given to normalization stage

as input.

5.2.1.3 Normalization

Given a set of temporal facts, the normalization stage ask queries to T-YAGO, in order to

get the valid time points or time spans of the temporal facts. Once it gets this temporal

information, it annotates the adverbial phrase in text with the temporal information.

Thus, the implicit temporal clauses are mapped to time interval or time point that those

clauses imply. Normalization stage outputs a temporally annotated text which can be

used in section 5.2.2, connecting temporal facts to base facts.

As a summary, in this section we have presented the followings:
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Figure 5.4: The graph showing the entity Nicolas Sarkozy and its first neighbours

• pattern-based identification of temporal phrases

• Exploting the temporal knowledge base to create dictionaries

• An approximate similarity matching to map temporal phrases to temporal facts

• Exploting context (Wikipedia Hyperlink Graph) in order to boost the precision

5.2.2 Connecting T-facts to Known Base Facts

In previous section, we showed how to normalize implicit temporal phrases by using

a temporal knowledge base at the background. In other words, we mapped implicit

temporal phrases to t-facts. Thus, we have a complete architecture for normalization

of temporal expressions apeearing in Wikipedia articles. As a result, we can extract

new temporal facts from free text by using the techniques presented in section 5.1. The

techniques discussed in section 5.1 extracts base facts and the associated time interval for

the base facts. Moreover, we can directly connect a t-fact to a known base fact provided

that both appear in the same sentence. For example, the sentence “After becoming

Governor of California, Schwarzenegger acted in the movie Around the World in

80 Days.” contains three interesting properties, a temporal keyword “after”, a base
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fact and a temporal fact. Our temporal knowledge base has the following facts which

implies the phrase “becoming Governor of California”:

• f11: Arnold_Schwarzenegger holdsPoliticalPosition Governor_of_California.

• f12: f11 startsOnDate 17-11-2003.

• f13: f11 endsOnDate 03-01-2011.

Moreover, YAGO knowledge base has the following fact which implies the phrase “Schwarzeneg-

ger acted in the movie Around the World in 80 Days”. However, this YAGO fact

does not have any temporal information qualifying it.

• f31: Arnold_Schwarzenegger actedIn Around_the_World_in_80_Days_(2004_film).

The phrase “becoming Governor of California” can be mapped to the fact f11:

Arnold_Schwarzenegger holdsPoliticalPosition Governor_of_California via the tech-

niques described in section 5.2. And the phrase “Schwarzenegger acted in the movie

Around the World in 80 Days” can be mapped to the fact f31: Arnold_Schwarzenegger

actedIn Around_the_World_in_80_Days_(2004_film) via tools such as PROSPERA

[NTW11] which has pattern statistics for base facts. The idea is to connect t-facts to

base facts, thus base facts would be qualified with temporal information.

In this section we concentrate on sentences which have the following patterns:

• <base phrase><temporal keyword><temporal phrase>

• <temporal keyword><temporal phrase><base phrase>

temporal keyword may have the polarity {-1, 0, 1}, where -1=before, 0=during and

1=after. The polarity is used to determine the suitable relation which will be used

to connect a t-fact to a known base fact. Possible relations are, happenedBefore,

happenedDuring, happenedAfter. The main phrase is mined for possible entity pair(s).

All base facts containing entities in main phrase are checked by using PROSPERA pa-

tern statistics to see whether the main phrase maps to a known base fact. If PROSPERA

returns a base fact for main phrase, then the base fact and t-fact will be connected to

each other via the relation determined by the polarity of temporal keyword. There-

fore, the base fact will be enriched by a temporal dimension. As an example, the fact

f31: Arnold_Schwarzenegger actedIn Around_the_World_in_80_Days_(2004_film)

will be connected to the fact f11: Arnold_Schwarzenegger holds Political Position

Governor_of_California as f39: f31 happenedAfter f11 .
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Algorithm 3 Connecting T-facts to Known Base Facts
1: procedure connect t facts to base facts(temporal sentence ts )
2: P ← ∅ . set of new facts
3: F ← ∅ . set of new existing facts
4: cf ← create canonical form(ts)
5: mp← get main phrase(cf)
6: tp← get temporal phrase(cf)
7: tfact← get tfact from dictionary Based Systems(tp)
8: polarity ← get polarity(cf)
9: R← determine relation(polarity)

10: EP ← get entity pairs(mp)
11: for all entitypair ∈ E do . for each entity pair
12: F ← get Facts From YAGO(entitypair)
13: for all f ∈ F do . for each fact
14: f2← PROSPERA(f, mp, entitypair)
15: F ← F∪ create fact(f2, R, tfact)
16: return F

5.3 Conclusion

In this section, we split the task of temporal fact extraction from free text into two

subsections, temporal fact extraction by normalizing explicit dates and temporal fact

extraction by normalizing implicit dates. In former, we used T-YAGO to bootstrap the

induction of patterns for a set of given relation . Then, those automatically generated

patterns are used to extract base facts and the temporal information to reify base facts.

In second subsection, we created two dictionary based systems in order to detect and

normalize implicit temporal information in free text. In other words, we developed

systems which can detect the existing t-facts appearing in freetext as form of an adverbial

clause. At the end of the section, we investigated methods to connect t-facts to known

base facts, hence, known base facts will be given a temporal dimension.
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Experiments and Evaluation

This chapter focuses on the experiments conducted for the evaluation of our approaches

that are introduced and explained in Chapters 4 and 5 and the overall insights gained

from the experiments. There are two kinds of experiments, the experiments about

temporal extraction from semi structured data and temporal extraction from free text.

In the first one we aim to build a temporal ontolgy called T-YAGO. In the second one,

we extend our extraction for free text. These two main experiments are divided into

sub-experiments. Each main experiment has a different data collection policy in order

to choose the data which is appropriate for this specific experiment. The experiments

were conducted on a standard desktop machine with a 3GHz CPU and 3,5GB RAM.

We used PostgreSQL Database system to store the facts.

This chapter is organized as follows: Section 6.1 discusses the evaluation measures used.

Section 6.2 describes the experiments and the results of extraction from semi structured

text. In Section 6.3, the experiments and the results about free text are presented.

6.1 Evaluation Measures

Here, we introduce the measures used to evaluate the effectiveness of our approaches:

precision and recall; two metrics widely used in information retrieval.

6.1.1 Precision and Recall

When using precision and recall, the set of possible labels for a given instance is divided

into two subsets, “relevant” for the purposes at hand or “irrelevant”. Recall is then

computed as the ratio of correct instances among all instances that actually belong to
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the relevant subset, while precision is the fraction of correct instances among those that

the algorithm decides as relevant. Precision can be seen as a measure of correctness,

whereas recall is a measure of completeness. Both can be defined formally as follows.

Definition 1. (Precision) Let D be a set of documents, R ⊆ D be the subset of relevant

documents with respect to a query q, Q ⊆ D be the set of documents retrieved for the

query. Then, precision is the fraction of retrieved documents that are relevant to the

search:

Precision =
|R ∩Q|
|Q|

. (6.1)

Definition 2. (Recall) Let D be a set of documents, R ⊆ D be the subset of relevant

documents with respect to a query q, Q ⊆ D be the set of documents retrieved for the

query. Then, recall is the fraction of the documents that are relevant to the query that

are successfully retrieved.

Precision =
|R ∩Q|
|R|

. (6.2)

In the evaluation of the correctness of temporal facts, we are interested in whether

an extracted fact is correct. Actually, this turns into an evaluation of a classification

task. In this context, precision and recall are calculated differently, since the number

of possible temporal facts that have to be extracted is unknown. We use the notion of

true positives as correctly extracted temporal facts and false positives as the extracted

temporal facts which are incorrect. Then, we define precision as the fraction of correct

temporal facts among all extracted facts.

Precision =
true positives

true positives + false positives
. (6.3)

And the recall is defined as the number of all extracted temporal facts.

Recall = true positives + false positives. (6.4)

In practice, precision and recall are related to each other by a trade-off. High precision

usually leads to low recall and vice versa. For this reason, the correctness of a system

can be evaluated as the ratio of precision and recall.

Precision is evaluated by manually assessing the correctness of randomly sampled facts.

6.2 Extraction from Semi Structured Text

Here, we present the results of the experiments conducted for harvesting semi-structured

text from Wikipedia articles. We used the temporal facts extracted from semi-structured



Chapter 5. Experiments and Evaluation 51

Data Size

Articles (redirect pages are included) 6,776,204
Articles with infoboxes 1,338,838
Distinct Infobox Types 3837

Table 6.1: Statistics about the Wikipedia dump used in experiments

text to create the knowledge base T-YAGO. We ran our extractors over infoboxes and

categories of Wikipedia articles. The experiments and the data collection are explained

in the following sections.

6.2.1 Data Collection

We downloaded the English version of the Wikipedia XML dump which is a 23GB text

file. Each article in the XML file starts with a “<page>” tag. Inside the “<page>” tag,

all textual information (infoboxes, categories, free text) about the article appears in the

“<text>” tag. Some properties of the Wikipedia dump that we used are given in Table

6.1.

6.2.2 Harvesting Infoboxes

First of all, as we have already seen, there are many types of infobox templates and the

distribution of infobox templates used in the articles is not uniform. In other words,

most of the templates are used only in few articles. Therefore, we focus only on some

templates which cover the majority of the articles. The distribution of infobox templates

used in articles is shown in Figure 6.1.

When harvesting infoboxes, we focused on articles about named events. In order to

extract the named events from infoboxes, we developed rules for correct extraction.

These rules check the infobox type and decide whether it is a pre-defined event type,

such as war, battle, conference, etc. We invoke these extraction rules as a template

classifier as well, since they decide the type of the template of the infobox. Some of

these rules are shown in Table 6.2.

More than 100,000 events are extracted from infoboxes and their precision is shown in

Table 6.3.
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Figure 6.1: The distribution of infobox templates used in articles. The gray area
(22.2 %) resembles the other templates which forms the long tail of the distribution.

6.2.3 Harvesting Categories

In addition to temporal facts extracted from Wikipedia infoboxes, we also extracted

high amount of temporal facts from wikipedia categories. For the sake of re-usability,

we built a database of Wikipedia categories which contains 534765 categories. By using

regular expressions for dates, we got 60582 categories which contain temporal informa-

tion. We evaluated randomly choosen 200 temporal categories and the extraction of

temporal categories from full set of categories has 98% precision. See Table 6.5. These

categories are harvested via manually created rules discussed in Chapter 4. The evalu-

ation of the temporal fact extraction from categories is shown in Table 6.6. Table 6.7

shows the distribution of temporal facts for different types of categories. Moreover, the

statistics about temporal categories and about the temporal facts extracted from them

are visualized in Figure 6.2.

From Table 6.1, it is seen that most of the articles do not have any infoboxes. Neverthelss,

there are more than 1.3 million articles having infoboxes. The latest Wikipedia dump
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Infobox Type Attribute having the tem-
poral information

Military Conflict date
Election election date
Treaty date signed
Olympic event dates
Historical Event Date
Film released
Football match date
UN resolution date
MMA event date
Wrestling event date
Music festival dates
Awards year
Attack date
Accident dates
Swimming event dates
Competition year
Congress start|end
Tournament fromdate|todate

Table 6.2: Infobox rules

Randomly sampled facts Precision

200 90.0%

Table 6.3: Precision of the event facts

Features Size

Full categories set 534765
Temporal categories set 60582

Table 6.4: Size information about categories

Evaluated Categories Precision

200 98

Table 6.5: Evaluation of the extraction of temporal categories from the full set of
categories
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Evaluated Facts Precision

240 93,2%

Table 6.6: Evaluation of temporal facts extracted from categories

Temporal Category Types Number of Categories Number of Ex-
tracted Temporal
Facts

Categories about disasters 1001 1477
Categories about musicals 570 2938
Categories about accidents 635 4864
Categories about laws 712 6520
Categories about artistic works 1626 7998
Categories about discoveries 1341 13078
Categories about political events 3265 23172
Categories about constructions 698 22267
Categories about books 1759 39818
Categories about (dis)establishments 10895 174649
Categories about movies 1670 254122
Categories about births and deaths 5904 941281
Total 30076 1492184

Table 6.7: Statistics about the temporal categories and about the temporal facts
extracted from them

has 3837 distinct infobox types and few of them are used by most of the articles. Thus,

the most frequently used infoboxes can be determined and appropriate rules can be

declared to harvest these infoboxes. Graph 6.1 shows that 88% of (1 million) articles

having infoboxes use around 100 distinct infobox templates. Since, each infobox template

has around 20 attribute-pair values, having manually declared rules for 100 templates

may yield more than 20 million facts.

In our extraction of named events, we have 90% precision since there are many infoboxes

which do not obey Wikipedia template standards. As a result, our extraction rules

fail in case of non-standard infoboxes. Sam problem is also valid for extraction from

categories. There are many articles which do not belong to the categories assigned for

them by Wikipedia authors, which decreases the precision.

Table 6.4 and Table 6.7 show that vast amount of temporal facts can be extracted from

Wikipedia categories. Although there are knowledge bases harvesting Wikipedia cate-

gories, such as YAGO, DBpedia, they focus on “isA ” relation to create the taxonomy

of the ontology. However, we prove that Wikipedia categories can be harvested for fact

extraction apart from “isA ” relation. More than 1.4 million facts are extracted from
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Figure 6.2: Statistics about temporal categories and temporal facts shown in log-scale.

around 30 thousand categories, which is encouraging to extract non-temporal facts from

categories, as well. For example, the Wikipedia article about Nicolas Sarkozy has a

category Candidates for the French presidential election, 2007 which can be harvested

to create the fact

• factID: Nicolas Sarkozy participatedIn French presidential election, 2007.

6.3 Extraction from Free Text

In this section, we present the experimental results about the temporal fact extraction

from free text. We first start by presenting the data collection and the experimental

setting, then we continue by showing the experimental results about the pattern-based

extraction for exact dates and the dictionary-based extraction for implicit dates.

6.3.1 Data Collection and Experimental Settings

In order to harvest free text, we used a subset of Wikipedia articles as the extraction

corpus. We chose 100 Wikipedia articles about politicians. The main reason for which

we have chosen the politicians’ articles is explained in Section 6.3.2.
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Automatically Generated Patterns

<politician> was <political office> from <date> to <date>
<politician> served as <political office> from <date> to <date>
<politician> was the <political office> serving from <date> until <date>
<politician> was inaugurated as <political office> on <date>
<politician> notably served as <political office> from <date> to <date>
<politician> was appointed <political office> on <date>
<politician> was elected <political office> in <date>
<politician> was sworn in as <political office> on <date>
<politician> is a politician who was the <political office> from <date> to <date>

Table 6.8: Patterns for the relation holdsPoliticalPosition

Relation Number
of Seeds

Input Articles Extracted
Facts

Precision

holdsPoliticalPos. 50 100 221 67%

Table 6.9: Evaluation of pattern based temporal fact extraction

6.3.2 Pattern-Based Extraction by Normalizing Exact Dates

The process of pattern-based extraction is explained in Chapter 5. In order to start the

extraction procedure, we decided to extract facts which have the relation holdsPoliticalPosition,

since holdsPoliticalPosition is one of the relations in YAGO2 which have the least

number of facts. For this reason, we focused on the politicians’ articles. We collected

100 Wikipedia articles about politicians out of which 50 are selected as seed entities to

bootstrap the pattern induction step.

The pattern induction step outputs a set of ranked patterns. Some of those patterns are

shown in Table 6.8 in order to give an idea about the structure of the patterns.

The automatically generated patterns are instantiated on the experiment corpus (100

articles) in order to extract base facts and the temporal information qualifying these

base facts (reified facts). Table 6.9 shows the precision and recall values of temporal

facts extracted by patterns.

6.3.3 Dictionary-Based Extraction by Normalizing Implicit Dates

In this section, we present the results of normalization of implicit dates hidden in tem-

poral adverbial phrases. As it is explained in Chapter 5, the process of dictionary based

extraction aims to map temporal phrases to t-facts. This mapping process is completed
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Temporal Phrases

during Brezhnev’s rule
during the second half of Brezhnev’s reign
after the declaration of the Spanish-American War
before the federal government enacted the Sherman Antitrust Act
before being elected to the Senate in 1958
after Harding’s death
during the Vietnam War
before World War II
during his childhood
after Bismarck’s dismissal

Table 6.10: Some interesting temporal phrases found by identification step

System Precision Recall

RDS 31% 45%
CAS 71%-85% 51%

Table 6.11: Evaluation of the two dictionary based systems; Rich Dictionary System,
Context Aware System.

in three steps; identification, interpretation and normalization, respectively. The identi-

fication step aims to detect the temporal phrases in text which are used as input for the

interpretation step. We developed two dictionary-based systems for the interpretation

step in order to map temporal phrases to t-facts. The normalization step returns the

temporal values of t-facts found in the interpretation step by issuing an SQL query to

T-YAGO. We present the evaluation of the identification and interpretation step, since

the normalization step only returns what exists in T-YAGO.

Table 6.10 shows some interesting temporal phrases found by the identification step.

Some of the phrases found by this step do not have temporal information, since the

keywords after, before, during have also non-temporal meaning, as in the phrases “after

their newspaper, named after him”, etc .

Table 6.11 shows the precision and recall values of the dictionary-based systems (Rich

Dictionary System, Context Aware System) utilized for the interpretation stage. More-

over, Figure 6.3 shows the size of the dictionary of the CAS. Recall that RDS loads the

entire dictionary of temporal facts which has around 1,4 million temporal facts, whereas

CAS dynamically loads temporal facts to the dictionary as it is explained in Chapter 5.

Moreover, we compare our approach with the state of the art temporal information ex-

traction tool TARSQI. We gave some random temporal phrases and dates to TARSQI

and also to our date normalizers. Figure 6.4 shows the temporal expressions given to
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Figure 6.3: The number of facts loaded to the dictionary of CAS for different entities

Figure 6.4: The temporal expressions given to TARSQI and the correctly normalized
expressions are colored blue.

TARSQI and the correctly normalized expressions are colored blue. Although TARSQI

is supposed to extract exact dates such as “1 January 1955 ”, “from May 2002 to March

2004, etc.” , it cannot extract these dates possibly due to bugs. Figure 6.5 shows same

temporal expressions given to our regular expression based date normalizer which anno-

tates all exact dates correctly. And Figure 6.5 shows the date normalization produced

by our exact date normalizer + implicit date normalizer.
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Figure 6.5: The temporal expressions given to our exact date normalizer and the
correctly normalized expressions are colored blue.

Figure 6.6: The temporal expressions given to our exact date normalizer + implicit
date normalizer and the correctly normalized expressions are colored blue.
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6.3.4 Summary

In this section, we evaluated effectiveness our approaches by providing experiments.

The extraction from semi-structured text is promising in terms of precision and re-

call. However, the recall still remains as an open problem in extraction from free text.

The possible reasons of low recall are difficulty of coreference resolution, named entity

recognition and entity disambiguation. Although the heuristics that we use to solve

these problems can work fairly well, a complete and effective framework is needed to

overcome these challenges.



Chapter 7

Conclusions and Future

Directions

7.1 Conclusion

In this thesis, we have presented a framework to extract temporal facts from semi-

structured part of Wikipedia articles. We also introduced an automatic pattern induc-

tion method to create patterns for given relations and to rank them based on frequency

statistics of patterns. We developed algorithms to extract temporal facts from free-

text by normalizing explicit dates. Moreover, we introduced the idea of normalizing

implicit dates occurring in adverbial phrases by utilizing our temporal knowledge base.

Additionally, we proposed a novel method to introduce temporal dimension to already

existing ontological facts.

7.2 Future Directions

Our work has been developed by using baseline solutions and has space for further

improvements. We see some possible directions of future works as follows:

• Developing a full-fledged temporal ontology. In our current work, we build

T-YAGO on YAGO architecture via extending the knowledge representation model

and adding new temporal predicates. However, building a new ontology which is

aware of temporal dimension of entities and facts, the interactions of facts, the

ordering and the causality of events, time-line of events, life stories of important

entities (such as famous persons, incorporations, organizations, etc.) still remains
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untouched. Such an ontology requires well defined semantics for representation of

concepts, as well as requiring a special query language to retrieve information.

• Exploring multimedia information with temporal information. Another

interesting extension to a temporal ontology is integrating multimedia information,

such as images. For example, using different images to visualize the timeline of

the Second World War will be quite appealing.

• Newswire and other Web sources as extraction corpus. We currently use

Wikipedia articles for extraction. However, we further aim to extend our extraction

to the news archives and other qualitative web sources, since they contain high

amount of temporal information.

• Improving recall. Although our experiments show satisfying precision, the recall

still is the bottle neck during harvesting the free text. One of the main reason

of low recall is difficulty of coreference resolution, named entity recognition and

entity disambiguation problems. We plan to incorporate advanced techniques of

coreference resolution, named entity recognition and entity disambiguation to our

extractors.
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Conceptual Category Temporal Expression TimeML Support TimeML Type Found by TARSQI

Date

On 01/25/2009, the
second of December,
"Friday, October 1,
1999", October of
1963 Yes Date No

Date Tuesday 18th Yes Date No
Date On 1 January 1985 Yes Date No

Date
May 2001, October
1998, Yes Date No

Part of Day
In the morning, in the
evening Yes Time No

Part of Day

This morning, this
evening, tonight, this
afternoon, noon,
midnight, Yes Time Yes

Weekdays

Wednesday,  Friday.
Thursday,  Saturday
night, Yes Date Yes

Time of Day At 5 am, at 4  pm Yes Time Yes

Conjuction

From ‘October  20 to
October  30’,
January-  May,
November 23rd  to
24th 1998 - - No

Conjuction
1998-1999,
Wednesday-Friday - - No

Conjuction

From October to
November, from
1998 to 1999 Yes Date Yes

Relative Date and Time

Yesterday,  today,
tomorrow, next
week, next  year, in
the past  month, last
century, next
century, last  decade,
last  winter, this
summer, next  fall,
this  weekend, this
past autumn Yes Date Yes

Relative Date and Time
two weeks from  next
Tuesday Yes Date No

Relative Date and Time

three days, the  last
four days,  the past 3
years, the third
consecutive  month,
two  entire days Yes Duration Yes

Relative Date and Time

Three days ago,  two
decades  ago, 2 days
before  yesterday,
recent months Yes Duration No

Relative Date and Time 10 days earlier - - No

Special Days

Valentine day,  Xmas,
Christmas,  mother
day,  Halloween Yes Date Yes
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Conceptual
Category

Temporal
Expression TimeML Support TimeML Type Found by TARSQI

Fuzzy Time

At that time, at  the
same time,  the
best second
quarter ever - - No

Fuzzy Time

Third quarter,
nearly four
decades Yes Duration No

Event-dependent
Time

During the  World
War 2nd ,  after
German
Reunification,
before the 33rd
G8 summit - - No

Recurring Times

Each  Wednesday,
every year,  each
week Yes Set Yes

Recurring Times every October Yes Set Yes
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