Rotational cryptanalysis of round-reduced
KEccAK

Pawel Morawiecki!, Josef Pieprzyk?, and Marian Srebrny!:?

1 Section of Informatics, University of Commerce, Kielce, Poland
pawelm@wsh-kielce.edu.pl

2 Department of Computing, Macquarie University, Australia
josef.pieprzyk@mgq.edu.au

3 Institute of Computer Science, Polish Academy of Sciences, Poland
marians@ipipan.waw.pl

Abstract. In this paper we attack round-reduced KECCAK hash func-
tion with a technique called rotational cryptanalysis. We focus on KEC-
CAK variants proposed as SHA-3 candidates in the NIST’s contest for
a new standard of cryptographic hash function. Our main result is a
preimage attack on 4-round KECCAK and a 5-round distinguisher on
KECCAK-f[1600] permutation — the main building block of KECCAK
hash function.

Key words: preimage attack, KECCAK, rotational cryptanalysis, SHA-3

1 Introduction

In 2007, the U.S. National Institute of Standards and Technology (NIST) an-
nounced a public contest aiming at the selection of a new standard for a crypto-
graphic hash function. The main motivation behind starting the contest has been
the security flaws identified in the SHA-1 standard in 2005. Similarities between
SHA-1 and the most recent standard SHA-2 were worrisome and NIST decided
that a new, stronger hash function would be needed. Overall, 51 functions were
submitted to the first round of the contest. In July 2009 out of the submitted
functions, 14 were selected to the second round. At the end of 2010, the five
finalists were announced. The KECCAK hash function [5] is one of them. In this
paper we analyze KECCAK using a technique called rotational cryptanalysis.
Rotational analysis is a relatively new type of attack. The technique was
mentioned and applied in [2,12,14], and formally introduced in [10]. Unlike the
differential analysis, where for a pair (z, y) the attacker follows the propagation of
the difference x @y through the cryptographic system, in the rotational analysis,
the adversary investigates the propagation of the rotational pair through the
cryptographic transformations. Khovratovich and Nikoli¢ in [10] analyze the
primitives composed of only three operations: addition, rotation, xor (ARX).
For these primitives, they prove that the probability that a rotational pair of
inputs will produce a rotational pair on the output depends on the number

of additions only. In [15] a rotational distinguisher was designed for the keyed
permutation of the Shabal hash function. Rotational cryptanalysis was combined
with the rebound attack and applied to the compression function of the SHA-3
candidate Skein and its underlying cipher Threefish [11].

The known cryptanalytic results on KECCAK can be divided into two types.
The first type is showing a non-random behaviour, weakness in the KECCAK’s
internal permutation, such as our rotational distinguishers. The second type
is the attacks on the core security properties of the whole function (a preimage
attack and a collision attack). The most successful result (in terms of a number of
rounds) on the KECCAK’s permutation is the zero-sum distinguisher proposed in
[1] and later improved in [6, 7]. However, the complexities of these distinguishers
is very high. For example, the zero-sum distinguisher for all 24 rounds has the
complexity of 21579, A differential analysis of KECCAK’s internal permutation,
given in [8], leads to distinguishers up to 8 rounds with complexity of 249147,
Among the attacks on the KECCAK hash function, the most rounds were broken
by Bernstein in his 8-round preimage attack [3]. However, the complexity of the
attack is only marginally lower than exhaustive search (around half a bit for
the 8-round attack). Also with the aid of differential analysis, Naya-Plasencia et
al. mounted the preimage and collision attacks on 2-round KEcCAK [13]. In [9]
the same result (2-round preimage and 2-round collision attacks) were obtained
through the SAT-based attacks.

In this paper we focus our analysis on the KECCAK variants proposed as SHA-
3 candidates. First we analyze the permutation KECCAK- f[1600]. We mount the
4-round rotational distinguisher and then enhance it with a correlation analysis
which improves the result to 5 rounds. We implement the distinguishers and
verify the experimental results against the theoretical model. A family of 4-round
distinguishers is the base for our 4-round preimage attack with the complexity
of 64 times lower than exhaustive search.

2 KEccAK

In this section we provide a description of KECCAK to the extent necessary for
understanding the attack described in the paper. For a complete specification,
we refer the interested reader to the original specification [5].

KECCAK uses the sponge construction and hence is a member of the sponge
function family [4]. Figure 1 shows the construction. It can be used as a hash
function but also can be applied for generating infinite bit stream, making it
suitable as a stream cipher or a pseudorandom bit generator. In this paper we
focus on the sponge construction for cryptographic hashing. KECCAK has two
main parameters r and ¢, which are called bitrate and capacity, respectively. The
sum of those two makes the state size, which KECCAK operates on. For the SHA-
3 proposal, the state size is 1600 bits. Different values for bitrate and capacity
give the trade-off between speed and security. The higher bitrate gives the faster
function that is less secure. KECCAK follows the sponge two-phase processing.
In the first phase (also called the absorbing phase), r-bit input message blocks

Fig. 1. Sponge Construction [4]

absorbing | squeezing

I
20 21

Lol

1

p p Di
Larla L
r| |0 M Bl o>

A
A
Y
Y

are xored with the first r bits of the state, interleaved with applications of
the function f (called KECCAK-f in the specification). The absorbing phase is
finished when all message blocks have been processed. In the second phase (also
called the squeezing phase), the first r bits of the state are returned as part of
the output bits, interleaved with applications of the function f. The squeezing
phase is finished after the desired length of output digest has been produced.

The default values for KECCAK are r = 1024, ¢ = 576, which gives 1600-
bit state. KECCAK can also operate on smaller states but through the whole
paper we always refer to the default variant with 1600-bit state. The state can
be visualised as an array of 5x5 lanes, each lane is 64-bit long. The state size
determines the number of rounds in KECCAK-f function. For the default 1600-
bit state there are 24 rounds. All rounds are the same except for constants which
are different for each round.

Below there is a pseudo-code of the single round. In the latter part of the
paper, we often refer to the algorithm steps (denoted by Greek letters) described
in the following pseudo-code.

Round (A,RC) {

0 step
Clx] = A[x,0] xor A[x,1] xor A[x,2] xor

A[x,3] xor A[x,4], forall x in (0...4)
D[x] = C[x-1] xor rot(C[x+1],1), forall x in (0...4)
Alx,y] = Alx,y] xor D[x], forall (x,y) in (0...4,0...4)

p and T steps forall (x,y) in (0...4,0...4)

{
Y
!
Y
!

Bly,2*x+3%y] = rot(Alx,y], rlx,yl),

X step forall (x,y) in (0...4,0...4)
Alx,y] = Blx,y] xor ((not B[x+1,y]) and B[x+2,y]),

L step

A[0,0] = A[0,0] xor RC

return A }

All the operations on the indices shown in the pseudo-code are done modulo 5.
A denotes the complete permutation state array and A[x,y] denotes a particular
lane in that state. B[x,y], C[x], D[x] are intermediate variables. The constants
r[x,y] are the rotation offsets, while RC are the round constants. rot(W,m) is
the usual bitwise cyclic shift operation, moving bit at position i into position
i+ m in lane W (i + m are done modulo 64 — note that 64 is the lane size for the
default variant of KECCAK).

3 Rotational distinguishers for the KEccAk-f[1600]
permutation

A rotational distinguisher takes advantage of the fact that some transformations
preserve the rotational relation, i.e. if a rotational pair is given as the input of
the transformation, then the corresponding outputs are a rotation pair. Let us
define a rotational pair in the context of the KECCAK-f[1600] permutation.

Definition 1. A rotational pair is a pair of 1600-bit states (A, A~), where each
lane in the state A is created by bitwise cyclic shift operation of the correspond-
ing lane in the state A. The operation moves the bit A, .y into the position

(;,%Hn) (z+n is done modulo 64). The coordinates x,y range from 0 to 4 spec-
ifying the lane in the state, the coordinate z ranges from 0 to 63 specifying the
bit number in the given lane, n is called a rotational number and is the same for
every lane.

With the notation introduced in Definition 1, we can refer to a state by A,
to a lane by A3y, to a value of a single bit by AHA 6) Or to a position of a
single bit by (3,1, 60).

Remark 1. A direct consequence of Definition 1 is that for a given state A, there
are up to 64 possible rotational pairs including a pair, where A and A< are the
same (having n = 0). We will use this fact in the preimage attack described later
in the paper.

When we trace a rotational pair through the KECCAK- f[1600] algorithm, it
turns out that after a number of steps there are very few bits, which preserve
a rotational relation, that is A, .) = A(zy’ZJrn). For our analysis, it is useful
to define the probability that the two corresponding bits preserve the rotational
relation.

Definition 2. A probability p(,.y,) is the probability that two corresponding bits

Algy,2) and A‘(; yoztn) have different values and is expressed as p(y.y,.) = 1/2+
€(z,y,2)- Therefore if €,) = 1/2, the corresponding bits have opposite values
and if €y y) = —1/2, the corresponding bits are equal. In case €y,) = 0, the

bits are independent.

Fig. 2. Probabilistic relation between bits in a rotational pair

input{ : Keccak-f[1600] : A
p— — T'(xy.2)
p(x,y,z)= Pr(A(X,yyZ) * 4(_x,y,z+n))
rotated input{ : Keccak-f[1600] : _
— — Alxyzn)

For a random permutation, the probability p(, .y should be equal to 0.5 for
all (z,y, z). Thus if we can show that for KECCAK-f[1600] for some (z,y,), the
probability p(, . is expected to deviate from 0.5, then we have a distinguisher.
To calculate how the probabilities change through the successive steps of the
algorithm, let us first analyze two basic bitwise operations used in KECCAK.

Lemma 1 (AND). Given the AND operation, its input bits a, b and the output
bit out. Then the probability

1
Pout = 5((1 = pa)ps + (L = py)pa + papy),
where the probabilities p, and py are defined according to Definition 2.

Lemma 2 (XOR). Given the XOR operation, its input bits a, b and the output
bit out. Then the probability

Pout = (1 _pa)pb + (1 _pb)pa7
where the probabilities p, and py, are defined according to Definition 2.

Proofs of the lemmas are given in Appendix.

There is also the bitwise NOT operation in the algorithm but it does not
affect the probabilities. NOT flips the values of the corresponding bits A, ,,)

and A‘(; yoztn) but their relation (or precisely speaking the probability of relation

P(z,y,2)) Temains unchanged. Also the bitwise cyclic shift operation (denoted in
the pseudo-code as rot(W,n)) does not change the values of probabilities. It
rotates the bits in the lane so their positions (coordinates z in p(,,, .)) change
while their probabilities p(, ,,.) are not changed.

Having explained how the basic bitwise operations change the rotation prob-
abilities, the analysis of the KECCAK-f[1600] steps remains mostly straightfor-
ward. In the transformation 6, there is the XOR operation only, so Lemma 2 is
sufficient to calculate the rotation probabilities. For the transformations p and
7, nothing needs to be calculated as only the position of bits change. In the
transformation y, the two Lemma 1 and Lemma 2 are applied. The last step is
the transformation ¢, where a lane is xored with a constant. Xoring with ‘0’ does
not change anything. However, if there is ‘1’ at position n in the constant, then
xoring with a constant change the probabilities as follows

Play.z) = 1 = Pay,z) and
Pz,y,z—n) = 1 = P(ay,z—n)

Ezample 1. Let us consider two 8-bit lanes A gy and A(T)VO) with the following
binary values: A g) = 00000010 and A((E,o) = 00010000.

Note that A((Eo) is rotated by three positions thus n = 3. Because V. A ,.) =
A(T)’O,Hg), then V. p(yy.-) = 0 (according to Definition 2). Now if both lanes
are xored with 8-bit constant C' = 00000001, new values of lanes are Ay =
00000011 and ATO,O) = 00010001. Rotational relation has been spoilt at two
positions (0 and 5), therefore the probabilities p(g,0,0) and p(g,0,5) is now equal
to 1. In KECCAK- f[1600] the constants are 64-bit long but the reasoning shown
above is still valid.

3.1 4-round distinguishers

We build a 4-round rotational distinguisher and show that after 4 rounds, there
are some coordinates (z,y, z) for which p(, , .y deviates from 0.5. Figure 3 illus-
trate an evolution of rotation probabilities. A single square represents a value
(or a range of values) of the probability p(, . .). Usually in this paper, we refer
to a lane by its two coordinates (z,y). However here for the sake of diagram
readability instead of 5x5 matrix of lanes there are 25 rows, each representing a
single lane. For example, a value of p(g,1,0) is represented by the leftmost square
in the sixth row and p(4,4,63) is represented by the rightmost square in the last
(25th) row.

At the beginning, all corresponding bits from a rotational pair are equal so
Vey,z Pay,z) = 0. After the first application of ¢, some probabilities p(, . .)
change and in the subsequent steps these changes propagate and influence other
bits. For most rotational numbers n, there are some probabilities p(, , .y de-
viating from 0.5 until the end of the 4th round. After # in the 5th round, all
P(z,y,2) = 0.5, thus the round-reduced KECCAK-f[1600] cannot be distinguished
from a random permutation.

Fig.3. Evolution of probabilities p(s,,.) through 4 rounds of KECCAK-f[1600].
A rotational number n set to 11.

p=0
04>p>0
W 05>p>04
Wp=05
H06>p>05
H1>p>06
Hp=1
Round 1
]]
Round 2
[[] | EE B BN] | | | |
H H | |
H i s H
H H u u
H H
]]
H H
|] H |] H
| | |}] |]
H H
H H
| | | |
H H

We carried out the experiments to verify whether the 4-round distinguisher
gives results as our model predicts. For example, according to our calculations,
at the end of 4th round for n = 10, the probability p(4 4,14y = 0.5625. We chose
randomly 10000 rotational pairs and ran them on the 4-round KECCAK-f[1600].
Results of the experiment confirm the value of p(44,14). For around 5625 rota-
tional pairs considered, bits had different values. Note that for a random per-
mutation, the count should be very close to 5000. We experimented also with
other values of (z, y, z) and rotational numbers n, each time obtaining the results
consistent with the theory.

3.2 Extension to 5-round distinguisher

To extend the distinguisher to 5 rounds, we show that for some bits a probability
of correlation between them deviates from 0.5. Let us first give an observation
which helps to mount the 5-round distinguisher.

Observation 1 Consider two bits (A(zy.), A(z,y,2)) from state A which are in
the same column and let us assume that we know correlation (or in general, prob-
ability of correlation) between them (e.g. probability that A, , .y # Az .2))-
Our point is that # does not change this correlation (or probability of correla-
tion). It is because 6 treats each bit within a column in the same way: either it
flips all 5 of them or it leaves them unchanged.

We can use this observation in our rotational analysis. The only difference is
that instead of a probability of correlation between bits A, .y and A, v .y, we
speak about a probability of correlation between one pair (A, 2), A(: v z+n))

and the second pair (A, .), A)). Each of these two pairs has the re-

z,y’,z+n
lation between its bits (that is k()itlsl have either the same or opposite values).
We are interested whether the relations are the same in both pairs, specifically
the probability that relations are the same in both pairs. Clearly, for a ran-
dom permutation the answer should be equal to 0.5. Thus if we can show that
for KECCAK-f[1600] for some bits the value deviates from 0.5, then we have a
distinguisher.

First we determine a rotational number n for which p(, ,) and p(.. .)
have the highest deviation from 0.5 at the end of the 4th round. It turns out
that for n = 1, pa1,37) and p(2237) is the best pair (p(21,37) = 0.5625 and
p(272737) = 049219)

Now let p. denotes a probability that in the first pair (A, 2), A‘(_z’y’ern)) and
in the second pair (A A)) is the same relation. That is the prob-

ability:

—
z,y’,2) (z,y",z+n

Pec = P(z,y,z) " P(z,y’,2) + (1 - p(z,y,z))(l - p(:r,y’,z))

We can calculate p. for the chosen pair p(21,37) and p(2237)-

pe = 0.5625 - 0.49219 + (1 — 0.5625)(1 — 0.49219) = 0.49902375

This is the p. value at the beginning of the 5th round. Then we have to ex-
amine how the steps in the algorithm change this probability. As explained in
Observation 1, 6 does not change this value. Subsequent algorithm steps p and 7
also do not change p. value, they only change a position of p. which now refers
to different pairs of bits (A1 2.43), Aa2744)) and (A(2,0,16) A5»0717))' After that
there is x which preserves the relation between the first pair and the second with
a probability equals 0.53125. (Detailed calculations are given in Appendix.) Fi-
nally, ¢ does not affect our analysis here. Therefore, to have our pairs with the
same relation at the end of the 5th round, there are two ways this event may
occur. Either the pairs enter into the 5th round with the same relation and y
does not spoil it or they enter into the 5th round with the opposite relation and
x ‘fixes’ it. Then the total probability p. for the chosen pair at the end of the
5th round is:

pe = 0.53125 - 0.49902375 + (1 — 0.53125) - (1 — 0.49902375) = 0.499938984

For a random permutation p. should be equal to 0.5; so, the bias is very
small. To experimentally verify and observe the bias we need to check many
rotational pairs. A sufficient number of rotational pairs m is calculated from
Chernoff bound and can be expressed as the following inequality:

> L 1 L

m>-————=1In—

= (e —0.5)2 €

where € is the probability of an error of the bound (typically set to 0.05). From the
inequality we have m > 402 332 890 and in the experiment we checked 403 000 000
rotational pairs. The distinguisher can be described in a few short steps:

1. Generate randomly 403 000 000 rotational pairs
2. For each pair
(a) Run 5-round KECCAK-f[1600] on the state A and the state A™;

(b) if (A1,2,43) = A{1 2,40)) a0d (A(20,16) = A5 17)) OF
(A(1,2’43) 7£ AE72744)) and (A(2,O,16) 7é AE,0,17)) then

counter := counter + 1;

The result from the experiment was consistent with the predicted bias. In
fact the observed bias was even slightly higher (201450503 pairs had the same
relation whereas the predicted value is p. - 403 000 000 = 201475410.) Note that
for a random permutation, the counter should be very close to 201 500 000.

4 Preimage attacks on round-reduced KECCAK

First, we describe the preimage attack on 3-round KECCAK which is based on
the rotational distinguisher given in the previous section. Then we show how to
extend the attack to 4 rounds. To have the attack working on KECCAK hash
function, we have to consider padding and KECCAK parameters. Let us consider
KEccak candidate for SHA3-512, that is KECCAK with r = 576, ¢ = 1024 and

a hash length set to 512 bits. For the preimage attack we propose the following
structure of the message. A message length is 574 bits, where first 8 lanes (512
bits) are unknown (to determine by the attacker). Last 62 bits of the message
are set to 1. The message is padded with two 1s giving a block of 576 bits.
This way we fulfill a condition that all lanes (except first 8 lanes) have all Os
or 1s. Similarly we would mount the constraints on a message when attacking
KEccak with different parameters (including all KECCAK variants proposed as
SHA-3 candidates).

4.1 3-round preimage attack

The goal of our attack is to find a preimage for a given 512-bit hash h. In the
structure of the message described above we have 512 unknown bits, then we can
expect that among 2°!2 possible messages there is at least one with a given hash.
The main idea of our attack is to find a rotational counterpart of the preimage
and show that the workload for this task is below exhaustively trying all 2512
values. Once we have a rotational counterpart of the preimage, we simply rotate
it back and get the preimage.

As stated in Remark 1, for a given state A there are up to 64 possible ro-
tational pairs (including the identity function). In the state A there are 512
unknown bits, then the probability that we guess one of the rotational pairs (an
unknown A and its rotational counterpart A<) is 64 - 27512 = 27506 Thus we
need 2°% guesses. There is a subtlety here which should be mentioned. There
are some messages which have fewer than 64 rotations. These ‘special’ messages
have a cyclic pattern. For example a message starting with four Os then four 1s,
then four 0s and so on. However, the number of ‘special’ messages is relatively
small in comparison to 2°!2. It can be shown there are 22°6 such messages for
our case. (See Appendix for detailed analysis.) For simplicity, we can start our
attack with checking 2256 these special messages. Then there are still almost 2°12
possibilities left, but at least we are sure that in this poll each state can give 64
rotational pairs.

Before launching the main loop of the attack, it is useful to generate 64
diagrams (the same as shown in Figure 3), each with a different rotational num-
ber n. It allows to determine the coordinates (x,y, z) for which p(,,) = 0 or
D(z,y,-) = 1 at the end of the 3rd round. Because the attacker knows only 512
bits of a hash, we have to consider only (z,y, z) such that 64z + 320y + z < 512.

Here is the main loop of the attack given in the following pseudo-code:

1. guess first 8 lanes (512 bits) of the state A, the other bits are fixed according
to the structure of the message given above.

2. run 3-round KECCAK on the state A

3. for n:=0ton <64 do

(a) candidate := true;
(b) for all (z,y, z) such that 64z + 320y + z < 512 do

if (P(z,y,-) = 0) and (A (g .- # A((;,y,ern)) then candidate := false;

if (p(z,y,z) = 1) and (A(a:,y,z) = A((;’y,ZJrn)

) then candidate := false;

(c) if (candidate=true) then rotate back the guessed state by n bits and
run 3-round KECCAK on it to check whether the state is the preimage
of a given hash.

The attacker compares the probabilities p(; .y from the distinguisher with
the actual values of A (the given hash) and A state (a result of 3-round KEC-
CAK on a guessed state). So, for example, if p(531) = 0, then the bits Ay 3 1)
and A§,3,1+n) have to be the same. If the bits are different, then the candidate
is rejected as a potential rotational counterpart of the preimage. (It is the point
in the pseudo-code where a variable candidate becomes false.)

As said earlier, running the main loop 2°°¢ times, we should get one rotational
counterpart of the preimage. It could be the case that our guess (candidate)
of a rotational counterpart is not rejected, but in fact it is not a rotational
counterpart. Let us call it a false positive candidate. There will be many such
false positive candidates and the number of them is calculated as follows. For
each distinguisher (each with a different rotational number n), one can calculate
the number of triples (x,y,2) for which p,, .) = 0 or p,,..) = 1 at the end
of the 3rd round. For example, for the distinguisher with n = 11 (as shown in
Figure 3), there are 149 triples (z,y, z) for which p(, , .y = 0 or p(5 .y = 1 at
the end of the 3rd round. (We remind that we consider only (z,y, z) such that
64x + 320y + 2 < 512.) The best case is for the distinguisher with n = 1, for
which the number of triples is 183 and the worst case is for n = 32 with the
number of triples equals 124. A probability that each of 124 p(, , .) has a correct
value (as the rotational distinguisher predicts) is 27124 and hence there will be
around 2512 /2124 = 2388 false positive candidates to check. (23%8 is the upper
bound of the number of false positive candidates as we take the worst case for
the calculation.)

Summing up, the workload of the attack is 2256 (checking special messages) +
2596 (main loop) + 238 (checking false positive candidates). Thus an asymptotic
complexity of the attack is O(2°°¢), 64 times better than the exhaustive search.

4.2 Extension to 4-round preimage attack

A direct extension of the attack to 4 rounds is not possible since there are not
any P(z,y,z) = 0 OF P(gy,») = 1 in the 4th round of the rotational distinguisher.
To make it possible we take advantage of the following observation.

Observation 2 In Example 1, Section 3 it was shown that application of ¢ to
A and A states flips the value p(,,, .y for some triples (z,y, 2). Precisely, the
number of flips is equal to Hamming weight of a round constant and this value
is multiplied by two. So if there are three 1’s, there will be six flips. Our point
is that if we do not apply ¢ to an A< state, there will be half as many flips. Let
us see a simple example similar to Example 1.

Ezample 2. Let us consider two 8-bit lanes Ag) and A(o 0) with the following
binary values: A(O 0) = 00000010 and A‘E 0) = = 00010000.

Note that A 0.0) 18 rotated by three posmons thus n = 3. Now A(g,g) is xored
with 8-bit constant C' = 00000001 and AT) 0) is left without changes Then
we have A o) = 00000011 and the unchanged A(o 0 = = 00010000. Therefore a
rotational relatlon has been spoilt at only one posmon SO MOW P(0,0,0) 18 equal
to 1. In KECCAK- f[1600] the constants are 64-bit long but the reasoning shown
here stays the same.

What is important from this simple observation is that fewer flips lead to
fewer p(;.y) with undesirable 0.5 value. In consequence, now in the 4rd round
there are 9 triples (x,y, z) for which p(,, .) = 0 or p(y,) = 1. These triples
fulfil the condition 64x + 320y + z < 512 as the attacker is given only 512 bits
of a hash. In fact p(; .y = 0 or p,y,.) = 1 are not at the end of the 4rd round
but before y in the 4rd round. (Step x destroys these desirable probabilities.)
Fortunately, we can invert ¢ and x from the given hash as x operates on the
rows independently and can be inverted on a row-by-row basis. In Appendix we
give a diagram showing how the probabilities p(, , . evolve and propagate in
the modified version of KECCAK without «.

The preimage attack on the 4-round KECCAK is very similar to the 3-round
variant, they differ only in a few places. First, we need to invert ¢ and x of the
4rd round from the given hash. Then, in Step 2 of the pseudo-code instead of
running a normal 4-round KECCAK, we run a modified version without ¢ (in all
4 rounds) and without ¢ and in the 4rd round. Finally, there will be more false
positive candidates as there are only 9 triples (x,y, z) for which p(, , .y = 0 or
P(z,y,2) = 1. The complexity of the attack stays the same as in the 3-round attack.
That is 22°¢ (checking special messages) + 2°°° (main loop) + 2593 (checking
false positive candidates). It gives O(2°6).

Our preimage attack works also on KECCAK candidates for SHA3-224, SHA3-
256, and SHA3-384. The complexity of the attack remains the same, the only
difference is a higher number of false positive candidates to check. It is because
an attacker knows fewer bits of a hash (a hash is shorter in these variants) and
consequently there are fewer triples (,y,) for which p(; 4, .) = 0 0or p(gy..) = 1.
Please note that if we try to attack KECCAK variant with higher bitrate r (e.g.
a variant with 7 = 600 and ¢ = 1000), the claimed security for this variant is
2¢/2 = 2500 Tn such a case our attack is not actually an attack as its complexity
is higher than the claimed security provided by designers.

We could not extend the attack to 5 or more rounds because in the 5th round
all p(y,y,-) = 0.5, as expected from a random permutation.

5 Conclusion

In this paper, we have presented the rotational distinguisher for KECCAK- f[1600]
permutation — the main building block of the KECCAK hash function. The dis-
tinguisher has been enhanced with the correlation analysis, allowing us to reach

5 rounds with the complexity of 22°. We have implemented and verified the
distinguisher and experimental results have been consistent with the theoretical
model. A family of 4-round distinguishers help us to mount the 4-round preim-
age attack with the complexity of 2°%6. All the presented attacks are valid for all
the KECCAK variants submitted as SHA-3 candidates. As future work, it would
be interesting to investigate whether the differential rebound attack could im-
prove the rotational distinguishers. These two types of analysis (rebound and
rotational) were combined in the attacks on Skein hash function [11].

References

1.

10.

11.

12.

13.

14.

Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for
the core functions of Luffa and Hamsi. Tech. rep., NIST mailing list (2009)

. Bernstein, D.J.: Salsa20. Tech. rep., eSSTREAM, ECRYPT Stream Cipher Project

(2005), http://cr.yp.to/snuffle.html

Bernstein, D.J.: Second preimages for 6 (77 (877)) rounds of Keccak? NIST mailing
list (2010), http://ehash.iaik.tugraz.at/uploads/6/65/NIST-mailing-list_
Bernstein-Daemen. txt

Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponges,
http://sponge.noekeon.org

Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function
family main document, http://keccak.noekeon.org/Keccak-main-2.1.pdf
Boura, C., Canteaut, A.: Zero-Sum Distinguishers for Iterated Permutations and
Application to Keccak-f and Hamsi-256. In: Biryukov, A., Gong, G., Stinson, D.
(eds.) Selected Areas in Cryptography, Lecture Notes in Computer Science, vol.
6544, pp. 1-17. Springer Berlin Heidelberg (2011)

Duan, M., Lai, X.: Improved zero-sum distinguisher for full round Keccak-f per-
mutation. Chinese Science Bulletin 57, 694-697 (2012)

Duc, A., Guo, J., Peyrin, T., Wei, L.: Unaligned Rebound Attack - Application to
Keccak. Cryptology ePrint Archive, Report 2011/420 (2011)

Homsirikamol, E., Morawiecki, P., Rogawski, M., Srebrny, M.: Security margin
evaluation of SHA-3 contest finalists through SAT-based attacks. In: 11th Int. Conf.
on Information Systems and Industrial Management. LNCS, vol. 7564. Springer
Berlin Heidelberg (2012)

Khovratovich, D., Nikoli¢, I.: Rotational cryptanalysis of ARX. In: Proceedings of
the 17th international conference on Fast software encryption. pp. 333-346. LNCS,
Springer-Verlag (2010)

Khovratovich, D., Nikolic, I., Rechberger, C.: Rotational Rebound Attacks on Re-
duced Skein. In: ASTACRYPT’10. LNCS, vol. 6477, pp. 1-19 (2010)

Knudsen, L.R., Matusiewicz, K., Thomsen, S.S.: Observations on the Shabal
keyed permutation. Available online (2009), http://www.mat.dtu.dk/people/S.
Thomsen/shabal/shabal.pdf

Naya-Plasencia, M., Rck, A., Meier, W.: Practical analysis of reduced-round kec-
cak. In: Bernstein, D., Chatterjee, S. (eds.) Progress in Cryptology INDOCRYPT
2011, Lecture Notes in Computer Science, vol. 7107, pp. 236-254. Springer Berlin
Heidelberg (2011)

Standaert, F.X., Piret, G., Gershenfeld, N., Quisquater., J.J.: SEA: A Scalable
Encryption Algorithm for Small Embedded Applications. In: CARDIS’06. LNCS,
vol. 3928, pp. 222-236 (2006)

15. Van Assche, G.: A rotational distinguisher on Shabals keyed permutation and its
impact on the security proofs. Available online, http://gva.noekeon. org/papers/
ShabalRotation.pdf

Appendix

Proof of Lemma 1

Analyzing the AND operation we consider two pairs of input bits. A pair from an
A state and its counterpart from an A~ state. There are 16 possible combinations
of pairs and we group them in fours. It is shown in Figure 4. Probabilities of
getting the given group are also shown. The most inner circles represents pair
of output bits (one bit from an A state and its counterpart from an A* state).
It is clear from Figure 4 that four paths lead to a circle with output bits having
opposite values (pairs (0,1) and (1,0)). Actually, one path has probability 0 thus
a calculation of pyy: (a probability that output bits have opposite values) comes
down to adding probabilities of the three paths. We have:

1 1 1 1
Pout = PPy~ 5 + (1 —pa)ps - 3T (1—po)pa - 5= 5((1 —pa)Pb + (1pb)Pa + Pabb)

Fig. 4. All possible ‘paths’ for the bitwise AND operation for rotational pairs of bits.

Proof of Lemma 2

Proof of Lemma 2 is the same as for Lemma 1. The only difference is that now
there are only two paths leading to a circle with output bits having opposite
values. It is shown in Figure 5. We have:

Pout = (1 = pa)pp - 14+ (1 = pp)pa - 1 = (1 = pa)pp + (1 — pp)Pa

Fig. 5. All possible ‘paths’ for the bitwise XOR operation for rotational pairs of bits.

(1-9)(1p)

R(1-p,)

Probability of relation preservation by x

We are given two pairs of bits (A1 2 43), A(T72’44)) and (A(2,0,16) A(Z,o,17))' Each
of these two pairs has the relation between its bits (that is bits have either the
same or opposite values). We can also look at relation between pairs and there
are two possibilities: either the same relation in both pairs or different relation in
each pair. For example a pair (0,1) and a pair (1,0) means that relations in both
pairs is the same (bits are different in pairs). We are interested in a probability
that x preserves the relation between pairs. x changes the values of bits in the
following way.

A(1,2,43) := A(1,2,43) XOR (A(2,2.43) AND A3 43))

- il il H first rotational pair
Al 2,40y = A{1 2,40y XOR (A(3 5 44) AND A(3,2,44))}

A2,0,16) = A2,0,16) XOR (A(3,0,16) AND A40,16))

- - - - second rotational pair
A oar = Azoar XOR (A(3,0,17) AND A(4,0,17)>}

To keep the relation between bits A 3 43) and A(T,2744) from the first pair,
the result of the AND operation has to be the same in both equations from the
first pair. The probability of such event can be calculated from Figure 4. We add
probabilities (paths) leading to the left, inner circle. (This circle represents the
output bits with the same values.) Then a probability is:

1 1 1
p= (1—pa)(1—pb)-1+papb-§+(1—pa)pb-§+(1—pb)pa-§

In the 5th round, after ¢ all p then a numerical value of p is:

_1
Ty.2) = 3

:1—7 _ = _—_—— —_ =)= = —_—)= = —
p=(-) =+ 55t 1-3)a3 + =333 =3

For the second rotational pair calculations are exactly the same with the
result of % The event that x preserves the relation between the first and second

pair can happen either when the relation in each pair is preserved or the relation
in each pair is spoilt. Thus the probability of this event is equal to:

5 5 5 5 34
et = 224 (1= D1 =2y =22 205312
Pevent = g g+ (1= 2)(1 = 5) = 7 = 0.53125

Calculation of a number of special messages

According to Definition 1 and Remark 1, for a given state A there are up to
64 possible rotational pairs (including an identity function). There are some
messages which have fewer than 64 rotations. These special messages must have
a cyclic pattern (e.g. alternating four 1’s and four 0’s) in all lanes. All 0’s or all
1’s in the given lane are also considered cyclic here. Please note that if at least
one lane in a state A is not cyclic then there are exactly 64 possible rotational
pairs (A, A7). It is because this non-cyclic lane is distinct for each rotational
number n and consequently the whole A~ will be distinct.

For a 64-bit lane there are 232 cyclic patterns. In our preimage attack there
are 8 unknown lanes in the A state (rest lanes are fixed and cyclic), so the number
of combinations of cyclic patterns in these 8 lanes is: 232 - 232 ... 232 = 2256 And

8 factors
hence the number of special messages is 22°6.

Evolution of probabilities p(s,y,-) in the modified KECCAK variant

Figure 6 shows how probabilities p(, ,,.) change in the modified KECCAK variant
(without ¢). The variant was used in 4-round preimage attack. Please note that
in the 4th round, after 6, there are still p(, , .y = 0 or p(4, .) = 1 which is the
key observation in the 4-round preimage attack.

Fig. 6. Evolution of probabilities p(,,,,.) in the modified KECCAK variant.

p=0
04>p>0
M 05>p>04
W p=05
W 06>p>05
H1>p>06
Hp=1
Round 1
|]
Round 2
[[] |] | |
- n
- H
H u
H
|]
H
= n
] |]
H
H
| |
u H
H
Round 3
| 11 [] H Em
gt
i
m.'H
L1 1] |}
l-=ll.
" n
Eciim
= [|

Round 4 (only)

