
Programming Coordinated Behavior in Java

David Harel1, Assaf Marron1, and Gera Weiss2

1 Weizmann Institute of Science, Rehovot, Israel
2 Ben Gurion University, Beer-Sheva, Israel

Abstract. Following the scenario-based approach to programming which
centered around live sequence charts (LSCs), we propose a general ap-
proach to software development in Java. A program will consist of mod-
ules called behavior threads (b-threads), each of which independently de-
scribes a scenario that may cross object boundaries. We identify a proto-
col and a coordination mechanism that allow such behavioral program-
ming. Essentially, runs of programs are sequences of events that result
from three kinds of b-thread actions: requesting that events be considered
for triggering, waiting for triggered events, and blocking events requested
by other b-threads. The coordination mechanism synchronizes and inter-
laces b-threads execution yielding composite, integrated system behavior.
The protocol idioms and the coordination mechanism of b-threads are
implemented as a Java library called BPJ. Throughout the exposition we
illustrate benefits of the approach and discuss the merits of behavioral
programming as a broad, implementation-independent paradigm.

1 Introduction

Behavioral and scenario-based descriptions are used in many different areas, in-
cluding among others, system requirements and specifications, business workflow
engines, user guides, and books of laws and regulations. In this paper we focus
on applying such descriptions in computer programming. To facilitate coding
of behaviors in an imperative language such as Java, we define the concept of
behavior thread or b-thread. A b-thread is a programming construct that con-
trols and coordinates the execution of a particular behavior, possibly involving
multiple objects and components. We then introduce a Java library, BPJ, that
enables the development of a system in Java as a collection of b-threads, each
of which uses the library’s API to independently execute a behavior or scenario
assigned to it, while the synchronized and interlaced execution of all b-threads
yields integrated, cohesive system behavior.

This work comes in the wake of existing languages for describing scenario-
based behavior, such as message sequence charts (MSC) [22, 32] and live sequence
charts (LSC) [7, 16]. In particular, the last dozen or so years have seen extensive
work on LSCs and its underlying paradigm of scenario-based programming. One
of the main lines of this research has lead to the possibility of using units of
behavior as the backbone of the final executable [16]. Thus, in LSC, scenarios can
become part of the application, going beyond the classical role of of conventional

sequence charts as a requirements and specification language to be later tested
against an implementation, typically of a completely different nature. To that
end, the LSC language was designed to be rich in expressive power for general-
purpose software development, and a central line of research has been to support
coordinated execution of multi-modal scenarios[16]. Like modal verbs in a natural
language and the operators of modal logic, LSC modalities can describe, among
other things, what may, must and may not occur, and the total behavior is
derived from combining all scenarios accordingly. For executing LSCs, the play-
out method was devised, which constantly follows all active charts, and at each
step selects an event that is enabled by some chart and does not violate any
chart, and advances all charts waiting for that event [16].

The original play-out execution mechanism of LSCs (and its later “smart”
versions [14, 19]) were implemented in a special-purpose LSC tool, called the
Play-Engine. Later, a compiler for LSCs was constructed, resulting in AspectJ
code which can be interwoven into a Java application [27, 13]. This brings exe-
cutable scenarios closer to being usable in an actual system development environ-
ment. However, what still seems to be missing is a direct way for programmers to
apply the ideas and methodology behind scenario-based programming in a con-
ventional software development setting, without the need for a special purpose
language or tool.

In this paper, we build upon the basis of scenario-based programming as
established by LSCs, and the experience gained from experimenting with it in
several application areas [2, 4, 5, 9, 15, 33]. We first identify and provide formal
definitions for the essence of the ideas (which we more generally call behav-
ioral programming [17]). Then, we introduce the BPJ library and show that
coordinated behaviors can be programmed in an ordinary programming lan-
guage alongside the coding of individual objects with their own behavior. This
programming can be done without relying on a special purpose language and
environment, such as LSC and the Play-Engine, while maintaining an implemen-
tation that can reflect the behavioral descriptions as conceived by humans.

In contrast to previous work on LSCs, in the current paper we develop
scenario-based programming bottom-up; i.e., we start from a general-purpose
language (Java) and add programming tools that allow programmers to endow
their programs with powerful behavioral elements. In particular, the focus here
is on the coding and less on the specification, with the intention of bringing the
advantages of scenario-based programming (e.g., incremental system construc-
tion, meaningful functionality at early development stages, and alignment with
the way humans think) to broader programming contexts.

Outline: Section 2 outlines our approach. Section 3 defines general abstract
semantics and idioms for behavioral programming and then introduces the BPJ
library showing how the idioms are implemented in Java. In Section 4, features
and advantages of the approach are illustrated through examples. A more de-
tailed description of the BPJ library is given in Section 5. Section 6 briefly com-
pares behavioral programming to other approaches and surveys related research.
In Section 7 we conclude with a discussion of future research directions.

2 Outline of Our Approach

As a simple example, consider a program for an individual who wishes to drive
from New York to Los Angeles. The program consists of two behaviors, or b-
threads, that guide the individual along the trip: one b-thread contains the
driving route and directions and the other is a daily plan for combining driving,
eating and resting (see Figure 1).

– Start driving on I-78 W [135 mi]
– Merge onto I-81 S [36.6 mi]
– Take ramp onto I-76 W [152 mi]
– Merge onto I-70 W [613 mi]
– Merge onto I-44 W [497.2 mi]
– Continue to I-40 W [1,214 mi]
– Merge onto I-15 S [72.6 mi]
– Merge onto I-10 W [38.9 mi]

(a) Directions b-thread

Repeatedly:
– Drive for 5 h; look for restaurant
– Stop the car; have lunch
– Drive for 5 h; look for restaurant
– Stop the car; have dinner
– Drive for 2 h; look for hotel
– Stop the car
– Sleep until morning

(b) Day schedule b-thread

Fig. 1. Two independent behavior threads that run in a coordinated manner.

Throughout the trip, the two b-threads are interwoven into what manifests
itself externally as a single integrated behavior: actions from the two b-threads
may run in parallel, such as when looking for a restaurant while driving the
car along the route; two actions may be consolidated into a single one, as when
driving according to schedule and according to directions; and two actions may
suspend each other, as when not driving along the route while sleeping at a hotel.
Note that the two b-threads do not communicate directly — in fact, they are
quite oblivious of each other (e.g., consider the ease with which either b-thread
can be thrown out and replaced with another, or not be replaced at all). The
coordination and interweaving of actions is done by the individual, parallelizing,
consolidating, and deferring actions as needed.

This seems like a natural approach to programming. It allows one to specify
a desired complex behavior by decomposing it into an set of simpler, relatively
independent behaviors, that can be executed collectively in a meaningful way.

The methodology proposed in this paper is to program such b-threads in
Java. For example, we can code them as in Figure 2, where driving is a con-
tinuous activity that can be suspended and resumed; road signs, milestones,
and time-ticks are external events that can be waited for; function invocations
such as the calls to turnOnto() or haveLunch() trigger external actions; and pro-
gramming constructs such as variables and loops are used in the usual way.
The coordination between the b-threads is implicit through their control of the
driving activity.

More generally, in our programming approach, coordination is done through
signalling using event objects. Using the BPJ library we describe later, b-threads
can request the triggering of events, can wait for events, and can block the

directions() {
start(driving);

for(d=0; d<135; d++) {
waitFor(oneMile);

}

waitFor(I81S);
turnOnto(I81S);

for(d=0; d<36; d++) {
waitFor(oneMile);

}

waitFor(I76W);
. . .

}

daySchedule() {
while(true) {

for(t=0; t<5; t++) {
waitFor(oneHour);

}

waitFor(restaurant);

suspend(driving);
waitFor(fullStop);

haveLunch();
resume(driving);
. . .

}
}

Fig. 2. Writing behavior threads in Java.

occurrence of events requested by other b-threads. For example, in the code
in Figure 2, the starting, suspending and resuming of the driving operation is
a higher level interface that hides the requesting and blocking of events. BPJ
includes a coordination mechanism that weaves these seemingly independent
requests into a single combined cohesive behavior.

In our technique, behavior threads are implemented as Java threads that re-
quest, wait for, or block events using the BPJ API consisting of method calls and
simple data structures (the b-threads can also call other functions for external
actions). The coordination mechanism fulfils the instructions of the b-threads
by triggering those of the requested events that are not blocked.

Our “request-and-block” abstract idioms and the BPJ API may be remi-
niscent of some of the constructs used in approaches to concurrency (such as
various kinds of locks, semaphores and message passing), however differences
will show up as our exposition unfolds in the coming sections. The main one is
the apparent absence in those other approaches of a concise, autonomous way
for a process to block events that other processes may attempt to trigger. Sec-
ond, our approach enables unification/consolidation of identical event requests,
coming from different processes, into a single event execution. Another difference
that will be shown is that in BPJ requests and blocks are triggered only when
all b-threads are ready to process them, as opposed to queuing associated with
protocols such as publish/subscribe.

Now, while our work focuses on constructs for programming b-threads in
a textual language like Java, we find it useful to present the new idioms also
in a formal definition based on transition systems. For example, the transition
system in Figure 3 represents the trip b-threads. In such a transition system,
the events are those that the corresponding program explicitly waits for, and the
states represent the states of the program (program counter and variable values)
when waiting for the next event. External actions carried out by the program

are drawn inside the state rectangle, and are assumed to be executed as part of
the transition into the state.

d = 0

..
d = 135

turn(I81S)

..

1m

1m

I81S

t = 0

..

t = 6

suspend(driving)

haveLunch()

..

1h

1h

restaurant

stop

Fig. 3. Transition systems for the NY-to-LA trip behavior threads.

Note that because of the nature of transition systems (e.g., states are rep-
resented explicitly), the number of states may grow excessively, so we do not
propose them as a programming language. Instead, transition systems will be
used throughout the paper in formal definitions and analysis, as well as in vi-
sual representation of simple programs, and will introduce and complement the
discussion of the Java programming implementations.

3 Interlacing and Synchronizing Behaviors

The two main idioms proposed in this paper for usage by b-threads, relate to
events, and they are Request and Block. Requesting an event is similar to execut-
ing a command in an imperative language, except that the actual triggering of
the event is tentative, and can occur only when the event is not blocked. Block-
ing an event is an operation that suspends the occurrence of events that might
be requested by other b-threads. If a blocked event is requested, its triggering is
deferred until it is no longer blocked, or “forever”, that is, until the entire system
terminates. These idioms are complemented by a third idiom, wait for an event
(also referred to as watch an event), that has the common semantics of asking
to be notified or resumed when the event is triggered.

3.1 Abstract Semantics

Our definition of b-threads and their collective execution is based on labeled
transition systems. Recall that a labeled transition system is defined (see [24])
as a quadruple 〈S,E,→, init〉, where S is a set of states, E is a set of events,

→ is a transition relation contained in (S × E) × S, and init ∈ S is the initial

state. The runs of such a transition system are sequences of the form s0
e1−→

s1
e2−→ · · · ei−→ si · · · , where s0 = init, and for all i = 1, 2, · · · , si ∈ S, ei ∈ E, and

si−1
ei−→ si.

Below, we formally define a b-thread as a labeled transition system in which
events in each state can be marked as requested or as blocked. We then set the
two basic rules for executing a set of b-threads: (1) An event occurs if and only
if it is requested by some b-thread and is not blocked by any b-thread; (2) All
b-threads affected by a given event undergo a state transition when the event
occurs.

Definition 1 (behavior thread). A behavior thread (abbr. b-thread) is a tu-
ple 〈S,E,→, init, R,B〉, where 〈S,E,→, init〉 forms a labeled transition system,
R : S → 2E is a function that associates each state with the set of events re-
quested by the b-thread when in that state, and B : S → 2E is a function that
associates each state with the set of events blocked by the b-thread when in that
state.

Definition 2 (runs of a set of b-threads). We define the runs of a set of b-
threads {〈Si, Ei,→i, initi, Ri, Bi〉}ni=1 as the runs of the labeled transition system
〈S,E,→, init〉, where S = S1× · · · ×Sn, E =

⋃n
i=1Ei, init = 〈init1, . . . , initn〉,

and → includes a transition 〈s1, . . . , sn〉
e−→ 〈s′1, . . . , s′n〉 if and only if

e ∈
n⋃

i=1

Ri(si)︸ ︷︷ ︸
e is requested

∧
e /∈

n⋃
i=1

Bi(si)︸ ︷︷ ︸
e is not blocked

. (1)

and
n∧

i=1

(
(e ∈ Ei =⇒ si

e−→ s′i)︸ ︷︷ ︸
affected b-threads move

∧ (e /∈ Ei =⇒ si = s′i)︸ ︷︷ ︸
unaffected b-threads don’t move

)
(2)

In general, there may be more than one run of a set of b-threads, depending
on the order in which events are selected from the set of requested and unblocked
events. We view this as a useful feature, which allows designers of systems to
separate the specification of possible b-threads from the process of prioritization
and choice of events.

To introduce predictability and repeatability into runs of a set of b-threads,
we require a total (possibly dynamic) order of events, which controls the selec-
tion of the next event to be triggered. For simplicity, in this paper, the event
selection order is induced by associating each b-thread and each event with a
fixed numerical priority; a lower number means higher priority. Requested events
are then ordered lexicographically: first by the priority of the requesting b-thread
and then by the priority of the event itself.

As to graphical notation, we adopt the following for drawing diagrams of
labeled transition systems. Rectangles and labeled arrows represent, respectively,

states and conditional transitions. Within each state we specify the associated
sets of requested events (denoted by R = · · ·) and blocked ones (denoted by
B = · · ·). Above each b-thread we specify its priority.

3.2 A Java Implementation

The basic programming unit for implementing behavioral programming in Java
is the coding of behavior threads as Java threads. For that purpose BPJ defines
the BThread class, each instance of which is associated with a Java execution
thread whose progress embodies a run of the behavior thread. The logic of the
b-thread is implemented in a method runBThread provided by the programmer.

The events triggered by the b-threads are represented as objects of the
class Event. Each b-thread object has three sets of events: requested events
(requestedEvents) and blocked events (blockedEvents) correspond to the sets
R and B in definitions 1 and 2 above, and watched events (watchedEvents) cor-
responds to the set of events appearing in the labels of the arrows in the tran-
sition diagram. Each b-thread calls the behavior synchronization method bSync

passing to it as parameters information about the events it requests, waits for,
and/or blocks. The method bSync also synchronizes the b-thread with all other
b-threads and invokes the control mechanism that chooses and triggers the next
event and notifies the b-threads waiting for that event.

The transition relations in Definitions 1 and 2 are represented in the Java
code of behavioral programs implicitly. A thread of Java code that interfaces with
other programs only through events can be mapped to the b-thread 〈S,E,→
, init, R,B〉 along the following lines:

– S is the set of states reachable by the Java execution thread, when its pro-
gram counter is at a bSync call. Here, the program state is interpreted in the
standard way, as the set of variable values plus the program counter.

– E is the set of event objects referred to in the Java code.

– The transition s
e−→ s′ exists iff calling bSync when in state s implies that if

bSync returns and sets the variable lastEvent to e then the process will be
in state s′ upon its next call to bSync. The set of all such events e for the
current state s of the b-thread is reflected in the corresponding parameter
to the method bSync.

– init is the state associated with the first call to bSync.

– R(s) and B(s) are the values of the corresponding parameters to the method
bSync when the thread is in state s.

While translations between the two representations can potentially be au-
tomated, transition systems are not intended to be used for programming (as
mentioned above) because of their verbosity in representing states. As a medium
for representing b-threads, code is most often more succinct and understandable,
as we show below. Moreover, b-threads coded in Java can benefit from the full
power of the language, as discussed in Subsection 5.3.

Synchronization and Interlacing Algorithm. The state transitions in Def-
inition 2 of collective execution of b-threads are implemented in an algorithm
that synchronizes, suspends and resumes all b-threads, as depicted in Figure 3.2.

1. When a b-thread is started, it is registered as an executing (running)
b-thread and is marked as not ready to synchronize with other
b-threads. The method runBThread is then started in a dedicated Java
execution thread.

2. The runBThread method repeatedly: (a) performs arbitrary processing,
and (b) calls bSync, passing to it as parameters new values for the
b-thread’s sets of requested events, watched events and blocked events.

3. When bSync is called:

(a) The parameters to bSync are copied into the corresponding
variables of the b-thread object (requestedEvents, watchedEvents,
and blockedEvents).

(b) The b-thread is marked as ready to synchronize, and its Java
execution thread is suspended.

(c) When all running b-threads are marked as ready to synchronize, an
event selection mechanism is invoked, that carries out the following:

i. It searches for, and selects the first event that is in the
requestedEvents set of some b-thread, and is not in the
blockedEvents set of any b-thread. The order of this search is
by the priority of the requesting b-thread, and within a given
b-thread, by the order of the requestedEvents set.

ii. It resumes all b-threads that contain the selected event in their
watchedEvents set or requestedEvents set and marks all of
them as not ready to synchronize.

4. When the runBThread method terminates, the b-thread is removed from
the list of executing b-threads.

Fig. 4. Synchronization and interlacing algorithm

This execution algorithm was inspired by the operational semantics of the
Play-Engine, which executes an LSC specification by maintaining the current
locations (cuts) of all triggered charts and selecting the next event based on a
variety of constraints as described in [16]. Specifically, the Play-Engine’s central
mechanism of advancing the LSC charts along lifelines while avoiding violations
corresponds to BPJ’s sequential execution of Java threads that request events
that would generate advancement in an LSC chart, and block events that may
cause violations of an LSC chart.

4 Features of Behavioral Programming - Through
Examples

Before we systematically describe the elements of behavioral programming in
Java, we introduce its main features through three examples. The first one il-
lustrates what Java code for b-threads looks like, the second illustrates how
independent b-threads can be incrementally assembled into an integrated ap-
plication, and the third highlights the power of behavioral programming in de-
velopment of reactive systems, and in error detection and correction. The full
source code for the examples is available online at the library web site [18].

4.1 Example 1: A Simple Application

In Figure 5 we show the source code for a program that expands on the classical
“Hello, World!” example. This behavioral program generates two independent
sequences of greetings and then forces the issuance of the greeting in one inter-
woven sequence. The components of the program are described in the order of
their coding.

1. goodMorning and goodEvening are instances of class Event, and are to be
requested and waited for by the b-threads below. The information they carry
is through their implementation of the method toString.

2. sayGoodMorning is a b-thread that issues the event goodMorning 10 times.
This b-thread repeatedly requests the triggering of the event and waits for
its occurrence.

3. sayGoodEvening is a b-thread that issues the event goodEvening 10 times.
This b-thread is similar to sayGoodMorning, and illustrates independent de-
velopment of a separate, autonomous behavior thread. Initially, we want all
goodMorning events to precede all goodEvening events thus we set the priority
of sayGoodEvening to be lower than that of sayGoodMorning.

4. Interleave is now added to force alternating the triggering of the goodMorning

and goodEvening events. This b-thread alternatingly blocks each of the two
events, illustrating how independent behaviors can be coordinated in BPJ.

5. DisplayEvents is a b-thread that watches for all events and displays corre-
sponding messages. It illustrates waiting for events and how b-threads can
translate events to actions (in this case simple printout).

6. main is the entry method of the application. It creates and starts the b-
threads and assigns priorities. This method is modified as b-threads are
added. The final output of the program is shown in Figure 6.

The method bSync used by the b-threads registers the calling b-thread’s intent
to request the triggering of the event(s) in the first parameter, wait for the
event(s) in the second parameter, and block the event(s) in the third parameter.
As detailed above, the method bSync synchronizes the calling b-thread with
all other b-threads. When all b-threads are synchronized, an event triggering
mechanism is invoked; it selects the first requested event that is not blocked

import static bp.eventSets.EventFilterConstants.all;
import static bp.eventSets.EventFilterConstants.none;
import bp.BProgram;
import bp.BThread;
import bp.Event;

class HellowWorld {
static Event goodMorning = new Event() {

public String toString() {
return ”Good Morning!”;

}
};
static Event goodEvening = new Event() {

public String toString() {
return ”Good Evening!”;

}
};
static class SayGoodMorning extends BThread {

public void runBThread() throws InterruptedException {
for (int i = 1; i <= 10; i++) {

bpSync(goodMorning, none, none);
}

}
}
static class SayGoodEvening extends BThread {

public void runBThread() throws InterruptedException {
for (int i = 1; i <= 10; i++) {

bpSync(goodEvening, none, none);
}

}
}
static class Interleave extends BThread {

public void runBThread() throws InterruptedException {
while (true) {

bpSync(none, goodMorning, goodEvening);
bpSync(none, goodEvening, goodMorning);

}
}

}
static class DisplayEvents extends BThread {

public void runBThread() throws InterruptedException {
while (true) {

bpSync(none, all, none);
System.out.println(BProgram.lastEvent);

}
}

}
public static void main(String[] args) {

BProgram.add(new SayGoodMorning(), 1.0);
BProgram.add(new DisplayEvents(), 2.0);
BProgram.add(new SayGoodEvening(), 3.0);
BProgram.add(new Interleave(), 4.0);

BProgram.startAll();
}

}

Fig. 5. A simple application - “Hello, World!”

and resumes all b-threads waiting for that event. Under some circumstances,
explained in Section 5.2 this method throws InterruptedException, hence the
class definitions require the corresponding throw clause.

Hello World Event: Good Morning!
Hello World Event: Good Evening!
Hello World Event: Good Morning!
Hello World Event: Good Evening!
. . .
Hello World Event: Good Morning!
Hello World Event: Good Evening!

Fig. 6. Output of “Hello, World”

4.2 Example 2: Incremental Development of a Full Application

To further demonstrate the overall behavioral-programming approach, and es-
pecially the role of collective execution of b-threads, we describe an incremental
development of a program for the game of Tic-Tac-Toe. To highlight the intu-
itive nature of the approach, the development stages are aligned with steps often
taken when teaching the rules and strategy of the game to someone who is not
familiar with it (perhaps a child; see [6]). At various points, we point out useful
features and capabilities of behavioral programming.

For clarity of the illustrations and to emphasize the principles we show most
of the b-threads as transition systems rather than in code.

The game involves two players, X and O, who take turns marking squares
on a 3 × 3 grid whose squares are identified by pairs of rows and columns:
〈0, 0〉, 〈0, 1〉, . . . , 〈2, 2〉. The player who manages to form a full horizontal, vertical
or diagonal line with three of his/her marks wins. In our example, the first player
is the user, X, and the second is the computer, O.

Programming the Basic Rules. Our first step in programming the game
would be to specify its environment and the basic moves. In our implementa-
tion of the game, each marking of a square by a player is represented by an
event O〈row,col〉 ∈ AllOs = {O〈0,0〉,O〈0,1〉, . . . ,O〈2,2〉} and X〈row,col〉 ∈ AllXs =
{X〈0,0〉,X〈0,1〉, . . . ,X〈2,2〉}. Four additional events, called XWin, OWin, draw, and
gameOver are introduced to capture the victory of the respective player, or a
draw, and the subsequent conclusion of the game.

A game is played as a sequence of events; e.g., X〈0,0〉, O〈1,1〉, X〈2,2〉, O〈0,2〉,
X〈2,0〉, O〈2,1〉, X〈1,0〉,XWin describes a game round in which X wins, and its final
configuration is:

〈0, 0〉 〈0, 1〉 〈0, 2〉

〈1, 0〉 〈1, 1〉 〈1, 2〉

〈2, 0〉 〈2, 1〉 〈2, 2〉

X

O

X

O

X O

X

The next step in developing our Tic-Tac-Toe program (or in teaching the
novice player) is to articulate the goals and constraining rules of the game. This
is done by B-Threads 1-4, which we now describe.

The goal of the first b-thread is to detect a situation where X won. In BPJ
this can be designed in several different patterns. For example, a single b-thread
can wait for all events, keep track of the board configuration and reexamine it
with every event; or, each of 8 b-threads can be responsible for one of the 3 rows,
3 columns and 2 diagonals and watch for the 3 desired X events in any order;
or, in a third design pattern, a dedicated b-thread may watch for the 3 desired
X events in one of their 6 possible permutations (total of 48 b-threads).

To accomplish the second and third design patterns one does not have to
maintain Java code for multiple similar b-threads. A single runBThread method
can be coded with appropriate variables as part of the b-thread class definition,
and multiple instances can be created using iteration, while controlling the vari-
ations through parameters passed when the b-thread is created or started. In
diagrams of transition systems, multiple similar b-threads are represented by a
single template b-thread, which includes a scope, a specification summarizing
the finite set of concrete b-threads that are described by the template diagram.

The first b-thread in this example follows the third design pattern, and is
embodied in 48 b-thread instances. Each instance watches out for one ordered
triplet of events by player X (e.g., X〈2,2〉,X〈1,1〉,X〈0,0〉), announcing X’s victory
when it is completed. B-Thread 2 performs the same function for player O.

B-Thread 1 (DetectWinByX) :
48 instances with priorities 1.001, . . . ,1.048

Scope :
an instance for each ordered triplet 〈x1, x2, x3〉 of X events that fill a
horizontal, vertical, or diagonal line.

R = ∅
B = ∅

R = ∅
B = ∅

R = ∅
B = ∅

R = {XWin}
B = ∅

R = ∅
B = ∅

x1 x2 x3 XWin

B-Thread 2 (DetectWinByO) :
48 instances with priorities 2.001, . . . ,2.048

Scope :
an instance for each ordered triplet 〈o1, o2, o3〉 of O events that fill a
horizontal, vertical, or diagonal line.

R = ∅
B = ∅

R = ∅
B = ∅

R = ∅
B = ∅

R = {OWin}
B = ∅

R = ∅
B = ∅

o1 o2 o3 OWin

These two b-threads nicely illustrate a central feature of the approach:

Feature 1 (behavioral autonomy). Behavioral programming makes it possible to
encapsulate the implementation of each behavior requirement in an autonomous
software object. For example, the above b-threads deal with winning conditions
only, and are not concerned with issues irrelevant to that purpose (such as the
enforcement of alternating turns, or the choice of an opening move).

We now describe a b-thread that forces players to alternate turns, by prevent-
ing a player from making two consecutive moves without an intervening move
by the other player. This is achieved in B-Thread 3 by alternately blocking all
O or all X events.

B-Thread 3 (EnforcePlayersTurns) : one instance with priority 3.0

R = ∅
B = AllOs

R = ∅
B = AllXs

AllXs

AllOs

Next, B-Thread 4 prevents a given square from being marked twice. Each of
the nine b-threads defined by this template b-thread waits for either X〈row,col〉 or
O〈row,col〉, for a particular square 〈row, col〉 and, when one of these is observed,
the b-thread blocks them both forever.

B-Thread 4 (DisallowSquareReuse) :
9 instance with priorities 4.001,. . . ,4.009

Scope :
instance for each pair of events o and x in the same square

R = ∅
B = ∅

R = ∅
B = {o, x}

{o, x}

B-Threads 3 and 4 demonstrate a fundamental feature of behavioral pro-
gramming:

Feature 2 (positive and negative incrementality). In addition to adding new
behaviors, and thus helping build up the desired dynamics of the system, a
b-thread can constrain the dynamics by forbidding unwanted behaviors. This
ability allows programmers to“sculpt” the system under construction, adding,
removing or suppressing behaviors, with little or no need to modify the code of
existing b-threads.

Programming the Strategy. We now complete the construction of a game-
playing program by adding b-threads that capture the strategy of making moves.
As the reader will notice, the program’s playing improves as b-threads are
added3. First come B-Thread 5, that requests default moves.

B-Thread 5 (DefaultMoves) : one instance with priority 10.0

R = {O〈1,1〉︸ ︷︷ ︸
center

,O〈0,0〉,O〈0,2〉,O〈2,0〉,O〈2,2〉︸ ︷︷ ︸
corners

,O〈0,1〉,O〈1,0〉,O〈1,2〉,O〈2,1〉︸ ︷︷ ︸
edges

}

B = ∅

AllOs

This one-state b-thread simply requests the marking of all squares. The order
of the requested events in the set R determines their priorities in our strategy:
mark the center square first, then the corners, and only then the edge squares.
Requested moves will be triggered only when not blocked and when there are
no higher priority (unblocked) requests. The b-thread progresses regardless of
whether the event was triggered due to its own request or due to some other
b-thread’s request (relying on the semantics that events are triggered once, re-
gardless of the number of requesting b-threads; see more about the concept of
unification in Section 5 and in LSCs [16]).

With the addition of this b-thread, the program can now play legally and
can complete any game (though it will likely lose) or, more generally:

Feature 3 (early/partial execution). Initial or partial versions of behavioral pro-
grams can be executed and can often display meaningful system behavior. This
allows users and developers to observe the system’s behavior at any stage of de-
velopment, even the earliest ones, and take necessary actions, such as confirming
that requirements are met, adjusting requirements, correcting errors, etc.

Note that B-Thread 5 encodes a rule-based strategy appropriate also for
human players, as opposed to strategies directed only at computer implementa-
tions, such as minimax. This brings us to the next general feature:

Feature 4 (alignment with human thinking). The autonomy of b-thread spec-
ifications enables the coding of “focused” program logic that specifies only and
all relevant events (regardless of other requirements or of redundancy with other
b-threads) which aligns well with how humans often think about behaviors.

We now proceed to insert richer strategy items, at higher priorities. For an
immediate win, B-Thread 6 watches for two O’s in one line and requests the
marking of the third square, and to avoid an immediate loss, B-Thread 7 watches
for two X’s in one line and requests the marking of the third square.

3 For clarity and brevity of the presentation we did not include a beginner-level b-
thread that plays only random moves. We could have coded this first, and then have
it overridden by the higher priority b-threads.

B-Thread 6 (CompleteLineWithTwoOs) :
48 instances with priorities 6.001, . . . ,6.048

Scope :
an instance for each ordered triplet 〈o1, o2, o3〉 of O events that fill a
horizontal, vertical, or diagonal line.

R = ∅
B = ∅

R = ∅
B = ∅

R = {o3}
B = ∅

R = ∅
B = ∅

o1 o2 o3

B-Thread 7 (PreventCompletionOfLineWithTwoXs) :
48 instances with priorities 7.001, . . . ,7.048

Scope :
an instance for each ordered pair of X events, 〈x1, x2〉, and O event, o3,
such that that {x1, x2, o3} fill a horizontal, vertical, or diagonal line.

R = ∅
B = ∅

R = ∅
B = ∅

R = {o3}
B = ∅

R = ∅
B = ∅

x1 x2 o3

Feature 5 (explicit priorities). Note that it is essential that B-Threads 6 and 7
are of higher priority than those of the default moves, and that the winning
move is of higher priority than the defensive one. Specifying b-threads’ priorities
explicitly and externally allows for encapsulation and control of this dependency
between b-threads, and enhances the incrementality feature.

Another b-thread that illustrates the importance of priority is the B-Thread 8
(see code in [18]) that detects draw conditions. It waits for nine moves, and
declares a draw, relying on having a lower priority than the b-threads that detect
wins by X or O.

The Tic-Tac-Toe program includes two additional b-threads (see code in [18]),
numbered 9 (InterceptSingleFork) and 10 (InterceptDoubleFork), that defend
against situations where a future marking by player X will present him/her with
the choice of winning in one of two different lines. Each of these b-threads watches
all moves of both players, and uses ordinary Java code to keep track of the board
configuration and see if a risky situation emerges. When it does, the b-thread
requests an O move that prevents undesired opponent moves.

Lastly three more b-threads (PushButton, MarkBoard and DeclareWinner) han-
dle various aspects of the user interface.

The b-threads described above, that use rich Java code in addition to BPJ
idioms, demonstrate another central feature of behavioral programming:

Feature 6 (application integration). Ordinary applications, simple or complex,
can be refactored so that they become endowed with some capabilities of behav-

ioral programming. This is done by moving application code into a runBThread

method, and then coordinating with other b-threads using the event sets and
bSync. Conversely, behavioral programs can benefit from the full power of the
underlying language and external services, such as communications, database
access, and user interface, by adding the code that uses these services to the
existing b-thread code.

We conclude the list of features and the exposition of BPJ with two more
capabilities that emerge from the operational semantics of behavioral program-
ming:

Feature 7 (consolidation/unification of identical execution requests). In BPJ,
when an event is triggered, all b-threads that requested it it are notified (in
addition to all b-threads explicitly waiting for it). All these b-threads progress,
and are “satisfied”, as a result of this single occurrence, unconcerned with the
identity of the b-thread that requested the specific event. For example, in our
Tic-Tac-Toe program, a low priority request to mark an edge square, that was
placed at the beginning of the game, may be fulfilled only as a result of a higher
priority move. However the low priority b-thread will proceed happily as a re-
sult, oblivious of the delay and other game circumstances. The power of this
consolidation/unification is also highlighted in the NY-to-LA trip example, as
driving along the route may be consolidated with driving according to sched-
ule, without “duplication of effort”, without negative performance effects, and
without creating inter-b-thread dependencies in the code.

Feature 8 (exploitation of multi-core architectures). The implementation of
b-threads as independent Java threads leverages the multiple processors now
commonly available in multi-core architectures. Given that b-threads can include
arbitrary Java code, they can be used for coordinating the parallelization of
independent behaviors. This parallel use of multiple processors can also help
reduce the synchronization delays caused by waiting for b-threads to reach their
next state.

4.3 Example 3: Patching a Reactive System

To further illustrate how a system’s behavior can be incrementally composed
of independently programmed b-threads, the following example, a simple maze-
solving robot, focuses on application patching. As shown in Figure 7, the maze
is a set of square rooms; adjacent rooms may or may not be separated by a wall.

The robot (depicted here as Disney’s aptly named WALL-E(TM)) is capable
of (only) two operations, represented by events: forward for moving forward one
room, and turn for turning a quarter circle (90 degrees) clockwise in place. Note
that to turn a quarter circle to the left, the robot needs to turn clockwise three
times. The existence of a wall is manifested by blocking the forward event, as
explained below. In our example, the robot is oblivious of the concept of a maze
and is simply programmed to follow the wall on its left according to the well
known “left-wall-rule”. The robot’s program is comprised of three b-threads,

with a strict priority order: (1) keeping to the left wall by an infinite loop that
waits for a forward event and then requests a turn event three times; (2) always
trying to advance, by requesting a forward event in an infinite loop, and (3) in
a lower priority b-thread (that can trigger events only when the previous two
can’t), requesting a 90 degree right turn (turn event) in an infinite loop.

Fig. 7. The “wall follower” robot in a maze. When it enters a room (a square) it scans
the exits and takes the first open way starting from the room on its left, clockwise.

In a final implementation the robot would have a sensor that detects whether
there is a wall ahead and a b-thread that blocks the forward event when a wall
is detected. However, for testing and debugging, a fourth b-thread, representing
the environment, replaces the sensor. The environment b-thread maintains the
maze’s map and waits for all forward and turn events to update the robot’s
current location and orientation (e.g. Room 〈1, 2〉, South). It then blocks the
forward event if the robot is facing a wall.

A “bug” is then introduced, by specifying a new requirement: unevenness in
robot’s wheels sometimes causes it to turn 90 degrees clockwise when it completes
a forward move. The robot’s gyro detects the situation and announces it as an
drift event. The environment b-thread is modified accordingly to both randomly
request this event and to update the robot’s orientation.

The correction for the “bug” can then be applied using a fifth b-thread
at top priority, which waits for drift event and then requests six turn events
immediately after the drift: three of which coincide with the already-planned
left turn (see discussion of unification of events in Feature 7), and the additional
three reposition the robot to the correct orientation.

The incrementality feature of behavioral programming is thus shown to open
up the possibility of patching “completed” applications, by programming the
desired new behavior in a way that targets it directly to the applicable situation,
without modifying existing b-threads.

5 The BPJ Library

In this section we provide more details about the components of the BPJ Java
library. As mentioned above the library and application examples are available
online at [18].

5.1 Classes

Events. Events are represented in BPJ as objects of the class Event. This base
class does not carry significant data or capabilities. Subclasses of Event can be
defined, in order to distinguish between various types of events and to associate
additional information and behavior with event objects.

Behavior Threads. Behavior Threads are specified using the BThread class,
each instance of which is associated with a Java execution thread whose progress
embodies a run of the behavior thread.

As mentione above, each b-thread object has three sets of events: requested
events and blocked events correspond to the sets R and B in definitions 1 and
2 above, and watched events corresponds to the set of events appearing in the
labels of the arrows in the transition diagram.

The BThread class has three main methods:

1. runBThread is an abstract method that implements the logic of the b-thread,
and is overridden when designing concrete b-threads. It runs in a dedicated
Java execution thread. The parameters of the method, if any, are application
specific.

2. bSync is a library method. It updates the sets of requested, watched and
blocked events, and calls a method bSync of the BProgram object to synchro-
nize the b-thread with all other b-threads and invoke the event triggering
mechanism.

3. startBThread is a library method that can be called by any part of the code
(inside or outside of a b-thread), to start a new b-thread and activate its
runBThread method in a dedicated Java execution thread. The parameters to
this method are passed without change to the runBThread method.

Behavioral Programs. In BPJ, a set of b-threads is referred to as a behavioral
program. It is implemented in the class BProgram, and its semantics is per defini-
tion 2 and the algorithm in Subsection 3.2. This class has one static object that
holds all the participating b-threads. The class includes the library method bSync

that synchronizes each calling b-thread with all other b-threads and invokes the
control mechanism that chooses and triggers the next event and notifies the b-
threads waiting for that event. The method bSync of the class BProgram is only
called internally, by the bSync method of the class b-thread.

Sets of Events. In BPJ, sets of events are represented in two basic ways. Either
as an enumerable collection of objects of type Event(using by default the Java
Collection Framework) or by creating a class that implements the BPJ interface
EventFilterInterface and uses the contains method for specifying membership
of events in the set (e.g., by examining the values of object variables).

The set of requested events must be represented as an enumerable collection
of concrete events, since events to be triggered are selected from this set in
order of priority. By contrast, watched and blocked events can be represented
either as an enumerable set or through the EventFilterInterface, by rule-based
definitions. The rule-based representation of sets allows for compact specification
of very large, possibly infinite, sets, and enables watching for, and handling,
events for which not all information is known in advance.

The BPJ library includes generic filters, such as EventFilterForClass, that
facilitates specification of the set of all events of a certain class (using instanceof

to implement the contains method), the constant filter none that represents the
empty set (used for example when a b-thread is not blocking any event), and
the constant filter all that returns true for all events (used for example when a
b-thread wishes to watch all events in the system).

5.2 Interrupting Events

In addition to the above event sets, each b-thread object has a set of events
called the interrupting events set (interruptingEvents). When a triggered event
is contained in the interrupting events set of a b-thread an exception is raised
in the b-thread and the latter typically terminates. This simplifies handling
termination conditions that are common to many states. For example, in the
Java code for Tic-Tac-Toe, almost all b-threads specify the gameOver event as an
interrupting event.

5.3 Incorporating Data and Algorithms

It is important to note that the BPJ library allows b-threads as ordinary Java
programs, to also include conventional data structures and algorithms for arbi-
trary processing, as shown in the examples.

5.4 Conflict and Deadlock Resolution

Since incrementality of development and independence and autonomy of b-
threads are a central theme of BPJ, helping the developer avoid unplanned
conflicts and deadlocks is of particular interest. In addition to applying method-
ologies that are applicable to ordinary models and programs, we propose to
attack this in several ways:

– Model checking in Java: Since the BPJ implementation uses pure Java in-
frastructure, it seems natural to apply the model checking capabilities of
Java Pathfinder [35] directly to the behavioral program to detect deadlocks.

– “Smart” execution: It is interesting to explore the possibility of relaxing
some of the strict prioritization requirements, where the developer feels that
these don’t matter, or hard to determine. We would then introduce smart
play-out techniques, similar to those used for LSCs (which were based on
model-checking and on AI planning algorithms [14, 19]) to determine event
triggering order. Such predictive mechanisms will be set up to choose between
events of equal priority in a way that avoids future conflicts, or satisfies other
desired results.

– Dynamic recovery: The existence of a central event triggering mechanism
allows for detection of potential deadlock situations at run time. In these
cases, subject to programmed rules, either error messages can be issued,
certain b-threads can be terminated, or events may be triggered, to initiate
recovery. Such rules can use data about relationships between the b-threads
and events, and error messages can be quite informative about causes and
potential remedies of the deadlock. Finally, note that if conflicts and dead-
locks are discovered in an application, they may sometimes be resolved not
by changing existing b-threads, but also externally, by changing b-thread
priorities or by adding new b-threads.

5.5 Performance

In the current initial implementation, the execution rate can reach thousands
of events per second, with thousands of participating b-threads. Performance of
behavioral programs depends among others on the number of b-threads, rela-
tionships between requested and blocked events, the complexity of filter func-
tions, and the non-BPJ-related processing performed by b-threads. One of the
approaches for controlling and optimizing performance is to organize b-threads
in synchronization groups to reduce dependencies and delays associated with
synchronization.

6 Related Work

6.1 Scenario-Based Languages

As mentioned in the introduction, several languages exist for specifying scenarios,
including message sequence charts (MSCs) [22] and UML sequence diagrams [32],
which are used in system development to model interactions between objects or
processes. With the advent of live sequence charts (LSCs) [7] liveness and safety
were added to such languages, through multi-modality; e.g., distinguishing uni-
versal from existential behavior and what must happen from what may happen,
in the process also providing for concise specification of forbidden behavior.

In the work culminating in [16], a GUI-based method for capturing LSCs
(play-in) and a method for executing an LSC specification (play-out) were de-
veloped. Both are implemented in the Play-Engine tool. As mentioned above,
the operational, interpreter-style semantics of play-out is especially relevant to

our work here. In fact, its essence, especially the coordination process by which
the multi-modality is translated into run-time decisions, substantially influenced
the choice of idioms proposed in this paper. A more detailed mapping between
LSCs and Java programs using BPJ is out of the scope of this paper.

A few years after the Play-Engine’s development, the S2A compiler was con-
structed [27, 13], offering an alternative way to execute LSC specifications. The
compiler converts the scenarios specified in (a subset of) the LSC language into
Büchi automata that represent all possible transitions between cuts of the orig-
inal scenarios. The automata and a coordinator function that implements the
play-out logic, are then encoded in Java, and are interwoven with a base pro-
gram using aspects. While this approach allows for integration with a conven-
tional Java application, the Java code that represents the LSC scenarios is not
designed to be used by the programmer for further refining the scenario itself.

6.2 Programming Scenarios in Other Languages

There are many specialized languages that support programming concurrent sce-
narios for a variety of application areas, such as business workflow engines (e.g.,
BPEL [31]), Expert Systems and Decision Support System (e.g. [10]) simulators
(e.g., MATLAB Simulink [34]), and general automation and robot control (e.g.,
LabVIEW [26]). These environments have rich interfaces for specifying sequences
of actions, and rules and priorities for triggering and parallel execution of events
and scenarios.

The main difference from those languages is that, to the best of our knowl-
edge, the underlying interfaces therein do not include explicit event blocking
idioms, similar to those of BPJ. Of course, as was in done BPJ using Java, it is
possible to implement scenario-based programming or behavioral programming
in any rich enough language. All that is needed is a sufficient expressive power
to implement Definitions 1 and 2 above. It may be worthwhile to explore the
applicability of the BPJ library and equivalent request-and-block idioms in such
contexts.

Given that direct equivalent of request-and-block idioms were not identified,
detailed comparison of the existing idioms in each of these systems to BPJ and
the compactness in which specific tasks can be programmed is outside of the
scope of this paper. Such a comparison may include, for example, comparing
BPJ b-threads to rules in AI and expert systems and the differences between,
say, rule-disabling idioms [23] in expert systems, which disable entire rules , and
event-blocking in BPJ, which prevents the triggering of a requested event.

6.3 Interprocess-Communication and Parallel-Processing Idioms

The manner in which b-threads request, listen out for, and get notified of trig-
gered events is a form of publish/subscribe protocol (see, e.g., [8]). In this con-
text, one can view BPJ as an enhanced publish/subscribe engine that allows
participants (b-threads) to block messages (events), which is not possible in
common publish/subscribe, and where sending of messages is deferred until all

relevant participants are ready, i.e. completed processing the previous message.
In addition, the BPJ mechanism enables features such as the unification/consol-
idation of identical requests into a single execution, described above.

The idioms we propose are meant for use in coding b-threads as descriptions
of system behavior, and are not targeted for interprocess communication and
concurrency per-se. However, as our work does propose primitives for communi-
cation between b-threads, it would be of interest to carry out a more thorough
comparison with some of the well-known approaches to specifying and analyzing
concurrency, such as communicating sequential processes (CSP) [20], the calcu-
lus of communicating systems (CCS) [28], the π-calculus [29], the programming
languages Erlang [1], Esterel [3], Lustre [11], Signal [21], Orc [25], UNITY [30],
and many more. As far as our current familiarity with these approaches goes,
we have not found constructs in any of these that are in sufficiently close corre-
spondence with our idioms. In any case, if found desirable, we do not think there
would be significant obstacles to implementing the request-and-block idioms in
these languages.

6.4 Object-Oriented and Other Programming Approaches

The BPJ approach is inclusive; i.e., the programmer can develop parts of the
application in classical OO, procedural, or other approaches, and other parts
with b-threads. In addition, the b-thread components can still contain non-BPJ
code.

To stress the differences between the BPJ approach and conventional OO
programming, we discuss how the Tic-Tac-Toe and the robot examples can be
expected to be programmed without BPJ.

A classical OO Tic-Tac-Toe program would likely have a main loop control-
ling the players’ turns, updating the GUI and maintaining the data structures for
the current game-board configuration. Within such a loop, either a mathemati-
cal technique such as the minimax algorithm would be used to analyze possible
moves, or, various heuristics or a decision tree would be applied to decide on
the next move. In the former - there is little or no similarity between the “clas-
sical” program and our behavioral one. In the latter one may view the various
decisions, considered in order, as a form of prioritized scenarios or b-threads. In
either case, the modularity and structural uniformity of the behavioral approach
seem to stand out in such a comparison. In the BPJ approach, each b-thread
can readily exist as a separate file and requires little or no explicit dependency
on other b-threads, or even on the existence of a game board. By contrast, in the
OO approach, the different heuristics (or the related method calls) are likely to
be coded together as an integral part of the application, and they are all likely
to use a shared data structure for the game board. Note that in BPJ there are
no method calls between b-threads, and dependencies between the b-threads in
the example are only via events.

The wall-follower robot example exhibits similar modularity and incremen-
tality, and emphasizes the point in relying on standard BPJ interfaces to mesh
the robot and the environment into a single application. Robotic systems often

require a significant degree of concurrency, implementing multiple parallel activ-
ities and behaviors. To that end, the software typically waits for external events,
handles interrupts, coordinates concurrent processes, and sends commands to ac-
tuators. The example suggests that a general-purpose language with the built-in
synchronization and event triggering mechanism of BPJ may be useful for robot
programming.

Lastly, specification of b-thread priority may be seen as analogous to choos-
ing the right join points in aspect oriented programming, or deciding the order
of lines of source code in a classical program, yet it appears to offer better com-
bination of encapsulation and flexibility.

7 Conclusion and Future Directions

We have described the BPJ library, which facilitates scenario-based program-
ming, or behavioral programming, in Java, using b-threads and the request-and-
block idioms. The motivation for development of this library is twofold. On one
hand, it enriches conventional object-oriented programs with the capabilities of
b-threads, and on the other hand, it enriches scenario programming with the
power of a general-purpose language. We believe that this integration of objects
and behavior threads and implementation of modal specifications in impera-
tive code, expands the range of applicability of behavioral programming, and
can serve as a design pattern in many languages towards the goal of liberating
programming, as envisioned in [12].

The advantages of behavioral programming include incremental development,
with minimal changes to existing b-threads, encapsulation and autonomy of
behavior with minimal dependency between b-threads, the ability to observe
meaningful behavior from the earliest stages of development, explicit external
control over behavior priority, alignment of b-threads with how people typically
think about system behavior, more direct encoding of requirements and use-
cases, and exploitation of multi-core architectures.

Due in part to the autonomy feature, behavioral programs can more read-
ily “explain” their decisions (and behavior). Events that caused transitions in
a recently executed chain of b-threads, can provide important insight into the
rationale for the program’s progress, something that may be harder to infer from
a usual trace. This may be useful in developing and debugging behavioral ap-
plications, in using b-threads for monitoring, and in developing systems capable
of learning. An additional application of the autonomy feature can be post-
deployment system customization, where an end-user can modify the system
behavior by adding b-threads.

We consider the work described here as an initial infrastructure — a sort of
“assembly language” for programming behaviors and scenarios with b-threads.
Indeed, in some cases, relying only on the basic idioms of this paper may cre-
ate verbose and cumbersome code. Hence, future directions for research include
devising higher level (possibly graphical) macro-like representations for useful

recurring patterns such as suspension and resumption of continuous activities
like the driving activity in the example in Section 2.

It may also be valuable to embed variants of our idioms in other languages,
such as general object-oriented, special purpose, or functional and logic program-
ming languages. As an example, for the functional language Erlang [1], it would
be of interest to explore if scenario-based programming or behavioral program-
ming can become a design pattern that leverages Erlang’s ease and efficiency of
using concurrent processes for independent activities.

As to the actual work on BPJ, we envision additional research and develop-
ment on IDE support, formal verification and automated (partial) synthesis. In
addition, translation from LSCs or UML sequence diagrams to Java programs
using BPJ seems practical, and such compilers may further simplify the transi-
tion from requirement specifications to design and development.

Acknowledgements. We would like to thank Amir Kantor for suggesting the
analysis of the proposed idioms through transition systems, Michal Gordon for
many valuable comments, Shahar Maoz for reviewing and commenting on early
drafts of this paper, Mira Balaban for helping clarify the paper’s focus on pro-
gramming, Uri Avraham for insightful observations on the composition of sce-
narios, Guy Weiner for suggesting to document the relationship between the
transition system and the Java program more explicitly.

The research of all three authors was supported in part by the John von
Neumann Minerva Center for the Development of Reactive Systems at the Weiz-
mann Institute of Science, and by an Advanced Research Grant to DH from the
European Research Council (ERC) under the European Community’s FP7 Pro-
gramme. In addition, GW’s research was supported in part by the Lynn and
William Frankel Center for Computer Science at Ben-Gurion University.

References

1. J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent Program-
ming in ERLANG. Prentice Hall, 1993.

2. Y. Atir and D. Harel. Using LSCs for scenario authoring in tactical simulators. In
SCSC, pages 437–442, 2007.

3. G. Berry. The foundations of Esterel. In Proof, Language, and Interaction, pages
425–454, 2000.

4. A. Bunker, G. Gopalakrishnan, and K. Slind. Live sequence charts applied to
hardware requirements specification and verification. STTT, 7(4):341–350, 2005.

5. P. Combes, D. Harel, and H. Kugler. Modeling and verification of a telecommu-
nication application using live sequence charts and the play-engine tool. Software
and System Modeling, 7(2):157–175, 2008.

6. K. Crowley and R. S. Siegler. Flexible Strategy Use in Young Children’s Tic-Tac-
Toe. Cognitive Science, 17(4):531–561, 1993.

7. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts. J.
on Formal Methods in System Design, 19(1):45–80, 2001.

8. P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The Many Faces of Pub-
lish/Subscribe. ACM Computing Surveys, 35(2):114–131, 2003.

9. J. Fisher, D. Harel, E. J. A. Hubbard, N. Piterman, M. J. Stern, and N. Swerdlin.
Combining State-Based and Scenario-Based Approaches in Modeling Biological
Systems. In CMSB, pages 236–241, 2004.

10. J. Giarratano and G. Riley. Expert systems: principles and programming. Brooks/
Cole Publishing Co. Pacific Grove, CA, USA, 1989.

11. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous Data-Flow
Programming Language LUSTRE. Proc. IEEE, 79(9):1305–1320, Sep. 1991.

12. D. Harel. Can Programming Be Liberated, Period? IEEE Computer, 41(1):28–37,
2008.

13. D. Harel, A. Kleinbort, and S. Maoz. S2A: A compiler for multi-modal UML
sequence diagrams. In FSE, pages 121–124, 2007.

14. D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart Play-out of Behavioral
Requirements. In FMCAD, pages 378–398, 2002.

15. D. Harel, H. Kugler, and G. Weiss. Some Methodological Observations Resulting
from Experience Using LSCs and the Play-In/Play-Out Approach. In Scenarios:
Models, Transformations and Tools, pages 26–42, 2003.

16. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine. Springer, 2003.

17. D. Harel, A. Marron, and G. Weiss. Behavioral Programming. In preparation.
18. D. Harel, A. Marron, and G. Weiss. The BPJ Library. www.cs.bgu.ac.il/

~geraw.
19. D. Harel and I. Segall. Planned and Traversable Play-Out: A Flexible Method for

Executing Scenario-Based Programs. In TACAS, pages 485–499, 2007.
20. C. A. R. Hoare. Communicating Sequential Processes. CACM, 21(8):666–677,

1978.
21. B. Houssais. The synchronous prog. language SIGNAL, a tutorial. IRISA, 2002.
22. ITU. International Telecommunication Union Recommendation Z.120: Message

Sequence Charts. 1996.
23. H. V. Jagadish, A. O. Mendelzon, and I. S. Mumick. Managing Conflicts Between

Rules. J. Comput. Syst. Sci., 58(1):13–28, 1999.
24. R. Keller. Formal verification of parallel programs. CACM, 19(7):371–384, 1976.
25. D. Kitchin, A. Quark, W. Cook, and J. Misra. The Orc Programming Language.

In FMOODS/FORTE, pages 1–25, 2009.
26. LabVIEW. Getting Started with LabVIEW. June 2009.
27. S. Maoz and D. Harel. From multi-modal scenarios to code: compiling LSCs into

AspectJ. In FSE, pages 219–230, 2006.
28. R. Milner. A Calculus of Communicating Systems. LNCS vol. 92. Springer, 1980.
29. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes. Inf. Comput.,

100(1):1–40, 1992.
30. J. Misra. A foundation of parallel programming. International Summer School on

Constructive Methods in Computer Science, pages 397–433, 1988.
31. OASIS. Web Services Business Process Execution Language V2.0. May 2007.
32. OMG. Unified Modeling Language Superstructure Specification, v2.0. Aug. 2005.
33. A. Sadot, J. Fisher, D. Barak, Y. Admanit, M. J. Stern, E. J. A. Hubbard, and

D. Harel. Toward Verified Biological Models. IEEE/ACM Trans. Comput. Biology
Bioinform., 5(2):223–234, 2008.

34. TheMathWorks. The Simulink 7 Reference. 2009.
35. W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model Checking Programs.

Automated Software Engineering, 10:203–232, 2003.

