
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Boyd, Colin, Cliff, Yvonne, & Tin, Yiu (2006) Password Based Server Aided
Key Exchange. Applied Cryptography and Network Security (LNCS),
3989, pp. 146-161.

This file was downloaded from: http://eprints.qut.edu.au/24597/

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1007/11767480_10

http://eprints.qut.edu.au/view/person/Boyd,_Colin.html
http://eprints.qut.edu.au/view/person/Cliff,_Yvonne.html
http://eprints.qut.edu.au/view/person/Tin,_Yiu.html
http://eprints.qut.edu.au/24597/
http://dx.doi.org/10.1007/11767480_10

Password Based Server Aided Key Exchange? ??

Yvonne Cliff, Yiu Shing Terry Tin, and Colin Boyd

Information Security Institute, Queensland University of Technology
GPO Box 2434, Brisbane Q 4001, Australia.

y.cliff@isi.qut.edu.au, {t.tin, c.boyd}@qut.edu.au

Abstract. We propose a new password-based 3-party protocol with a
formal security proof in the standard model. Under reasonable assump-
tions we show that our new protocol is more efficient than the recent
protocol of Abdalla and Pointcheval (FC 2005), proven in the random
oracle model. We also observe some limitations in the model due to Ab-
dalla, Fouque and Pointcheval (PKC 2005) for proving security of such
protocols.
Keywords: Key agreement, password authentication, three-party.

1 Introduction

A major goal of modern cryptography is to enable two or more users on an in-
secure (adversary controlled) network to communicate in a confidential manner
and/or ensure that such communications are authentic. Symmetric key crypto-
graphic tools are often used for such communications, due to their efficiency.
However, due to the impracticality of every pair of users sharing a large secret
key, public key and/or password based techniques are used to generate such a
key when it is required. We focus on password-based key exchange, which is
useful in situations where the secure storage of full length cryptographic keys is
infeasible, such as in mobile environments. However, because of the short length
of the password, special care must be taken when designing protocols to ensure
that both the password and the key finally agreed remain secret.

One area of recent attention is password-based 3-party protocols with a for-
mal security proof. These protocols enable two clients to exchange a secret key
where each client shares a (different) password with a common server. Such pro-
tocols overcome the problem associated with 2-party password-based protocols
(such as all of the password-based protocols being standardized in IEEE P1363.2
and ISO/IEC FDIS 11770-4) whereby a single user must hold as many passwords
as there are parties with whom it wishes to communicate.

Although such protocols have received some attention in the literature, for-
mal proofs have only recently been provided. Abdalla, Fouque and Pointcheval
[AFP05] proved the security of a generic construction (called GPAKE) that uses

? Research funded by Australian Research Council through Discovery Project
DP0345775.

?? Extended abstract; for the full version see: http://sky.fit.qut.edu.au/∼boydc/papers

any two-party authenticated key exchange protocol as well as a three party key
distribution protocol, and combines them with a Diffie-Hellman key exchange
authenticated using a message authentication code (MAC). They proved this
construction secure in a new model (which we call the AFP model) based on the
models of Bellare et al. [BR93,BR95,BPR00]. However, protocols constructed
according to this method can be quite inefficient.

The AFP model contains two variants. The first, called the find-then-guess
(FTG) model, is similar to existing models, since it allows Reveal queries (to
disclose the session key of a requested instance to the adversary) and only one
Test query (where the adversary must guess whether it was told the actual session
key of a session it selected). The other variant is called the real-or-random (ROR)
model, and disallows Reveal queries, but allows multiple Test queries, where the
keys returned by the test queries are either all real or all random. It is shown
that the ROR model is stronger than the FTG model when password-based
protocols are being studied. However, when high-entropy keys are used rather
than passwords, protocols secure in one variant are secure in the other also.

The AFP model also defines a new notion, key privacy, which means that the
server cannot deduce the value of the secret key shared between the clients. Key
privacy may be proven separately to the protocol’s semantic security. However,
the AFP model does have the shortcoming of not allowing adaptive corrupt
queries; corrupted parties are chosen statically at the beginning of a proof in the
AFP model.

The GPAKE protocol was proven secure in the ROR variant of the AFP
model, assuming that the two-party authenticated key exchange protocol used
with it is also secure in the ROR model. Although most suitable password based
protocols have been proven secure in the FTG model, it is claimed that most
proofs, including the KOY one [KOY01], can be modified easily to meet the
ROR model requirements.

Abdalla and Pointcheval [AP05] later proposed another 3-party password-
based protocol, to which we refer as the AP protocol. It was proven secure
using the FTG variant of the AFP model, using the random oracle (RO) model
(note that earlier versions, including the conference version, have an error in the
protocol description that leads to an attack [CBH05b]). The proof requires new
and stronger variants of the Decisional Diffie-Hellman (DDH) assumption. The
authors claim that their protocol is quite efficient, requiring 2 exponentiations
and a few multiplications per party, or less than half the cost for the server
compared with using GPAKE.

In this paper we propose another 3-party password-based protocol, proven
secure using the Canetti-Krawczyk (CK) proof model [CK01]. This model allows
the adversary to make adaptive corrupt queries. In contrast, the AFP model only
allows static corrupt queries. We therefore select the CK model as it can model
a wider variety of attack scenarios and allows the modular design of protocols
by enabling key exchange and authentication mechanisms to be proven secure
separately.

2

We regard it as a significant advantage that our proof is in the standard
model, in contrast to the AP protocol which requires the RO model. We also
examine the AP protocol efficiency claims more closely and claim that our new
protocol can be more efficient with reasonable assumptions.

The rest of this paper proceeds as follows. Section 2 reviews the CK model,
and is followed by a description of the protocol and its security proof in Sec-
tion 3. Section 4 then discusses the efficiency, advantages and disadvantages of
the proposed scheme in comparison to the AP and GPAKE protocols.

2 The Canetti–Krawczyk Model

In this section the CK approach is reviewed. Further details of the model can
be found in the original papers [BCK98,CK01], a paper extending the model to
justify optimization techniques [HBGN05], or the full version.

In the CK model a protocol π is modelled as a collection of n programs
running at different parties, P1, . . . , Pn. Each program is an interactive proba-
bilistic polynomial-time (PPT) machine. Each invocation of π within a party is
defined as a session, and each party may have multiple sessions running con-
currently. The communications network is controlled by an adversary A, also a
PPT machine, which schedules and mediates all sessions between the parties.
Three different models exist:

– The authenticated-links model (AM) defines an idealized adversary, A, that
is restricted to delivering messages faithfully (but possibly out of order)
between uncorrupted parties, if at all. A is not allowed to fabricate, modify,
or replay messages of its choice except if the message is purported to come
from a corrupted party.

– The unauthenticated-links model (UM) allows the adversary, U , to fabricate
messages and deliver any messages of its choice.

– The hybrid model (HM), with adversary H, combines the above models, and
messages are marked by the sender as authentic (so that AM rules apply
to the message) or unauthentic (so that UM rules apply). H may fabricate
unauthentic messages.

Upon activation, the parties perform some computations, update their internal
state, generate local output and may output messages. Local output records
the occurrence of important, security-related events, such as key establishment
(recorded by Pi as “Established (Pi, Pj , s, κ)” to denote that a key κ has been
established with party Pj). The adversary’s view consists of all parties’ public
authentication information, output messages and local outputs, except for the
established keys (κ-values) of completed sessions. Two sessions (Pi, Pj , s, role)
and (P ′

i , P
′

j , s
′, role ′) are said to be matching sessions if Pi = P ′

j , Pj = P ′

i , and
s = s′, i.e. if their session-ids are identical and they recognized each other as
their respective communicating partner for the session.

In addition to activating parties, A can corrupt a party to obtain its long term
keys, request a session’s session-key or session-state, request session-expiration to

3

erase the session key or select a test-session to receive either the real key or
a random one with equal probability. A protocol is session key (SK) secure if
uncorrupted parties who complete matching sessions output the same key and
the probability of A guessing correctly whether it received the real key from its
test query is no more than 1

2
plus a negligible function in the security parameter.

Protocols that are SK-secure in the AM can be converted into SK-secure
protocols in the UM by applying an authenticator to them. Authenticators
can be constructed from message transmission (MT) authenticators, which au-
thenticate each message almost independently of all other messages. To trans-
late an SK-secure protocol in the AM to an SK-secure protocol in the UM
an MT-authenticator can be applied to each message and the resultant sub-
protocols combined to form one overall SK-secure protocol in the UM. An MT-
authenticator emulates the MT protocol, in which the sender A outputs ‘A sent

m to B.’ and sends (A, B, m) to party B, and upon receipt of the authentic
message, B outputs ‘B received m from A.’

Constructing an authenticator by using an MT-authenticator for each mes-
sage can lead to very inefficient protocols due to the large number of messages
generated and the requirement that the session identifier be known before the
protocol begins. Until recently, heuristic arguments were made as to why op-
timized versions of protocols where messages were shifted and nonces reused
were secure. However, recent work [HBGN05] has provided a formal basis for
such optimizations by showing and/or proving how to define a session identifier
part way through the protocol, that more than one MT-authenticator may be
used to construct an authenticator for an entire protocol, that certain preamble
authenticator messages can be shifted to earlier points in the protocol if some
conditions are met, that the message m being authenticated need not form part
of every authenticator message, and that nonces used in some authenticators
only need to be previously unused by that party in that authenticator and may
be replaced with other values from the protocol. The techniques presented in
that work will be used throughout this paper.

3 Conversion from Two-party to Three-party Protocol

In this section, we propose a new protocol, labelled 3DH, that uses a server’s
assistance to perform the Diffie-Hellman key agreement between two parties.
The protocol’s purpose is to enable the use of a password-based authenticator
between each of the parties and the server, S. The server is a gateway responsible
for connecting parties A and B faithfully and providing assurance of the identify
of each party to the other.

Figure 1 shows an HM template describing the possible actions for party A,
the initiator or responder of the protocol, and specifies which actions are prereq-
uisites for others, and which may be performed in parallel. It also specifies which
actions must be performed in a single activation. The use of such a template has
been recommended [HBGN05] to clearly show the security requirements of a

4

A and B share the common information of g and primes p and q such that q

is of length k bits and divides p− 1, and g is of order q in Z
∗

p.

1. Receive (A, B, S, φ, initiator) or (A, B, S, φ, responder) from the adversary, H

2. Receive (B, s, gy, u) from S

AND
Output: ‘A received
(B, s, gy, u) from S’

or

3. Receive (gy) or
(B, gy) from S

UNAUTHENTICALLY
4. Choose x

5. Find gxy 6. Find gx

7. Erase x
8. Send (B, gx) to S or H
UNAUTHENTICALLY

9. Receive SID: s from the adversary

10. Output gxy as the secret for session s

11. Send (B, s, gx) to S

AND
Output: ‘A sent (B, s, gx) to S’

Fig. 1. Possible step order for receiver and responder in the 3DH protocol in the HM

protocol and yet allow it to be easily adapted to suit different authenticators or
objectives, without breaking the security proof.

In the diagram, all messages are assumed to be authentic, unless otherwise
specified, and actions that must be performed in the same activation are shown in
the one box and joined with “AND.” An arrow from one step to another indicates
that the first step must be completed before the second is begun. Optional
steps are shown using dashed boxes. The session identifier s received from the
adversary must be the same as that received in the authentic message from B,
otherwise the protocol halts without outputting a secret key. The template for
party B is identical, except for the renaming of A to B, B to A, x to y and y
to x. The value u received from S is not used in the template. Its purpose is
described below.

In Figure 2, the possible interaction between the server and any party B
is shown (i.e. B in Figure 2 may correspond to either A or B in Figure 1).
In a single protocol run, such interaction may occur between the server and
more than one party. The value u is included to ensure the requirement that all
authentic messages are unique [BCK98, full version p.8, footnote 2] is met. Some
authenticator proofs require this property.

An examination of Figures 1 and 2 shows that a number of steps can be
performed if one party has possession of the other’s unauthentic Diffie-Hellman
value. Therefore, it seems logical to specify an HM protocol such as the one shown
by Protocol 1 that allows a party to receive an unauthentic Diffie-Hellman value
and then carry out as many actions as possible. Messages not labelled “unauth’c”

5

Choose u such that S has
not sent (A, s, gx, u)

previously (except with
negligible probability)

Receive (B, s, gx) from A

AND
Output: ‘S received
(B, s, gx) from A’

Receive (B, gx) from
A UNAUTHENTI-

CALLY

or

Send u to B

UNAUTHENTICALLY

Send (A, s, gx, u) to B

AND
Output: ‘S sent

(A, s, gx, u) to B’

Send gx or (A, gx) to
B

UNAUTHENTICALLY

Fig. 2. Possible step order for the server of the 3DH protocol in the HM, with optional
steps in dashed boxes

A S (server) B

x ∈R Zq uA, uB ∈R {0, 1}k y ∈R Zq

Find gx Unauth’c: B, gx

−−−−−−−−−−−→
Unauth’c: A, gx, uB
−−−−−−−−−−−−−−→

Find gy

H Unauth’c: gy

←−−−−−−−−−
H SID = (gx, gy)
−−−−−−−−−−→

s = (gx, gy)

A, s, gy

←−−−−
‘B sent (A, s, gy) to S’

‘S rec. (A, s, gy) fr. B’
B, s, gy, uA
←−−−−−−−

‘S snt. (B, s, gy, uA) to A’

‘A rec. (B, s, gy, uA) fr. S’
SID = s = (gx, gy) SID = (gx, gy)

←−−−−−−−−−−
H

σ = (gy)x; Erase x

‘Established (A,B, s, σ)’
‘A sent (B, s, gx) to S’ B, s, gx

−−−−→
‘S rec. (B, s, gx) fr. A’

‘S snt. (A, s, gx, uB) to B’
A, s, gx, uB
−−−−−−−→

‘B rec. (A, s, gx, uB) fr. S’
σ = (gx)y; Erase y

‘Established (B, A, s, σ)’

Protocol 1: A possible server aided 3DH HM protocol

are authentic. In this version, the adversary chooses the Diffie-Hellman values,
(gx, gy), to be the session identifier, and the unauthentic message gy from B
to the HM adversary, H, facilitates this. Later changes will allow the clients to
choose the session identifier, so the messages in boxes will then be removed.

Our new protocol differs from the ordinary Diffie-Hellman key exchange in
that protocol participants do not directly make contact with each other. Al-
though password-based protocols where the participants communicate directly
with one another do exist and have been proven secure in other proof mod-
els [KOY01,Mac02], they do not use a public key for the server and are not
amenable to the CK-model, since their key exchange and authentication mecha-
nisms cannot be separated [HK99]. Furthermore, such protocols require a party
to maintain a list of passwords for each of the targets with whom it wishes to
communicate. Thus the advantages of the modular approach used by the CK-

6

model cannot be realized by such protocols, and they are inappropriate when
storage constraints exist, such as those in wireless networks.

The proposed protocol uses a common trusted server for authentication, a
common practice in networking. The server is unable to calculate the session
key; it can only be generated by two authenticated clients. Moreover, client
authentication uses passwords which can be memorized by users, eliminating the
need for shared secrets to be stored in the users’ devices, and greatly reducing
the potential security risk.

We disallow server corruption because there is no way of guaranteeing the
establishment of secure session keys using a corrupted server controlled by the
adversary. A corrupted server would effectively allow an adversary to inject au-
thentic messages from the server into the network. In addition, session-state
reveals on S have been disallowed to keep the partner and session identity def-
initions simple. However, if server session-state reveal queries were allowed, it
would not affect the security of the protocol when used in conjunction with ex-
isting authenticators. This is because the server only forwards messages between
the two clients. Since such messages are not secret, session-state reveals do not
reveal any information that can be used effectively in an attack.

Proving the security of 3DH requires the use of the decisional Diffie-Hellman
(DDH) assumption [Bon98]. The definition and proof are based in Z

∗

p but the
protocol may also be run in an elliptic curve group where the elliptic curve
version of the DDH assumption holds.

Assumption 1 (Decisional Diffie-Hellman (DDH)) Let k be a security
parameter. Let primes p and q be such that q is of length k bits and divides
p − 1, and let g be of order q in Z

∗

p. Then the probability distributions Q0 =

{〈p, g, gx, gy, gxy〉} : x, y,
R
← Zq} and Q1 = {〈p, g, gx, gy, gz〉} : x, y, z

R
← Zq} of

quintuples are computationally indistinguishable.

Theorem 1. Any Diffie-Hellman based HM protocol where the actions of each
party satisfy the requirements specified in Figures 1 and 2 is SK-secure1, provided
the DDH assumption holds.

The proof is similar to Canetti and Krawczyk’s Theorem 8 [CK01] and Hitch-
cock et al.’s Theorem 4 [HBGN05] and is provided in the full version.

Protocol 2 shows another version of the Diffie-Hellman protocol where the
adversary no longer inputs the session identifier to the parties. In addition, mes-
sages containing the same term twice have had the second term removed, and the
unauthentic message to the adversary has been removed. The proof of the follow-
ing theorem is very similar to that of Theorem 5 of Hitchcock et al. [HBGN05]
and may be found in the full version.

Theorem 2. If Protocol 1 is secure then so is Protocol 2.

1 We use the 2-party SK-security definition, since S provides authentication only,
cannot be corrupted or have its sessions revealed, and does not share the secret key.

7

A S (server) B

x ∈R Zq uA, uB ∈R {0, 1}k y ∈R Zq

Find gx Unauth’c: B, gx

−−−−−−−−−−−→
Unauth’c: A, gx, uB
−−−−−−−−−−−−−−→

Find gy

Set SID = s = (gx, gy)
‘S rec. (A, gx, gy) fr. B’ A, gx, gy

←−−−−−
‘B snt. (A, gx, gy) to S’

B, gx, gy, uA
←−−−−−−−−

‘S snt. (B, gx, gy, uA) to A’

‘A rec. (B, gx, gy, uA) fr. S’
Set SID = s = (gx, gy)

σ = (gy)x; Erase x

‘Established (A,B, s, σ)’
‘A snt. (B, gy, gx) to S’ B, gy, gx

−−−−−→
‘S rec. (B, gy, gx) fr. A’

‘S snt. (A, gy, gx, uB) to B’
A, gy, gx, uB
−−−−−−−−→

‘B rec. (A, gy, gx, uB) fr. S’
σ = (gx)y; Erase y

‘Established (B,A, s, σ)’

Protocol 2: Secure 3DH protocol suitable for optimization

We now focus on the authenticators to be used in conjunction with Protocol 2.
The password-based authenticator, λp-enc, shown in Protocol 3, has been chosen,
so that clients do not need keep secret a large key. It has a proof [HTB+03] of
password-based session key (PBSK-) security, when the encryption scheme is

indistinguishable under chosen ciphertext attack (IND-CCA secure), H(m)
def
=

m, Ee denotes encryption with key e and Dd denotes decryption with key d.
This means that if the server refuses to complete sessions with a client after γ
unsuccessful login attempts for that client, then the adversary has an advantage
negligibly greater than the advantage due to simply guessing a password and
attempting to impersonate the user online. The nonce NB may be any value of
B’s choice, including one chosen by the adversary, if it has not been used as a
nonce in this authenticator before, except with negligible probability. Since NB

is a preamble message it may be sent before the first authenticator message.

In order to increase the efficiency of the authenticator (and hence the result-
ing protocols) we now alter the authenticator slightly, replacing the message m
by H(m). The authenticator is still PBSK-secure if H is chosen to be a collision
resistant one-way hash function. This new authenticator is labelled λp-enc-h. The
proof is deferred to the full version, but proceeds by observing that λp-enc-h sends
the same messages as would be required to authenticate H(m) (rather than m)
using λp-enc. Therefore, breaking λp-enc-h involves breaking the hash function or
else breaking λp-enc.

Another authenticator is required for messages from the server to the clients.
The only suitable existing authenticators are the signature based and the encryp-
tion based authenticators [BCK98] (denoted λsig and λenc), as other available
authenticators would require the clients to hold secret keys. If signature and en-
cryption schemes are chosen that have proofs of security in the standard model,
the encryption and signature schemes have about the same efficiency. Therefore,

8

A (Client) λp-enc B (Server)
Known: Password, π

Public key of B, eB

Known: Password of A, π

Public/private keys, (eB, dB)

m
−→

NB ∈R {0, 1}k

m,NB
←−−−−

c = EeB
(H(m),NB , A, π) m, c

−−→
v = DdB

(c)

Check v
?
= (H(m),NB , A, π)

A (Server) λenc B (Client)
Known: Public/private keys, (eA, dA) Known: Public key of A, eA

‘A sent m to B’ m
−→

rB ∈R {0, 1}k

rB = DdA
(c) m, c

←−−
c = EeA

(rB)

z =MrB
(m, B); Erase rB m, z

−−→
Check z

?
=MrB

(m, B)

‘B received m from A’

Protocols 3 and 4: Password and encryption based authenticators

we use λenc, shown in Protocol 4, to minimize the number of separate crypto-
graphic primitives that must be implemented. We observe that c is a preamble
message, but rB must be erased in the same activation as c is decrypted for the
authenticator to be secure [CBH05a]. Further details of the efficiency of these au-
thenticators and the associated signature and encryption schemes having proofs
in the standard model are in the full version.

Protocol 5 shows the result of applying λp-enc-h and λenc to Protocol 2. S
has two encryption keys to keep the state of each authenticator independent, as
required by the proof that two or more authenticators may be applied to the
one protocol [HBGN05].

We can begin to improve Protocol 5 by removing the authentic message (i.e.
“m” in the authenticator description) from the first and second messages of
each authenticator. Since the authentic message is still being delivered in the
last message of each authenticator, this is not a problem [HBGN05]. The parts
to be deleted have been boxed in Protocol 5.

The optimization process can now be completed by replacing a and b with uA

and uB respectively to reduce the number of values generated and transmitted,
and by moving messages and piggybacking them together. Values a and b may
be replaced since they are only required to be not previously used as a nonce
with λp-enc-h. Since uA and uB have negligible probability of being generated
previously, they may be used in place of a and b [HBGN05]. The four messages
shifted to earlier points in the protocol (those containing only b, cA2, a and
cB2) are all preamble messages. The values uA and uB are already known to
the adversary at the time they are used in place of a and b, so this requirement
for shifting and replacing the nonces is also met. The final result is shown in
Protocol 6.

9

4 Comparison of Protocols

This section provides a comparison of the proposed, AP and GPAKE protocols.
It assumes there is only one server (so the server’s identity or public key may be
used in offline computations), the password may not be used in offline computa-
tions, and the time for hashes and MACs is generally ignored. Exponentiations
use a 1024 bit modulus with a 160 bit exponent unless otherwise specified. If
the shared secret DH value generated by using the key agreement protocol can
be used directly as a key, then k in Assumption 1 would typically be 160 bits
for 80-bit security. However, if a uniformly distributed key (e.g. a 128-bit key)
is to be derived from the DH value, k would need to be larger unless a random
oracle model is used to extract randomness from the DH value (e.g. using the
left over hash lemma, k = 160 + 128 = 288 bits for 79-bit security when the key
is derived using a universal hash function). However, the exponents may remain
at 160 bits if the 160-Discrete Log Short Exponent (DLSE) assumption is made.
Further details are available in works by Dodis et al. [DGH+04] and Gennaro
et al. [GHR04].

Abdalla and Pointcheval claim that the AP protocol only requires 2 expo-
nentiations and a few multiplications per party. However, this figure does not
take into account the G1 and G2 hash functions used by the protocol, which are
modelled as random oracles in the proof, and map into the group, G, in which the
protocol operates. The algebraic setting for the AP protocols is not specified, but
a typical choice for G would be a subgroup of order q (where q is 160 to 288 bits)
in Z

∗

p where p is a 1024 bit prime. How should G1 and G2 be implemented in such
a setting? The most natural choice seems to be that used by MacKenzie [Mac02]
for his suite of PAK protocols, and by IEEE P1363.2 [IEE06] in the DLREDP-1
(Discrete Log Random Element Derivation Primitive), in which the functions are
implemented as a hash of the inputs raised to a power to map the hash output
into the subgroup. This power will be quite large (1024− 288 = 736 bits long),
and the computation would take the time of about 4.6 exponentiations with 160
bit exponents. Table 1 shows the equivalent number of exponentiations for this
option. We should note, however, that a more efficient implementation may be
possible when using DLREDP-2 from IEEE P1363.2 [IEE06] (but this requires
adding two extra values to the domain parameters) or when p−1

q
is small or G

is an elliptic curve group (since the co-factor in these cases is much smaller).
The efficiency of GPAKE mainly depends on which 2-party password based

key exchange protocol is used by it. Use of the KOY protocol [KOY01] is assumed
here, since it is in the standard model and was suggested as a suitable protocol
in the GPAKE proposal. (Other protocols recommended, although faster, were
in the RO model.) The equivalent number of exponentiations for the KOY pro-
tocol, excluding those for the one-time signature, is shown in Table 1. (Some
exponentiations may be performed more efficiently together, and we have ac-
counted for this.) The Bellare and Rogaway [BR95] key distribution scheme was
suggested for use with GPAKE, and requires 1 symmetric decryption for each
client, and 2 symmetric encryptions for the server. The GPAKE protocol itself
requires 2 exponentiations for each client.

10

Protocol Client Efficiency Server Efficiency
Operation Equivalent Exp. Operation Equivalent Exp.

Offline Online Offline Online

Proposed 1 offline exp. 1
1 online exp. 1
1 online PK enc. 3 1 4 online PK dec. 12
1 offline PK enc. 4
Proposed Total: 8 2 Proposed Total: 12

GPAKE
. . . KOY One-time signature key gen. Per KOY key exchange:

One-time signature One-time verification
Validity check 5 Validity check 5
2 offline exp. 2 3 offline exp. 3
2 double exp. 2.6 1 double exp. 1.3
2 multi-exp. 2 3.3 2 multi-exp. 2 3.3
KOY Total: 4 11 KOY Total per key: 5 9.6

. . . key dist. 1 symm. dec. 2 symm enc.

. . . other 2 exp. 1 1
GPAKE Total 5 12 GPAKE Total: 10 19.3

AP 2 exp. 1 1 2 exp. 2
1 G1 evaluation 4.6 2 G1 evaluations 9.2
1 G2 evaluation 4.6 2 G2 evaluations 9.2
AP Total: 1 10.2 AP Total: 20.4

Table 1. Protocol Efficiency Comparison

The proposed protocol requires 1 offline and 1 online public key encryption,
and 1 offline and 1 online exponentiation for each client, as well as 4 public key
decryptions for the server.

From the summary in Table 1, we see that the GPAKE protocol is the least
efficient of all the schemes, especially if offline computations are considered. In-
cluding G1 and G2 evaluations in the efficiency analysis of AP makes its online
efficiency similar to that of GPAKE, although it requires fewer offline com-
putations. In comparison with these two schemes, our scheme performs quite
favourably. However, some symmetric operations required for the public key en-
cryption and decryption operations in the proposed scheme have been omitted
from the analysis; symmetric operations have not been included in the GPAKE
totals, either. In addition, it may be possible to optimize these schemes with
precomputations to make the exponentiations run faster.

Another consideration in the choice of a protocol is the number of rounds it
requires. The protocol proposed here seems, at first, inefficient in the number of
rounds, as it requires six. In comparison, the GPAKE protocol requires 3 rounds
for the KOY protocol, 3 rounds for the key distribution (although a small change
to the key distribution protocol would result in 2 rounds), and 1 round for the
exchange of the DH and MAC values, making a total of 6 or 7 rounds. The
AP protocol requires only two rounds. However, by reordering the messages of
the proposed protocol, the number of rounds can be substantially reduced to

11

only three rounds, making its round complexity slightly worse than that of the
AP protocol, but better than that of the GPAKE protocol. The details of this
optimization are in the full version.

In addition to the above efficiency considerations, there are a number of other
points to consider when selecting a protocol:

Random oracle v. standard model. Our proof is in the standard model,
whereas that of the AP protocol is in the RO model. The proof of GPAKE
may be in either model, depending upon the components used with it.

Corrupt queries. The CK model, which is used for our proof, allows the use
of adaptive Corrupt queries to model a malicious insiders. This is contrary
to the AFP model. In fact, an attack on the AP protocol has been de-
scribed [CBH05b] that uses a corrupt query. The original proof did not rule
out this attack because corrupt queries were not allowed in the proof model.
Therefore, we can rule out a wider range of attacks on our protocol because
of the more general model.

Session-state reveal queries. The CK model also allows session-state reveal
queries. These queries model the exposure of data that must be kept between
activations, and the requirement that exposure of such data in one session
should not compromise other sessions. However, the AFP model does not
allow such queries, and the AP protocol would be insecure in the presence
of such queries. This is because an adversary could find a party’s secret
Diffie-Hellman exponent using a session-state reveal query, and then use the
exponent to find the secret password from the party’s first protocol message.

Key privacy. The AFP model includes the key privacy requirement, but the
CK model does not. However, the proposed protocol fulfills the requirement,
since the server only forwards authentic messages in Protocol 1, and does
not create any messages with new content. These messages are also known
to the adversary, who cannot find any information about the key. Since the
server knows no more than the adversary, it is also unable to deduce any
information about the secret key. However, the CK model may need some
modification to include the requirement if needed for other protocols.

Concurrency. The proof of the AP protocol does not allow concurrency, so that
only one instance of a player can exist at a time. On the other hand, the
proposed protocol allows full concurrency. Although instructions are given
on how to modify the AP protocol to achieve partial and full concurrency,
the correctness of these instructions is not proven. In addition, provision
of full concurrency requires two extra message flows from the server at the
beginning of the protocol.

Assumptions. The AP protocol proof requires the use of some non-standard
assumptions based on the Diffie-Hellman problem. Our proposed protocol
only requires the DDH assumption, a collision-resistant one-way hash func-
tion, and an IND-CCA secure encryption scheme. The use of standard as-
sumptions may be less risky than the use of new assumptions that have not
been extensively studied.

Online attack detection. It is always possible for the adversary to make an
online attack by guessing a party’s password and running the protocol using

12

the guessed password. If the final key is correct, then the password must have
been correct. Otherwise another password may be guessed and the protocol
run again until the correct password is found. To prevent such attacks, the
definition of PBSK-security for the CK model requires the server to refuse to
run the protocol with any party who has made more than a certain number of
incorrect guesses of the password. However, the server in the AP and KOY
protocols cannot detect whether a client has made an incorrect password
guess, and although the proofs differentiate active and passive attacks, this
cannot be done in practice. In addition, such attacks are tolerated by the
AFP security definition where the problem is that the adversary’s advantage
must only be less than O(n/|D|) plus a negligible function, where n is the
number of active sessions and |D| is the size of the password dictionary. No
small bound is placed on the number of (unsuccessful) online attacks; it may
be the same as the maximum number of online sessions.

In conclusion, we have proposed a new password-based three-party protocol,
one of the few such protocols with a security proof. Our proof is in the standard
model, in contrast to a recently proposed protocol with a proof in the RO model,
and has a number of other advantages that have been discussed above.

References

[AFP05] M. Abdalla, P.-A. Fouque, and D. Pointcheval. Password-based authenti-
cated key exchange in the three-party setting. In Public Key Cryptography—
PKC 2005, volume 3386 of LNCS, pages 65–84. Springer, 2005.

[AP05] M. Abdalla and D. Pointcheval. Interactive Diffie-Hellman as-
sumptions with applications to password-based authentication.
In Financial Cryptography and Data Security—FC 2005, vol-
ume 3570 of LNCS, pages 341–356. Springer, 2005. Full version:
http://www.di.ens.fr/∼pointche/pub.php?reference=AbPo05.

[BCK98] M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the
design and analysis of authentication and key exchange protocols. In
Proceedings of the thirtieth annual ACM symposium on Theory of com-
puting, pages 419–428. ACM Press, 1998. Full version: http://www-
cse.ucsd.edu/users/mihir/papers/key-distribution.html.

[Bon98] D. Boneh. The decision Diffie-Hellman problem. In Proceedings of the Third
Algorithmic Number Theory Symposium, volume 1423 of LNCS, pages 48–
63. Springer, 1998.

[BPR00] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange
secure against dictionary attacks. In Advances in Cryptology – Eurocrypt
2000, volume 1807 of LNCS, pages 139–155. Springer, 2000.

[BR93] M. Bellare and P. Rogaway. Entity authentication and key distribution. In
Advances in Cryptology – CRYPTO’93, volume 773 of LNCS, pages 232–
249. Springer, 1993. Full version: www-cse.ucsd.edu/users/mihir.

[BR95] M. Bellare and P. Rogaway. Provably secure session key distribution – the
three party case. In Proceedings of the 27th ACM Symposium on the Theory
of Computing, pages 57–66. ACM Press, 1995.

13

[CBH05a] K.-K. R. Choo, C. Boyd, and Y. Hitchcock. Errors in computational com-
plexity proofs for protocols. In Advances in Cryptology—Asiacrypt 2005,
volume 3788 of LNCS, pages 624–643. Springer, 2005.

[CBH05b] K.-K. R. Choo, C. Boyd, and Y. Hitchcock. Examining indistinguishability-
based proof models for key establishment protocols. In Advances
in Cryptology—Asiacrypt 2005, volume 3788 of LNCS, pages 585–604.
Springer, 2005.

[CK01] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and
their use for building secure channels. In Advances in Cryptology –
Eurocrypt 2001, volume 2045 of LNCS, pages 453–474. Springer, 2001.
http://eprint.iacr.org/2001/040.ps.gz.

[DGH+04] Y. Dodis, R. Gennaro, J. H̊astad, Krawczyk H., and T. Rabin. Randomness
extraction and key derivation using the CBC, cascade and HMAC modes.
In Advances in Cryptology — CRYPTO 2004 Proceedings, volume 3152 of
LNCS, pages 494–510. Springer, 2004.

[GHR04] R. Gennaro, Krawczyk H., and T. Rabin. Secure hashed Diffie-Hellman
over non-DDH groups. In Advances in Cryptology — EUROCRYPT 2004
Proceedings, volume 3027 of LNCS, pages 361–381. Springer, 2004. Full ver-
sion in: Cryptology ePrint Archive (http://eprint.iacr.org/2004/099), Re-
port 2004/099.

[HBGN05] Y. Hitchcock, C. Boyd, and J. M. González Nieto. Modular proofs for
key exchange: rigorous optimizations in the Canetti-Krawczyk model. Ap-
plicable Algebra in Engineering, Communication and Computing (AAECC)
Journal, 2005. Special issue on Mathematical Techniques in Cryptology;
http://dx.doi.org/10.1007/s00200-005-0185-9.

[HK99] S. Halevi and H. Krawczyk. Public-key cryptography and password pro-
tocols. ACM Trans. on Information and Systems Security, 2(3):230–268,
1999.

[HTB+03] Y. Hitchcock, Y. S. T. Tin, C. Boyd, J. M. González Nieto, and P. Mon-
tague. A password-based authenticator: Security proof and applications. In
4th International Conference on Cryptology in India – INDOCRYPT 2003,
volume 2904 of LNCS. Springer, 2003.

[IEE06] IEEE (Institute of Electrical and Electronics Engineers,
Inc.). P1363.2: Standard specifications for password-based
public-key cryptographic techniques (draft version d23), 2006.
http://grouper.ieee.org/groups/1363/passwdPK/draft.html.

[KOY01] J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key
exchange using human-memorable passwords. In Advances in Cryptology—
EUROCRYPT 2001, volume 2045 of LNCS, pages 475–494. Springer, 2001.

[Mac02] P. MacKenzie. The PAK suite: Protocols for password-authenticated
key exchange. Technical Report 2002-46, DIMACS, 2002.
ftp://dimacs.rutgers.edu/pub/dimacs/TechnicalReports/TechReports/2002/2002-
46.ps.gz.

14

A S (server) B

Known: password, πA

Public keys of S : eS1, eS2

Known: passwords πA, πB

Secret keys: dS1, dS2

Known: password, πB

Public keys of S : eS1, eS2

x ∈R Zq; rA ∈R {0, 1}k a, b, uA, uB ∈R {0, 1}k y ∈R Zq; rB ∈R {0, 1}k

Find gx B, gx

−−−→
A, gx, uB
−−−−−−→

Find gy

Set SID = s = (gx, gy)

A, s
←−−−

‘B snt. (A, s) to S’

A, s , b
−−−−−→

cB1 = EeS1
(H(A, s), b, B, πB)

vB = DdS1
(cB1) A, s, cB1

←−−−−−
vB

?
= (H(A, s), b, B, πB)

Erase vB

‘S rec. (A, s) fr. B’

B, s, uA

←−−−−−−
‘S snt. (B, s, uA) to A’

cA2 = EeS2
(rA) B, s, uA , cA2

−−−−−−−−−−→
rA = DdS2

(cA2)

zA =MrA
(B, s, uA, A)

zA
?
=MrA

(B, s, uA, A) B, s, uA, zA
←−−−−−−−−

Erase rA

‘A rec. (B, s, uA) fr. S’
Set SID = s = (gx, gy)

σ = (gy)x; Erase x

‘Established (A,B, s, σ)’
Let t = (gy, gx)

‘A snt. (B, t) to. S’ B, t
−−−→
B, t , a
←−−−−−

cA1 = EeS1
(H(B, t), a, A, πA)

B, t, cA1
−−−−−→

vA = DdS1
(cA1)

vA
?
= (H(B, t), a, A, πA)

Erase vA

‘S rec. (B, t) fr. A’ Let t = (gy, gx)

‘S snt. (B, t, uB) to. B’ A, t, uB

−−−−−−→
cB2 = EeS2

(rB)

rB = DdS2
(cB2) A, t, uB , cB2

←−−−−−−−−−−
zB =MrB

(A, t, uB , B)

Erase rB A, t, uB , zB
−−−−−−−→

zB
?
=MrB

(A, t, uB, B)

‘B rec. (B, t, uB) fr. S’
σ = (gx)y; Erase y

‘Established (A, B, s, σ)’

Protocol 5: Unoptimized authenticated server aided 3DH

15

A S (server) B

Known: password, πA

Public keys of S : eS1, eS2

Known: passwords piA, πB

Secret keys: dS1, dS2

Known: password, πB

Public keys of S : eS1, eS2

x ∈R Zq; rA ∈R {0, 1}k uA, uB ∈R {0, 1}k y ∈R Zq ; rB ∈R {0, 1}k

Find gx Find gy

cA2 = EeS2
(rA) B, gx, cA2

−−−−−−→
A, gx, uB
−−−−−−→

Set SID = s = (gx, gy)

‘B snt. (A, s) to S’
cB1 = EeS1

(H(A, s), uB , B, πB)
vB = DdS1

(cB1) A, s, cB1, cB2
←−−−−−−−−−

cB2 = EeS2
(rB)

vB
?
= (H(A, s), uB , B, πB)

Erase vB

‘S rec. (A, s) fr. B’
‘S snt. (B, s, uA) to A’

rA = DdS2
(cA2)

zA =MrA
(B, s, uA, A)

B, s, uA, zA
←−−−−−−−−

Erase rA

zA
?
=MrA

(B, s, uA, A)
‘A rec. (B, s, uA) fr. S’
Set SID = s = (gx, gy)

σ = (gy)x; Erase x

‘Established (A,B, s, σ)’
Let t = (gy, gx)

‘A snt. (B, t) to. S’
cA1 = EeS1

(H(B, t), uA, A, πA)
B, t, cA1
−−−−−→

vA = DdS1
(cA1)

vA
?
= (H(B, t), uA, A, πA)

Erase vA

‘S rec. (B, t) fr. A’
‘S snt. (B, t, uB) to. B’

rB = DdS2
(cB2)

zB =MrB
(A, t, uB , B) Let t = (gy, gx)

Erase rB A, t, uB , zB
−−−−−−−→

zB
?
=MrB

(A, t, uB , B)

‘B rec. (B, t, uB) fr. S’
σ = (gx)y; Erase y

‘Established (A,B, s, σ)’

Protocol 6: Optimized authenticated server aided Diffie–Hellman protocol

16

