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Abstract—One of the major drawbacks of the Map-Reduce pating in the BSP computation. A superstep consists of three
(MR) model is that, to simplify reliability and fault tolera nce, it ~stages: a local computation, a process communication, and
does not preserve data in memory across consecutive MR joba: 5 parrier synchronization. Each peer maintains a locaé stat

MR job must dump its data to the distributed file system before . hich i ible by thi | I
they can be read by the next MR job. This restriction imposes a In-memory, which 1S accessibie by this peer only across a

high overhead to complex MR workflows and graph algorithms, Supersteps. In addition, during the local computationestafy
such as PageRank, which require repetitive MR jobs. The Bulk a superstep, each peer has access to the messages sent by othe

Synchronous Parallelism (BSP) programming model, on the tler  peers during the previous superstep. It can also send nesssag
hand, has been recently advocated as an alternative to the MR to other peers during the process communication stage, to

model that does not suffer from this restriction, and, under b d at th t t The barri h iz ati
certain circumstances, allows complex repetitive algortims to € read at the next superstep. € Dbarner synchronization

run entirely in the collective memory of a cluster. We presen Stage synchronizes all peers to make sure that they have
a framework for translating complex declarative queries fa received all the sent messages before the next superstep.

scientific and graph data analysis applications to both MR ad  To cope with peer failures, each peer may use checkpoint
BSP evaluation plans, leaving the choice to be made at runilie  ocqyery, to occasionally flush the volatile part of its stat

based on the available resources. If the resources are suféat, . .
the query will be evaluated entirely in memory based on the BB to the DFS, thus allowing to roliback to the last checkpoint

model, otherwise, the same query will be evaluated based ohe When a failure occurs. In many graph analysis problems a
MR model. large part of the state is used for storing the graph, which

is immutable and does not require checkpointing. Therefore
|. INTRODUCTION the BSP model is better suited to graph analysis than the MR
model, provided that the entire graph can fit in the collectiv
Recently, the Map-Reduce (MR) programming modél [#hemory of the cluster. Because of their importance and their
has been emerged as a popular framework for large-scedpetitive nature, graph analysis programs are the masylik
data analysis on the cloud. In particular, Hadodp] [14¢andidates to benefit from the BSP model, which explains why
the most prevalent implementation of this framework, hdabe most important BSP implementation to date is Google’s
been used extensively by many companies on a very lafgeegel [20], which has been used by Google as a replacement
scale. Currently, the majority of these MR jobs are specifiddr the MR model for analyzing large graphs exclusively. In
in declarative query languages, such as HiveQLl [30] ardidition, Apache’s Giraph[12] is an open-source altevedt
PigLatin [22]. One of the major drawbacks of the MR modédPregel and Apache’s Hama [26] is a general BSP computation
is that, to simplify reliability and fault tolerance, it deaot platform built on top of Hadoop that can process any kind of
preserve data in memory between the map and reduce tadéta.
of a MR job or across consecutive MR jobs. Consequently, When coding a parallel data analysis application in BSP,
using the original implementation of the MR model, to passne must make sure that the local state of each peer does not
data to the next job in a MR workflow, a MR job mustexceed its memory capacity. This means that, since the graph
dump its data to the distributed file system (DFS), to b&ructure is needed through the BSP computation, one has to
read by the next MR job. This restriction imposes a highse a sufficient number of peers to make sure that the graph
overhead to complex MR workflows and graph algorithmgartition processed by each peer can fit in its memory. That
such as PageRank, which require repetitive MR jobs. The B the entire graph, as well as the auxiliary data needed for
Synchronous Parallelism (BSP) programming model [32], grocessing the graph, must fit in the collective memory of the
the other hand, which precedes the MR model by more thaluster. This imposes a minimum for the cluster size. Then,
a decade, has been recently advocated as an alternative toath important question is what happens if the cluster is not
MR model that does not suffer from this restriction, and,emdlarge enough to process a certain BSP application over arlarg
certain circumstances, allows complex repetitive alponi to amount of data. One solution would be to rewrite the BSP code
run entirely in the collective memory of a cluster. to process the graph in batches, but then this program would
A BSP computation consists of a sequence of superstepst be that different from a MR job, since it would have to
Each superstep is evaluated in parallel by every peer partidump the state to secondary storage before it would be able



to process the next batch from the graph. Furthermore, thig our type-inference system), then the bag elements are
change would require a major rewriting of the BSP code. Wazily accessed using stream iterators. Otherwise, theidag
believe that, to be effective, a data analysis applicattmukl materialized to a memory vector. When the vector size exxeed
not depend on the cluster size. Instead, if the cluster gelara threshold, it is spilled to a local file. Consequently, when
enough, the code should be able to be evaluated entirelyni@mory is not sufficient, our BSP evaluations may spill data
memory in BSP mode. Otherwise, the same unchanged caddocal files, thus deteriorating performance.

should be able to be evaluated in MR mode. Supporting bothConsider, for example, the following MRQL query that cal-
modes can be done if the application is coded in a declaratm@lates the k-means clustering algorithm (Lloyd’s aldori,
guery language, so that queries expressed in this languageby deriving k& new centroids from the old:

tran_slated into both a MR \_Norkflow and a BSP j(_)b, leaving the repeat centroids = ...

choice to be made at run-time based on the available resource  step select < X: avg(s.X), Y: avg(s.Y) >

Another reason for using a common declarative language from s in Points
for both MR and BSP computations is that, currently, most group by k: (select ¢ from c in centroids
programmers prefer to use a higher-level query language for . . order by distance(c,s ))[0]

their MR applications, such as HiveQL, instead of coding
them directly in an algorithmic language, such as Java., ThigherePoints is the input data set of points on a planeptroids
we believe, will also be the trend for BSP applicationis the current set of centroidg €luster centers), andistance
because, even though, in principle, the BSP model is vepya function that calculates the distance between two point
simple to understand, it is hard to develop, optimize, ankhe initial value ofcentroids (the ... value) can be a bag d&f
maintain non-trivial BSP applications coded in a generalandom points. The select-query in the group-by part assign
purpose programming language. Currently, there is no widdhe closest centroid to a poist (where[0] returns the first
acceptable BSP query language. Existing MR query langyagemple of an ordered list). The repeat step query clusters the
such as HiveQL and PiglLatin, provide a limited syntax fodata points by their closest centroid, and, for each cluster
operating on data collections, in the form of relationahfi a new centroid is calculated from the average values of its
and group-bys. Because of these limitations, these lareguagoints. The step query repeats 10 times. Most other SQL-
enable users to plug-in custom MR scripts into their queridike query languages do not allow subqueries in group-by
for those jobs that cannot be declaratively coded in thegrgiu nor they allow arbitrary operations over groups and, theeesf
language. This nullifies the benefits of using a declarativave insufficient expressive power to capture any arbitkéry
query language and may result to suboptimal, error-proremmputation. MRQL, on the other hand, has been proven to
and hard-to-maintain code. More importantly, these laggesa be MR-complete[[10]. The MRQL query optimizer generates
are inappropriate for complex scientific applications arap) a single map-combine-reduce job for the select-query in the
analysis, because they do not directly support iteratioreer repeat-step, which is evaluated 10 times. More specifically
cursion in declarative form and are not able to handle coxppldor each data point, the mapper of this job finds the closest
nested scientific data, which are often semi-structured. Bezentroid from the bag of the current centroids (which reside
there are other query languages for distributed data psogs in memory) and uses it as the combine/reduce key. The mapper
such as MRQLI[[10] and AQLL]2], that are expressive enougif each node uses an in-memory hash table to group the
to capture complex data analysis applications in declaratipoints by the key (the closest centroid) and partially aggres
form. the groups incrementally from the incoming points using the
In this paper, we give semantics to BSP computatiomembine function. That is, the hash table lasntries, where
and present translation rules from MR computations to BSfch entry has 4 values, which are the partial counts and sums
computations. These rules allow MR workflows, produced yf avg(s.X) andavg(s.Y). Finally, the reducers perform the final
compiling MR queries, to be transformed to a sequence of B&uctions from the partial aggregated results shuffledhfro
jobs. Consecutive BSP jobs are fused into a single BSP job the nodes. Our system translates this query to a single BSP
chaining the supersteps from these jobs, thus yieldingo@méy job, since the repeat-step query is translated to a BSPheb, t
BSP job for each query. Our goal is to support both evaluatioepetition is done with a second BSP job, and the two BSP
modes: if the input data and state fit in memory, then a qugopbs are fused into one. That is, the resulting BSP tramslati
is evaluated in memory using BSP; otherwise, it is evaluateelads the input points once and calculates the final cestroid
using MR. We have implemented our MR-to-BSP translatiorstirely in memory. We will show in Sectidnl X that the BSP
for MRQL (J10], [9])- MRQL is a novel query language forevaluation of this query can be an order of magnitude faster
MR computations that is more powerful than existing quetyan its MR evaluation.
languages, such as Hive and PigLatin, since it can operate ohere is a number of recent proposals for improving the
more complex data, such as nested collections and trees, arecution of MR workflows and repetitive MR jobs, such as,
it supports more powerful query constructs, thus elimirgati HaLoop [3], Twister[[8], and SystemMI_[13]. There also some
the need for using explicit MR procedural code. Our MRQlproposals for cloud computing that use distributed memory
system can store local data collections (bags) in three waystead of DFS for inter-node communication, such as, the
If the bag is accessed only once (a property inferred sthticamain memory MR (M3R[[28]), Spark [34], Piccolo [25], and



distributed GraphLab [19]. The closest approach to ourséas treducing the number of supersteps. Finally, Sediibn X mtsse
Shark [27] (Hive on Spark) sub-project of Spark|[34], whickexperiments comparing the BSP to the MR evaluation plans,
evaluates SQL-like queries using in-memory evaluation. Towoduced by MRQL for two analytical task queries: K-means
the best of our knowledge, Shark does not provide a compodustering and PageRank.

hensive query optimization framework yet, although theee a

plans for doing so in the future. Our work is also related to Il. RELATED WORK

the Datalog query language used by the Asterix project [4], The map-reduce (MR) model was first introduced by Google
which is used as an intermediate language for translatipg 2004 [7]. Several large organizations have implemented
and optimizing Pregel-like and iterative map-reduce-t@danis model, including Apache Hadoop [33] and Plg1[22],
specifications to Hyracks physical operations. None Ofdheﬁpache/Facebook Hive [30], Google Sawzalll[24], and Mi-
systems provide any query language, optimization tecl®idgrosoft Dryad [16]. The most popular MR implementation is
or query evaluation on top of an existing BSP platform. Hadoop [14], an open-source project developed by Apache,
In summary, the key contribution of this work is in thewhich is used today by Yahoo! and many other companies
design of a framework for translating complex declarative perform data analysis. There are also a number of higher-
queries for scientific and graph data analysis applicatiotts |evel languages that make MR programming easier, such as
both MR and BSP evaluation plans, leaving the choice t9iveQL [30], PigLatin [22], SCOPE]5], and Dryad/Ling [17].
be made at run-time based on the available resources. If tige ([30], [31]) is an open-source project by Facebook that
resources are sufficient, the query will be evaluated éwptine provides a logical RDBMS environment on top of the MR
memory based on the BSP model, otherwise, the same querygine, well-suited for data warehousing. Using its high-
will be evaluated based on the MR model. Leveraging on olével query language, HiveQL, users can write declarative
earlier work on translating complex MRQL queries into MRyueries, which are optimized and translated into MR jobs
workflows, this work makes the following contributions: that are executed using Hadoop. Yahoo!’s Pid [11] resembles

« We present a novel BSP algebra that captures the essefif s it provides a user-friendly query-like languagdieca
of most BSP computations. Contrary to some BSBlgLayn [22], on top of MR, whlch allows (ixphcn fllterlng,_
implementations, this algebra separates BSP superstB¥: join, and group-by operations. SCOPE [5], an SQL-like
explicitly as functional arguments to a BSP operatopCliPting language for large-scale analysis, does nota@tipp
thus making easier to chain together supersteps fréiP-aueries but provides syntax to simulate sub-querieg us
consecutive BSP jobs. outer-joins. _ _ o

« We present transformation rules to map any workflow of Theé BSP model was introduced by Leslie G. Valiant in
MR jobs into a workflow of BSP operations, thus making990 [32] and has been since improved and extended by
possible to translate any MR query into a BSP workflofany others (eg/[29]). The best known implementations of

« We present rules for fusing cascading BSP jobs intotge BSP model for data an_aly5|s on the cloud are Google’s
single BSP job, thus deriving a single BSP job for thEregel [20] and Apache’s Giraph [12] and Hamia ([26].] [15]).
entire query. Although Pregel has already been used extensively by Google

« We report on a prototype implementation of the Bsfor large graph analysis, it has not rea<_:hed the populafity o
evaluation of MRQL queries on top of Apache HamaVIR yet. Its open-source counterpart, .Glraph, and the génera
We show the effectiveness of our method through expé?SP platform, Hama, are still in their very early stages of

iments that compare the BSP to the MR evaluation plaf§velopment and are not used in the same degree as Pregel.
for two analytical task queries: K-means clustering anb®€ BSP modelis compared with the MR modelin [23], which

PageRank. discusses how to map any MR computation to a BSP, and vice
versa.
The rest of this paper is organized as follows. Secfion |
compares our approach with related work. Secfioh Il sum- 1. BACKGROUND: THE MR ALGEBRA

marizes our earlier work on a MR algebra, which is used
in the implementation of the MRQL language. Sect[od | : o . L L2
describes our BSP algebra and its implementation on Apacr:{gr MR cpmp_u_tatlons, which is _summarlzed n t_h|s section (in
Hama. SectiorV/ gives the transformation rules from {r@ more simplified form). It consists of the following openato
MR algebra to the BSP algebra, thus making possible thes source(file,tag): a tagged dataset from a DFS file.
translation of MR queries to BSP jobs. Sectforl VI describes® S1U S2: the bag union of the datasets and S».

the normalization rules for fusing cascading BSP jobs into ® MmapReduce(m,r)S: a MR job.

a single BSP job, thus deriving a single BSP job from a * repeat(f)S: a repetition of MR jobs.

MR query. Sectiom VIl describes how MRQL physical planFhese algebraic operators can capture most nested relation
are translated to BSP plans. Section VIl addresses totglerations, including equi-join, selection, projectigipup-
aggregation in BSP, which requires to summarize resultssacrby with aggregation, unnesting, intersection, etc. Thayoa

all peers. Sectioh IX describes an optimization technigue fcapture genera-joins and total aggregation. We will discuss
merging consecutive supersteps within the same BSP job, thotal aggregation in Sectidn V]I

In our earlier work ([10],[[9]), we have presented an algebra



The operatiorsource(file,tag) reads an input file from DFS, under different tags, 1 and 2 respectively. For each inpletu
which can be a raw text or binary file, and breaks it int¢either fromX or Y), the MR mapper emits the join key along
data fragments, based on some specification. Every fragmeiith the tuple. The reducer separates hauples from they
is annotated with an integeag to identify the data source. tuples (based on their tag) and performs their cross praduct
The result is a dataset of tygg(int, « ) }, which is a bag of memory (since they already match the join condition).
pairs, where each pair contains an integer tag and a fragmerftinally, ‘repeat(f) S’ transforms a dataset of type {a}
of type a. to a dataset of typga} by applying the functionf of

The operationrhapReduce(m, r) S’ specifies a map-reducetype {a} — {(a,bool)} repeatedly, starting fromS, until
job. It transforms a dataset of type {a} into a dataset of all returned boolean values are false. The implementation
type {5} using a map functionn and a reduce function of repeat in Hadoop does not require any additional MR

with types: job (other than those embedded in the functifh as it
m: a— {(k7)} uses a user-defined Java counter to count the true values
r: (5 {7}) — {8} resulting from the outermost physical operator fin These

for the arbitrary typesa, 8, v, and x. The map function counts are accumulated across all Hadoop tasks assigned to

m transforms values of typer from the input dataset into thiS outermost operator. Theepeat operator repeats th¢

a bag of intermediate key/value pairs of typgs,~)}. The Workflow until the counter becomes zero. .
reduce functionr merges all intermediate pairs associated 1heré are other operations required to capture SQL-like
with the same key of type and produces a bag of valueslueries, which are all Qescrlbed in our earlier work [10].rOu
of type 3, which are incorporated into theapReduce result. earlier work also describes general methods for trangjatiy

The semantics ofrapReduce can be given by the following MRQL query into a MR algebraic plan and for optimizing and
equation: translating this plan into a MR job workflow.

IV. THE BSP ALGEBRA

In this section, we present our BSP algebra that captures
BSP computations. It has been implemented on Apache Hama.
The domain of our BSP algebra {g1,V)}, whereT is the
Béer id type and/ is a snapshot type. More specifically, the
BSP domain is a map frond to V, which, for each peer
participating in the BSP computation, returns its localstent
of type V. This snapshot contains all the local data of the peer
I that reside in its local memory. The BSP algebra consists of
the following operators:

mapReduce(m,r) S = cmap(r) (groupBy(cmap(m) S))

wherecmap and groupBy are defined as follows: Given two
arbitrary typesy and 3, the cmagpyf) s operation (also known
as concat-map or flatten-map in functional programming la
guages) applies the functiofi of type a— {8} to each
element of the input bag of type {«} and collects the results
to form a bag of type{s}. Given two typesk and «, for
an input bag of pairs of type bag((x, «) ), the groupBys)
operation groups the elementssdfy the key of types to form

a bag of type bag(k, {«}) ). For example, groupBy( (1,"A"), - )
(2,B", (L,“C") }9() re{[ur}rzs the bag (1 {“A"“C" }),}2{2,{“5,, 1 « source(file,tag): a tag_ged dataset from a DFS file.

1. The implementation of a dataset in a MR platform, such as*® 51U 5»: the bag union O];,t_h?] dzggspeﬁs and_SQ.

Hadoop [14], is the path name of a DFS file that contains * bsp( tag, SL.Jperstep, state ) 5: the operation. .

the data. ThenmapReduce is a MR job that reads a DFSNote that, as it was the case for the MR algebra, this BSP
file as input and dumps the output into a DFS file. The unigigebra cannot capture total aggregation, which is adedess

operation is a no-op since it simply concatenates the DFAS p&¢Parately in Section VII. _
names. As it was for the MR algebra, the operatisource(file,tag)

In our earlier work [10], we have used an explicit joirfeads an input file from DFS and breaks it into data fragments,
algebraic operation to capture several equi-join algoritior Pased on some specification. Every fragment is annotatéd wit
the MR framework, such as reduce- and map-side joins ([18}} integertag that identifies the data source. This operation
[33]), as well as cross products afigoins using distributed "eturns the mag{(Z, {(int, @)})}, which associates each peer
block-nested loops. Here, to simplify our translationsifdR ~  With a dataset of typg{(int, )}, which is a bag of pairs,
to BSP, we have used only one equi-join algorithm, the reducéhere each pair contains the tag and a fragment of type
side join, which can be expressed as a mapReduce operafipip dataset is stored locally in the snapshot of pleer
over the union of the two join inputs. For example, the join The BSP operationbSp( tag, superstep, initstate ) S maps

_ a datasetS of type {(Z,{(int,V)})} into a dataset of type
select X.C, Y.Dfrom X, Y where X.A=Y.B {(I,{(int, V) })}, using arguments of the following types:

can be evaluated using: tag: int
mapReduce( A(n,z).if n=1 then {(z.A,(n,z))} else {(z.B,(n,2))}, superstep:  ({M1},V,K)— ({(I, M)}, V, K, boolean)

AK,s).{ (x.C,y.D) [ (1,¥)€s, (2,y)€s }) P _
(sourceéx,l)Usource(Y,Z)) } initstate : K

where an anonymous functioh(z,y).e specifies a binary The tag is the output value tag. Thsuperstep operation is
function f such thatf(z,y) = e. In this join specification, performed by every peer participating in the BSP computatio
the MR input is the combination of the two inputsandY, and can modify the peer’s local snhapshoby returning a new



for I in peersdo { class IM { | peer; M message; }
terminate[l] = false; class Result { Bag<IM> messages; Bag<V> snapshot;
snapshot[l] = input[1]; S state; Boolean exit; }
state[l] = initstate [I];
; void bsp ( BSPPeer<K,V,K,V,M> peer) {
msgs ={ }; Bag<V> shapshot = readLocalSnapshot(input);
do { S state = initstate ;
new_msgs ={ }; Result result;
exit =true; Bag<M> msgs = new Bag<M>();
for | in peersdo { M msg = null;
(m,v,k,b) = superstep({ m[ (i,m) € msgs, i=I }, boolean exit;
snapshot[l], state[I] ); do {
snapshot[l] =v; result = superstep(msgs,snapshot,state);
state[1] =k; snapshot = result.snapshot;
new_msgs = new_msgs U m; state = result.state;
terminate[l] = terminate[l] V b; exit = synchronize(peer,result. exit);
exit = exit A b; for ( IM m: result.messages )
N peer.send(m.peer,m.message);
msgs = new_msgs; peer.sync();
} while (—exit); msgs = new Bag<M>();
return snapshot; while ((msg = peer.getCurrentMessage()) != null)
msgs.add(msg);
) ] ) ] ] } while (! exit);
Fig. 1. Sequential Evaluation of ‘bsp( tag, superstepstaié ) input’ writeLocalSnapshot(tag,snapshot);
}

local snapshoV’. Since we are going to use a single BSP jOlig. 2. implementation of ‘bsp( tag, superstep, initstateput on Hama
to capture a workflow of multiple, repetitive MR jobs, each

superstep must be able to execute multiple operations,ane f
each MR job, and be able to switch between the jobs in the

lboolean synchronize ( BSPPeer<K,V,K,V,M> peer,
Boolean exit ) {

MR workflow. This is done using a finite state machine (DFA) if (exit == allTrue)

embedded in the superstep logic, which controls the swggerst return true;

evaluation, as we will show in Sectiél V. More specifically, it (exit == allFalse)

the DFA state is of typé’, which may contain data particular i (feet;itr;' false;

to this state. Then, a superstep evaluation makes a ti@nsiti for (1 i: peer.getAllPeerNames() )
from the current statd{ (in the superstep input) to a new peer.send(i,"not ready”);
state K (in the superstep output). The initial stateirigstate. peer.sync();

The call superstep(ms, v, k) takes a bag of messagess of return peer.getNumCurrentMessages() == 0;
type {M}, the current snapshat, and the current staté, !

and returns the tripldis, ', k', b), which contains the new

messagess to be sent to the other peers (a bag(éfM) Fig. 3. Peer Synchronization

pairs), the new snapshet, the new state:’, and a flagb.
This flag indicates whether the peer wants to terminate this
BSP computationi(= true) or use barrier synchronization tosnapshots, the new state, and the termination flag. The
continue by repeating the superstep under the new snapsB&P operation repeats until all peers want to terminate.
state, and messages  false). Note that, only ifall peers  Figure[2 gives the implementation of the BSP operation
agree to exit (when they all retuin= true), then every peer on Apache Hamal[15]. As it was done for our MR im-
should exit the BSP computation. Otherwise, if there is @lementation, the domain of the physical operations that
least one peer who wants to continue, then every peer mgétrespond to our BSP algebraic operators is a DFS file.
do barrier synchronization and repeat the superstep. More specifically, each peer reads all those blocks from the
The meaning of the BSP operation, when simulated onirgout file that are local to the peer (ie, those that reside in
sequential machine, is given in Figure 1. In this simulatioits local disk) and stores them entirely in its memory. This
each peet, from the set of alpeers, is associated with a snap-is done with the functioneadLocalSnapshot. At the end of
shot snapshot[l], a DFA statestate[l], and a flagterminate[l]. the BSP operation, the new state is dumped to DFS using
The result is stored in the magesultState. At each step, the the functionwriteLocalSnapshot. Although the input/output is
superstep operation is evaluated by every peer, even when tdene through DFS, the rest of the BSP computation is done
peer has requested to terminate. The input todingerstep entirely in memory (if we ignore checkpointing). We will see
consists of the messages sent to this peer during the peeviouSectio IX that using the DFS for passing snapshots across
step, along with the current snapshot and state. Its redBBP operations is not important because consecutive BSP
contains the messages to be sent to other peerthe new operations are fused into one, thus requiring the use of DFS



only at the beginning and the end of a program. The classéesis a boolean flag that indicates whether we are in map or
andResult in Figurel2 are used to store a message sent to peeduce mode. When the superstep is called Wwithtrue, then
and a superstep result, respectively. The body of the Hami'svaluates the map function over each element in the input
bsp method is evaluated at each peer. Bhapshot is the local partition,as. Then, it shuffles the map results to the reducers,
snapshot of the peer, accessible only by this peer throughasing the functiorshuffle(k) over the keyk, which is returned

its BSP computation. In Hama, there is no clear separationf the mapperm. Shuffle must be a function that returns the
supersteps. Instead, when a peer gadlsr.sync(), it waits for same peer for the same key. An obvious implementation of
the next barrier synchronization. That is, this call signle shuffle(k) in Hama distributes the mapped values equally to
end of a superstep. If thesp method exits without a call to the peers using hash partitioning:

peer.sync(), the peer terminates. Hama requires that all peers
exit at the same time. Before the new messages that are derive’
from a superstep are sent to peers, we need to check whetfee first superstep returns the new state- false, which

all peers agree to exit. This is done by calling fyachronize  directs bsp to perform the reduce stage over the received
method, shown in FigurEl 3. Thesult.exit flag returned by messages, which contain the shuffled data. Then, it simply
the superstep is a Boolean object that can take four valfiesgioups the data by the key and applies the reduce function
it is == to the prespecified Boolean objefTrue, it indicates (based on thenapReduce semantics in terms ofmap and

that all peers want to exit right now, so there is no need gwoupBy, given in Section[Ill). Note that, themap and

poll the peers; if it is== to the prespecified Boolean objecigroupBy operations are evaluated entirely in memory. Note
allFalse, it indicates that all peers need to continue; otherwisalso that the exit condition of the map stepalFalse, while

if its value is equal tarue/false, it indicates that this particular that of the reduce step &ITrue. They indicate that all peers
peer wants to exit/continue, but we still need to poll theeothagree to continue after map and exit after reduce.

peers to check if they can all exit. In the latter case, if all The repetitionrepeat(f) S is translated to BSP by first
peers agree to exit, then we exit. This is donesynchronize translating the MR repetition step functigrinto a BSP repeti-

by having those peers that are not ready to exit send messay®s I’ by recursively applying the MR-to-BSP transformation
to other peers: if there is at least one message after synfles. Then, the translation gf should take the form:

then at least one peer is not ready to exit. As we will see in
Section[Y, in all but one case, peers agree to simultaneouslyF(x)
exit or continue and this decision is hardwired in the lodic dor some tagag, superstep function, and initstate0, since
the superstep. This means that in most casesythehronize all MR-to-BSP transformations returnkasp operation. Then,
method will immediately return true or false without havitog repeat(f) S is mapped to BSP as follows:

poll the peers. The only case Where polling is required_ ihqtt repeat(f) S

BSP superstep of @peat operation that tests the termination = psp( tag,

eer.getPeerName(k.hashValue() % peer.getNumPeers())

= bsp(tag, s, k0) =

condition of the loop (explained in Sectibnd V). In such a ¢ase A(ms,vs, k).let (ts,bs, k,b) < s(ms,vs, k)
some peers may want to finish the loop earlier because they inifb
reach the termination condition sooner. Basedythronize, then ({ },
— : ; cmap(A(t, (v,0)).{(t,v)}) bs,
these peers will continue their supersteps until all pegreea %0
to terminate. The shortcut of usirgjTrue/allFalse eliminates V(t, (v,b)) € bs: —b)
unnecessary message exchanges and syncs in most cases. else ( ts, bs, k, allFalse ),
k0) S
V. MR-TO-BSP TRANSFORMATION The state of this BSP is the same as the state of the repeat step

It has been noted in related wofk [23] that any MR job cawhich is initially k0. This BSP evaluates the superstep function
be evaluated using a BSP job that has two supersteps: @hdhe repeat step;, multiple times. When the call returns
for the map and one for the reduce task. In this section, we= false, we are in the middle of evaluating a superstego
elaborate this idea by transforming our MR algebra into otf¢ must returraliFalse to continue until we finish evaluating

BSP algebra. First, we transformnaapReduce operation: ~ One complete repeat step. When= true, we have finished
mapReduce(m, ) S a single repeat step and, if the termination cc_mditi_on isa‘al_
= bsp( tag, then we should proceed to the next repeat iteration starting
A(ms,as, b). from scratch, with state equal te0. Otherwise, we should
it b exit. The termination condition is checked by evaluating
the”(Cmap()‘(k”C)'A{éSh”fﬂe(k)’(k’C))}) Y(t, (v,b)) € bs : —b, given that the dataset returned by a
(1 f;é?’agf,:égg ))'m(c)) as), repeat step contains the source tathe valuev, and the flag
else ({ }, cmap(r) (groupBy(ms)), false, allTrue ), b, which is true ifv satisfies the termination condition. This
true) S termination condition is the only case where a value +ot

wheretag is a unique tag assigned to this operator. The BSP allFalse/allTrue is returned. As explained in SectibnllV, this
snapshot assigned to a peer is a bag of e, o)}, which is handled in the BSP call by polling all peers to check the
contains the input partition local to the peer. The DFA statmndition across all peers.



VI. BSP NORMALIZATION VIl. TRANSLATING MRQL PLANS TO BSP R.ANS

As we have seen in Sectidn] V, any MR workflow that | section[, we presented transformation rules from the
consists of MR algebraic forms can be mapped to a sequUeRgR algebra to the BSP algebra that make possible the transla-
of cascadingsp operations. Unfortunately, eabhp operation jon of MR queries to BSP jobs. The MRQL query evaluation
reads |ts_ input state from DI_:S and dumps its final state é?stem though provides many specialized MR physical plans
DFS, which makes the resulting BSP workflow plan not thghat implement the MR algebraic operator. For example, the
different from the onglnal MR workflow in terms o_f wasting\ap physical operator implements the MR operation without
resources. Our goal is to translate any such plan into aesingl reqyce function. This can be trivially implemented using a
BSP job that uses the DFS to read the initial input an§sp gperation with only one superstep. In this section, we
dump the final answer only, while performing the rest ofhow how two important MR physical plans used in MRQL

the computation entirely in memory. More specifically, wgq mapped to BSP plans: theapCombineReduce and the
will give a constructive proof to the following theorem byequce-side joinmapReduce?.

providing a normalization rule for fusing BSP operations in As noted in the k-means example in Sectldn I, a map-
pairs. _ ) combine-reduce operation applies a combine function to the
Theorem 1:Any algebraic term in the BSP algebra can bg,is generated at each map task, thus partially reducing the
normghzed into a term with just one BSP job that takes the i, ot the map-side before they are shuffled and shipped to
following form: the reducers. This technique, which is generally known as an
bsp(t, s, k) (source(fi,t1) U---U source(fn,tn)) in-mapper combiner, is very effective when the reducer per-
for somet, s, k, fi, andt;. forms aggregations only. TheapCombineReduce(m,c,r) S
Consequently, since any MR query can be translated to a MReration, in addition to the mam and reduce- functions,
algebraic term (from our previous work [10]), and since a ovides a combine function Then, this operation is mapped
MR algebraic operator can be translated into a BSP algebrficBSP as follows:
operator (SectiofV), this theorem indicates that any MRgue MapCombineReduce(m,c,r) S
can be translated into a single BSP operation. = bsp(tag,

T . . A(ms,as,b).
Proof: The normalization is done by recursively applying it b
a single rule that fuses two cascadihgp operations into then (cmap(A(k, s).cmap(Ax. {(shuffle(k),(k, z))})
one. Essentially, it chains together the supersteps ofwioe t (c(k, 5)))
cascadingsp operations into one superstep, which uses a flag . (lgrourl)lllazygcmap(/\(k,x).m(x)) as)),
to r.emembgr which superstep is evaluating each time.bspe else ( {{ }]: C?nz%(i) (grzﬁgBy(ms)), false, allTrue ),
fusion law is the following: true ) S
bsp(tz, s2,k2) (S1U---USia that is, the mapper groups its results by the shuffle key and
U bsp(tr, s1,k1)(S1 U -+ U Sp) partially reduces them using the combiner
= bsp( ts, USir1 ... U Sn) To join data from multiple data sources, MRQL supports
Xms, as, (c, k). various physical join operators. The best known join aldponi
if ¢ in an MR environment is the reduce-side jdin][33], also known
then let (ts,bs, k', b) < s1(ms, as, k), as partitioned join or COGROUP in Pig. It mixes the tuples

exit «— synchronize(b)
in (ts, bs,
( —exit, if exit then k- else k'),

of two input data set$; and S, at the map side, groups the
tuples by the join key, and performs a cross product between

allFalse ) the tuples fromS; and Sy that correspond to the same join
else let (ts, bs, k', b) <+ s2(ms, as, k) key at the reduce side. We translate the reduce-side joimeto t
ek in (ts, bs, (false, k"), b), following BSP operation:
( ES’ZUS'- -1-)L)J S US,U---US,L USii1U...US) TEpReducez(mh ma,r) (51, 52)

The state of the resultingsp is extended with a flag that = bsp( f\l(’ms as,b)
identifies which of the two supersteps; (or s») to evaluate ity
each time. Whilec is true, the first supersteq is evaluated, then ( F(m1, ma, t1,as), { }, false, allFalse )
until it returnsb = true, in which case it synchronizes with the else ({ }, G(r,ms), false, allTrue ),

other peers to check if they all agree to exit from steplf t_r”e) (51U 52) _
they do,exit becomes true and the BSP computation switch¥§1€7€?1 i the tag ofS;, my andm, are the map functions
to ¢ = false mode. Then, whileis false, the second superstefio" 51 and.Sz, respectively, and is the reduce function. The
s, is evaluated until it terminates. The call $gnchronize is c0de forF andG is as follows:

necessary since the inner BSP computation may correspond tb(71, m2, t1, as)

a repeat expression, which may not terminate at the same timé Cmap(k(’iff’ f)': ”

for all peers. In all other casesynchronize will immediately then cmap(\(k, 2). {(k, (k, (1, 2)))}) (ma(c))
return true or false without having to poll the peers. = else cmap(A(k, z).{(k, (k, (2,2)))}) (m2(c))) as



G(r, ms) . type point = < X: double, Y: double >;
=cmap(A(k, s).r( cmap(A(t,z).if t = 1 then {z} else {}) s,

cmap(A(t, y).if t = 2 then {y} else {}) s)) function distance ( x: point, y: point ): double {
(groupBy(ms)) sqrt(pow(x.X—y.X,2)+pow(X.Y—y.Y,2))
VIIl. HANDLING TOTAL AGGREGATIONS I8

Total aggregations summarize collections into values. Fof repeat centroids = { < X: 0.0, Y: 0.0 >,
example, the MRQL query: < X:10.0, Y: 0.0 >,

avg(select e.salary from e in Employees) z § 2000 Y\:('lf(.)00>>’ )

returns a single number. When aggregations are executed in|a step select ( < X: avg(s.X), Y: avg(s.Y) >, true )
distributed system, one peer must be designated as a master from s in source(binary,”points.bin")

to collect all partial aggregations from the other peers and group by k: (Seéembc f(;?"t“ cmn Ce”trg'ds
emit the final aggregation result. Our MR algebra includes th | it 10: order by distance(c,s ))0]
operationaggregate(a, S), wherea is a commutative monoid

a = (@, z). Thatis,zdy = ydx andx®z = z, for all z andy.

It reduces a datasét of type {T'} into a valueT' by applying

@ to the elements af in pairs. Our BSP algebra uses the same
operatioraggregate(a, S). It is implemented with special code
in Hama that designates one of the participating peers (the

master) to collect the final result, it partially aggregaies =~ MRQL is implemented on top of Hadoop and Hama. It is
results at each peer, which sends its partial aggregatsritreavailable at http://lambda.uta.edu/mrql/. It is an opeorse

to the master, and, finally, the master dumps the final resultRroject available at GitHub https://github.com/fegamarsyl,

Fig. 4. K-means Clustering Expressed as an MRQL Query

X. PERFORMANCEEVALUATION

DES. where other people can contribute and request changes. MRQL
mapAggregateReduce(m, r, acc, zero) S can execute MRQL queries in two modes: using the MR
= bsp( tag, framework on Apache Hadoop or using the BSP framework

/\(Zzbs,as,b). on Apache Hama. The MRQL query language is powerful
enough to express most common data analysis tasks over many
then ( Cmapgé‘r(nkészx{(gil;_f%((g)’(f;)f))}) forms of raw data, such as XML and JSON documents, binary
{ }, false, allFalse ) files, and line-oriented text documents with comma-sepdrat
else ({ }, aggregate( acc, zero, values.
cmap(r) (groupBy(ms)) ), The platform used for our evaluations was a small cluster

false, allTrue ), of nine Linux servers, connected through a Gigabit Ethernet

switch. The cluster is managed by Rocks Cluster 5.4 running
IX. IMPROVING THE BSP BVALUATION CentOS-5 Linux. For our experiments, we used Hadoop 1.0.3
The improvement we consider in this section is reducing tkeedd Hama 0.5.0. The cluster frontend was used exclusively
number of supersteps in a BSP job. In general, two consecutds a NameNode/JobTracker, while the rest 8 compute nodes
supersteps can run as one (without a barrier synchronipatio were used as DataNodes/TaskTrackers for Hadoop MR and
there are no messages sent by peers during the first superstegcroom servers (BSP nodes) for Hama. Each server has 4
In most cases, it is very hard to prove that a superstep ses{eon cores at 3.2GHz with 4GB memory. That is, there were
to an empty bag of messages for all peer states. But our M&1total of 32 cores available for MR and BSP tasks. For our
to-BSP transformations control the superstep evaluatsimgu experiments, Hama'’s checkpointing was turned off.
a DFA state, which gets the same value across all peers, sinckn the rest of this section, we present experiments comgarin
all peers do the same state transitions at the same time. Mthre BSP to the MR evaluation plans, produced by MRQL for
specifically, the false branch of tmeapReduce mapping and two analytical task queries: K-means clustering and PagkRa
the true branch of theepeat mapping in Sectiofi_V return )
empty messages and apply to all peers at the same time. Avel<-means Clustering
can mark this empty bag of messade$ as a special value, As a first example, the MRQL query in Figufé 4 calcu-
which, when received by the BSP execution engine, it skifmtes the k-means clustering algorithm, by deriving k new
the barrier synchronization, since it is certain that theié centroids from the old, where the input data set is of type
be no messages sent by any peer. More specifically, the Hafre:double,Y:double>}, centroids is the current set of cen-
implementation of théssp operator given in Figurigl 2 will not troids (k cluster centers), antistance calculates the distance
call peer.sync() if the result. messages is equal to this special between two points. The query in the group-by assigns the
empty bag (this can be tested in Java using object equalitglosest centroid to a poist This query clusters the data points
This is a very effective evaluation speedup that resultsn® oby their closest centroid, and, for each cluster, a new oghtr
superstep per MR job for a chain of MR jobs, since the redutecalculated from the mean values of its points.
superstep of one MR job is combined with the map superstepThe dataset used in our experiments consists of random
of the next MR job. (X,Y) points in 4 squaresX € [2...4,6...8] andY €

true) S


http://lambda.uta.edu/mrql/
https://github.com/fegaras/mrql
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Fig. 5. K-Means Clustering Using MR and BSP Modes for 5 Stégst and 10 Steps (Right)

[2...4,6...8]. Thus, the 4 centroids were expected to be 60 w w
(3,3), (3,7), (7,3), and(7, 7). As we can see from the query, "VROL MR mode JU—— e
the initial centroids wer€0, 0), (10, 0), (0,10), and(10, 10). 500 -
Figure[® shows the results of evaluating the K-means query
in Figure[4 using MR and BSP modes fimit (number of a0l
iterations) equal to 5 and 10, respectively. We can see ligat t
BSP evaluation outperforms the MR evaluation by an order
magnitude.

(secs)

300

Total Tir&

200 -

B. PageRank

The second MRQL query we evaluated was PageRank over 100
synthetic datasets. The complete PageRank query is given
in Figure[®. Given that our datasets represent a graph as o L L L L
a flat list of edges, the first query in Figuré 6 groups this
list by the edge source so that each tuple in the resulting
graph contains all the neighbors of a node in a bag. We only
measured the execution time of the last query in Fidure 6,
which calculates the PageRank of the graph (this is done
by the repeat MRQL expression) and then orders the nodesglf-join (which joins a dataset with itself) can be simpelfi
by their rank. Recall from SectionJIl that, for thepeat t0 one MR job that traverses the dataset once. In essence, the
to converge, the conditioabs((n.rank-m.rank)/m.rank) > 0.1 map function of this MR job sends each input element to the
must become false for all graph nodes. The optimized quer@ducers twice under different keys: under the left and unde
requires oneMapReduce per iteration. The inner select-querythe right join keys. Consequently, the group-by operation i
in the repeat Step reverses the graph by grouping the ||ri:ia§ repeat Step is fused with the jOin, based on the first rule,
by their link destination and it equally distributes thekaf deriving a self-join, which, in turn, is simplified to a siegl
the link sources to their destination. The outer selecrgueMR job, based on the second rule.
in the repeat step recovers the graph by joining the new rankWe evaluated PageRank over synthetic data generated by the
contributions with the original graph so that it can be used R-MAT algorithm [€] using the parameters a=0.57, b=0.19,
the next iteration step. The repeat step, if evaluated haivec=0.19, and d=0.5 for the Kronecker graph generator. The
requires two MR jobs: one MR job to group the nodes bgumber of distinct edges generated were 10 times the number
their destination (inner query), and one MR job to join thef nodes. We used 9 different datasets with the following
rank contributions with the nodes (outer query). Our systenumber of edges: 0.25M, 0.5M, 1M, 1.5M, 2M, 2.5M, 3M,
translates this query to one MR job by using the following tw8.5M, and 4M. PageRank required 5-6 steps in MR mode and
algebraic laws: The first rule indicates that a group-by tefo19-29 BSP supersteps to converge. Figdre 7 shows our results
a join can be fused with the join if the group-by attributeliet We can see that, although BSP evaluation outperforms the
same as the corresponding join attribute. The resultingoed MR evaluation for small datasets, when the datasets cannot
side join nests the data during the join, thus incorporattimeg fit in memory, they are spilled to local files and the BSP
group-by effects. The second rule indicates that a redigtee-sperformance deteriorates quickly.

| | |
0 0.5 1 15 2 25 3 3.5 4

Number of edges (millions)

Fig. 7. PageRank Evaluation Using MR and BSP Modes



graph =select( key, n.to )
from nin source(binary,“graph.bin”)
group by key: n.id;

preprocessing: 1 MR joF

size = count(graph);

select( x.id, x.rank )
from x in

(repeat nodes =
from (key,al)in graph

select< id: key, rank: 1.0/size, adjacent: &

init step: 1 MR job{

step
abs((n.rank-m.rank)/m.ranky 0.1)

group by key: c.id),
m in nodes
where n.id = m.id)

select(< id: m.id, rank: n.rank, adjacent: m.adjacent

from nin (select< id: key, rank: 0.25/size+0.85*sum(c.rank)
from cin ( select< id: a, rank: n.rank/count(n.adjacent)
from nin nodes, a@n n.adjacent )

‘ repeat step: 1 MR jo’:

order by x.rankdesg

‘ postprocessing: 1 MR jo{b

Fig. 6. The PageRank Expressed as an MRQL Query

XI. CONCLUSION AND FUTURE WORK

We have presented a framework for translating MRQLjz;
gueries to both MR and BSP evaluation plans, leaving the
choice to be made at run-time based on the available resourc!
This translation to BSP plans is performed after MRQL qugerie
have been translated and optimized to MR physical plan$3]
There are many improvements that we are planning to adgl1
to our system. Our BSP normalization method assumes th
fusing two BSP jobs into one BSP job avoids materializatior5]
of the intermediate data on DFS and, consequently, improvTGﬁ
BSP execution. This is true, provided that the combineck sta
of the resulting BSP job fits in memory. This may not be[7]
necessarily true for a three-way join, which corresponds to
two BSP jobs, since it may not be possible to fit the threés]
input sources in memory, while it could be possible if we dqgg]
the join using two BSP jobs. Determining whether the state
of two fused BSP jobs can fit in memory requires estimatir{g
the size of the resulting state, which, in turn, requiresadaft1]
statistics. In addition, our implicit assumption was thifhere
were enough resources, the BSP implementation beats the
one since the former can run entirely in memory. This may
not be necessarily true and may depend on how frequerifi§l
we do checkpointing and what amount of data we checkpoi
We plan to look at the cost of both MR and BSP plans under
various conditions, resources, and checkpointing scesiaio [17]
make better choices. Finally, we would like to experimerthwi

: o : [18]
other in-memory/hybrid distributed evaluation systemsaas
target for MRQL, such Hyracks and Spark. [19]
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