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Abstract

The push-pull queueing network is a simple two server, two job-stream example in which
servers either serve jobs from queues or generate new arrivals. Previous work has shown
that there exist non-idling policies that stabilize the system in the positive recurrent
sense for all parameter settings in which the network may be rate stable, except for the
case where processing rates are equal on each job stream (critical). It was conjectured
in Kopzon, Nazarathy and Weiss (2009) that there is no policy that makes the network
positive recurrent (stable) in the critical case. Our contribution here is a proof for that
conjecture. We also consider generalizations where it is shown that a stabilizing non-
idling policy does not exist in the critical case. In this respect we put forward a general
sufficient condition for non-stabilizability of queueing networks.

1. Introduction

Controlled queueing networks are primary objects of study in operations research and
applied probability as they provide sensible models for a variety of engineering, commu-
nications and service situations. Alongside performance analysis and optimal control,
stability analysis plays a central role in the theory and has far reaching implications in
the design of systems. A comprehensive introduction to stability properties of controlled
queueing networks is [1]. See also [2] and [3].

The push-pull queueing network, introduced in [4], is perhaps the simplest example
of a queueing network that generates its own input and is able in certain cases (described
below) to operate with servers fully utilized while keeping queues stochastically stable.
Following [4], the network was analyzed with exponential processing times in [5] and
general processing times in [6]. Further network generalizations are in [7]. The novelty
of this network is that by allowing servers to split processing power between “arrival
generation” and “service of current jobs”, one can often find stabilizing control policies
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in which servers never idle. This stands in contrast to the majority of queueing network
models (surveyed in [1], [2] and [3]) in which high utilization cannot be achieved without
having to endure high congestion levels.

Server 1 Server 2

Stream 1

Stream 2

∞ x1

∞x2

λ1 µ1

λ2µ2

Figure 1: The push-pull network: Two servers are working non-stop on two job streams, i = 1, 2. Push
operations, labeled λi, move jobs to the queues xi served by pull operations labeled µi.

The push-pull network is illustrated in Figure 1. Two servers are working on two
job streams. Each job stream begins with a push operation (labeled λi, i = 1, 2) and
follows with a pull operation (labeled µi, i = 1, 2). The push operation produces jobs,
serving a virtual unlimited supply of raw materials, and moves them down to the pull
operation. The pull operation is associated with a queue (labeled xi, i = 1, 2). At any
state, a scheduling policy (control) determines for each server whether it should work on
push or pull. Pushing may always be performed as it is assumed that there is an infinite
supply of raw materials at the start of each stream. As opposed to that, pulling may
only be performed if the associated queue is non-empty. We are interested in non-idling
(fully utilizing) policies.

It is standard to associate the network with a probability space. Specifically, four
independent i.i.d. sequences of non-negative random variables with positive finite mean
are taken as primitives of the construction. These random variables signify the durations
of consecutive operations. The strictly positive parameters λi and µi are the processing
rates of these operations (i.e. inverses of mean durations). A full construction of the
model is described in [6].

In this paper we shall impose a simplifying assumption in which the random variables
have a memory-less exponential distribution. In this case, if preemption of operations is
allowed and it is assumed that job durations are not known upon commencement, then
the state space of the system can be represented by S = Z2

+, where a state (x1, x2) ∈ S
implies that there are xi jobs in the queue i. In our setting, any deterministic and
non-idling control policy can be represented by a function,

P : S → {push, pull}2,

whose image represents the actions of the servers:
(
action server 1, action server 2

)
.

Since idling is not an option, the control should satisfy for any integer x ≥ 0 the

2



following conditions

P
(
(x, 0)

)
∈ {push} × {push, pull}, P

(
(0, x)

)
∈ {push, pull} × {push}.

Thus it is also implied that P
(
(0, 0)

)
= (push, push).

Given a policy P , the evolution of the network is well represented by a Markov jump
process (see for example [8], Chapter II). In this case it is natural to define the following
stability properties.

Definition 1.1. A network controlled by a policy P is said to be stable if the associated
Markov jump process has a positive recurrent class such that the process enters this class
with probability 1. Further, a given network is said to be stabilizable if there exists a
policy P for which the network is stable. Otherwise the network is non-stabilizable.

We emphasize that the above definition relates to policies in which the servers are fully
utilized. Achieving stability when idling is allowed (no pushing) is trivial.

In [5] (see also [6] for general processing times), the authors have shown that the
push-pull network is stabilizable in the case λi < µi, i = 1, 2 or in the case λi > µi,
i = 1, 2. Further, it is obvious by capacity considerations that there is no such policy if
λ1 < µ1, λ2 > µ2, or in the alternative where the indexes are switched. The remaining
open question is the critical case,

λi = µi, i = 1, 2.

In that case, while there exist simple rate-stable policies in which the associated Markov
jump process is null recurrent (see Theorem 1 in [5] and the discussion in Sections 1
and 2 in [6]), it was conjectured in [5] (page 83) that the network is non-stabilizable.
Our key contribution in this note is in settling that conjecture. Our proof is based on
a simple yet non-trivial martingale stopping argument in which a linear martingale is
constructed for any possible policy.

A second contribution of the paper is that we are able to extend the method for
proving non-stabilizability to more general networks. The novelty of our method is that
it puts forward a simple matrix rank criterion as a sufficient condition required for a
network to be non-stabilizable. As we show, this condition turns out to be powerful
enough to be applied in various types of queueing networks that generate their own
input. We prove non-stabilizability for two structured generalizations of the push-pull
network in certain critical cases. First we handle a ring with an even number of push-
pull servers (Figure 2). Second we handle a two server network with multiple re-entrant
lines (Figure 3). Stable policies have been found for both of these types of models for
certain non-critical parameter settings in [7].

The remainder of this paper is structured as follows. In Section 2 we prove that
the critical push-pull is non-stabilizable. In Section 3 we prove similar results for two
generalizations: A ring with an even number of critical push-pull servers and a two
server network with re-entrant lines. Closing comments are in Section 4.
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2. The Critical Push-Pull is Non-Stabilizable

Note that a policy P induces a random walk on Z2
+ with transitions of the form(↑→, ↓← ,↔, l

)
corresponding to(

(push, push), (pull, pull), (push, pull), (pull, push)
)
.

This is a discrete time embedded Markov chain, {Xn, n ≥ 0} with transition probabili-
ties, p(x1,x2),(x′1,x

′
2) = P

(
Xn+1 = (x′1, x

′
2) |Xn = (x1, x2)

)
defined as follows:

p(x1,x2),(x1+1,x2) =
λ1

λ1 + λ2

, p(x1,x2),(x1,x2+1) =
λ2

λ1 + λ2

, if P
(
(x1, x2)

)
= (push,push),

p(x1,x2),(x1−1,x2) =
µ1

µ1 + µ2

, p(x1,x2),(x1,x2−1) =
µ2

µ1 + µ2

, if P
(
(x1, x2)

)
= (pull , pull ),

p(x1,x2),(x1−1,x2) =
µ1

µ1 + λ1

, p(x1,x2),(x1+1,x2) =
λ1

µ1 + λ1

, if P
(
(x1, x2)

)
= (push, pull ),

p(x1,x2),(x1,x2−1) =
µ2

µ2 + λ2

, p(x1,x2),(x1,x2+1) =
λ2

µ2 + λ2

, if P
(
(x1, x2)

)
= (pull ,push).

A given class of {Xn} is positive recurrent, if and only if the associated class in the
Markov jump process is positive recurrent. This holds since all transitions rates in the
chain are bounded from above by λ1 + λ2 + µ1 + µ2 and thus the Markov jump process
is non-explosive (see for example [9], Theorem 3.5.3).

In the case where λ1 = µ1 = µ2 = λ2 the process {Xn, n ≥ 0} is a simple symmetric
random walk on a degenerate (non-random) environment similar to the random walks
studied in [10].

Theorem 2.1. The critical push-pull network is non-stabilizable.

Proof Assume that there exists a policy P such that Xn has a positive recurrent class,
B ⊂ S. Define,

g
(
(x1, x2)

)
:= λ1x1 − λ2x2.

Under the same probability space, define Zn = g(Xn). It is readily verified by the
transition probabilities above that E [Zn+1|σ(X0, . . . , Xn)] = Zn and E [|Zn|] < ∞
hence {Zn} is a martingale (for any choice of P).

Pick now two arbitrary states x,y ∈ B such that g(x) 6= g(y). It is obvious that
two such states exist under the assumption of positive recurrence of B and the form of
g(·). Set X0 = x w.p. 1 and define the stopping time T = inf{n ≥ 0 : Xn = y}. Since
B is assumed to be positive-recurrent, E [T ] < ∞. As can be verified with the triangle
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inequality, |Zn+1 − Zn| < 1 a.s. and thus, by the optional stopping theorem (see for
example [11], Section 10.10), E [ZT ] = E [Z0]. Hence,

g(x) = E [Z0] = E [ZT ] = g(y); (1)

a contradiction. Hence there cannot exist a positive recurrent class B. �

3. Generalizations

The key idea of the proof of Theorem 2.1 is to find a function g(·) over S that
is a martingale (harmonic function) for any possible policy P . The fact that a linear
harmonic function was successfully employed in the critical push-pull network suggests
that the method can be generalized to higher dimensional queueing networks.

In this section we first present general sufficient criteria for non-stabilizability of
objects that we refer to as homogeneous controlled queueing networks. Then, we employ
this result to show that two special cases that are structured generalizations of the
critical push-pull network are non-stabilizable.

Our object of study is a controlled discrete time Markov chain {Xn, n ≥ 0} with
state space S = ZM+ . Denote by A(z) the set of actions that can be performed from
any state z ∈ S,. Let A =

⋃
z∈S A(z) be the set of all possible actions and assume that

|A| = L <∞. A deterministic policy is then a function, P : S → A, with the restriction
P(z) ∈ A(z). It is assumed that under such policies Xn ∈ S for all n. Transition
probabilities depend on the selected action a ∈ A(z) and are assumed to be specified by
Pa
(
Xn+1 = · |Xn = z

)
.

These objects are termed homogenous since we assume that,

P̃a(x) := Pa
(
Xn+1 − z = x |Xn = z

)
,

is independent of z. Further they resemble queueing networks due to the transition
structure that we describe now. Let {ei}Mi=1 denote the canonical row vectors in RM and
define the set of possible transitions,

D := {x ∈ RM : P̃a(x) > 0 for some a ∈ A}.

We assume elements of D are of one of these three forms: ei, −ei or ei− ej for i 6= j. It
is further useful to define

I1 := {i : ei ∈ D or − ei ∈ D}, I2 := {(i, j) : ei − ej ∈ D}.

Elements of I1 correspond to arrivals or departures of jobs into the network. Elements
of I2 correspond to movements of jobs between queues in the network.

Our goal is to establish non-stabilizability in certain parameter cases. Similar to
Definition 1.1 we say that these more general networks are non-stabilizable if there
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does not exist a policy P that induces a positive recurrent class that is reached w.p.
1. Mirroring Theorem 2.1, our key step used to prove non-stabilizability is to find a
function g : S → R that is harmonic for all policies. The function g should satisfy

E a[g(Xn+1)− g(Xn) |Xn = z] = 0, z ∈ S, a ∈ A(z). (2)

The appeal of being homogenous and having a finite action space A = {a1, . . . , aL} is
that the number of these equations reduces to L:

E ai [g(Xn+1)− g(Xn) |Xn] = 0, i = 1, . . . , L.

It is now sensible to restrict the search of harmonic functions to the class of linear
functions, g(z) = α′z with α ∈ RM and α 6= 0. In this case, proving that g is harmonic
reduces to finding α 6= 0 such that,

α′∆i = 0, i = 1, . . . , L, (3)

where ∆i := E ai [Xn+1 −Xn |Xn] is the drift vector of action ai. We define the L×M
dimensional action drift matrix D as having rows ∆′i, i = 1, . . . , L. Therefore (3)
becomes

Dα = 0. (4)

We are now in a position to state a sufficient condition for non-stabilizability:

Theorem 3.1. Consider a homogeneous controlled queueing network {Xn, n ≥ 0}
with action drift matrix D. Then it is non-stabilizable if

rank
(
D
)
< M, (5)

and the following non-degeneracy condition holds: The system (4) has a solution α such
that for every x ∈ S and every a ∈ A(x), Pa

(
α′X1 6= α′x |X0 = x) > 0.

Proof The proof follows the exact same lines as the proof of Theorem 2.1. The rank
condition implies that (4) has a non-trivial solution α, so there exists a non-trivial linear
function g(·) that is harmonic for all policies. The non-degeneracy condition implies that
for every x ∈ S there exists a state y ∈ S which is reachable from x and is such that
g(x) 6= g(y). Hence, if it is assumed that there exists a positive recurrent class B, then a
contradiction as in (1) can be reached. The additional condition needed for the optional
stopping theorem requiring that |Zn+1−Zn| be bounded is guaranteed by the form of D.
�

Observe that the technical non-degeneracy condition actually implies (5), yet we view
the rank condition (5) as the central pillar for establishing non-stabilizability. The lemma
below puts forward sufficient conditions for satisfying the non-degeneracy condition:
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Lemma 3.2. Consider a homogeneous controlled queueing network for which there ex-
ists an α 6= 0 solving (4). If for every i ∈ I1, αi 6= 0 and for every (i, j) ∈ I2, αi 6= αj
then the non-degeneracy condition holds.

Proof For every initial condition X0 and every action in A(X0), almost surely one
of these two events takes place: (1) A single coordinate, i∗ ∈ I1 changes. (2) Two
coordinates, denoted (i∗, j∗) ∈ I2 change. If (1) occurs then |α′(X1 −X0)| = |αi∗| 6= 0.
If (2) occurs then α′(X1 −X0) = αi∗ − αj∗ 6= 0. So in any case, α′X1 6= α′X0 a.s. �

3.1. A Push-Pull Ring with an Even Number of Servers

Server
1

Se
rv
er
2Server

3

Se
rv
er
4

µ2

λ1

λ3 µ1

λ2

µ3

λ4 µ4

x2

x1

x3

x4

∞

∞

∞

∞

Figure 2: A Ring of M = 4 Push-Pull servers.

One way of generalizing the push-pull network is to allow more servers as in Figure 2.
In this network there are M ≥ 2 servers with the same number of streams. Each stream
has a push operation at rate λi and a pull operation at rate µi. Our index notation
implies that server i has a choice between push to stream i (at rate λi) or pull from
stream i− 1 (at rate µi−1). All index arithmetics are modulo M on {1, . . . ,M}.

Similar to the push-pull network (the special case with M = 2), a non-idling policy
is a mapping P : S → {push, pull}M , with the restriction that the pull operation i (on
server i+ 1) can only be performed if xi > 0.

Stability properties of this model under a “pull-priority” policy (and general pro-
cessing times) were investigated in [7], Section 5. In there it is shown that the network
is stable if λi < µi, i = 1, . . . ,M as well as if M is odd and λi > µi, i = 1, . . . ,M , yet
the ratio λi/µi is “not too large” (see [7] for the full details). We further believe that
for odd M , the network is stabilizable in the critical case (λi = µi for all i) by means
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of a pull-priority policy. This has not been established in [7], yet stems from the same
intuition appearing in [7] based on the concept of a mode.

An interesting aspect of push-pull network rings is that even rings (network rings
with an even number of servers M) are drastically different to odd rings. For example,
the pull-priority policy cannot be stablilized for even rings in which λi > µi for all i: To
see this, assume the state of the system is,(

x1, x2, . . . , xn
)

=
(
+, 0,+, 0, . . . ,+, 0

)
,

where ‘+’ indicates a strictly positive quantity. Then, the selected action under pull-
priority is (

push, pull, push, pull, . . . , push, pull
)
.

In this case there is a strictly positive probability that the ‘+’ queues will grow without
bound. The drastic differences between even and odd rings go beyond the pull-priority
policy of [7]. We now show:

Theorem 3.3. The critical push-pull ring with M even is non-stabilizable.

Proof The push-pull ring, described as a homogeneous controlled random walk, has
action drift matrix D of dimension 2M ×M , I1 = {1, . . . ,M} and I2 = ∅. We apply
Theorem 3.1 and Lemma 3.2. The rank and non-degeneracy conditions are ensured by
the α found in Lemma 3.4 below. �

Lemma 3.4. In the critical case

rank
(
D
)

=

{
M if M is odd,

M − 1 if M is even.

Further, when M is even a solution of (4) is

α =
(

+λ−1
1 −λ−1

2 +λ−1
3 −λ−1

4 . . . +λ−1
M−1 −λ−1

M

)′
.

Proof
Define βj := λj − µj, j = 1, . . . ,M and for a given action i ∈ {1, . . . , 2M} let ri be

the sum of rates associated with the action. Then ri ∆i has entries that depend on the
action i as follows:

Operation on:
Server j − 1 Server j Entry j

push push λj
push pull βj
pull push 0
pull pull −µj
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This, in turn, implies the following relation between consecutive entries:

Entry j Entry j + 1
λj ⇒ λj+1 or βj+1

−µj ⇒ −µj+1 or 0
0 ⇒ βj+1 or λj+1

βj ⇒ 0 or −µj+1

Define the matrix, D̂ = sign
(
D
)
, where the function sign(·) is taken element-wise. In

the critical case (βi = 0, i = 1, . . . ,M) it is evident that rank(D̂) = rank(D) since
Di,j = D̂i,jλj/rj. Further, by considering the structure of consecutive entries in the

table above, it is evident that in each row of D̂:

(i) The number of 0’s separating two non-zero entries with the opposite sign is odd.

(ii) The number of 0’s separating two non-zero entries with the same sign is even.

A consequence of (i) and (ii) is that the number of zero entries in each row of D̂ is even
since there is an even number of 0-sequences that have an odd number of zeros. Hence
in an odd/even ring there is an odd/even number of non-zero entries.

M odd case:
Observe each of the vectors in {ei : i = 1, . . . ,M} is also a row of D̂ and therefore it
has full rank.

M even case:
First, we prove that rank(D̂) ≥M − 1. Second, we show D̂α̂ = 0, where,

α̂ =
(

+1 -1 +1 -1 . . . +1 -1
)′
,

this immediately implies that Dα = 0.
Consider the vectors fi = ei + ei+1, i = 1, . . . ,M − 1, observing these are rows of

D̂. Next, define B to be the matrix of size (M − 1) ×M with i’th row fi. Let B−1 be
a square matrix of size (M − 1) × (M − 1) obtained by deleting the first column of B.
Clearly, B−1 has full rank (the determinant of a lower triangular matrix is the product
of its diagonal elements). Hence rank(D̂) ≥M − 1.

To show rank(D̂) < M we show that ∆̂
′

α̂ = 0 for any row ∆̂ = (δ1, . . . , δM)′ of the
matrix D̂.

Let ik be the index of the k-th non-zero entry of ∆̂ starting from index 1, and m its
total number of non-zero entries. Since m is even, then we can write

∆̂
′

α̂ =
m∑
k=1

δik α̂ik =

m/2∑
k=1

(
δi2k−1

α̂i2k−1
+ δi2k α̂i2k

)
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Define `k := i2k− i2k−1−1 the number of zeros between the non zero consecutive entries
δi2k−1

and δi2k . By the definition of ∆̂ and α̂ there are only two possibilities

`k =

 odd =⇒ δi2k−1
= −δi2k and α̂i2k−1

= α̂i2k ,

even =⇒ δi2k−1
= δi2k and α̂i2k−1

= −α̂i2k .

This implies that

δi2k−1
α̂i2k−1

+ δi2k α̂i2k = 0, k = 1, . . . ,m/2,

proving that α̂ is a solution of D̂α̂ = 0. �

Server 1 Server 2

∞

∞

1, 0 1, 1

1, 2 1, 31, 3

2, 4

2, 2 2, 3

2, 1 2, 0

Figure 3: A network of re-entrant lines on two servers. In this example S = 2, n1 = 3 and n2 = 4.
Hence the number of buffers is M = 7. Further the number of actions that a control policy may choose
is L = 20.

3.2. Re-entrant Lines on Two Servers

We now consider a network as that appearing in Figure 3 essentially generalizing the
push-pull by allowing streams of more than two steps that may re-enter servers multiple
times. Denote the number of streams by S ≥ 1. Each stream i ∈ {1, . . . , S}, has ni + 1
operations labeled by (i, 0), . . . , (i, ni), where the operation (i, 0) is associated with an
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infinite supply of materials and the other operations are associated with queues. Assume
ni ≥ 1. Hence the number of queues in the system is,

M =
S∑
i=1

ni,

and the total number of operations is M +S. As in the push-pull network there are two
servers, labeled 1 and 2. Each operation (i, j) is performed by a unique server denoted
σ(i, j) ∈ {1, 2}. A control policy is then a rule based on the number of jobs in each of
the queues, indicating for each server what operation it needs to work on.

The processing rate of operation (i, j) is denoted by µi,j > 0. It is useful to denote,
for each stream, i ∈ {1, . . . , S}, the set of operations on server ` ∈ {1, 2} by,

C`(i) :=
{
j ∈ {0, . . . , ni} : σ(i, j) = `

}
.

Motivated by [7], Section 4, we say that the network is critical if:∑
j∈C1(i)

µ−1
i,j =

∑
j∈C2(i)

µ−1
i,j , i = 1, . . . , S. (6)

This means that for any job, the mean processing duration of service required by the
job on each of the servers is equal.

The case of S = 1 is typically called the re-entrant line (with infinite supply). It was
analyzed in [7], Section 3 under a last buffer first serve policy. The case of S = 2 is a
direct generalization of the push-pull network. It was analyzed in [7], Section 4 under a
specific priority policy.

For notational purpuses, it is useful to order the M queues using some arbitrary per-
mutation of the set {1, . . . ,M}. Denote k̄(i, j) to be the queue served by operation (i, j),
i ∈ {1, . . . , S}, j ∈ {1, . . . , ni} (note that operations (i, 0) do not have an associated
queue). Further denote ī(k) and j̄(k) as the inverse mappings, i.e., k

(
i(k), j(k)

)
= k.

Similar to the push-pull ring of the previous sub-section, it is straightforward to
model this network as a controlled random walk. In doing so, it is useful to partition
the set I1 into I1,+, the queues fed by push operations at start of each stream and I1,−,
the queues drained by pull operations at the end of each stream. Further, the set I2

is associated with operations that are neither at the start or the end of the stream,
involving movement of jobs between buffers without changing the total number of jobs
in the system. We now have,

I1,+ =
{
k ∈ {1, . . . ,M} : j̄(k) = 1

}
,

I1,− =
{
k ∈ {1, . . . ,M} : j̄(k) = nī(k)

}
,

I2 =
{

(k, k′) ∈ {1, . . . ,M}2 : ī(k) = ī(k′), j̄(k) = j̄(k′)− 1
}
.
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Denote L` =
∑S

i=1 |C`(i)| for ` = 1, 2. Then the total number of actions is L = L1 L2

and the action drift matrix D is of dimension L × M as is consistent with previous
notation. Denote for each operation (i, j) and each k ∈ {1, . . . ,M}:

∆̂k(i, j) =



{
µi,0 k = k̄(i, 1),

0 otherwise,
j = 0,

−µi,j k = k̄(i, j),

µi,j k = k̄(i, j + 1),

0 otherwise,

j ∈ {1, . . . , ni − 1},

{
−µi,ni

k = k̄(i, ni),

0 otherwise,
j = ni.

Let ∆̂(i, j) ∈ RM be the vector of these elements. Now each row of D corresponds
to two actions, (i1, j1) such that σ(i1, j1) = 1 and (i2, j2) such that σ(i2, j2) = 2. We
denote this row by ∆(i1, j1, i2, j2)′ with,

∆(i1, j1, i2, j2) :=
1

||∆̂(i1, j1) + ∆̂(i2, j2)||1
(∆̂(i1, j1) + ∆̂(i2, j2)).

Having defined the controlled random walk we are now ready to prove that it is non-
stabalizable.

Theorem 3.5. The critical network is non-stabilizable.

Proof We find an α ∈ RM such that Dα = 0. The elements of α are,

αk =

j̄(k)−1∑
j=0

1

µī(k),j

(−1)σ(̄i(k),j).

For any i ∈ {1, . . . , S}, it is straightforward to verify that if j = 0,

∆̂(i, j)′α = µi,0
1

µi,0
(−1)σ(i,j) = (−1)σ(i,j).

Further, if j ∈ {1, . . . , ni − 1} then,

∆̂(i, j)′α = −µi,j
j−1∑
j′=0

1

µi,j′
(−1)σ(i,j′) + µi,j

j∑
j′=0

1

µi,j′
(−1)σ(i,j′) = (−1)σ(i,j).

12



Further if j = ni,

∆̂(i, j)′α = −µi,ni

ni−1∑
j′=0

1

µi,j′
(−1)σ(i,j′)

= −µi,ni

( ∑
j′∈C2(i)

µ−1
i,j′ −

∑
j′∈C1(i)

µ−1
i,j′ − µ−1

i,ni
(−1)σ(i,ni)

)
= (−1)σ(i,ni).

In the last equality we use the fact that the network is critical, (6). Hence for any (i, j),

∆̂(i, j)′α = (−1)σ(i,j).

Now for any row of D, i.e. for any (i1, j1), (i2, j2) such that σ(i1, j1) = 1, σ(i2, j2) = 2
we have that,

α′∆(i1, j1, i2, j2) =
1

||∆̂(i1, j1) + ∆̂(i2, j2)||1
(
(−1)σ(i1,j1) + (−1)σ(i2,j2)

)
= 0,

as needed. Since α 6= 0, the rank condition of Theorem 3.1 holds.
To see that the non-degeneracy condition is satisfied, we use Lemma 3.2. First, for

every k ∈ I1,+, it is evident that αk 6= 0 . Further, for every k ∈ I1,−, denote i = ī(k),
then

αk =

ni−1∑
j=0

µ−1
i,j (−1)σ(i,j) =

∑
j∈C2(i)

µ−1
i,j −

∑
j∈C1(i)

µ−1
i,j − µ−1

i,ni
(−1)σ(i,ni) 6= 0,

where the last inequality follows from the fact the network is critical. Finally, for every
pair (k, k′) ∈ I2 we verify

αk′ − αk =
1

µī(k),j̄(k)

(−1)σ(̄i(k),j̄(k)) 6= 0,

as required. �

4. Closing Comments

The interest in non-stabilizability of the fully-utilizing critical push-pull network
stems from the fact that in symmetric non-critical cases it can be stabilized. This is
true for both λ < µ and λ > µ in contrast to traditional queueing networks. Hence our
contribution that the network is non-stabilizable for λ = µ is of interest.

The consequences to more general networks as appearing in Section 3 are interesting
in their own right, since Theorem 3.1 provides a general sufficient condition for non-
stabilizability of quite general models.
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It should be noted that the class of policies, {P}, we consider is that of stationary
deterministic policies. One can also consider randomized policies where an action a ∈ A
is taken with a given probability. Extending the non-stabilizability results to this case
is straightforward and carries no surprise. Further, using continuous time martingales,
it is merely technical matter to extend to non-stationary policies.

As opposed to non-deterministic and/or non-stationary policies, a non-trivial exten-
sion is to consider networks with general processing times (not necessarily exponentially
distributed). In this case one way of providing a Markovian description to a network is
based on residual service times (see for example [7] and references there-in). In that case,
we conjecture that the non-stabilizability results of this paper carry over, yet proving
such results may require a different set of tools than the one we have used here.
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