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INTRODUCTION

Many water resource research investigations require tests
for both normal and nonnormal hypotheses. Filliben [1975]
and Looney and Gulledge [1985] developed powerful probabil-
ity plot correlation coefficient (PPCC) tests for normality
which have the following attractive features:

1. The test statistic is conceptually easy to understand be-
cause it combines two fundamentally simple concepts: the
probability plot and the correlation coefficient.

2. The test is computationally simple since it only requires
computation of a simple correlation coefficient.

3. The test statistic is readily extendible for testing some
nonnormal distributional hypotheses, as is shown in this tech-
nical note.

4. The test compares favorably with seven other tests of
normality on the basis of empirical power studies performed
by Filliben [1975] and Looney and Gulledge [1985].

5. The test is invariant to the parameter estimation pro-
cedure employed to fit the probability distribution.

6. The test allows a comparison of the results in both a
graphical (probability plot) and a numerical (correlation coef-
ficient) form.

Given these attractive features and the fact that water re-
source applications often require tests of normal and nonnor-
mal hypotheses, this study was undertaken to extend Filliben’s
original PPCC test for normality to samples of length 100 to
10,000 and to provide a new PPCC test for the Gumbel distri-
bution.

A significant portion of the existing water resource litera-
ture has sought to determine which theoretical probability
distribution best describes sequences of observed annual peak
streamflows. Beard’s [1974] study, summarized by the Water
Resource Council’s Bulletin 17 [Interagency Advisory Com-
mittee on Water Data, 1982], represents perhaps the most
comprehensive study. Other studies, too numerous to mention
he're, have compared the precision of quantile estimates
derived from various combinations of probability distributions
and parameter estimation procedures. Wallis and Wood
[1985] provide a recent example of this type of study, and
Thomas [1985] reviews the general problem of fitting flood-
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flow frequency distributions. In general, these studies rarely
include hypothesis tests to determine the probability of type I
errors associated with the choice of an assumed probability
distribution. This paper provides a new hypothesis test for the
Gumbel distribution which may be employed in future flood
frequency studies to examine the “goodness of fit.” For exam-
Ple, this test could have provided a valuable contribution if it
had been incorporated into the study by Rossi et al. [1984]
which sought to approximate the distribution of 39 annual
floodflow records in Italy using a generalized Gumbel distri-
bution.

Kottegoda [1985] recommended the use of Filliben’s PPCC
test of normality as a preliminary outlier-detection procedure
for sequences of annual peak floodflows. Kottegoda [1984]
also found Filliben’s PPCC test of normality useful for testing
the normal hypothesis when fitting autoregressive moving
average (ARMA) models to annual streamflow sequences.

THE PROBABILITY PLOT

Probability plots are used widely in the statistics literature.
For example, Johnson and Wichern [1982, PDp. 152-156], Snede-
cor and Cochran [1980, pp. 59-63], and Mage [1982] recom-
mend use of probability plots for assessing the goodness of fit
of a hypothesized distribution. A number of investigators have
proposed goodness-of-fit tests which are based upon infor-
mation contained in probability plots such as the tests pro-
posed by Filliben [1975], LaBrecque [1977} and Looney and
Gulledge [1985]. '

Probability plots have been used widely in water resource
investigations. While analytic approaches for fitting probabil-
ity distributions to observed data are, in theory, more efficient
statistical procedures than graphical curve fitting procedures,
many hydrologists would not make engineering decisions
without the use of a graphical display (probability plot), Prob-
ability plots were recently recommended by the National Re-
search Council [1985, Appendixes D and E] as a basis for
extrapolation of flood frequency curves in dam safety evalu-
ations. Similarly, the Federal Emergency Management Agency
[1982, Appendix 3] recommends the use of probability plots
in the determination of the probability distribution of annual
maximum flood elevations which arises from the combined
effects of ice jam and storm-induced flooding.

Although the U.S. Water Resources Council [Interagency
Advisory Committee on Water Data, 1982] advocates the use
of method of moments to fit the Log-Pearson type II distri-
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bution to observed floodflow data, their recommendations
also include the use of probability plots. Clearly, probability
plots play an important role in statistical hydrology.

Since the introduction of probability plots in hydrology by
Hazen [1914], the choice of which plotting position to employ
in a given application has been a subject of debate for dec-
ades; Cunnane [1978] provides a review of the problem. Al-
though the debate regarding which plotting position to
employ still continues, most studies have failed to acknowl-
edge how imprecise all such estimates must be. Loucks et al.
[1981, p. 109] document the sampling properties of plotting
positions and raise the question whether differences in the bias
among many competing plotting positians are very important
considering their large variances [see Loucks et al., 1981, pp.
179-180]. This technical note need not address that issue,
since a probability plot is used here as a basis for the con-
struction of hypothesis tests, rather than for selecting a quanti-
le of the cumulative distribution function as the design event.

A probability plot is defined as a graphical representation of
the ith order statistic y, versus a plotting position which is
simply a measure of the location of the ith order statistic from
the standardized distribution. One is often tempted to choose
the expected value of the ith order statistic, E(y,), as a mea-
sure of the location parameter. However, Filliben argued that
computational inconveniences associated with selection of the
order statistic mean can, in general, be avoided by choosing to
measure the location of the ith order statistic by its median,
M,, instead of its mean, E(y). Filliben chose to define a prob-
ability plot for the normal distribution as a plot of the ith
order statistic versus an approximation to the median value of
the ith order statistic. Approximations to the expected value of
the ith order statistic, E(y), are now available for a wide
variety of probability distributions (see, for example, Cunnane
[1978]). Looney and Gulledge [1985] and Ryan et al. [1982]
define a probability plot for the normal distribution as a plot
of the ith order statistic versus an approximation to the mean
value of the ith order statistic. There appears to be no particu-
larly convincing reason why one should use the order statis-
tic’s mean or median as a measure of the location parameter
when constructing a probability plot for the purpose of hy-
pothesis testing.

THE PROBABILITY PLOT CORRELATION COEFFICIENT TEST

If the sample to be tested is actually distributed as hypoth-
esized, one would expect the plot of the ordered observations
Y versus the order statistic means or medians to be approxi-
mately linear. Thus the product moment correlation coef-
ficient which measures the degree of linear association be-
tween two random variables is an appropriate test statistic.
Filliben’s PPCC test is simply a formalization of a technique
used by statistical hydrologists for many decades; that is, it
determines the linearity of a probability plot. Prior to the
introduction of Filliben’s PPCC test of normality into the
water resources literature by Loucks et al. [1981, p. 181], de-
termination of the linearity of a probability plot was largely a
graphical and subjective procedure.

Filliben’s PPCC test statistic is defined as the product
moment correlation coefficient between the ordered observa-
tions y, and the order statistic medians M, for a standardized
normal distribution. His test statistic becomes

;1 (Yo — XM — M)

y

ﬁ o — )7)2 121 (Mj - M)Z
i=1 =

0

F(10,000p)

Here the M, correspond to the median (or mean) values of the
ith largest observation in a sample of n standardized random
variables from the hypothesized distribution.

Filliben’s PPCC test was developed for a two-parameter
normal (or log normal) distribution. Generalized PPCC tests
may be developed for any one- or two-parameter distribution
which exhibits a fixed shape. However, distributions which do
not exhibit a fixed shape such as the gamma family or distri-
butions with more than two independent parameters are not
suited to the construction of a general and exact PPCC test.
For example, the PPCC test for normality presented here
could be employed to test the two-parameter lognormal hy-
pothesis, however, the test would not be suited to testing the
three-parameter lognormal hypothesis. Use of the critical
points of the test statistic 7 provided here or in the work by
Filliben [1975] for testing the three-parameter lognormal hy-
pothesis will lead to fewer rejections of the null hypothesis
than one would anticipate. This is because only two parame-
ters are estimated in the construction of the PPCC tests devel-
oped here, yet three parameters are required to fit a three-
parameter log normal distribution.

Filliben’s Test for Normality Extended
Filliben employed an estimate of the order statistic median

M; = O~ Y(Frlyw) @

in (1); here @(x) is the cumulative distribution function of the
standard normal distribution, and Fy(y,) is equal to its
median value, which Filliben approximated as

Fryg) =1 = (05" i=1
Fyye) = (i = 03175)/(n +0365)  i=2,-,n—1 (3)
Fylyw) = (0.5)" ' '

Filliben's approximation to the median of the ith order statis-
tic in (3) is employed in this study. The Minitab computer
program [Ryan et al., 1982] and Looney and Gulledge [1985]
implement the PPCC test by employing Blom’s [1953] ap-
proximation to the order statistic means for a normal popu-
lation. Hence the tables of critical points which Ryan et al.
[1982] and Looney and Gulledge [1985] provide differ slightly
from Filliben’s results.

Filliben tabulated critical values of 7 for samples of length
100 or less. In Monte-Carlo experiments one is often confron-
ted with the need for tests of normality with samples of greater
length. Thus critical points (or significance levels) for Filliben’s
test statistic were computed for samples of length n = 100,
200, 300, 500, 1000, 2000, 3000, 5000, and 10,000. This was
accomplished by generating 10,000 sequences of standard
normal random variables each of length n and applying (1),
(2), and (3) to obtain 10,000 corresponding estimates of 7,
denoted 7, i = 1, - - -, 10,000. Critical points of the distribution
of F were obtained by using the empirical sampling procedure

1=n

fp = fuo.ooom : @

where F, denotes the pth quantile of the distribution of 7 and
denotes the 10,000p largest observation in the se-

quence of 10,000 generated values of 7. As the sample size, n,
becomes very large, the percentage points of the distribution
of # approach unity and, in fact, become indistinguishable
from that value. Therefore it is more convenient to tabulate
the percentage points of the distribution of (1 — ). The results
of these experiments are summarized in Table 1, which also
provides a comparison with Filliben’s results for the case when
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TABLE 1. Critical Points of 1000(1 — /) Where 7 is the Normal
Probability Plot Correlation Coefficient
Significance Level
n 0.005 0.01 0.05 0.10 025 0.50
100* 21 19. 13. 1. 8. 6.
100 21.3 18.8 13.0 10.7 7.84 5.54
200 11.2 9.85 6.96 5.83 426 3.07

300 7.61 6.46 4.75 3.98 2.98 2.18
500 4.62 4.18 3.04 252 1.89 1.38
1,000 2.66 245 1.76 1.46 1.09. 0746
2,000 1.23 1.09 0.816 0.698  0.533  0.400
3,000 0.846 0.752 0.546 0468 0363 0276
5,000 0.493 0.450 0.343 0293 0228 0.171
10,000 0.252 0.226 0.174 0.150 0.117  0.0890

This table is based upon 10,000 replicate experiments. The first row,
marked *, gives Filliben’s [1975] results. An example documents the
use of this table. The 10th percentile of /s dlstnbutlon when n = 500
is determined from

Fro=1—252 x 1073 = 0.99748

Interpolation of the critical points may be accomplished by noting
that In (n) and In (1000(1 — 7)) are linearly related for each significance
level.

n =100 in the first two rows of the table. The agreement is
generally very good; discrepancies seem to be due to Filliben's
rounding off of the values he reported.

A Probability Plot Correlation Coefficient
Test for the Gumbel Distribution

As discussed earlier, an important and distinguishing prop-
erty of Filliben’s PPCC test statistic in (1) is that it is extend-
ible to some nonnormal distributional hypotheses. In this sec-
tion a probablhty plot correlation test for the extreme value
type 1 distribution is presented. The extreme value type T dis-
tribution is often called the Gumbel distribution, since Gumbel
[1941] first applied it to flood frequency analysis. Its CDF
may be written as

Fy(y) = exp (—exp (—(a + by))) %)

Method of moments estimators of the parameters a and b dre
given by

jyr
172
5,6

d=y— (6a)

n
—3 6b
5,612 . (6b)
where y is Euler’s constant (y = 0.57721) and j and s, are the
sample mean and standard deviation. Although maximum
likelihood estimators of a distribution’s parameters are usually
preferred over method of moments estimators, [see Letten-
maier and Burges, 1982], in this case, the method of moments
estimators are much simpler than the corresponding maxi-
mum likelihood estimators, which require a numerical algo-
rithm to solve the resulting system of nonlinear equations.
Method of moments estimators are employed here, since they
are computationally convenient and they have no impact
upon the hypothesis tests (see (11) which follows). This CDF is
unique because sequences of Gumbel random variables may
be conveniently generated by noting that (5) can be written in
its inverse form as

T e SLY LI .
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where the cumulative probabilities F,(y;) are generated from a
uniform distribution over the interval (0, 1).

In this case the test statistic is defined as the product
moment correlation coefficient between the ordered observa-
tions y; and M, using

M=F,~ 1(1': y(}’a))) ) 8)

where F J(V@y) is Gringorten’s [1963] plotting position for the
Gumbel distribution:

i— 044

n+ 0.12 ©)

_F YOw =
Gringorten’s plotting position was derived with the objective
of setting

Fy(ym) = FUEQYw) ' (10)

where E(y,,) is the expected value of the largest observation of
a Gumbel distribution. Thus Grinigorten’s plotting position is
only unbiased for the largest observation. Cunnane [1978] rec-
ommends the use of Gringorten’s plotting position over sev-
eral competing alternatives for use with the Gumbel distri-
bution. )

For testing the Gumbel hypothesis the test statistic is given
by (1) with M, obtained from (6), (7), (8), and (9). Since critical
points of this test statistic are unavailable in the literature
even for small samples, critical points (or significance levels)
were computed for sample sizes in the range n = 10 to 10,000.
This was accomplished by generating 10,000 sequences of
Gumbel random variables (using (7)) each of length n and
applying equations (1), (6), (7), (8), and (9) to obtain 10,000
corresponding estimates of 7 denoted 7, i =1, , 10,000.
Critical points of ¥ were obtained by using the empirical sam-
pling procedure given in (4). The results of these experiments

TABLE 2. Critical Points of 1000(1 — 7) Where F is the Gumbel
Probability Plot Correlation Coefficient

Significance Level

n 0.005 0.01 0.05 0.10 0.25 0.50

10 156. 137. 91.6 74.0 49.6 320
20 114, 294. 61.0 438.3 333 21.7
30 99.2 80.9 474 378 254 16.9
40 859 714 40.6 311 214 13.8
50 73.7 61.1 354 27.1 182 12.1
60 66.6 533 315 240 16.1 10.6

70 572 494 280 213 14.4 9.43
80 59.7 47.5 253 19.6 131 8.61
90 530 4.6 23.6 18.1 11.9 797
100 48.3 40.4 221 16.9 112 7.39
200 30.1 237 134 10.2 6.73 4.45
300 22,5 18.1 9.79 749 491 3.23
500 153 122 6.67 5.01 333 220

1,000 8.23 6.66 3.78 292 193 1.28
2,000 4.77 3.82 2.09 1.61 1.09 0.736
3,000 3.23 2.61 1.50 1.16 0.779 0.528
5,000 1.95 1.59 0.975 0.756 0.507 0.344
10,000 1.12 0.858 0.525 0414 0.277 0.190

This table is based upon 10,000 replicate experiments. An cxample
documents the use of this table. The 10th percentage point of F when
n = 1000 is determined from

Fro=1—-292x10"% =

Interpolation of the critical points may be accomplished by noting
that In (n) and In (1000(1 — A) are linearly related for each significance
level.

0.99708
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are summarized in Table 2, where again, as in Table 1, the
percentage points of (1 — 7) are more convenient to tabulate.

Interestingly, the PPCC test is invariant to the fitting pro-
cedure employed to estimate a and b in (7). This result is
evident for the Gumbel PPCC test when one rewrites the test
statistic as

_ cov (y, M)
"= [Var () Var (M)]"2

o (mcco [ 25T)

" [Var (In [—In [UJ]) Var (In [—In [U]]"?

(1

here the U, are uniform random variables generated to equal
Fy(y). An attractive property of this test is that the test statis-
tic in (11) does not depend on either of the distribution param-
eters. This result is general in that it applies to any PPCC test
for a one- or two-parameter distribution which exhibits a fixed
shape.

SUMMARY

The probability plot correlation coefficient test is an attrac-
tive and useful tool for testing the normal, lognormal, and
Gumbel hypotheses. The advantages of the PPCC hypothesis
tests developed in this technical note include:

1. The PPCC test consists of two widely used tools in
water resource engineering: the probability plot and the prod-
uct moment correlation coefficient. Since hydrologists are well
acquainted with both these tools, the PPCC test provides a
conceptually simple, attractive, and powerful alternative to
other possible hypothesis tests.

2. The PPCC test is flexible because it is not limited to
any sample size. In addition, the test is readily extended to
nonnormal hypotheses, as was accomplished here for the
Gumbel hypothesis. Critical points for the test statistic r in (1)
could readily be developed for other one- or two-parameter
probability distributions which exhibit a fixed shape.

- 3. Filliben [1975] and Looney and Gulledge [1985] found
that the PPCC test for normality compares favorably, in terms
of power, with seven other normal test statistics.

4. The PPCC test statistic in (1) does not depend upon the
procedure employed to estimate the parameters of the prob-
ability distribution.

5. While this technical note has developed the PPCC test
statistic for the purposes of constructing composite hypothesis
tests, the PPCC test statistic in (1) can readily be employed to
compare the goodness of fit of a family of admissible distri-
butions. That is, a sample could be fit to a number of reason-
able distribution functions, and corresponding estimates of the
PPCC could be used to compare the goodness of fit of each
distribution. Filliben [1972] has found the PPCC to be a
promising criterion for selection of a reasonable distribution
function among several competing alternatives.

6. Filliben’s PPCC test of normality has recently been in-
corporated into the Minitab computer program [Ryan et al.,
1982]. Although Ryan et al. [1982] recommend the use of
Blom’s [1953] plotting position rather than Fiiliben’s approxi-
mation given in (3), the Minitab computer program could
readily be employed to implement the tests reported here.
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Correction to “The Probability Plot Correlation Coefficient Test
for the Normal, Lognormal, and Gumbel Distributional Hypotheses” by
Richard M. Vogel

In the paper “The Probability Plot Correlation Coefficient Table 2 should be revised as follows: The critical point of
Test for the Normal, Lognormal, and Gumbel Distributional 1000(1 — #) for n =20 and a significance level of 0.01 should
Hypotheses” by R. M. Vogel (Water Resources Research, read 94.0 instead of 294.

22(4), 587-590, 1986), the following corrections should be Equation (11) should read
made.

Equation (1) should read Fo__ SOV (.. M)
[Var (y) Var (M )]*?
X 1 i—0.44\]
. cov {ln[—-ln(U;)], n[— n<n+0.12>—} w
0— M, — M = 0. 12
i s;(y‘  — WM.~ M) " {Var [in (—In (U,)] Var [ln (- In (; :;T;))]}

n n 1/2
[Z(}’u) _)-’)2 Z(Mj - M)z:l
=1 J=1 (Received July 16, 1987)
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