
Google Native Client
Analysis Of A Secure Browser Plugin Sandbox

Chris Rohlf
Leaf SR

leafsr.com

Introduction

NaCl (Native Client) is Google’s attempt at bringing millions of lines of existing C/C++

code to the Chrome web browser. NaCl allows you to run native applications within

Chrome that range from PDF readers to 3D games from the safety of a sandbox with all

the performance users expect from native code. For this reason it is often mistaken as a

reimplementation of Microsoft’s ActiveX technology. Nothing could be further from the

truth. NaCl attempts to bring a much needed layer of security to browser plugins.

Competing browser plugin technologies such as Microsoft’s ActiveX and NPAPI

(Netscape Plugin Application Programming Interface), a standard browser plugin API

supported by most browsers, rely on click through dialogs to allow or disallow a

particular plugin from executing. This design essentially relies on the user to

differentiate between safe and malicious plugins. This model is inherently flawed and

users have suffered the consequences since its inception. NaCl assumes all modules

are malicious and enforces the same security mechanisms on all of them.

Google has designed NaCl such that multiple exploitable conditions are required in

order for an attacker to break free from its sandbox container but at the same time

provide much higher performance than a JavaScript interpreter or JIT engine. Not only

does NaCl provide a higher performance by comparison but it also brings other

languages, such as Ruby, to client side web applications.

NEXE modules are currently only distributed through the Chrome web store. This may

change in the future as the technology matures. NaCl’s market share is still small but

may soon be changing due to the fact it is included by default with Chrome since

version 14. The research the NaCl team has performed into software fault isolation and

sandboxing in general will undoubtedly influence future program isolation and software

security models with similar goals.

2

Executive Summary

The inner workings of NaCl can appear large, complex and intimidating at first. The

entire architecture is too large to be covered in this document. So we attempt to

explain the security relevant components, their attack surface, where security

vulnerabilities have been found and how NaCl fits into the overall Chrome security

architecture.

In June of 2011 while employed at Matasano Security the author of this paper

performed a source code review of the NaCl PPAPI (Pepper Plugin Application

Programming Interface) interfaces for Google before NaCl was included in Chrome.

This review resulted in 10 previously unknown security vulnerabilities. These

vulnerabilities are briefly covered in this paper along with an overview of the exposed

interfaces they were discovered in.

In January of 2012 the author of this paper and another security researcher, Cody

Brocious, developed a fuzzer for the NaCl PPAPI interfaces for Google. This fuzzer took

as its inputs the NaCl PPAPI IDL (Interface Description Language) files found in the

Chrome source tree and output a NEXE module in C++ that fuzzes those interfaces.

This fuzzer is named Chrome-Shaker. A section of this document details the approach

and implementation of this tool as well as the challenges faced in developing it.

There are many mentions of the Chrome sandbox throughout this document. Despite

the major role it plays in containing NaCl components the details of its implementation

are beyond the scope of this research document. For more information on how the

Chrome sandbox works please see the section labeled references.

Authors Note: Google neither paid for nor endorses this research paper. However they

were given advanced notice of its publication.

3

NaCl Architecture

NaCl is a collection of components that includes an SDK with a modified GCC

toolchain, a PPAPI browser plugin, a NEXE (Native Client Executable) loader and an

SRPC (Simple Remote Procedure Call) messaging system. Each one of these

components plays a vital role in compiling, loading and ultimately executing the NEXE

inside a trusted sandbox.

NaCl is unique in that it gives untrusted NEXE modules raw access to the CPU while

denying access to the rest of the system. It is often compared to Microsoft’s ActiveX

stack or traditional native code browser plugins. While ActiveX was designed for more

than just browser plugins that is where it is primarily used. ActiveX modules have raw

CPU access but are completely unrestricted in what API or system calls they can make.

NPAPI plugins are very similar to ActiveX in that the plugin runs unrestricted within the

context of the browser. They too can access resources the browser has rights to.

The NaCl architecture is best described as split between its trusted and untrusted

components. Trusted components are defined as code that a NEXE module has no

access to and cannot execute directly. Conversely untrusted, but validated, code is

under direct influence by the NEXE module and may be executed at any time. The line

between these two will become clearer as each security relevant portion of the

architecture is explained.

NaCl currently works on Intel 32 bit x86, Intel x86_64 and ARM processors. Because

NEXE modules are given raw access to the CPU, low level software and hardware

security boundaries must be utilized. These security boundaries are enforced differently

on each supported platform due to specific architectural designs. This document

explicitly focuses on the Intel 32 bit x86 architecture with a Windows operating system

unless noted otherwise.

4

At a very high level C/C++ code is compiled and placed in the ELF (Executable

Linkable Format) file format, loaded and validated by the service runtime and then

communicates with the NaCl browser plugin via SRPC/IMC (Inter-Module

Communication) protocols. JavaScript loaded from the same origin as the NEXE can

communicate with the module via the PostMessage function. In the next few sections

we break down each of these components and explain in detail how they work.

5

NaCl documentation often refers to an inner sandbox and an outer sandbox. The inner

sandbox is the software fault isolation enforced in the service runtime. The outer

sandbox is the sandbox provided by Chrome. It is important to note that if a NEXE

module can execute arbitrary code within a sandboxed renderer or the service runtime

this is considered a privilege escalation even though the execution context is still

contained within the outer sandbox. If a NEXE module can execute instructions that

were not validated by the service runtime then the security provided by Native

Client is broken.

Note: A lot has changed in NaCl since the release of Google’s original research paper.

Much of this research was performed by reading NaCl code and what up to date

documentation can be found online. The main directories in the Chrome source tree

where NaCl code can be found are shown below:

$CHROME/src/chrome/nacl

$CHROME/src/native_client

$CHROME/src/ppapi/native_client

The back end PPAPI implementation can be found at:

$CHROME/src/webkit/plugins/ppapi

6

NEXE Modules From CTOR to DTOR

NEXE modules are loaded when a user browses to an HTML page that contains an

embed element similar to what is shown below:

 <embed name="NaCl_module"

 id="hello_world"

 width=200 height=200

 src="hello_world.nmf"

 type="application/x-NaCl" />

The src attribute of the embed element specifies where the NEXE manifest file can be

found. Manifest files contain simple JSON structures that specify the name and location

of the NEXE executable, associated libraries and the architecture they were compiled

for. The build process scripts included with the SDK automatically generate the files at

build time. Below is an example manifest file for the example 32 bit ‘hello-world’

application included in the SDK.

{ "files": {

 "libgcc_s.so.1": { "x86-32": { "url": "lib32/libgcc_s.so.1" } },

 "main.nexe": { "x86-32": { "url": "hw.nexe" } },

 "libc.so.3c8d1f2e": { "x86-32": { "url": "lib32/libc.so.3c8d1f2e" } },

 "libpthread.so.3c8d1f2e": { "x86-32": { "url": "lib32/libpthread.so.

3c8d1f2e" } } },

 "program": { "x86-32": { "url": "lib32/runnable-ld.so" } }

}

The NaCl plugin opens and parses the manifest file’s JSON. Once the location of the

NEXE is known the NaCl plugin uses existing PPAPI interfaces to download the NEXE

file. This is accomplished by asking the browser to either stream the NEXE to a file or

to an internal buffer. Once the file has been successfully retrieved the plugin asks the

Chrome browser to start the service runtime and passes to it a file descriptor for the

NEXE module.

7

Depending on the platform the service runtime is either a stand alone executable or

statically compiled into the Chrome browser itself. A stand alone executable is required

on 64 bit Windows because the Chrome broker process is 32 bit but 64 bit NEXE

modules require a 64 bit service runtime. In this particular scenario a stand alone

service runtime is launched named nacl64.exe. For the purposes of this paper we

assume the service runtime is compiled into a 32 bit Chrome executable. The browser

process launches a new process that will be known as the service runtime. The service

runtime is protected by the same sandbox as the Chrome renderer process. In NaCl

this is referred to as the ‘outer sandbox’ as it will enforce strict policies on what

resources even the trusted side of the service runtime may access.

NEXE modules must be compiled using a modified GCC toolchain that ships with the

NaCl SDK. This modified toolchain ensures that the resulting NEXE object code

contains the proper ELF headers and conforms to a strict instruction alignment. We

start by taking the hello_world_glibc example from the pepper 18 version of the NaCl

SDK, compile it as hw.nexe and examine it using the readelf utility and a disassembler.

NEXE modules are shipped as 32 bit ELF binaries, an open executable format that is

also used by Linux. ELF can be fairly complex, but in general the file is broken down

into a number of headers or segments. Each header contains offsets to different areas

of the file, for example where other headers, debug symbols, relocation or instructions

can be found. A NEXE module contains all the typical ELF sections required for loading

it into memory: the ELF Header, Program Headers, Section Headers and the Dynamic

Segment if its dynamically linked.

8

The two main validation functions are NaClElfImageValidateElfHeader and

NaClElfImageValidateProgramHeaders. The former is straight forward and small, but

the ELF program headers are a map to where all untrusted instructions and data can be

found in the executable. The process of validating the program headers is more

involved and includes validating segment load addresses and sizes. NaCl also imposes

additional rules such as the NEXE can have no more than one executable segment and

that the PT_GNUSTACK segment does not have executable permissions. The service

runtime loads each segment after the program headers have been validated. We can

locate the executable instructions in the NEXE by extracting the ELF program headers

and looking for the executable segment using the readelf command. This segment is

shown in bold below:

$ readelf -l hw.nexe

Elf file type is EXEC (Executable file)

Entry point 0x10004a0

There are 8 program headers, starting at offset 52

Program Headers:

 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

 INTERP 0x000ee0 0x11000ee0 0x11000ee0 0x00019 0x00019 R 0x1

 [Requesting program interpreter: /lib/ld-NaCl-x86-32.so.1]

 LOAD 0x000140 0x01000140 0x01000140 0x00da0 0x00da0 R E 0x10000

 LOAD 0x000ee0 0x11000ee0 0x11000ee0 0x00478 0x00478 R 0x10000

 LOAD 0x001358 0x11011358 0x11011358 0x0013c 0x0013c RW 0x10000

 LOAD 0x010000 0x11020000 0x11020000 0x00000 0x0002c RW 0x10000

 DYNAMIC 0x00136c 0x1101136c 0x1101136c 0x000d8 0x000d8 RW 0x4

 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4

 TLS 0x000000 0x00000000 0x00000000 0x00000 0x00000 R 0x4

9

Using IDA Pro we can examine this code segment. In order to ensure that only

validated code will ever be executed all instructions in a NEXE module must reside in

32 byte aligned chunks of memory. Instructions may never straddle these boundaries. If

a block of code exceeds this size then a branch instruction or a series of NOP

instructions is used to transfer control to the next instruction at the start of the next 32

byte aligned chunk. The PpapiPluginStart function from hw.nexe is shown partially

disassembled below. Note the 32 byte instruction alignment and the NOP instruction

padding.

01000ac0 <PpapiPluginStart>:

 1000ac0: 53 push %ebx

 1000ac1: 83 ec 28 sub $0x28,%esp

 1000ac4: a1 00 00 02 11 mov 0x11020000,%eax

 1000ac9: 8b 08 mov (%eax),%ecx

 1000acb: 85 c9 test %ecx,%ecx

 1000acd: 74 31 je 1000b00 <PpapiPluginStart+0x40>

 1000acf: eb 0f jmp 1000ae0 <PpapiPluginStart+0x20>

 1000ad1: 90 nop

 1000ad2: 90 nop

 1000ad3: 90 nop

 1000ad4: 90 nop

 1000ad5: 90 nop

 1000ad6: 90 nop

 1000ad7: 90 nop

 1000ad8: 90 nop

 1000ad9: 90 nop

 1000ada: 90 nop

 1000adb: 90 nop

 1000adc: 90 nop

 1000add: 90 nop

 1000ade: 90 nop

 1000adf: 90 nop

 1000ae0: 83 c0 04 add $0x4,%eax

 1000ae3: 8b 10 mov (%eax),%edx

 1000ae5: 85 d2 test %edx,%edx

 1000ae7: 75 f7 jne 1000ae0 <PpapiPluginStart+0x20>

10

 1000ae9: eb 15 jmp 1000b00 <PpapiPluginStart+0x40>

 1000aeb: 90 nop

Instruction alignment is critical to the security of NaCl on the x86 platform. This is

because there is no mandatory instruction alignment enforced by the processor at

runtime. On the x86 architecture it is perfectly legal for a branch instruction to jump

into the middle of another instruction sequence and begin executing instructions. This

is precisely how ROP (Return Oriented Programming) techniques work, by chaining

together unintended code sequences found within the existing executable segment of

the process. Allowing this behavior in NaCl would allow untrusted NEXE modules to

execute unverified code and escape the inner sandbox.

The modified GCC compiler produces a NEXE module that conforms to the rules of

the NaCl system at compile time. Of course an attacker can modify these binaries after

compilation so NEXE modules are put through strict validation routines at runtime that

include disassembly of every instruction contained in the program.

After the ELF structures have been loaded the individual instructions must be validated

before execution can begin. The instruction validator is a disassembler for each

supported instruction set. Because untrusted x86 NEXE instructions are always mapped

at predictable 32 byte boundaries, validation of instructions can be trusted by always

disassembling from the proper start address and ensuring all branch instruction targets

are at properly aligned addresses. That is to say as long as the NEXE module cannot

execute code at arbitrary addresses we can safely trust the disassembler to validate

instructions given a safe starting point. The service runtime maintains a list of x86

instructions it considers safe and a list of those it considers unsafe. Each are marked

with the NaCli_ prefix. Instructions marked NaCli_ILLEGAL will cause the validator to

throw an error and reject the NEXE module. Banned instructions include those that

execute system calls directly such as sysenter, or those that modify segment registers

such as lcall.

11

Function pointers and other indirect control flow transfers are handled specially in

NaCl. For example a virtual function pointer may first be loaded into a register such as

%eax and then followed by the call %eax instruction. This is supported by performing

alignment masking on the register before invoking the call. This will ensure the

resulting value in %eax points at a 32 byte aligned chunk of instructions that has been

processed by the validator. This is to prevent malicious NEXE modules, or an attacker

exploiting a vulnerability in a NEXE module from executing arbitrary instructions. An

example of this is shown below:

 0x100057b: 83 e0 e0 and $0xffffffe0,%eax ; eax = 0x100057a

 0x100057e: ff d0 call *%eax ; eax = 0x1000560

Another special case is the ret instruction, which is illegal and will cause a NEXE

module to be rejected. Untrusted code could change a saved return address on the

stack and execute a ret to transfer control to a ROP chain formed from existing

instructions. Instead of a ret instruction functions are exited via an indirect jmp and

manually resetting the stack.

The NaCL SDK includes a stand alone validator tool developers can run against their

compiled NEXE modules. The validator can be found at the following path:

nacl_sdk/pepper_X/tools/ncval_x86_32

The following is output from the stand alone validator processing the NEXE hw.nexe

module. It’s code has been modified to contain the line __asm__(“ret”) which tells

GCC to manually insert a ret instruction in that point of the code.

12

$./ncval_x86_32 ../examples/hello_world_glibc/hw.nexe

segment[0] p_type 3 p_offset ee0 vaddr 11000ee0 paddr 11000ee0 align 1

 filesz 19 memsz 19 flags 4

segment[1] p_type 1 p_offset 140 vaddr 1000140 paddr 1000140 align 65536

 filesz da0 memsz da0 flags 5

parsing segment 1

VALIDATOR: 10008e6: ret instruction (not allowed)

VALIDATOR: 10008e6: Illegal instruction

segment[2] p_type 1 p_offset ee0 vaddr 11000ee0 paddr 11000ee0 align 65536

 filesz 478 memsz 478 flags 4

segment[3] p_type 1 p_offset 1358 vaddr 11011358 paddr 11011358 align 65536

 filesz 13c memsz 13c flags 6

segment[4] p_type 1 p_offset 10000 vaddr 11020000 paddr 11020000 align 65536

 filesz 0 memsz 2c flags 6

segment[5] p_type 2 p_offset 136c vaddr 1101136c paddr 1101136c align 4

 filesz d8 memsz d8 flags 6

segment[6] p_type 1685382481 p_offset 0 vaddr 0 paddr 0 align 4

 filesz 0 memsz 0 flags 6

segment[7] p_type 7 p_offset 0 vaddr 0 paddr 0 align 4

 filesz 0 memsz 0 flags 4

*** ../examples/hello_world_glibc/hw.nexe IS UNSAFE ***

Validated ../examples/hello_world_glibc/hw.nexe

*** ../examples/hello_world_glibc/hw.nexe IS UNSAFE ***

The service runtime, also known as sel_ldr, is where the inner sandbox is enforced.

The x86 has a little used feature that can be used to segment the memory of a userland

process. This is done through the use of segment registers. The segment registers that

NaCl utilizes are %ds (data), %cs (code) and %gs (TLS). The other remaining

segment registers %es, %fs and %ss are all initialized to the value of %ds. This is

because some instructions use their values implicitly so they must be initialized to

constrain access to the untrusted address space.

13

The service runtime’s virtual memory is divided between untrusted and trusted code

and data. On Windows all allocations are performed in 64KB chunks due to

VirtualAlloc, which can not allocate smaller chunks of memory. The first 64KB of

untrusted address space is broken up as follows. The first 4KB is protected to catch

NULL pointer dereferences from untrusted code. The remaining 60KB is reserved for

code that performs transitions between untrusted and trusted code. Untrusted

instructions are mapped immediately after. The %cs register is used to restrict all

execution control transfers within this range. The other segment registers will restrict

access to the entire untrusted address space.

Transitioning execution between untrusted and trusted code on the x86 is done

through the use of the segment registers, trampolines and springboards. When

untrusted code needs to transition to trusted code the %ds segment register is reset

and a far call is made to reset the %cs segment register. This is what is known as a

trampoline. Once execution in the trusted service runtime has been resumed all

segment registers are reset and a context switch is made back to untrusted code. This

context switch between trust boundaries is necessary because there should be no

shared data between trusted and untrusted threads such as the stack. TLS (Thread

Local Storage) is used to restore saved register states. Likewise returning from trusted

code to untrusted code a return springboard is mapped into this region. Upon return

to the untrusted code the stack pointer is reset and control is transferred back to an

arbitrary address in the untrusted NEXE instructions. It is important to note that

because the trampolines and springboards execute privileged instructions they are only

mapped in by the service runtime during the loading process. Both trampolines and

springboards require privileged instructions in order to work. For this reason the first

instruction of the springboard code is a hlt. This is so that untrusted code can not

invoke the trusted code block (execution transfers in untrusted code are only allowed

to properly aligned addresses). This is shown in the graphic below:

14

The trampoline and springboard code can be found in hand written in assembly in

Chrome source tree at:

src/native_client/src/trusted/service_runtime/arch/x86_32/tramp_32.S

src/native_client/src/trusted/service_runtime/arch/x86_32/springboard.S

Trampolines and springboards are essential to NaCl’s usability, there is no other way for

untrusted NEXE code to make privileged calls and not compromise the security of the

service runtime. No direct syscalls may be made by the NEXE module, the validator will

refuse to load an executable that contains a sysenter instruction. This is required in

order to keep the module from performing any privileged calls.

15

Trampolines and springboards provide an effective mechanism for safe transitions

between trusted and untrusted code, however that does not mean a NEXE module can

make any syscall it chooses. Allowing the untrusted NEXE module to make arbitrary

syscalls would destroy the security of the system. For example, an attacker could easily

remove sections of validated code and replace them with new malicious code to

escape the inner sandbox. To remedy this the service runtime exposes what are known

as NACL_SYSCALLS. These are syscalls unique to NaCl that allow untrusted NEXE

modules to make simple calls like open, close, read, write, ioctl and others to

create and operate on IMC sockets. These are not designed to be directly called by

NEXE developers. Instead they are normally invoked by using the higher level PPAPI

library and the built-in IRT (Integrated Runtime) library provided by the SDK.

The NaCl inner sandbox is implemented differently on ARM and x86_64 architectures.

This is due to fundamental differences in the instruction sets and their lack of a memory

segmentation model similar to that found on the x86. Like the approach taken on the

x86 NaCl maintains a list of banned instructions and enforces proper code alignment

through its modified toolchain and runtime branch target alignment enforcement. Both

the ARM and the x86_64 port, like the 32 bit x86 version, use ILP32 (int, long,

pointer) for primitive data types.

16

On the ARM platform the untrusted address space is allocated below the trusted

service runtime. This untrusted address space ranges from 0x00000000 to 0x3fffffff

All loads, stores and branch targets must occur within this pre-allocated space. Guard

pages are mapped on either side of the untrusted code to prevent any unbounded

buffer over runs from reaching into the trusted address space. Each load or store

instruction is preceded by a tst instruction that performs a bitwise AND operation of the

source or destination register value against the constant 0xc0000000. This is to

determine whether the value stored in the register is within the untrusted address

space. The tst instruction sets the status flags accordingly. The load is performed via

the ldreq ‘load if equal’ instruction which will only perform the load if the Z status flag

is set. An example of the entire sequence is shown below:

tst R4, #0xC0000000

ldreq R2, [R4]

ARM offers additional memory addressing schemes. NaCl allows all of them except for

register-indexed mode, which allows two registers to be added to one another.

Register indexing is allowed because the largest index value is 4096 bytes, and the

untrusted address space is capped by a guard page 8192 bytes in size.

17

Enforcing the load/store source or destination is enough to contain the untrusted code.

All indirect branches must be performed using the bx (branch exchange) and blx

(branch with link exchange) instructions. On ARM the inner sandbox only has to make

sure branch targets aren’t outside of the untrusted address space and that they don’t

transfer control to the second instruction in an aligned load/store sequence. The

validator can easily check these for direct branches and throw away any modules that

don’t conform to these rules. Indirect branches pose a tougher problem. Making sure

indirect branches don’t target an address outside of the untrusted sandbox is done by

performing a bitwise AND operation similar to that of load/store sequences. Making sure

that the indirect branch target isn’t the second instruction in a trusted load/store

operation (ldreq) is enforced similar to that on x86 indirect branches. The indirect

branch target first has its top two and bottom four bits cleared which forces the target

to be 16 byte aligned. These 16-byte code chunks are referred to as bundles in the

NaCl documentation and implementation. No trusted load/store sequences can ever

straddle this boundary. These 16 byte aligned code sequences are also used to call

into trusted trampolines which make calls into the trusted address space as well as

support ARMs unique feature of allowing embedded data in the instruction stream. At

the time of this writing the ARM compiler is only available in the PNaCl SDK.

18

NaCl on x86_64 has its own unique problems and pitfalls. On 32 bit Windows a new

Chrome process is launched and the service runtime is statically compiled within it. The

Chrome browser is a 32 bit process on 64 bit Windows but the service runtime runs as

a stand alone 64 bit process. It is however launched by Chrome and maintains the

isolation provided by the Chrome outer sandbox. Like ARM, the x86_64 architecture

does not contain the memory segmentation model that the 32 bit x86 does. Because

the x86_64 port uses ILP32 data types it limits the address space to 4GB for the service

runtime. Like the ARM implementation the untrusted address space is capped by guard

regions protecting the trusted address space from unbounded buffer over runs. Access

to the rbp and rsp registers are masked to ensure they always point to addresses in the

untrusted region. NaCl hijacks the use of the r15 register and sets its value to the base

of the untrusted code region. All instructions that update the rip register must use the

r15 register. The reason for this is so that modifications to rbp, rsp and rip can be

based off this value.

This document does not attempt to capture the entire inner sandbox or software fault

isolation implementation for ARM and x86_64. We refer you to the official NaCl

documentation and code for more information on these topics.

19

SRPC/IMC

In order for a NEXE module to communicate with the browser a low level interface

must be available to transmit the messages back and forth. NaCl provides these

interfaces in the form of SRPC which is built on top of the IMC. The service runtime

exposes several functions for creating these sockets through the use of NACL_SYSCALLS.

As noted earlier some of these syscalls are not designed to be invoked directly by a

NEXE module. They sit well beneath the PPAPI interfaces NEXE modules normally want

to use to communicate with Chrome and the user.

The IMC implementation is built on top of NaCl sockets which are abstractions on top

of the OS provided Unix-style sockets, named pipes and shared memory API’s. The

code for their implementation can be found at the following directory with each OS

specific implementation in the win, linux and osx subdirectories:

CHROME/src/native_client/src/shared/imc

The main API functions for sending and receiving messages are NaClSendDatagram,

NaClSendDatagramTo and NaClReceiveDatagram. The message format passed across

these sockets is a NaClMessageHeader and is defined as follows:

/* Message header used by NaClSendDatagram() and NaClReceiveDatagram() */

typedef struct NaClMessageHeader {

 NaClIOVec* iov; /* scatter/gather array */

 size_t iov_length; /* number of elements in iov */

 NaClHandle* handles; /* array of handles to be transferred */

 size_t handle_count; /* number of handles in handles */

 int flags;

} NaClMessageHeader;

The IMC layer is almost never directly touched by application developers. Instead it is

indirectly used by the higher level SRPC layer.

20

NaCl SRPC is a low level interface for moving messages between untrusted code by

way of the the service runtime to Chrome. SRPC is designed to move basic data types

between a client and a server. The NEXE side of the SRPC connection exists solely in

untrusted code.

SRPC messages are sent and received using the NaClSrpcMessageChannelSend and

NaClSrpcMessageChannelReceive API’s. Messages are in the form of

NaClSrpcMessageHeader structures which is a typedef to NaClMessageHeader displayed

above with their data stored in NaClSrpcArg format. The NaClSrpcArg format contains a

tag value which tells the receiving end what type of data is contained, and two unions.

The first union, u, holds simple data types such as bool, int and double. The second

union, arrays, holds pointers to arrays of these basic types that were serialized in SRPC

messages. SRPC servers expose interfaces that can be invoked by the client by using

the NaClSrpcInvokeBySignature API. An example call is shown below:

 retval = NaClSrpcInvokeBySignature(

 _channel,

 "MyMethod:i:i", resource, out_bool

);

The example above calls the remote MyMethod interface on the channel _channel, with

two integer arguments resource and out_bool. Although SRPC is an abstraction layer

above IMC it is rarely used by application developers directly.

21

The following graphic shows where the SRPC and IMC code live in the NaCl

communication protocol stack:

22

PPAPI - NaCl Pepper Proxy

PPAPI (Pepper Plugin Application Programming Interface) is a new plugin API standard

proposed by Google to replace the aging NPAPI (Netscape Plugin Application

Programming Interface). With PPAPI there are two types of plugins. Trusted plugins,

which live in the Chrome browser and untrusted plugins, which exist as NaCl modules.

PPAPI also supports out-of-process plugins via the Chrome IPC mechanism. One

example of a popular PPAPI plugin is Adobe Flash Player. The Flash Player plugin was

converted to PPAPI in early 2012 and runs inside the sandboxed Chrome renderer

process.

NaCl modules that use the pepper APIs should use the NaCl SDK directly and not the

normal PPAPI available through Chrome. The stable NaCl SDK, at the time of this

writing, is Pepper 18. The official SDK contains documentation on each supported

interface and it’s associated C++ wrapper.

PPAPI introduces a number of new API’s for browser plugins including 3D graphics

processing, audio, file I/O and more. Their implementation takes care of the low level

SRPC details which we explain shortly. Despite its obvious advantages over NPAPI,

Google Chrome is currently the only browser to implement PPAPI. PPAPI is completely

independent of NaCl. Adobe Flash is one of the first major PPAPI plugins in Chrome.

The PPAPI interfaces live in the sandboxed Chrome renderer process, isolated from the

NaCl service runtime and untrusted NEXE modules. In order for NEXE modules to

make use of these interfaces a proxy was developed to serialize and deserialize these

calls. This is referred to as the ‘pepper proxy’ in Chrome documentation and source

code, it is specific to NaCl and is not used by PPAPI plugins that run in Chrome

renderer process. The pepper proxy works over the SRPC interface provided by the

NaCl plugin, which in turn uses the IMC interface for low level socket communications.

This means that the pepper proxy on the trusted side is responsible for managing

objects related to the SRPC communication between itself the remote NEXE.

23

The pepper proxy is designed to serialize and deserialize function arguments from the

untrusted NEXE module. These arguments are either basic types or serialized in the

form of a PP_Var. The PP_Var type is explained below:

PP_VarType - An enum that specifies the type contained within a PP_Var

PP_VarValue - A union that holds any of the data types specified in PP_VarType

PP_Var - A structure that holds both a PP_VarType and PP_VarValue

The PP_VarValue structure contains the following fields used to hold data:

PP_bool as_bool - Holds a boolean type

int32_t as_int - Holds a 32 bit integer

double as_double - Holds a double

int64_t as_id - Specifies a handle set by the browser. Used if the type is

PP_VARTYPE_STRING, PP_VARTYPE_OBJECT, PP_VARTYPE_ARRAY, or

PP_VARTYPE_DICTIONARY.

A PP_Var type can be initialized from a NEXE module using the following C functions:

PP_MakeUndefined()

PP_MakeNull()

PP_MakeBool(PP_Bool)

PP_MakeInt32(int32_t)

PP_MakeDouble(double)

In the C++ API these are wrapped using the Var class which contains similar methods.

The PP_Var type is commonly used throughout the API for moving data across the

pepper proxy in addition to basic types.

24

There is a fair amount of proxy code shared between both the trusted and untrusted

sides. In general it is safe to assume that all interfaces with the prefix PPP are

implemented on the untrusted side. Conversely all interfaces with the prefix PPB are

implemented in the browser and are trusted. For example the PpbURLLoaderRpcServer

class contains the implementations for trusted pepper proxy endpoints for the

URL_Loader interface. To further confuse those brave enough to read the NaCl source

code sometimes interfaces are implemented on both ends of the connection. At the

time of this writing the srpcgen.py script is used to automatically generate header files

for all of these interfaces. Their output is useful in differentiating between trusted and

untrusted interfaces. These files can be found at the following paths:

src/ppapi/native_client/src/shared/ppapi_proxy/trusted/srpcgen/ppp_rpc.h

Defines RPC client functions in the trusted side

src/ppapi/native_client/src/shared/ppapi_proxy/trusted/srpcgen/ppb_rpc.h

Defines RPC server functions in the trusted side

src/ppapi/native_client/src/shared/ppapi_proxy/untrusted/srpcgen/ppp_rpc.h

Defines RPC server functions in the untrusted module

src/ppapi/native_client/src/shared/ppapi_proxy/untrusted/srpcgen/ppb_rpc.h

Defines RPC client functions in the untrusted module

Examining their contents greatly reduces the confusion related to where a particular

interface is implemented and what client functions exist to invoke it.

Below is an illustration showing the end-to-end flow of data between an untrusted

NEXE module and the trusted pepper API’s hosted in the Chrome browser. This

example is taken from a NEXE module that utilizes the PPAPI interface Graphics2D and

calls the Create method.

25

26

Native Client Chrome Browser Plugin

The NaCl PPAPI plugin runs in the sandboxed Chrome renderer process. The plugin

has a number of security-sensitive responsibilities. Its primary responsibility is to serve

as the binding between trusted components, such as PPAPI and the untrusted code.

The NaCl plugin is rather simple in comparison to the service runtime.

It is the responsibility of the NaCl plugin to parse the manifest file covered earlier in

this document. The NEXE modules defined in these files may live on the local disk or a

remote web site. It is the plugin’s responsibility to download or read that file from the

disk. The NaCl plugin uses the PPAPI interfaces URLLoader and FileIO interfaces to

request that the browser retrieve and read the NEXE file.

Once the NEXE module has been downloaded and read from disk the service runtime

and secure loader must be invoked to load and validate the NEXE. The plugin starts

this process by instantiating a class named ServiceRuntime. This class abstracts the

invoking of the service runtime and is used to manage an SRPC channel to it for

sending administrative commands. The NaCl module requests that the Chrome broker

process launch the proper service runtime. Please see earlier sections of this document

for an explanation on how the appropriate service runtime is selected.

Once the NEXE module is running the NaCl plugin establishes an SRPC channel

between the service runtime and itself so that the pepper proxy calls can be made. The

pepper proxy itself runs within the NaCl plugin. As covered in the previous section the

pepper proxy hosts the SRPC server interfaces and SRPC client code for remote PPAPI

calls to and from the untrusted NEXE module.

27

Because the NaCl module must expose itself to the DOM in order for NEXE modules

to be instantiated and communicate with the user, certain bindings are created. These

bindings allow for callbacks to be created for exchanging data, responding to certain

events and defining properties such as readyState, lastError and exitStatus. These

bindings should not be confused with the scripting capability provided by NPAPI,

PPAPI offers no such capabilities. When it comes to sending data between JavaScript

and NEXE modules this is done through the postMessage function of the module’s

JavaScript object. In order to receive the string sent from JavaScript the NEXE module

must implement the pp::Instance::HandleMessage function. When the NEXE module

wants to send data back to JavaScript this is done through the

PPB_Messaging::PostMessage function. The JavaScript will be notified of this data if it

has registered an event listener for the message event. The example below shows how

this is implemented in JavaScript.

<script>

function handleMessage(e) { document.write(e.data) }

d = document.getElementById(‘d’);

d.addEventListener(‘message’, handleMessage, true);

nexe_module_object = document.getElementById(“nexe”);

nexe_module_object.postMessage(“Hello from JavaScript!”);

</script>

...

<div id=’d’><embed name="NaCl_module"

 id="nexe"

 width=200 height=200

 src="hello_world.nmf"

 type="application/x-NaCl" /></div>

28

Arbitrary binary and ASCII data can be sent over the PPB_Messaging interface in this

way. This is the primary way NEXE modules and web pages exchange data as the user

interacts with the application. It is up to the developer to define the format of the

application data sent over this interface. In other words it will be delivered as it was

originally sent by the remote side.

29

Attack Surface

Attack surface in NaCl is defined any interfaces or code where an attacker may be able

to find vulnerabilities that allow untrusted code to access privileged resources. In this

section we examine where the NaCl architecture exposes attack surface to untrusted

NEXE modules. We will also discuss ways the architecture attempts to mitigate some of

these issues. Finally we cover what hurdles an attacker must overcome in order to reach

privileged resources outside of the sandbox.

The Chrome web browser ships with a strong sandbox for all supported platforms. It is

considered the leading sandbox implementation and has been repurposed by other

large software products such as Adobe Reader X. Google has gone to great lengths to

ensure vulnerabilities in code such as WebKit can’t be used to completely compromise

a Chrome user’s entire system. It makes sense that NaCl would attempt to capitalize on

this existing infrastructure to help mitigate vulnerabilities it may be introducing.

Native Client is an in-process plugin that lives within the Chrome renderer process. All

Chrome renderer processes are sandboxed by default on Linux, Windows and OS X. In

order to support the software fault isolation security mechanism the untrusted NEXE

module lives within the secure loader’s address space, which is a separate process from

the renderer. The secure loader is executed by the Chrome browser process and

resides in the same sandbox as Chrome renderer processes. Due to this design choice

a malicious NEXE module would first have to execute code in the context of the secure

loader process in order to attempt breaking out of the outer Chrome sandbox.

30

The common method of escaping the Chrome outer sandbox is through a weakly

sandboxed process such as the Flash Player plugin or the GPU process or via a kernel

exploit that the sandbox cannot protect against. NaCl’s inner sandbox prevents kernel

exploits by not allowing the NEXE to interface directly with the kernel. Therefore an

attacker must research other avenues for escaping the inner sandbox, even if it only

results in outer sandbox privileges. Alternatively an attacker can compromise the

remote Chrome renderer process hosting the pepper proxy through a PPAPI endpoint

that contains a vulnerability. We explore these routes through various code paths in the

text below.

Before we move on, the question of “What about vulnerable NEXE modules” is asked

enough that we feel it should be covered on its own. Vulnerabilities in NEXE modules

themselves are irrelevant and considered a non-issue. This is mainly due to the same

reasons an untrusted NEXE module should not be able to execute code that has not

been validated. All dynamic calls are checked to ensure their location is properly

aligned, with validated code syscalls that would enable the mapping of new executable

memory are thoroughly validated and trusted springboards and trampolines begin with

a hlt instruction because their alignment allows for untrusted code to invoke them

directly.

31

Service Runtime Inner Sandbox

The ELF file format is a binary file format that can be complex to parse. There have

been many vulnerabilities reported in the past related to kernel ELF loading code with

integer overflow related issues. Trusted code in the service runtime is responsible for

parsing the ELF structures found in the NEXE module. This is a critical phase of the

loading process and is the first place a malicious NEXE file may attack privileged code.

These potential weak points include parsing of the ELF header and Program headers.

At the time of this writing no vulnerabilities have been publicly reported in this code.

NaCl originally shipped with a fuzzer designed by Google specifically for discovering

vulnerabilities in the ELF loader. Successfully exploiting a vulnerability in this code

would allow an untrusted NEXE module to execute arbitrary code in the context of the

service runtime, which of course is sandboxed in a Chrome renderer process.

The inner-sandbox and code validation routines is another area an attacker may find

and exploit vulnerabilities. A successful attack on the inner sandbox may be

discovering a way to bypass syscall filtering and map in new executable code that

hasn’t been validated. Defeating the code validator may come in the form of using an

obscure instruction or relying on the side effects of a valid instruction that the NaCl

authors had not anticipated. This could include prefix bytes in branch instructions or

instructions considered benign and allowed by the validator. Discovering a parsing flaw

in the code validator itself would also allow for an attacker to execute arbitrary code in

the context of the sandboxed service runtime.

The service runtime is also responsible for handling all NACL_SYSCALL requests. While

there are less than 40 of these defined, a vulnerability in their implementation would

allow an untrusted NEXE module to execute code in the context of the trusted service

runtime. Luckily the amount of code exposed here is minimal and can be fuzzed and

audited thoroughly.

32

PPAPI - NaCl Pepper Proxy

It is arguably easier for an attacker to escape the untrusted NEXE module by

discovering and exploiting a vulnerability in a remote PPAPI interface via the pepper

proxy. This route avoids the inner sandbox all together. The number of API end points

available through the PPAPI interface that parse untrusted data is large and growing

with each release. The proxy itself is not a security mechanism and does not always

validate data as well formed as this is not always possible. In addition to parsing

untrusted data these interfaces are responsible for tracking related SRPC channels and

callback triggers related to their functionality.

Discovering and exploiting a vulnerability in a remote PPAPI interface would allow for

executing arbitrary code in the context of the Chrome renderer process. As stated

earlier, this constitutes a defeat of the NaCl security model.

These remote interfaces sometimes pass data off to other components in Chrome such

as the GPU process. In cases like this an attacker may be able to completely escape the

Chrome sandbox or execute code within a less restrictive version of it. This was the

case with PinkyPie’s Chrome exploit at the 2012 Pwnium competition at the

CanSecWest conference. This impressive chain of exploits partially used NaCl as a

vehicle to escape the Chrome sandbox. In the initial stages of the exploit PinkyPie was

able to trick Chrome into loading a NEXE module from an arbitrary location. The

second link in the exploit chain was to send data via that NEXE module to a remote

GPU API interface that triggered an integer overflow in the Chrome GPU process.

Exploiting this vulnerability via a NEXE module was possible due to the raw access

NaCl provides to the GPU command buffers. This would have been far more difficult to

perform if it required exploiting a WebKit vulnerability first and then executing

shellcode in the Chrome sandbox to send the same data to the GPU process.

In a later section of this document we cover a number of vulnerabilities found in the

pepper proxy by the author of this document.

33

SRPC/IMC

The service runtime hosts a small amount of trusted IMC code. This interface can be

reached via specific NACL_SYSCALLS by untrusted code. This code is responsible for

setting up the sockets and shared memory used to support the IMC protocol.

Discovering and exploiting a vulnerability in these functions would result in running

arbitrary code within the context of the sandboxed service runtime.

However the NaCl plugin hosted in the renderer contains a large amount of trusted

SRPC and IMC code in order to support the pepper proxy. As discussed in previous

sections the SRPC protocol can be a complex binary stream of serialized data. These

low level receivers and dispatchers are a valid target for a malicious NEXE to exploit.

Any arbitrary code executed here will run with the privileges of the Chrome renderer

process.

NaCl Browser Plugin

The NaCl browser plugin creates additional attack surface that can be reached via

untrusted web content. This includes the parsing of untrusted JSON NEXE manifest

files and the JavaScript bindings created when the plugin is instantiated. Even though

JSON is a simple format to parse this is a particularly security sensitive area. NaCl

currently uses a third party library, jsoncpp, to parse the JSON. Although this library has

been well tested it still may contain vulnerabilities. The DOM bindings for NaCl

modules are relatively slim compared to other browser plugins. They exist to provide

the web application the ability to send and receive data from the NEXE, respond to

certain events and retrieve status codes. Regardless of how slim this scripting capability

is, it binds untrusted JavaScript to C++ code in the browser.

34

Vulnerabilities Identified

A number of vulnerabilities have been reported in NaCl since it was first announced in

2009. A majority of these vulnerabilities allow for the execution of arbitrary code in

trusted components and a select few bypass the inner sandbox by directly executing

code that had not been validated.

In this section we examine the first vulnerability discovered in NaCl, some of the

vulnerabilities found during the 2009 security contest, vulnerabilities discovered by

Google developers and more recently during a source code review the author

performed for Google in June 2011.

First Independently Discovered NaCl Vulnerability

The very first vulnerability reported in NaCl by an outside party was an inner sandbox

break out discovered by security researcher named Alex Radocea in 2008.

Call Instruction Memory Dereference (link)

The NaCl instruction validator failed to take memory dereferences into account for call

instructions. This allows the following instruction to transfer execution to an unvalidated

location because the validator has only ensured the register value is 32 byte aligned

but not the value it references.

 andl $0xffffffe0, %edx

 call *(%edx)

2009 Security Contest

Google held a security contest in 2009 that invited security researchers to find

vulnerabilities in both the implementation and the design of NaCl. This included the

NPAPI plugin, IMC/SRPC and the inner sandbox.

35

http://code.google.com/p/nativeclient/issues/detail?id=23
http://code.google.com/p/nativeclient/issues/detail?id=23

The contest resulted in a number of implementation related vulnerabilities with a total

of 20 unique vulnerabilities reported. Despite the fact no entries irreparably broke the

inner sandbox design, a number of these issues were either unique to NaCl’s security

boundaries or allowed for sandbox breakouts via arbitrary code execution in trusted

components. The architecture of NaCl has significantly changed since this contest was

held so we only briefly review some of the more interesting findings from that contest

and how they relate to the current code base.

Unchecked 2-byte jmp Instruction Prefix (link)

This vulnerability allowed attackers to transfer execution to code that had not been

properly validated. This is a good example of why validating complex instruction sets

like the x86 is difficult. This vulnerability resulted in an inner sandbox breakout.

EFLAGS Direction Flag Modification (link)

The x86 EFLAGS status register contains a status flag that represents the direction data

is to be copied in memory. NaCl allowed untrusted modules to set this flag which could

result in memory corruption and arbitrary code execution once the context switch to

trusted code was made. This vulnerability shows that side effects of the architecture

that are controlled via non-privileged instructions may result in serious vulnerabilities.

Validated Code Unmapping (link)

After validation an untrusted NEXE module could unmap validated code and remap it

with unvalidated code to escape the inner sandbox. While this vulnerability was easily

patched by properly validating the syscall arguments it is another example of how the

inner sandbox can be defeated by allowing the execution of unvalidated code.

36

http://code.google.com/p/nativeclient/issues/detail?id=50
http://code.google.com/p/nativeclient/issues/detail?id=50
http://code.google.com/p/nativeclient/issues/detail?id=51
http://code.google.com/p/nativeclient/issues/detail?id=51
http://code.google.com/p/nativeclient/issues/detail?id=56
http://code.google.com/p/nativeclient/issues/detail?id=56

Uninitialized vtable (link)

An integer overflow, an unchecked return value and an uninitialized heap buffer lead to

potential arbitrary code execution in trusted components. This vulnerability was

triggered via untrusted JavaScript. Some of the NaCl C code is written as object

oriented with manual constructor, destructor and vtable setup to handle callbacks and

function pointers. This requires carefully initializing and managing structures that would

normally be managed automatically in C++.

Double delete Operator (link)

The NaCl plugin relied on the NPAPI interfaces to manage the lifetimes of certain

browser binding related objects. A specific HTML sequence that triggered an error

condition would cause the plugin to delete an object already deleted by the NPAPI

backend. While NPAPI is no longer used the same issues may be found in the PPAPI

bindings where there is confusion over who is responsible for the lifetime of an object.

This is true of any PPAPI plugin and is not unique to NaCl.

37

http://code.google.com/p/nativeclient/issues/detail?id=44
http://code.google.com/p/nativeclient/issues/detail?id=44
http://code.google.com/p/nativeclient/issues/detail?id=70
http://code.google.com/p/nativeclient/issues/detail?id=70

Public NaCl Vulnerabilities

A small number of vulnerabilities have been reported by Google developers and are

publicly available on the projects website. The NaCl issue tracker contains a number of

vulnerabilities and security relevant bugs however only issues reported within 2011 and

2012 are listed below.

Inner Sandbox Escape via KiUserExceptionDispatcher (link)

On 64 bit Windows 7 systems when a fault occurs the kernel transfers execution to the

KiUserExceptionDispatcher function in ntdll.dll. When this function is invoked it walks

a list of vectored exception handlers on the stack. However this function does not know

the difference between the trusted and untrusted NaCl stacks. The

KiUserExceptionDispatcher function will call other functions that end in a ret

instruction. When this occurs if the %rsp register points at the untrusted stack this will

redirect execution to a location of the attackers choosing. This is exploited by writing

to the first threads stack using a second thread that will continue executing while

KiUserExceptionDispatcher is busy.

BSF Instruction Inner Sandbox Escape (link)

A 64 bit NEXE can escape the inner sandbox by using the bsf/bsr instruction. The bsf

instruction can be used to write to an arbitrary location in the process memory. This is

possible because the bsf instruction only conditionally writes to its destination register

if its source register is zero. A subsequent mov operation can not guarantee the BSF

instruction properly masked the destination register.

Trampoline Trusted Address Space Leak (link)

The trusted trampoline code in 64 bit NEXE modules directly transfers control to the

trusted syscall handler. An untrusted module can read this code and determine where

the .text is mapped in the trusted service runtime. This can be used to defeat ASLR

when exploiting a code execution vulnerability in the service runtime.

38

http://code.google.com/p/nativeclient/issues/detail?id=1633
http://code.google.com/p/nativeclient/issues/detail?id=1633
http://code.google.com/p/nativeclient/issues/detail?id=2010
http://code.google.com/p/nativeclient/issues/detail?id=2010
http://code.google.com/p/nativeclient/issues/detail?id=1996
http://code.google.com/p/nativeclient/issues/detail?id=1996

Address Space Leak From JavaScript Error Messages (link)

In certain cases a detailed error string would be generated by the trusted plugin and

retrievable via JavaScript. This error string contained valid memory addresses in the

renderer process. This can be used to defeat ASLR when exploiting a code execution

vulnerability in the service runtime.

2011 Pepper Proxy Code Review

As noted in the architecture section of this document the proxy is quite large and is

responsible for serializing and deserializing untrusted binary data to and from both

trusted and untrusted components. A total of 10 unique security vulnerabilities were

identified during the 3 week audit. Some of these vulnerabilities are found directly in

the pepper proxy itself while others are the result of the pepper proxy allowing

untrusted and unvalidated data to propagate into the PPAPI interface implementation

or other areas of the Chrome renderer process.

PPB_Graphics2D_Create Shared Memory Integer Overflow (link)

The PPB_Graphics2D_Create interface receives a serialized PP_Size structure which

contains signed integers width and height. These two integers are passed to

PPB_ImageData_Impl::Init in the PPAPI implementation. There is an attempt to detect

overflow in this function:

 if (static_cast<int64>(width) * static_cast<int64>(height) >=

 std::numeric_limits<int32>::max())

 return false; // Prevent overflow of signed 32-bit ints.

However further down the code path in PepperPluginDelegateImpl::CreateImage2D

these values are multiplied by each other and 4 which allows for an integer overflow

condition to occur:

PepperPluginDelegateImpl::CreateImage2D(int width, int height) {

39

http://code.google.com/p/nativeclient/issues/detail?id=1991
http://code.google.com/p/nativeclient/issues/detail?id=1991
http://code.google.com/p/chromium/issues/detail?id=88729
http://code.google.com/p/chromium/issues/detail?id=88729

 uint32 buffer_size = width * height * 4;

This overflowed value is passed to TransportDIB::Create where a shared memory

buffer is allocated with the overflowed size:

const int shmkey = shmget(IPC_PRIVATE, size, 0666);

This memory buffer is shared with the trusted browser broker process.

PPB_Context3DTrusted_CreateTransferBuffer Shared Memory Integer Overflow

(link)

The PPB_Context3DTrusted_CreateTransferBuffer interface takes a size parameter

provided by an untrusted NEXE module. This size parameter is passed to the

CommandBufferService::CreateTransferBuffer function where it is passed to

CreateAnonymous and CreateNamed functions. On Win32 platforms if MAX_UINT is

provided for the size it will overflow in SharedMemory::CreateNamed in the following line

 uint32 rounded_size = (size + 0xffff) & ~0xffff;

This memory buffer is shared with the trusted browser broker process.

PPB_Audio_Create SRPC Channel Use After Free (link)

When the audio interface PpbAudioRpcServer::PPB_Audio_Create is first invoked a new

StreamCreatedCallbackData instance is created in the renderer process. This callback is

created to alert the client when the PPAPI Audio implementation has finished

processing the request. If the NEXE module tears down the SRPC channel before the

audio stream has been created then a use after free condition will occur when the

callback executes and accesses the stale channel pointer. This occurs when the callback

invokes PppAudioRpcClient::PPP_Audio_StreamCreated which calls

NaClSrpcInvokeBySignature which then dereferences the stale SRPC channel pointer in

the following call: NaClSrpcServiceMethodIndex(channel->client, rpc_signature)

40

https://code.google.com/p/nativeclient/issues/detail?id=2062
https://code.google.com/p/nativeclient/issues/detail?id=2062
https://code.google.com/p/nativeclient/issues/detail?id=1993
https://code.google.com/p/nativeclient/issues/detail?id=1993

PPB_URLLoader_Open CORS Request Allows For Header Injection (link)

The PPB_URLLoader_Open and PPB_URLRequestInfo_SetProperty interfaces allow a

NEXE module to configure various parameters for an HTTP request that the browser

will make on its behalf. In order to perform cross domain requests Webkit is instructed

by the PPAPI layer to use the CrossOriginRequestPolicyUseAccessControl option. This

means the browser will send a 'pre-flight' HTTP OPTIONS request to the third party

server asking it what HTTP parameters may be set.

However a NEXE module can use the SetProperty call to inject arbitrary HTTP headers

into this request by injecting raw CRLF characters into the headers. An example of this

is below:

set_method = request_interface_->SetProperty(request_,

 PP_URLREQUESTPROPERTY_METHOD,

 Module::StrToVar("POST\x0d\x0ax-csrf-token:\x20test1234"));

PPB_URLLoader_ReadResponseBody Heap Overflow (link)

The PPB_URLLoader_ReadResponseBody function contains a heap overflow. The following

code can be found in the function body for the URLLoader SRPC server

ReadResponseBody function.

 *pp_error_or_bytes = PPBURLLoaderInterface()->ReadResponseBody(

 loader, callback_buffer, bytes_to_read, remote_callback);

 DebugPrintf("PPB_URLLoader::ReadResponseBody: pp_error_or_bytes=%"

 NACL_PRId32"\n", *pp_error_or_bytes);

 if (*pp_error_or_bytes > 0) { // Bytes read into |callback_buffer|.

 // No callback scheduled.

 *buffer_size = static_cast<nacl_abi_size_t>(*pp_error_or_bytes);

 memcpy(buffer, callback_buffer, *buffer_size);

41

https://code.google.com/p/nativeclient/issues/detail?id=2024
https://code.google.com/p/nativeclient/issues/detail?id=2024
https://code.google.com/p/nativeclient/issues/detail?id=2007
https://code.google.com/p/nativeclient/issues/detail?id=2007

bytes_to_read is controlled by the untrusted NEXE module. In this case

sizeof(buffer) should be equal to buffer_size since it was allocated by the trusted

browser side. The call to memcpy will copy buffer_size bytes from callback_buffer into

buffer resulting in a heap overflow.

PPB_FileIO_Write Out Of Bounds Read Information Leak (link)

The function PPB_FileIO_Write receives buffer, and a bytes_to_read parameter

provided by the untrusted NEXE module. There is no check to ensure (bytes_to_read

< sizeof(buffer)). An untrusted NEXE module can send a bytes_to_read value of

sizeof(buffer)+N and the RelayWrite class will perform an out of bounds read on the

buffer. This will result in an information leak where an untrusted NEXE module can

retrieve memory contents of the Chrome renderer process hosting the NaCl plugin it is

communicating with.

PPB_FileIO_Dev_Read Heap Overflow (link)

The PPB_FileIO_Dev_Read function contains a heap overflow. The following code can

be found in the function body for the FileIO RPC server Read function.

 *pp_error_or_bytes = PPBFileIOInterface()->Read(file_io,

 offset, callback_buffer, bytes_to_read, remote_callback);

 DebugPrintf("PPB_FileIO_Dev::Read: pp_error_or_bytes=%"NACL_PRId32"\n",

 *pp_error_or_bytes);

 if (*pp_error_or_bytes > 0) { // Bytes read into |callback_buffer|.

 // No callback scheduled.

 *buffer_size = static_cast<nacl_abi_size_t>(*pp_error_or_bytes);

 memcpy(buffer, callback_buffer, *buffer_size);

42

https://code.google.com/p/nativeclient/issues/detail?id=2076
https://code.google.com/p/nativeclient/issues/detail?id=2076
https://code.google.com/p/nativeclient/issues/detail?id=2026
https://code.google.com/p/nativeclient/issues/detail?id=2026

bytes_to_read is controlled by the untrusted NEXE module. In this case

sizeof(buffer) should be equal to buffer_size since it was allocated by the trusted

browser side. The call to memcpy will copy buffer_size bytes from callback_buffer into

buffer resulting in a heap overflow.

PPB_PDF_SearchString Potential Heap Overflow (link)

The PPB_PDF_SearchString interface contains an integer overflow that may lead to

heap memory corruption. This code is found in a private interface and may require a

special compromised plugin in order to reach.

 int pp_result_count = 0;

 PPBPDFInterface()->SearchString(instance,

 reinterpret_cast<unsigned short*>(string),

 reinterpret_cast<unsigned short*>(term),

 case_sensitive ? PP_TRUE : PP_FALSE,

 &pp_results,

 &pp_result_count);

 *results_size = std::min(*results_size, pp_result_count *

 kPpbPrivateFindResultBytes);

 memcpy(results, pp_results, *results_size);

 free(pp_results);

 *count = static_cast<int32_t>(pp_result_count);

The pp_result_count * kPpbPrivateFindResultBytes multiplication may overflow if

pp_result_count = (MAX_INT/8)+1 which would assign a negative value to

results_size (which is of type nacl_abi_size_t) which would overflow the results

buffer in the call to memcpy.

PPB_FileRef_Create Potential Directory Traversal (link)

The call to PPB_FileRef_Create eventually invokes a validation function to

isValidLocalPath in order to validate the path passed to the interface by an untrusted

NEXE module.

43

https://code.google.com/p/nativeclient/issues/detail?id=2031
https://code.google.com/p/nativeclient/issues/detail?id=2031
https://code.google.com/p/nativeclient/issues/detail?id=2069
https://code.google.com/p/nativeclient/issues/detail?id=2069

bool IsValidLocalPath(const std::string& path) {

 // The path must start with '/'

 if (path.empty() || path[0] != '/')

 return false;

 // The path must contain valid UTF-8 characters.

 if (!IsStringUTF8(path))

 return false;

 return true;

}

This check is not enough to find directory traversal attacks such as ../../../priv/dir.

The Chrome sandbox will prevent the untrusted NEXE module from overwriting

sensitive files outside of the browser but any untrusted paths should be constrained to

a specific location for NEXE modules or otherwise filtered for these types of attacks.

Heap Overflow In MessageChannelEnumerate (link)

The function MessageChannelEnumerate contains a potential heap overflow. The

multiplication performed on the size parameter passed to the malloc call based on the

number of message channels can potentially wrap and lead to a heap overflow if too

small of a buffer is allocated.

44

http://code.google.com/p/chromium/issues/detail?id=88970
http://code.google.com/p/chromium/issues/detail?id=88970

Chrome Shaker

In January of 2012 we developed a NEXE module designed to fuzz the pepper proxy.

To continue Chrome’s salt and pepper theme we named this fuzzer chrome-shaker.

The Chrome browser source code ships with a number of IDL files that describe the

various PPAPI interfaces and their supported arguments. The NaCl team relies heavily

on these to help auto generate C++ interface code. Below is an example of one such

interface description for the PPB_Messaging interface:

interface PPB_Messaging {

 void PostMessage([in] PP_Instance instance, [in] PP_Var message);

};

In order to properly parse these IDL files the NaCl authors have developed a python

library that creates an AST (Abstract Syntax Tree). Using this python library we auto

generate C++ code that fuzzes the various PPAPI interfaces with random data.

Chrome Shaker is a rather simple approach to fuzzing the pepper proxy. The fuzzer

consists of a skeleton NEXE module written in C++ that contains various fuzzing and

logging functions, glue code for instantiating the NaCl runtime and HTML scripts that

provide a simple user interface. The python code generator takes this skeleton plugin

and creates the code for fuzzing each interface described in the IDL files provided in

the Chrome source tree.

A number of complications were encountered while trying to create a pepper proxy

fuzzer. This is mainly due to requiring PPAPI resources that are only available through

the interfaces the NEXE is designed to fuzz.

45

The first problem we encountered was obtaining a source of random data. A NEXE

module can not simply open /dev/urandom and read an arbitrary number of bytes. This

is strictly prohibited by the sandbox. We developed a work around for this that

involved calling a JavaScript function window.crypto.getRandomValues and sending a

buffer of 2048 random bytes through the PostMessage interface to the NEXE module.

This buffer of random data is repeatedly refilled during the fuzzers runtime.

Logging is also complicated from a NEXE module under test. This is because in order

to write to an external file you must use the FileIO interfaces provided by PPAPI. This

involves writing to interfaces that are currently being fuzzed. This results in mutex

deadlocks and other issues. The current implementation will log all data to STDOUT by

default and prefix each entry with the string Shaker.

46

Conclusion

The NaCl architecture is indeed large and complex. While the original ‘Trusted Code

Base’ has slowly grown in size to support more functionality, only a small number of

bugs have have affected the inner sandbox since its release. NaCl has innovated strong

sandbox mechanisms including its software fault isolation and inner sandbox on the

x86, x86_64 and ARM platforms. It is very likely that future sandbox approaches will

borrow ideas, concepts and code directly from NaCl.

NaCl creates the opportunity to take often used native code components and place

them inside two sandboxes. This further raises the cost for an attacker to successfully

exploit a vulnerability in code protected by NaCl. One can envision a potential future

where Chrome’s default PDF reader is simply a NEXE bytecode that is securely

compiled on-the-fly to memory in order to parse and render potentially malicious PDF

documents from the internet.

The 2009 security contest provided an accurate look at the future of vulnerabilities in

NaCl. The contest showed that it was more likely for future vulnerabilities to be found

in trusted components that were the result of handling untrusted data than would be

found in the inner sandbox or the general software fault isolation design. This has

largely held true to the present day with the exception of the x86_64 inner sandbox.

The inner sandbox design on the x86 remains strong due to its simplicity and memory

segmentation model support. However the x86_64 and ARM inner sandbox designs

have yet to be as thoroughly tested as the former.

The future of NaCl is PNaCl or ‘Portable Native Client’. PNaCl uses the LLVM AOT

(Ahead Of Time) compiler to safely generate native code that conforms to NaCl’s inner

sandbox rules. This of course will make NEXE modules platform independent, enabling

the same application to run on an Android device, Chrome OS or Windows system.

PNaCl brings with it a whole new set of architectural and implementation security

issues to be considered with. We look forward to researching PNaCl as it comes online.

47

For the truly paranoid among us, all plugins, including Native Client, should be blocked

and explicitly enabled via Chromes click-to-play mechanism.

The author would like to thank Justin Schuh and David Sehr from Google, and Cory

Scott and Dave Goldsmith from Matasano for providing the opportunity to work on

such an interesting project and for allowing this research to be published at BlackHat.

48

References

Native Client

https://developers.google.com/native-client/

Chrome Sandbox Design Documents

http://www.chromium.org/developers/design-documents/sandbox/

A Sandbox for Portable, Untrusted x86 Native Code

http://src.chromium.org/viewvc/native_client/data/docs_tarball/nacl/googleclient/

native_client/documentation/nacl_paper.pdf

Native Client 2009 Security Contest

https://developers.google.com/native-client/community/security-contest/

Exploiting Native Client - Ben Hawkes (HAR 2009)

http://www.stanford.edu/class/cs240/readings/

hawkes_HAR_2009_exploiting_native_client.pdf

Chrome Shaker Project

https://code.google.com/p/chrome-shaker/

49

https://developers.google.com/native-client/
https://developers.google.com/native-client/
http://www.chromium.org/developers/design-documents/sandbox/
http://www.chromium.org/developers/design-documents/sandbox/
http://src.chromium.org/viewvc/native_client/data/docs_tarball/nacl/googleclient/native_client/documentation/nacl_paper.pdf
http://src.chromium.org/viewvc/native_client/data/docs_tarball/nacl/googleclient/native_client/documentation/nacl_paper.pdf
http://src.chromium.org/viewvc/native_client/data/docs_tarball/nacl/googleclient/native_client/documentation/nacl_paper.pdf
http://src.chromium.org/viewvc/native_client/data/docs_tarball/nacl/googleclient/native_client/documentation/nacl_paper.pdf
https://developers.google.com/native-client/community/security-contest/
https://developers.google.com/native-client/community/security-contest/
http://www.stanford.edu/class/cs240/readings/hawkes_HAR_2009_exploiting_native_client.pdf
http://www.stanford.edu/class/cs240/readings/hawkes_HAR_2009_exploiting_native_client.pdf
http://www.stanford.edu/class/cs240/readings/hawkes_HAR_2009_exploiting_native_client.pdf
http://www.stanford.edu/class/cs240/readings/hawkes_HAR_2009_exploiting_native_client.pdf
https://code.google.com/p/chrome-shaker/
https://code.google.com/p/chrome-shaker/

Chris Rohlf
Leaf SR
http://leafsr.com
LeafSRInfo@gmail.com
(732) 737-7513

50

