Grade Inflation at the University of Waterloo

Greg Mayer, Ph.D.

a presentation for the
Opportunities and New Directions Conference
Wednesday, May 6, 2009

"the issue of grade inflation has been discussed for many years but debates on the issue are usually restricted by a lack of data"

Anglin, P., Meng, R., Evidence on Grades and Grade Inflation at Ontario's Universities. Canadian Public Policy, 16/3, 2000

Acknowledgments

I would like to thank:

- Everett Vincent and the University of Waterloo Institutional Analysis \& Planning office for providing the data used in this seminar
- Dr. Svitlana Taraban-Gordon and the Centre for Teaching Excellence for helpful discussions and insight
- Statistical Consulting Services for lending their advice
- Edward Vrscay, Paul Nijjar, David Wang, for encouragement and ideas

Outline

1. Background
2. Evidence
3. Impact
4. Sources
5. Solutions
6. Grade Variation at UW
7. Conclusion

Background Section I

Background

- no consensus on how Grade Inflation (GI) is defined
- I will define GI as:

An increase in grades in one or more academic departments over time.

- no requirements on the student performance on the GI

Evidence of Grade Inflation at UW Section 2

Evidence of Gl at UW

Obtained data:

- every grade given in every undergraduate course, all faculties
- data ranges from 1988/89 to 2006/07 (19 years)
- grades stored as either letter grade or integer grade (0 to 100)
- prior to Fall 2001, many grades stored only as letters (F- through A+)

For each entry in the data I only have:

- grade (letter, integer, or no grade)
- year
- course number
- course name
- department
- faculty

Grade Inflation at UW

- A
 - B
 - C
 - D
 - F

From 1988/89 to 2006/07, over all faculties and academic levels:

- 11.02% increase in undergraduate A grades
- A's increased at a rate of $0.656 \pm 0.062 \%$ per year $\left(\mathrm{R}^{2}=0.9633\right)$

The Impact of Grade Inflation Section 3

The Purpose of Grading

The purpose of grading may be to [3]:

1. provide students with feedback
2. weed out students
3. motivate students
4. inform prospective employers and admissions committees

2006/07 Grade Distributions

100 level MATH
(I 1042)

400 level Fine Arts (50)

Impact of Gl

The purpose of grading may be to [3]:

1. provide students with feedback
2. weed out students
3. motivate students
4. inform prospective employers and admissions committees

Suppose a department gave A's to all students at the 400 level every year.
Two cases:

1) A's are given regardless of student performance, the purpose of grading students would be lost
2) Every student demonstrates outstanding performance no consensus on the impact of GI in this case [4,5]

Sources of Grade Inflation

Section 4

Sources of GI

Student Ability Increased?

- entirely possible
- no evidence of increase in mathematical preparedness of first year students at UW from 1991 to 1999 [6]

Maintain Departmental or Faculty "Standards"

- in the past, administrators at UW have pressured for higher grades [6]
- FAUW newsletters documents case when a math dean adjusted grades without the consent or authorization of the instructor [9]

There are Many other Possible Sources of GI

- see [11]

Solutions to Grade Inflation at UW

Section 5

Solution

1. Enhance Undergraduate Transcripts [7,10,11]

- include additional statistics, such as:
- course averages or course medians
- class sizes
- helps anyone who relies on transcripts to put grades into perspective
- but does not address grade inflation directly

2. University-wide Fixed Grade Distributions

- has been implemented at Princeton [4]
- proposed many times in the GI literature (for example, [3,7,8,11])
- controls GI
- but final grades depend on who is enrolled in a course

Grade Variation at UW

 Section 6

 Section 6}

Grade Variation at UW

Faculty of Art, 400 Level Grades

\square 2002/03 to 2006/07
\square 1988/89 to 1992/93

Conclusions

Section 7

Conclusions

Grading patterns observed at UW

- 1988 to 2006: over all undergraduate student grades at UW, proportion of A's increased by 11.02% (linear inflation rate of 0.656% per year)

Future Work

- expand on previous results [6] to investigate why UW has experienced grade inflation

Bibliography

[I] Anglin, P., Meng, R., Evidence on Grades and Grade Inflation at Ontario's Universities. Canadian Public Policy, 16/3, 2000
[2] University of Waterloo Performance Indicators 2005, 2006, 2007, http://www.uwaterloo.ca/accountability/
[3] Hunt, L., Afterword: Focusing on the Big Picture. In: Grade Inflation, Academic Standards in Higher Education, Lester Hunt (editor), State University of New York Press, Chapter 10, 2008
[4] Kamber, R, Combating Grade Inflation: Obstacles and Opportunities. In: Grade Inflation, Academic Standards in Higher Education, Lester Hunt (editor), State University of New York Press, Chapter 9, 2008
[5] Schrag, F, From Here to Equality: Grading Policies for Egalitarians. In: Grade Inflation, Academic Standards in Higher Education, Lester Hunt (editor), State University of New York Press, Chapter 6, 2008
[6] Miller S, Goyder J,The Eroding Standards Issue:A Case Study from the University of Waterloo. CJHE, 30/3, 2000
[7] Johnson V, Grade Inflation, Springer, 2003
[8] Côté J,Allahar A, Ivory Tower Blues, University of Toronto Press, 2007
[9] FAUW Forum (http://www.uwfacass.uwaterloo.ca/), issues 104, I05, 106, I I I, I I2, II 3 , I I6
[IO] Beito D, Nuckolls CW, Grade Distortion, Bureaucracy, and Obfuscation at the University of Alabama. In: Grade Inflation, Academic Standards in Higher Education, Lester Hunt (editor), State University of New York Press, Chapter IO, 2008
[II] Rosovsky H, Hartley M, Evaluation and the academy:Are we doing the right thing? Cambridge, MA:American Academy of Arts and Sciences, 2002

Appendix: Linear Regressions By Faculty

Linear model: $P_{f, n}=r_{f} t_{n}+b_{f}, f=1,2, \ldots 6$
where
$P_{f, n}=$ proportion of A grades for faculty f at point n
$r_{f}=$ rate of change of P_{f}
$t_{n}=$ time (in years), $n=1,2,3, \ldots .19$
$b_{f}=$ constant

All 100 Level Grades

	f	r_{f}	R^{2}	t
AHS	l	$0.7 \mathrm{I} \pm 0.30$	0.57	4.73
ART	2	0.56 ± 0.09	0.89	12.00
ENV	3	0.69 ± 0.34	0.50	4.14
ENG	4	0.76 ± 0.23	0.72	6.56
MAT	5	$0.5 \mathrm{I} \pm 0.16$	0.71	6.53
SCI	6	0.38 ± 0.23	0.36	3.08

R^{2} is the coefficient of determination
F-test calculated at 99%, all measures of r_{f} significant

Appendix: Grading Systems at UW

Letter Grade	Percentage Range	Value
A+	$90-100$	95
A	$85-89$	89
A-	$80-84$	83
B+	$77-79$	78
B	$73-76$	75
B-	$70-72$	72
C+	$67-69$	68
C	$63-66$	65
C-	$60-62$	62
D+	$57-59$	58
D	$53-56$	55
D-	$50-52$	52
F+	$42-49$	46
F	$35-41$	38
F-	$0-34$	32

- Some grades prior to 2001 recorded only as a letter grade
- UW used this table to convert percentages into letters
- no way of converting letters back to original percentages

Appendix: 2006/07 Grade Distribution

Observations:

1. Grades do not have a normal distribution
2. Peaks at $60 \% 70 \%, 80 \%$, and 90%

Appendix: Proportion of A's by Faculty

100 Level Courses

- increase from 1988-2003 in ENG and MATH
- decrease from 2003-2006 in ENG and MATH
- linear regressions: statistically significant increase in proportion of A's at the 100 and 400 level in all six faculties

