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Abstract

We develop new tools for analyzing matrix multiplication constructions similar to the Coppersmith-
Winograd construction, and obtain a new improved bound on ω < 2.3727.

1 Introduction

The product of two matrices is one of the most basic operations in mathematics and computer science. Many
other essential matrix operations can be efficiently reduced to it, such as Gaussian elimination, LUP decom-
position, the determinant or the inverse of a matrix [1]. Matrix multiplication is also used as a subroutine in
many computational problems that, on the face of it, have nothing to do with matrices. As a small sample
illustrating the variety of applications, there are faster algorithms relying on matrix multiplication for graph
transitive closure (see e.g. [1]), context free grammar parsing [20], and even learning juntas [13].

Until the late 1960s it was believed that computing the product C of two n × n matrices requires
essentially a cubic number of operations, as the fastest algorithm known was the naive algorithm which
indeed runs in O(n3) time. In 1969, Strassen [19] excited the research community by giving the first
subcubic time algorithm for matrix multiplication, running in O(n2.808) time. This amazing discovery
spawned a long line of research which gradually reduced the matrix multiplication exponent ω over time.
In 1978, Pan [14] showed ω < 2.796. The following year, Bini et al. [4] introduced the notion of border
rank and obtained ω < 2.78. Schönhage [17] generalized this notion in 1981, proved his τ -theorem (also
called the asymptotic sum inequality), and showed that ω < 2.548. In the same paper, combining his work
with ideas by Pan, he also showed ω < 2.522. The following year, Romani [15] found that ω < 2.517. The
first result to break 2.5 was by Coppersmith and Winograd [9] who obtained ω < 2.496. In 1986, Strassen
introduced his laser method which allowed for an entirely new attack on the matrix multiplication problem.
He also decreased the bound to ω < 2.479. Three years later, Coppersmith and Winograd [10] combined
Strassen’s technique with a novel form of analysis based on large sets avoiding arithmetic progressions and
obtained the famous bound of ω < 2.376 which has remained unchanged for more than twenty years.

In 2003, Cohn and Umans [8] introduced a new, group-theoretic framework for designing and analyzing
matrix multiplication algorithms. In 2005, together with Kleinberg and Szegedy [7], they obtained several
novel matrix multiplication algorithms using the new framework, however they were not able to beat 2.376.

Many researchers believe that the true value of ω is 2. In fact, both Coppersmith and Winograd [10]
and Cohn et al. [7] presented conjectures which if true would imply ω = 2. Recently, Alon, Shpilka and
Umans [2] showed that both the Coppersmith-Winograd conjecture and one of the Cohn et al. [7] conjectures
contradict a variant of the widely believed sunflower conjecture of Erdös and Rado [11]. Nevertheless, it
could be that at least the remaining Cohn et al. conjecture could lead to a proof that ω = 2.
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The Coppersmith-Winograd Algorithm. In this paper we revisit the Coppersmith-Winograd (CW) ap-
proach [10]. We give a very brief summary of the approach here; we will give a more detailed account in
later sections.

One first constructs an algorithm A which given Q-length vectors x and y for constant Q, computes Q
values of the form zk =

∑
i,j tijkxiyj , say with tijk ∈ {0, 1}, using a smaller number of products than would

naively be necessary. The values zk do not necessarily have to correspond to entries from a matrix product.
Then, one considers the algorithm An obtained by applying A to vectors x, y of length Qn, recursively n
times as follows. Split x and y into Q subvectors of length Qn−1. Then run A on x and y treating them
as vectors of length Q with entries that are vectors of length Qn−1. When the product of two entries is
needed, use An−1 to compute it. This algorithm An is called the nth tensor power of A. Its running time is
essentially O(rn) if r is the number of multiplications performed by A.

The goal of the approach is to show that for very large n one can set enough variables xi, yj , zk to 0 so
that running An on the resulting vectors x and y actually computes a matrix product. That is, as n grows,
some subvectors x′ of x and y′ of y can be thought to represent square matrices and when An is run on x
and y, a subvector of z is actually the matrix product of x′ and y′.

If An can be used to multiply m ×m matrices in O(rn) time, then this implies that ω ≤ logm r
n, so

that the larger m is, the better the bound on ω.
Coppersmith and Winograd [10] introduced techniques which, when combined with previous techniques

by Schönhage [17], allowed them to effectively choose which variables to set to 0 so that one can compute
very large matrix products using An. Part of their techniques rely on partitioning the index triples i, j, k ∈
[Q]n into groups and analyzing how “similar” each group g computation {zkg =

∑
i,j: (i,j,k)∈g tijkxiyj}k is

to a matrix product. The similarity measure used is called the value of the group.
Depending on the underlying algorithm A, the partitioning into groups varies and can affect the final

bound on ω. Coppersmith and Winograd analyzed a particular algorithm A which resulted in ω < 2.39.
Then they noticed that if one uses A2 as the basic algorithm (the “base case”) instead, one can obtain the
better bound ω < 2.376. They left as an open problem what happens if one uses A3 as the basic algorithm
instead.

Our contribution. We give a new way to more tightly analyze the techniques behind the Coppersmith-
Winograd (CW) approach [10]. We demonstrate the effectiveness of our new analysis by showing that the
8th tensor power of the CW algorithm [10] in fact gives ω < 2.3727. (It is likely that higher tensor powers
can give tighter estimates, and this could be the subject of future work.)

There are two main theorems behind our approach. The first theorem takes any tensor power An of a
basic algorithmA, picks a particular group partitioning forAn and derives an efficient procedure computing
formulas for the values of these groups. The second theorem assumes that one knows the values for An

and derives an efficient procedure which outputs a (nonlinear) constraint program on O(n2) variables, the
solution of which gives a bound on ω.

We then apply the procedures given by the theorems to the second, fourth and eighth tensor powers of
the Coppersmith-Winograd algorithm, obtaining improved bounds with each new tensor power.

Similar to [10], our proofs apply to any starting algorithm that satisfies a simple uniformity requirement
which we formalize later. The upshot of our approach is that now any such algorithm and its higher tensor
powers can be analyzed entirely by computer. (In fact, our analysis of the 8th tensor power of the CW
algorithm is done this way.) The burden is now entirely offloaded to constructing base algorithms satisfying
the requirement. We hope that some of the new group-theoretic techniques can help in this regard.
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Why wasn’t an improvement on CW found in the 1990s? After all, the CW paper explicitly posed the
analysis of the third tensor power as an open problem.

The answer to this question is twofold. Firstly, several people have attempted to analyze the third tensor
power (from personal communication with Umans, Kleinberg and Coppersmith). As the author found out
from personal experience, analyzing the third tensor power reveals to be very disappointing. In fact no
improvement whatsoever can be found. This finding led some to believe that 2.376 may be the final answer,
at least for the CW algorithm.

The second issue is that with each new tensor power, the number of new values that need to be analyzed
grows quadratically. For the eighth tensor power for instance, 30 separate analyses are required! Prior to
our work, each of these analyses would require a separate application of the CW techniques. It would have
required an enormous amount of patience to analyze larger tensor powers, and since the third tensor power
does not give any improvement, the prospects looked bleak.

Stothers’ work. We were recently made aware of the thesis work of A. Stothers [18] in which he claims an
improvement to ω. Stothers argues that ω < 2.3737 by analyzing the 4th tensor power of the Coppersmith-
Winograd construction. Our approach can be seen as a vast generalization of Stothers’ analysis, and part of
our proof has benefited from an observation of Stothers’ which we will point out in the main text.

There are several differences between our approach and Stothers’. The first is relatively minor: the CW
approach requires the use of some hash functions; ours are different and simpler than Stothers’. The main
difference is that because of the generality of our analysis, we do not need to fully analyze all groups of
each tensor power construction. Instead we can just apply our formulas in a mechanical way. Stothers, on
the other hand, did a completely separate analysis of each group.

Finally, Stothers’ approach only works for tensor powers up to 4. Starting with the 5-th tensor power,
the values of some of the groups begin to depend on more variables and a more careful analysis is needed.

(Incidentally, we also obtain a better bound from the 4th tensor power, ω < 2.37293, however this is an
artifact of our optimization software, as we end up solving essentially the same constraint program.)

Acknowledgments. The author is grateful to Satish Rao for encouraging her to explore the matrix multi-
plication problem more thoroughly and to Ryan Williams for his unconditional support. The author would
also like to thank François Le Gall who alerted her to Stothers’ work, suggested the use of the NLOPT
software developed at MIT, and pointed out that the feasible solution obtained by Stothers for his 4th tensor
power constraint program is not optimal and that one can obtain ω < 2.37294 with a different setting of the
parameters[12].

Preliminaries We use the following notation: [n] := {1, . . . , n}, and
(

N
[ai]i∈[k]

)
:=
(

N
a1,...,ak

)
.

We define ω ≥ 2 to be the infimum over the set of all reals r such that n × n matrix multiplication
over Q can be computed in nr additions and multiplications for some natural number n. (However, the CW
approach and our extensions work over any ring.)

A three-term arithmetic progression is a sequence of three integers a ≤ b ≤ c so that b− a = c− b, or
equivalently, a+ c = 2b. An arithmetic progression is nontrivial if a < b < c.

The following is a theorem by Behrend [3] improving on Salem and Spencer [16]. The subset A com-
puted by the theorem is called a Salem-Spencer set.

Theorem 1. There exists an absolute constant c such that for every N ≥ exp(c2), one can construct in
poly(N) time a subset A ⊂ [N ] with no three-term arithmetic progressions and |A| > N exp(−c

√
logN).
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The following lemma is needed in our analysis.

Lemma 1. Let k be a constant and N be sufficiently large. Let Bi be fixed for i ∈ [k]. Let ai for i ∈ [k] be
variables such that ai ≥ 0 and

∑
i ai = 1. Then the quantity(

N

[aiN ]i∈[k]

) k∏
i=1

BaiN
i

is maximized for the choices ai = Bi/
∑k

j=1Bj for all i ∈ [k] and for these choices it is at least k∑
j=1

Bj

N

/ (N + 1)k.

Proof. We will prove the lemma by induction on k. Suppose that k = 2 and consider(
N

aN

)
xaNyN(1−a) = yN

(
N

aN

)
(x/y)aN ,

where x ≤ y.
When (x/y) ≤ 1, the function f(a) =

(
N
aN

)
(x/y)aN of a is concave for a ≤ 1/2. Hence its maximum

is achieved when ∂f(a)/∂a = 0. Consider f(a): it is N !/((aN)!(N(1 − a))!)(x/y)aN . We can take the
logarithm to obtain ln f(a) = ln(N !) + Na ln(x/y) − ln(aN !) − ln((N(1 − a))!). f(a) grows exactly
when a ln(x/y)− ln(aN !)/N − ln(N(1− a))!/N does. Taking Stirling’s approximation, we obtain

a ln(x/y)−ln(aN !)/N−ln(N(1−a))!/N = a ln(x/y)−a ln(a)−(1−a) ln(1−a)−lnN−O((logN)/N).

Since N is large, the O((logN)/N) term is negligible. Thus we are interested in when g(a) =
a ln(x/y) − a ln(a) − (1 − a) ln(1 − a) is maximized. Because of concavity, for a ≤ 1/2 and x ≤ y,
the function is maximized when ∂g(a)/∂a = 0, i.e. when

0 = ln(x/y)− ln(a)− 1 + ln(1− a) + 1 = ln(x/y)− ln(a/(1− a)).

Hence a/(1− a) = x/y and so a = x/(x+ y).
Furthermore, since the maximum is attained for this value of a, we get that for each t ∈ {0, . . . , N}

we have that
(
N
t

)
xtyN−t ≤

(
N
aN

)
xaNyN(1−a), and since

∑N
t=0

(
N
t

)
xtyN−t = (x+ y)N , we obtain that for

a = x/(x+ y), (
N

aN

)
xaNyN(1−a) ≥ (x+ y)N/(N + 1).

Now let’s consider the case k > 2. First assume that the Bi are sorted so that Bi ≤ Bi+1. Since∑
i ai = 1, we obtain (

N

[ai]i∈[k]

) k∏
i=1

Bi =

(∑
i

Bi

)N (
N

[ai]i∈[k]

) k∏
i=1

bi,

where bi = Bi/
∑

j Bj . We will prove the claim for
(

N
[ai]i∈[k]

)∏k
i=1 bi, and the lemma will follow for the

Bi as well. Hence we can assume that
∑

i bi = 1.
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Suppose that we have proven the claim for k − 1. This means that in particular

(
N − a1N

[ajN ]j≥2

) k∏
j=2

bkj ≥

 k∑
j=2

bj

N−a1N

/(N + 1)k−1,

and the quantity is maximized for ajN/(N − a1N) = bj/
∑

j≥2 bj for all j ≥ 2.

Now consider
(
N
a1N

)
ba1N
1

(∑k
j=2 bj

)N−a1N
. By our base case we get that this is maximized and is at

least (
∑k

j=1 bj)
N/N for the setting a1 = b1. Hence, we will get

(
N

[ajN ]j∈[k]

) k∏
j=1

bkj ≥

 k∑
j=1

bj

N

/(N + 1)k,

for the setting a1 = b1 and for j ≥ 2, ajN/(N − a1N) = bj/
∑

j≥2 bj implies aj/(1− b1) = bj/(1− b1)
and hence aj = bj . We have proven the lemma.

1.1 A brief summary of the techniques used in bilinear matrix multiplication algorithms

A full exposition of the techniques can be found in the book by Bürgisser, Clausen and Shokrollahi [6]. The
lecture notes by Bläser [5] are also a nice read.

Bilinear algorithms and trilinear forms. Matrix multiplication is an example of a trilinear form. n × n
matrix multiplication, for instance, can be written as∑

i,j∈[n]

∑
k∈n

xikykjzij ,

which corresponds to the equalities zij =
∑

k∈n xikykj for all i, j ∈ [n]. In general, a trilinear form has the
form

∑
i,j,k tijkxiyjzk where i, j, k are indices in some range and tijk are the coefficients which define the

trilinear form; tijk is also called a tensor. The trilinear form for the product of a k ×m by an m× n matrix
is denoted by 〈k,m, n〉.

Strassen’s algorithm for matrix multiplication is an example of a bilinear algorithm which computes a
trilinear form. A bilinear algorithm is equivalent to a representation of a trilinear form of the following form:

∑
i,j,k

tijkxiyjzk =
r∑

λ=1

(
∑
i

αλ,ixi)(
∑
j

βλ,jyj)(
∑
k

γλ,kzk).

Given the above representation, the algorithm is then to first compute the r productsPλ = (
∑

i αλ,ixi)(
∑

j βλ,jyj)
and then for each k to compute zk =

∑
λ γλ,kPλ.

For instance, Strassen’s algorithm for 2× 2 matrix multiplication can be represented as follows:

(x11y11 + x12y21)z11 + (x11y12 + x12y22)z12 + (x21y11 + x22y21)z21 + (x21y12 + x22y22)z22 =

(x11 + x22)(y11 + y22)(z11 + z22) + (x21 + x22)y11(z21 − z22) + x11(y12 − y22)(z12 + z22)+

x22(y21 − y11)(z11 + z21) + (x11 + x12)y22(−z11 + z12) + (x21 − x11)(y11 + y12)z22+

5



(x12 − x22)(y21 + y22)z11.

The minimum number of products r in a bilinear construction is called the rank of the trilinear form
(or its tensor). It is known that the rank of 2 × 2 matrix multiplication is 7, and hence Strassen’s bilinear
algorithm is optimal for the product of 2×2 matrices. A basic property of the rankR of matrix multiplication
is that R(〈k,m, n〉) = R(〈k, n,m〉) = R(〈m, k, n〉) = R(〈m,n, k〉) = R(〈n,m, k〉) = R(〈n, k,m〉).
This property holds in fact for any tensor and the tensors obtained by permuting the roles of the x, y and z
variables.

Any algorithm for n × n matrix multiplication can be applied recursively k times to obtain a bilinear
algorithm for nk × nk matrices, for any integer k. Furthermore, one can obtain a bilinear algorithm for
〈k1k2,m1m2, n1n2〉 by splitting the k1k2×m1m2 matrix into blocks of size k1×m1 and them1m2×n1n2

matrix into blocks of sizem1×n1. The one can apply a bilinear algorithm for 〈k2,m2, n2〉 on the matrix with
block entries, and an algorithm for 〈k1,m1, n1〉 to multiply the blocks. This composition multiplies the ranks
and henceR(〈k1k2,m1m2, n1n2〉) ≤ R(〈k1,m1, n1〉)·R(〈k2,m2, n2〉). Because of this,R(〈2k, 2k, 2k〉) ≤
(R(〈2, 2, 2〉))k = 7k and if N = 2k, R(〈N,N,N〉) ≤ 7log2N = N log2 7. Hence, ω ≤ logN R(〈N,N,N〉).

In general, if one has a bound R(〈k,m, n〉) ≤ r, then one can symmetrize and obtain a bound on
R(〈kmn, kmn, kmn〉) ≤ r3, and hence ω ≤ 3 logkmn r.

The above composition of two matrix product trilinear forms to form a new trilinear form is called
the tensor product t1 ⊗ t2 of the two forms t1, t2. For two generic trilinear forms

∑
i,j,k tijkxiyjzk and∑

i′,j′,k′ t
′
ijkxi′yj′zk′ , their tensor product is the trilinear form∑

(i,i′),(j,j′),(k,k′)

(tijkt
′
i′j′k′)x(i,i′)y(j,j′)z(k,k′),

i.e. the new form has variables that are indexed by pairs if indices, and the coordinate tensors are multiplied.
The direct sum t1 ⊕ t2 of two trilinear forms t1, t2 is just their sum, but where the variable sets that they

use are disjoint. That is, the direct sum of
∑

i,j,k tijkxiyjzk and
∑

i,j,k t
′
ijkxiyjzk is a new trilinear form

with the set of variables {xi0, xi1, yj0, yj1, zk0, zk1}i,j,k:∑
i,j,k

tijkxi0yj0zk0 + t′ijkxi1yj1zk1.

A lot of interesting work ensued after Strassen’s discovery. Bini et al. [4] showed that one can extend
the form of a bilinear construction to allow the coefficients αλ,i, βλ,j and γλ,k to be linear functions of the
integer powers of an indeterminate, ε. In particular, Bini et al. gave the following construction for three
entries of the product of 2× 2 matrices in terms of 5 bilinear products:

(x11y11 + x12y21)z11 + (x11y12 + x12y22)z12 + (x21y11 + x22y21)z21 +O(ε) =

(x12 + εx22)y21(z11 + ε−1z21) + x11(y11 + εy12)(z11 + ε−1z12)+

x12(y11 + y21 + εy22)(−ε−1z21) + (x11 + x12 + εx21)y11(−ε−1z12)+

(x12 + εx21)(y11 + εy22)(ε−1z12 + ε−1z21),

where the O(ε) term hides triples which have coefficients that depend on positive powers of ε.
The minimum number of products of a construction of this type is called the border rank R̃ of a trilinear

form (or its tensor). Border rank is a stronger notion of rank and it allows for better bounds on ω. Most of
the properties of rank also extend to border rank, so that if R̃(〈k,m, n〉) ≤ r, then ω ≤ 3 ∗ logkmn r. For
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instance, Bini et al. used their construction above to obtain a border rank of 10 for the product of a 2× 2 by
a 2 × 3 matrix and, by symmetry, a border rank of 103 for the product of two 12 × 12 matrices. This gave
the new bound of ω ≤ 3 log12 10 < 2.78.

Schönhage [17] generalized Bini et al.’s approach and proved his τ -theorem (also known as the asymp-
totic sum inequality). Up until his paper, all constructions used in designing matrix multiplication alr-
gorithms explicitly computed a single matrix product trilinear form. Schönhage’s theorem allowed a whole
new family of contructions. In particular, he showed that constructions that are direct sums of rectangular
matrix products suffice to give a bound on ω.

Theorem 2 (Schönhage’s τ -theorem). If R̃(
⊕q

i=1〈ki,mi, ni〉) ≤ r for r > q, then let τ be defined as∑q
i=1(kimini)

τ = r. Then ω ≤ 3τ .

2 Coppersmith and Winograd’s algorithm

We recall Coppersmith and Winograd’s [10] (CW) construction:

λ−2 ·
q∑
i=1

(x0 + λxi)(y0 + λyi)(z0 + λzi)− λ−3 · (x0 + λ2
q∑
i=1

xi)(y0 + λ2
q∑
i=1

yi)(z0 + λ2
q∑
i=1

zi)+

+(λ−3 − qλ−2) · (x0 + λ3xq+1)(y0 + λ3yq+1)(z0 + λ3zq+1) =

q∑
i=1

(xiyiz0 + xiy0zi + x0yizi) + (x0y0zq+1 + x0yq+1z0 + xq+1y0z0) +O(λ).

The construction computes a particular symmetric trilinear form. The indices of the variables are either
0, q + 1 or some integer in [q]. We define

p(i) =


0 if i = 0
1 if i ∈ [q]
2 if i = q + 1

The important property of the CW construction is that for any triple xiyjzk in the trilinear form, p(i) +
p(j) + p(k) = 2.

In general, the CW approach applies to any construction for which we can define an integer function p
on the indices so that there exists a number P so that for every xiyjzk in the trilinear form computed by the
construction, p(i) + p(j) + p(k) = P . We call such constructions (p, P )-uniform.

Definition 1. Let p be a function from [n] to [N ]. Let P ∈ [N ] A trilinear form
∑

i,j,k∈[n] tijkxiyjzk is
(p, P )-uniform if whenever tijk 6= 0, p(i) + p(j) + p(k) = P . A construction computing a (p, P )-uniform
trilinear form is also called (p, P )-uniform.

Any tensor power of a (p, P )-uniform construction is (p′, P ′) uniform for some p′ and P ′. There
are many ways to define p′ and P ′ in terms of p and P . For the K-th tensor power the variable indices
are length K sequences of the original indices: xindex[1], . . . , xindex[K], yindex[1], . . . , yindex[K]
and zindex[1], . . . , zindex[K]. Then, for instance, one can pick p′ to be an arbitrary linear combina-
tion, p′[xindex] =

∑K
i ai · xindex[i], and similarly p′[yindex] =

∑K
i ai · yindex[i] and p′[zindex] =∑K

i ai · zindex[i]. Clearly then P ′ = P
∑

i ai, and the K-th tensor power construction is (p′, P ′)-uniform.
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In this paper we will focus on the case where ai = 1 for all i ∈ [K], so that p′[index] =
∑K

i index[i]
and P ′ = PK. Similar results can be obtained for other choices of p′.

The CW approach proceeds roughly as follows. Suppose we are given a (p, P )-uniform construction
and we wish to derive a bound on ω from it. (The approach only works when the range of p is at least
2.) Let C be the trilinear form computed by the construction and let r be the number of bilinear products
performed. If the trilinear form happens to be a direct sum of different matrix products, then one can just
apply the Schönhage τ -theorem [17] to obtain a bound on ω in terms of r and the dimensions of the small
matrix products. However, typically the triples in the trilinear form C cannot be partitioned into matrix
products on disjoint sets of variables.

The first CW idea is to partition the triples of C into groups which look like matrix products but may
share variables. Then the idea is to apply procedures to remove the shared variables by carefully setting
variables to 0. In the end one obtains a smaller, but not much smaller, number of independent matrix
products and can use Schönhage’s τ -theorem.

Two procedures are used to remove the shared variables. The first one defines a random hash func-
tion h mapping variables to integers so that there is a large set S such that for any triple xiyjzk with
h(xi), h(yj), h(zk) ∈ S one actually has h(xi) = h(yj) = h(zk). Then one can set all variables mapped
outside of S to 0 and be guaranteed that the triples are partitioned into groups according to what element
of S they were mapped to, and moreover, the groups do not share any variables. Since S is large and h
maps variables independently, there is a setting of the random bits of h so that a lot of triples (at least the
expectation) are mapped into S and are hence preserved by this partitioning step. The construction of S uses
the Salem-Spencer theorem and h is a cleverly constructed linear function.

After this first step, the remaining nonzero triples have been partitioned into groups according to what
element of S they were mapped to, and the groups do not share any variables. The second step removes
shared variables within each group. This is accomplished by a greedy procedure that guarantees that a
constant fraction of the triples remain. More details can be found in the next section.

When applied to the CW construction above, the above procedures gave the bound ω < 2.388.
The next idea that Coppersmith and Winograd had was to extend the τ -theorem to Theorem 3 below

using the notion of value Vτ . The intuition is that Vτ assigns a weight to a trilinear form T according to
how “close” an algorithm computing T is to an O(n3τ ) matrix product algorithm. Suppose that for some
N , the N th tensor power of T 1 can be reduced to

⊕q
i=1〈ki,mi, ni〉 by substitution of variables. Then we

introduce the constraint

Vτ (T ) ≥

(
q∑
i=1

(kimini)
τ

)1/N

.

Furthermore, if π is the cyclic permutation of the x,y and z variables in T , then we also have Vτ (T ) =
(Vτ (T ⊗ πA ⊗ π2T ))1/3 ≥ (Vτ (T )Vτ (πT )Vτ (π2T ))1/3. With this notion of value as a function of τ , we
can state an extended τ -theorem, implicit in [10].

Theorem 3 ([10]). Let T be a trilinear form such that T =
⊕q

i=1 Ti. If there is an algorithm that computes
T by performing at most r multiplications for r > q, then ω ≤ 3τ for τ given by

∑q
i=1 Vτ (Ti) = r.

It is clear that values are superadditive and supermultiplicative, so that Vτ (T1 ⊗ T2) ≥ Vτ (T1)Vτ (T2)
and Vτ (T1 ⊕ T2) ≥ Vτ (T1) + Vτ (T2).

Theorem 3 has the following effect on the CW approach. Instead of partitioning the trilinear form into
matrix product pieces, one could partition it into different types of pieces, provided that their value is easy

1Tensor powers of trilinear forms can be defined analogously to how we defined tensor powers of an algorithm computing them.

8



to analyze. A natural way to partition the trilinear form C is to group all triples xiyjzk for which (i, j, k) are
mapped by p to the same integer 3-tuple (p(i), p(j), p(k)). This partitioning is particularly good for the CW
construction and its tensor powers: in Claim 7 we show for instance that the trilinear form which consists of
the triples mapped to (0, J,K) for any J,K is always a matrix product of the form 〈1, Q, 1〉 for some Q.

Using this extra ingredient, Coppersmith and Winograd were able to analyze the second tensor power of
their construction and to improve the estimate to the current best bound ω < 2.376.

In the following section we show how with a few extra ingredients one can algorithmically analyze an
arbitrary tensor power of any (p, P )-uniform construction. (Amusingly, the algorithms involve the solution
of linear systems, indicating that faster matrix multiplication algorithms can help improve the search for
faster matrix multiplication algorithms.)

3 Analyzing the K tensor power of a (p, P )-uniform construction, for any K

LetK ≥ 2 be an integer. Let p be an integer function with range size at least 2. We will show how to analyze
the K-tensor power of any (p, P )-uniform construction by proving the following theorem:

Theorem 4. Given a (p, P )-uniform construction and the values for its K-tensor power, the procedure in
Figure 1 outputs a constraint program the solution τ of which implies ω ≤ 3τ .

Consider the the K-tensor power of a particular (p, P )-uniform construction. Call the trilinear form
computed by the construction C. Let r be the bound on the (border) rank of the original construction. Then
rK is a bound on the (border) rank of C.

The variables in C have indices which are K-length sequences of the original indices. Moreover, for
every triple xxindexyyindexzzindex in the trilinear form and any particular position pos in the index sequences,
p(xindex[pos]) + p(yindex[pos]) + p(zindex[pos]) = P . Recall that we defined the extension p̄ of p for
the K tensor power as p̄(index) =

∑K
i=1 p(index[i]), and that the K tensor power is (p̄, PK)-uniform.

Now, we can represent C as a sum of trilinear forms XIY JZK , where XIY JZK only contains the
triples xxindexyyindexzzindex in C for which p̄ maps xindex to I , yindex to J and zindex to K. That is, if
C =

∑
ijk tijkxiyjzk, then XIY JZK =

∑
i,j,k: p̄(i)=I,p̄(j)=J tijkxiyjzk. We refer to I ,J ,K as blocks.

Following the CW analysis, we will later compute the value VIJK (as a function of τ ) for each trilin-
ear form XIY JZK separately. If the trilinear forms XIY JZK didn’t share variables, we could just use
Theorem 3 to estimate ω as 3τ where τ is given by rK =

∑
IJ VIJK(τ).

However, the forms can share variables. For instance, XIY JZK and XIY J ′ZK
′

share the x variables
mapped to block I . We use the CW tools to zero-out some variables until the remaining trilinear forms no
longer share variables, and moreover a nontrivial number of the forms remain so that one can obtain a good
estimate on τ and hence ω. We outline the approach in what follows.

Take the N -th tensor power CN of C for large N ; we will eventually let N go to∞. Now the indices of
the variables ofC areN -length sequences ofK length sequences. The blocks ofCN areN -length sequences
of blocks of C.

We will pick (rational) values AI ∈ [0, 1] for every block I of C, so that
∑

I A
I = 1. Then we will

set to zero all x, y, z variables of CN the indices of which map to blocks which do not have exactly N ·AI
positions of block I for every I . (For large enough N , N ·AI is an integer.)

For each triple of blocks of CN (Ī , J̄ , K̄) we will consider the trilinear subform of CN , X ĪY J̄ZK̄ ,
where as before CN is the sum of these trilinear forms.
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1. For each I, J,K = PK− I − J , determine the value VIJK of the trilinear form∑
i,j: p(i)=I,p(j)=J tijkxiyjzk, as a nondecreasing function of τ .

2. Define variables aIJK and āIJK for I ≤ J ≤ K = PK − I − J .

3. Form the linear system: for all I , AI =
∑

J āIJK , where āIJK = āsort(IJK).

4. Determine the rank of the linear system, and if necessary, pick enough variables
āIJK to place in S and treat as constants, so the system has full rank.

5. Solve for the variables outside of S in terms of the AI and the variables in S.

6. Compute the derivatives pI′J ′K′IJK .

7. Form the program:

Minimize τ subject to

rK =
∏
I≤J≤K

(
ā
āIJK
IJK

a
aIJK
IJK

)perm(IJK)

· V
perm(IJK)·aIJK
IJK∏

I A
AI
I

,

āIJK ≥ 0, aIJK ≥ 0 for all I, J,K∑
I≤J≤K perm(IJK) · āIJK = 1,

āIJK ·
∏
āI′J′K′ /∈S,pI′J′K′IJK>0(āI′J ′K′)

pI′J′K′IJK

=
∏
āI′J′K′ /∈S,pI′J′K′IJK<0(āI′J ′K′)

−pI′J′K′IJK for all āIJK ∈ S,∑
J aIJK =

∑
J āIJK for all I( unless one is setting aIJK = āIJK).

8. Solve the program to obtain ω ≤ 3τ .

Figure 1: The procedure to analyze the K tensor power.

Consider values aIJK for all valid block triples I, J,K of C which satisfy

AI =
∑
J

aIJ(P ·K−I−J) =
∑
J

aJI(P ·K−I−J) =
∑
J

a(P ·K−I−J)JI .

The values aIJK will correspond to the number of index positions pos such that any trilinear form
X ĪY J̄ZK̄ of CN we have that Ī[pos] = I, J̄ [pos] = J, K̄[pos] = K.

The aIJK need to satisfy the following additional two constraints:

1 =
∑
I

AI =
∑
I,J,K

aIJK ,

and
PK = 3

∑
I

I ·AI .

We note that although the second constraint is explicitly stated in [10], it actually automatically holds as
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a consequence of constraint 1 and the definition of aIJK since

3
∑
I

IAI =
∑
I

IAI +
∑
J

JAJ +
∑
K

KAK =

∑
I

∑
J

IaIJ(PK−I−J) +
∑
J

∑
I

JaIJ(PK−I−J) +
∑
K

∑
J

Ka(PK−J−K),J,K =

∑
I

∑
J

(I + J + (PK − I − J))aIJ(PK−I−J) = PK
∑
I,J

aIJ(PK−I−J) = PK.

Thus the only constraint that needs to be satisfied by the aIJK is
∑

I,J,K aIJK = 1.
Recall that

(
N

[Ri]i∈S

)
denotes

(
N

Ri1 ,Ri2 ,...,Ri|S|

)
where i1, . . . , i|S| are the elements of S. When S is im-

plicit, we only write
(
N

[Ri]

)
.

By our choice of which variables to set to 0, we get that the number of CN block triples which still have
nonzero trilinear forms is

(
N

[N ·AI ]

)
·

 ∑
[aIJK ]

∏
I

(
N ·AI

[N · aIJK ]J

) ,

where the sum ranges over the values aIJK which satisfy the above constraint. This is since the number
of nonzero blocks is

(
N

[N ·AI ]

)
and the number of block triples which contain a particular X block is exactly∏

I

( N ·AI
[N ·aIJK ]J

)
for every partition of AI into [aIJK ]J (for K = PK − I − J).

Let ℵ =
∑

[aIJK ]

∏
I

( N ·AI
[N ·aIJK ]J

)
. The current number of nonzero block triples is ℵ ·

(
N

[N ·AI ]

)
.

Our goal will be to process the remaining nonzero triples by zeroing out variables sharing the same
block until the remaining trilinear forms corresponding to different block triples do not share variables.
Furthermore, to simplify our analysis, we would like for the remaining nonzero trilinear forms to have the
same value.

The triples would have the same value if we fix for each I a partition [aIJKN ]J of AIN : Suppose
that each remaining triple X ĪY J̄ZK̄ has exactly aIJKN positions pos such that Ī[pos] = I, J̄ [pos] =
J, K̄[pos] = K. Then each remaining triple would have value at least

∏
I,J V

aIJKN
IJK by supermultiplicativ-

ity.
Suppose that we have fixed a particular choice of the aIJK . We will later show how to pick a choice

which maximizes our bound on ω.
The number of small trilinear forms (corresponding to different block triples of CN ) is ℵ′ ·

(
N

[N ·AI ]

)
,

where

ℵ′ =
∏
I

(
N ·AI

[N · aIJK ]J

)
.

Let us show how to process the triples so that they no longer share variables.
Pick M to be a prime which is Θ(ℵ). Let S be a Salem-Spencer set of size roughly M1−o(1) as in the

Salem-Spencer theorem. The o(1) term will go to 0 when we let N go to infinity. In the following we’ll let
|S| = M1−ε and in the end we’ll let ε go to 0, similar to [10]; this is possible since our final inequality will
depend on 1/M ε/N which goes to 1 as N goes to∞ and ε goes to 0.

Choose random numbers w0, w1, . . . , wN in {0, . . . ,M − 1}.
For an index sequence Ī , define the hash functions which map the variable indices to integers, just as

in [10]:
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bx(Ī) =

N∑
pos=1

wpos · Ī[pos] mod M,

by(Ī) = w0 +
N∑

pos=1

wpos · Ī[pos] mod M,

bz(Ī) = 1/2(w0 +
N∑

pos=1

(PK − wpos · Ī[pos])) mod M.

Set to 0 all variables with blocks mapping to outside S.
For any triple with blocks Ī , J̄ , K̄ in the remaining trilinear form we have that bx(Ī)+by(J̄)+2bz(K̄) =

0.Hence, the hashes of the blocks form an arithmetic progression of length 3. Since S contains no nontrivial
arithmetic progressions, we get that for any nonzero triple

bx(Ī) = by(J̄) = bz(K̄).

Thus, the Salem-Spencer set S has allowed us to do some partitioning of the triples.
Let us analyze how many triples remain. Since M is prime, and due to our choice of functions, the x,y

and z blocks are independent and are hashed uniformly to {0, . . . ,M − 1}. If the I and J blocks of a triple
XIY JZK are mapped to the same value, so is the K block. The expected fraction of triples which remain
is hence

(M1−ε/M) · (1/M), which is 1/M1+ε.

This holds for the triples that satisfy our choice of partition [aIJK ].
The trilinear forms corresponding to block triples mapped to the same value in S can still share variables.

We do some pruning in order to remove shared blocks, similar to [10], with a minor change. For each s ∈ S,
process the triples hashing to s separately.

We first process the triples that obey our choice of [aIJK ], until they do not share any variables. After that
we also process the remaining triples, zeroing them out if necessary. (This is slightly different from [10].)

Greedily build a listL of independent triples as follows. Suppose we process a triple with blocks Ī , J̄ , K̄.
If Ī is among the x blocks in another triple in L, then set to 0 all y variables with block J̄ . Similarly, if Ī is
not shared but J̄ or K̄ is, then set all x variables with block Ī to 0. If no blocks are shared, add the triple to
L.

Suppose that when we process a triple Ī , J̄ , K̄, we find that it shares a block, say Ī , with a triple Ī , J̄ ′, K̄ ′

in L. Suppose that we then eliminate all variables sharing block J̄ , and thus eliminateU new triples for some
U . Then we eliminate at least

(
U
2

)
+ 1 pairs of triples which share a block: the

(
U
2

)
pairs of the eliminated

triples that share block J̄ , and the pair Ī , J̄ , K̄ and Ī , J̄ ′, K̄ ′ which share Ī .
Since

(
U
2

)
+ 1 ≥ U , we eliminate at least as many pairs as triples. The expected number of unordered

pairs of triples sharing an X (or Y or Z) block and for which at least one triple obeys our choice of [aIJK ]
is

[
(1/2)

((
N

[N ·AI ]

)
ℵ′
)

(ℵ′ − 1) +

((
N

[N ·AI ]

)
ℵ′
)

(ℵ − ℵ′)
]
/M2+ε =

((
N

[N ·AI ]

)
ℵ′
)

(ℵ−ℵ′/2−1/2)/M2+ε.

Thus at most this many triples obeying our choice of [aIJK ] have been eliminated. Hence the expected
number of such triples remaining after the pruning is
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(
N

[N ·AI ]

)
ℵ′/M1+ε[1− ℵ/M + ℵ′/(2M)] ≥

(
N

[N ·AI ]

)
ℵ′/(CM1+ε),

for some constant C (depending on how large we pick M to be in terms of ℵ). We can pick values for
the variables wi in the hash functions which we defined so that at least this many triples remain. (Picking
these values determines our algorithm.)

We have that

max
[aIJK ]

∏
I

(
N ·AI

[N · aIJK ]J

)
≤ ℵ ≤ poly(N) max

[aIJK ]

∏
I

(
N ·AI

[N · aIJK ]J

)
.

Hence, we will approximate ℵ by ℵmax = max[aIJK ]

∏
I

( N ·AI
[N ·aIJK ]J

)
.

We have obtained

Ω

((
N

[N ·AI ]

)
ℵ′

ℵmax
· 1

poly(N)M ε

)
trilinear forms that do not share any variables and each of which has value

∏
I,J V

aIJKN
IJK .

If we were to set ℵ′ = ℵmax we would get Ω

(
( N

[N·AI ])
poly(N)Mε

)
trilinear forms instead. We use this setting

in our analyses, though a better analysis may be possible if you allow ℵ′ to vary.
We will see later that the best choice of [aIJK ] sets aIJK = asort(IJK) for each I, J,K, where

sort(IJK) is the permutation of IJK sorting them in lexicographic order (so that I ≤ J ≤ K). Since
tensor rank is invariant under permutations of the roles of the x, y and z variables, we also have that
VIJK = Vsort(IJK) for all I, J,K. Let perm(I, J,K) be the number of unique permutations of I, J,K.

Recall that r was the bound on the (border) rank of C given by the construction. Then, by Theorem 3,
we get the inequality

rKN ≥
(

N

[N ·AI ]

)
ℵ′

ℵmax
· 1

poly(N)M ε

∏
I≤J≤K

(VIJK(τ))perm(IJK)·N ·aIJK .

Let āIJK be the choices which achieve ℵmax so that ℵmax =
∏
I

( N ·AI
[N ·āIJK ]J

)
. Then, by taking Stirling’s

approximation we get that

(ℵ′/ℵmax)1/N =
∏
IJK

āāIJKIJK

aaIJKIJK

.

Taking theN -th root, takingN to go to∞ and ε to go to 0, and using Stirling’s approximation we obtain
the following inequality:

rK ≥
∏

I≤J≤K

(
āāIJKIJK

aaIJKIJK

)perm(IJK)

·
V
perm(IJK)·aIJK
IJK∏

I A
AI
I

.

If we set aIJK = āIJK , we get the simpler inequality

rK ≥
∏

I≤J≤K
(VIJK)perm(IJK)·aIJK/

∏
I

AAII ,

which is what we use in our application of the theorem as it reduces the number of variables and does not
seem to change the final bound on ω by much.

The values VIJK are nondecreasing functions of τ , where τ = ω/3. The inequality above gives an
upper bound on τ and hence on ω.
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Computing āIJK and aIJK . Here we show how to compute the values āIJK forming ℵmax and aIJK
which maximize our bound on ω.

The only restriction on aIJK is that AI =
∑

J aIJK =
∑

J āIJK , and so if we know how to pick āIJK ,
we can let aIJK vary subject to the constraints

∑
J aIJK =

∑
J āIJK . Hence we will focus on computing

āIJK .
Recall that āIJK is the setting of the variables aIJK which maximizes

∏
I

( N ·AI
[N ·aIJK ]J

)
for fixed AI .

Because of our symmetric choice of the AI , the above is maximized for āIJK = āsort(IJK), where
sort(IJK) is the permutation of I, J,K which sorts them in lexicographic order.

Let perm(I, J,K) be the number of unique permutations of I, J,K. The constraint satisfied by the
aIJK becomes

1 =
∑
I

AI =
∑

I≤J≤K
perm(I, J,K) · aIJK .

The constraint above together with āIJK = āsort(IJK) are the only constraints in the original CW paper.
However, it turns out that more constraints are necessary for K > 2.

The equalities AI =
∑

J āIJK form a system of linear equations involving the variables āIJK and the
fixed values AI . If this system had full rank, then the āIJK values (for āIJK = āsort(IJK)) would be
determined from the AI and hence ℵ would be exactly

∏
I

( N ·AI
[N ·āIJK ]J

)
, and a further maximization step

would not be necessary. This is exactly the case for K = 2 in [10]. This is also why in [10], setting
aIJK = āIJK was necessary.

However, the system of equations may not have full rank. Because of this, let us pick a minimum set S
of variables āĪJ̄K̄ so that viewing these variables as constaints would make the system have full rank.

Then, all variables āIJK /∈ S would be determined as linear functions depending on the AI and the
variables in S.

Consider the function G of AI and the variables in S, defined as

G =
∏
I

(
N ·AI

[N · āIJK ]āIJK /∈S , [N · āIJK ]āIJK∈S

)
.

G is only a function of {āIJK ∈ S} for fixed {Ai}i. We want to know for what values of the variables
of S, G is maximized.

G is maximized when
∏
IJ(āIJKN)! is minimized, which in turn is minimized exactly when F =∑

IJ ln((NāIJK)!) is minimized, where K = PK − I − J .
Using Stirling’s approximation ln(n!) = n lnn− n+O(lnn), we get that F is roughly equal to

N [
∑
IJ

āIJK ln(āIJK)− āIJK + āIJK lnN +O(log(NāIJK)/N)] =

N lnN +N [
∑
IJ

āIJK ln(aIJK)− āIJK +O(log(NāIJK)/N)],

since
∑

IJ āIJK =
∑

I AI = 1. As N goes to ∞, for any fixed setting of the āIJK variables, the
O(logN/N) term vanishes, and F is roughlyN lnN+N(

∑
IJ āIJK ln(āIJK)−āIJK). Hence to minimize

F we need to minimize f = (
∑

IJ āIJK ln(āIJK)− āIJK).
We want to know for what values of āIJK , f is minimized. Since f is convex for positive aIJK , it

is actually minimized when ∂f
∂āIJK

= 0 for every āIJK ∈ S. Recall that the variables not in S are linear
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combinations of those in S.2

Taking the derivatives, we obtain for each āIJK in S:

0 =
∂f

∂āIJK
=
∑
I′J ′K′

ln(āI′J ′K′)
∂āI′J ′K′

∂āIJK
.

We can write this out as

1 =
∏

I′J ′K′

(āI′J ′K′)
∂āI′J′K′
∂āIJK .

Since each variable āI′J ′K′ in the above equality for āIJK is a linear combination of variables in S,
the exponent pI′J ′K′IJK =

∂āI′J′K′
∂āIJK

is actually a constant, and so we get a system of polynomial equality
constraints which define the variables in S in terms of the variables outside of S: for any āIJK ∈ S, we get

āIJK ·
∏

āI′J′K′ /∈S,pI′J′K′IJK>0

(āI′J ′K′)
pI′J′K′IJK =

∏
āI′J′K′ /∈S,pI′J′K′IJK<0

(āI′J ′K′)
−pI′J′K′IJK . (1)

Given values for the variables not in S, we can use (1) to get valid values for the variables in S, and
hence also for the AI . For that choice of the AI , G is maximized for exactly the variable settings we have
picked. Now all we have to do is find the correct values for the variables outside of S and for āIJK , given
the constraints AI =

∑
J āIJK .

We cannot pick arbitrary values for the variables outside of S. They need to satisfy the following
constraints:

• the obtained AI satisfy
∑

I AI = 1, and

• the variables in S obtained from Equation 1 are nonnegative.

In summary, we obtain the procedure to analyze the K tensor power shown in Figure 1.

4 Analyzing the smaller tensors.

Consider the trilinear form consisting only of the variables from the K tensor power of C, with blocks
I, J,K, where I + J +K = P · K. In this section we will prove the following theorem:

Theorem 5. Given a (p, P )-uniform construction C, using the procedure in Figure 2 one can compute the
values VIJK for any tensor power of C. The K tensor power requires O(K2) applications of the procedure.

Suppose that we have analyzed the values for some powers K′ and K − K′ of the trilinear form from
the construction with K′ < K. We will show how to inductively analyze the values for the K power, using
the values for these smaller powers. The theorem will follow by noting that the number of values for the K
power is O(K2) and that one can use recursion to first compute the values for the bK/2c and dK/2e powers
and then combining them to obtain the values for the K power.

2We could have instead written f =
∑
IJ āIJK ln(āIJK) and minimized f , and the equalities we would have obtained

would have been exactly the same since the system of equations includes the equation
∑
IJ āIJK = 1, and although ∂f/∂a

is
∑
IJ

∂āIJK ln aIJK
∂a

=
∑
IJ

∂āIJK
∂a

(ln āaIJK − 1), the −1 in the brackets would be canceled out: if ā0,0,PK = (1 −∑
IJ: (I,J) 6=(0,0) āIJK), then ∂ā0,0,PK ln ā0,0,PK

∂a
= ln(ā0,0,PK)

∂ā0,0,PK
∂a

+
∑
I′J′: (I′,J′)6=(0,0)

∂āI′J′K′
∂a

.
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1. Define variables αijk and Xi, Yj , Zk for all good triples i, j, k.

2. Form the linear system consisting of Xi =
∑

j αijk, Yj =
∑

i αijk and Zk =
∑

i αijk.

3. Determine the rank of the system: it is exactly #i + #j + #k − 2 because of the fact
that

∑
iXi =

∑
j Yj =

∑
k Zk.

4. If the system does not have full rank, then pick enough variables αijk to treat as con-
stants; place them in a set ∆.

5. Solve the system for the variables outside of ∆ in terms of the ones in ∆ andXi, Yj , Zk.
Now we have αijk = αijk([Xi], [Yj ], [Xk], y ∈ ∆).

6. Let Wi,j,k = Vi,j,kVI−i,J−j,K−k. Compute for every `,

nx` =
∏
i,j,k

W
3
∂αijk
∂X`

ijk ,

ny` =
∏
i,j,k

W
3
∂αijk
∂Y`

ijk , and,

nz` =
∏
i,j,k

W
3
∂αijk
∂Z`

ijk .

7. Compute for every variable y ∈ ∆,

ny =
∏
i,j,k

W
∂αijk
∂y

i,j,k .

8. Compute for each αijk its setting αijk(∆) as a function of the y ∈ ∆ when X` =
nx`/

∑
i nxi, Y` = ny`/

∑
j nyj and Z` = nz`/

∑
k nzk.

9. Then set
VIJK = (

∑
`

nx`)
1/3(

∑
`

ny`)
1/3(

∑
`

nz`)
1/3

∏
y∈∆

nyy.

subject to the constraints on y ∈ ∆ given by

y ≥ 0 for all y ∈ ∆,
αijk(∆) ≥ 0 for every αijk /∈ S.

10. Find the setting of the y ∈ ∆ that maximizes the bound on VIJK . For any fixed guess
for τ , this is a linear program: Maximize

∑
y∈∆ y log ny subject to the above linear

constraints. Or, alternatively, let VIJK be a function of y ∈ ∆ and add the above two
constraints to the final program in Figure 1 computing ω.

Figure 2: The procedure for computing VIJK for arbitrary tensor powers.
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Consider the K tensor power of the trilinear form C. It can actually be viewed as the tensor product of
the K′ and K −K′ tensor powers of C.

Recall that the indices of the variables of the K tensor power of C are K-length sequences of indices of
the variables of C. Also recall that if p was the function which maps the indices of C to blocks, then we
define pK to be a function which maps the K power indices to blocks as pK(index) =

∑
pos p(index[pos]).

An index of a variable in the K tensor power of C can also be viewed as a pair (l,m) such that l is an
index of a variable in the K′ tensor power of C and m is an index of a variable in the K − K′ tensor power
of C. Hence we get that pK((l,m)) = pK

′
(l) + pK−K

′
(m).

For any I, J,K which form a valid block triple of the K tensor power, we consider the trilinear form
TI,J,K consisting of all triples xiyjzk of theK tensor power of the construction for which pK(i) = I, pK(j) =
J, pK(k) = K.

TI,J,K consists of the trilinear forms Ti,j,k⊗TI−i,J−j,K−k for all i, j, k that form a valid block triple for
the K′ power, and such that I − i, J − j,K − k form a valid block triple for the K − K′ power. Call such
blocks i, j, k good. Then:

TIJK =
∑

good ijk

Ti,j,k ⊗ TI−i,J−j,K−k.

(The sum above is a regular sum, not a disjoint sum, so the trilinear forms in it may share indices.) The
above decomposition of TIJK was first observed by Stothers [18]. It has greatly simplified our analysis.

Let Qijk = Tijk ⊗ TI−i,J−j,K−k. By supermultiplicativity, the value Wijk of Qijk satisfies Wijk ≥
VijkVI−i,J−j,K−k. If the trilinear forms Qijk didn’t share variables, then we would immediately obtain a
lower bound on the value VIJK as

∑
ijk VijkVI−i,J−j,K−k. However, the trilinear forms Qijk may share

variables, and we’ll apply the techniques from the previous section to remove the dependencies.
To analyze the value VIJK of TI,J,K , we first take the N -th tensor power of TI,J,K , the N -th tensor

power of TK,I,J and the N -th tensor power of TJ,K,I , and then tensor multiply these altogether. By the
definition of value, VI,J,K is at least the 3N -th root of the value of the new trilinear form.

Here is how we process theN -th tensor power of TI,J,K . The powers of TK,I,J and TJ,K,I are processed
similarly.

We pick values Xi ∈ [0, 1] for each block i of the K′ tensor power of C so that
∑

iXi = 1. Set to 0 all
x variables except those that have exactly Xi ·N positions of their index which are mapped to (i, I − i) by
(pK

′
, pK−K

′
), for all i.

The number of nonzero x blocks is
(

N
[N ·Xi]i

)
.

Similarly pick values Yj for the y variables, with
∑

j Yj = 1, and retain only those with Yj index
positions mapped to (j, J − j). Similarly pick values Zk for the z variables, with

∑
k Zk = 1, and retain

only those with Zk index positions mapped to (k,K − k).
The number of nonzero y blocks is

(
N

[N ·Yj ]j

)
. The number of nonzero z blocks is

(
N

[N ·Zk]k

)
.

For i, j, k = PK′ − i− j which are valid blocks of the K′ tensor power of C with good i, j, k, let αijk
be variables such that Xi =

∑
j αijk, Yj =

∑
i αijk and Zk =

∑
i αijk.

After taking the tensor product of what is remaining of the N th tensor powers of TI,J,K , TK,I,J and
TJ,K,I , the number of x, y or z blocks is

Γ =

(
N

[N ·Xi]

)(
N

[N · Yj ]

)(
N

[N · Zk]

)
.

The number of block triples which contain a particular x, y or z block is
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ℵ =
∏
i

(
NXi

[Nαijk]j

)∏
j

(
NYj

[Nαijk]i

)∏
k

(
NZk

[Nαijk]i

)
.

Hence the number of triples is Γ · ℵ.
Set M = Θ(ℵ) to be a large enough prime greater than ℵ. Create a Salem-Spencer set S of size roughly

M1−ε. Pick random values w0, w1, w2, . . . , w3N in {0, . . . ,M − 1}.
The blocks for x, y, or z variables of the new big trilinear form are sequences of length 3N ; the first N

positions of a sequence contain pairs (i, I − i), the second N contain pairs (j, J − j) and the last N contain
pairs (k,K − k). We can thus represent the block sequences I of the K tensor power as (I1, I2) where I1 is
a sequence of length 3N of blocks of the K′ power of C and I2 is a sequence of length 3N of blocks of the
K −K′ power of C (the first N are x blocks, the second N are y blocks and the third N are z blocks).

For a particular block sequence I = (I1, I2), we define the hash functions that depend only on I1:

bx(I) =

3N∑
pos=1

wpos · I1[pos] mod M,

by(I) = w0 +

3N∑
pos=1

wpos · I1[pos] mod M,

bz(I) = 1/2(w0 +
3N∑

pos=1

(PK′ − (wpos · I1[pos]))) mod M.

We then set to 0 all variables that do not have blocks hashing to elements of S. Again, any surviving
triple has all variables’ blocks mapped to the same element of S. The expected fraction of triples remaining
is M1−ε/M2 = 1/M1+ε.

As before, we do the pruning of the triples mapped to each element of S separately. The expected number
of unordered pairs of triples sharing an x, y or z block is (3/2)Γℵ(ℵ − 1)/M3 ≤ Γℵ/(c ·M2) for large
constant c, and the number of remaining block triples over all elements of S is Ω(Γℵ/M1+ε) = Ω(Γ/M ε).
(Recall that Γ is the number of blocks and Γℵ was the original number of triples.) Analogously to [10], we
will let ε go to 0 and so the expected number of remaining triples is roughly Γ. Hence we can pick a setting
of the wi variables so that roughly Γ triples remain. We have obtained about Γ independent trilinear forms,
each of which has value at least ∏

i,j,k

(Vi,j,k · VI−i,J−j,K−k)3Nαijk .

This follows since values are supermultiplicative.
The final inequality becomes

V 3N
I,J,K ≥

(
N

[N ·Xi]

)(
N

[N · Yj ]

)(
N

[N · Zk]

)∏
i,j,k

(Vi,j,k · VI−i,J−j,K−k)3Nαijk .

Recall that we have equalities Xi =
∑

j αijk, Yj =
∑

i αijk, and Zk =
∑

i αijk. If we fix Xi, Yj , Zk
over all i, j, k, this forms a linear system.

The linear system does not necessarily have full rank, and so we pick a minimum set ∆ of variables αijk
so that if they are treated as constants, the linear system has full rank, and the variables outside of ∆ can be
written as linear combinations of variables in ∆ and of Xi, Yj , Zk.
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Now we have that for every αijk,

αijk =
∑

y∈∆∪{Xi′ ,Yj′ ,Zk′}i′,j′,k′

y
∂αijk
∂y

,

where for all αijk /∈ ∆ we use the linear function obtained from the linear system.
Let δijk =

∑
y∈∆ y

∂αijk
∂y . Let Wi,j,k = Vi,j,k · VI−i,J−j,K−k. Then,

W
αijk
i,j,k = W

∑
iXi

∂αijk
∂Xi

ijk W

∑
i Yj

∂αijk
∂Yj

ijk W

∑
k Zk

∂αijk
∂Zk

ijk W
δijk
i,j,k .

Define nx` =
∏
i,j,kW

3
∂αijk
∂X`

ijk for any `. Set n̄x` = nx`∑
`′ nx`′

.

Define similarly ny` =
∏
i,j,kW

3
∂αijk
∂Y`

ijk and nz` =
∏
i,j,kW

3
∂αijk
∂Z`

ijk , setting n̄y` = ny`∑
`′ ny`′

and n̄z` =
nz`∑
`′ nz`′

.
Consider the right hand side of our inequality for VIJK :(

N

[N ·Xi]

)(
N

[N · Yj ]

)(
N

[N · Zk]

)∏
i,j,k

W
3Nαijk
i,j,k =

(
N

[N ·Xi]

)∏
`

nxNX``

(
N

[N · Yj ]

)∏
`

nyNY`` ·
(

N

[N · Zk]

)∏
`

nzNZ``

∏
i,j,k

W
(
∑
y∈∆ y

∂αijk
∂y

)

i,j,k .

By Lemma 1, the above is maximized for X` = ¯nx`, Y` = n̄y`, and Z` = n̄z` for all `, and for these
settings

(
N

[N ·Xi]
)∏

` nx
NX`
` , for instance, is essentially (

∑
` nx`)

N/ poly(N), and hence after taking the
3N th root and letting N go to∞, we obtain

VI,J,K ≥ (
∑
`

nx`)
1/3(

∑
`

ny`)
1/3(

∑
`

nz`)
1/3
∏
i,j,k

W
(
∑
y∈∆ y

∂αijk
∂y

)

i,j,k .

If ∆ = ∅, then the above is a complete formula for VI,J,K . Otherwise, to maximize the lower bound on
VI,J,K we need to pick values for the variables in ∆, while still preserving the constraints that the values for
the variables outside of ∆ (which are obtained from our settings of the Xi, Yj , Zk and the values for the ∆
variables) are nonnegative.

We obtain the procedure for computing the values VI,J,K shown in Figure 2.

4.1 Powers of two

Because the constraint program in the previous section is tricky to solve, we want to be able to reduce the
number of variables. It turns out that when the tensor power K is a power of 2, say K = 2κ, we can use
K′ = K − K′ = 2κ−1 and we can reduce the number of variables (roughly by half) by exploiting the
symmetry. We will outline the changes that occur. We prove the following theorem.

Theorem 6. Given a (p, P )-uniform construction C, using the procedure in Figure 3 one can compute the
values VIJK for any tensor power of 2 of C.
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1. Define variables αijk and Xi, Yj , Zk for all valid triples i, j, k, i.e. the good triples with i ≤ I/2
and if i = I/2, then j ≤ J/2.

2. Form the linear system consisting of
Xi =

∑
j∈J(i) αij? when i < I/2 and XI/2 = 2

∑
j∈J(I/2) α(I/2)j?,

Yj =
∑

i∈I(j) αij? +
∑

i∈I(J−j) αi,J−j,? when j < J/2 and YJ/2 = 2
∑

i∈I(J/2) αi(J/2)?, and

Zk =
∑

i∈I(k) αi?k +
∑

i∈I(K−k) αi,?,K−k for k < K/2 and ZK/2 = 2
∑

i∈I(K/2) αi?K/2.

3. Determine the rank of the system: it is exactly #i+ #j + #k − 2.

4. If the system does not have full rank, then pick enough variables αijk to put in ∆ and hence treat as
constants.

5. Solve the system for the variables outside of ∆ in terms of the ones in ∆ and Xi, Yj , Zk. Now we
have αijk = αijk([Xi], [Yj ], [Xk], y ∈ ∆) for all αijk /∈ ∆.

6. Compute for every `,

nx` =
∏

i≤I/2,j,k

W
3
∂αijk
∂X`

ijk for ` < I/2 and nxI/2 =
∏

i≤I/2,j,k

W
6
∂αijk
∂XI/2

ijk /2,

ny` =
∏

i≤I/2,j,k

W
3
∂αijk
∂Y`

ijk for ` < J/2, and, nyJ/2 =
∏

i≤I/2,j,k

W
6
∂αijk
∂YJ/2

ijk /2,

nz` =
∏

i≤I/2,j,k

W
3
∂αijk
∂Z`

ijk for ` < K/2 and nzK/2 =
∏

i≤I/2,j,k

W
6
∂αijk
∂ZK/2

ijk /2.

7. Compute for every variable y ∈ ∆,

ny =
∏

i≤I/2,j,k

(Vi,j,kVI−i,J−j,K−k)
∂αijk
∂y .

8. Compute for each αijk its setting αijk(∆) as a function of the y ∈ ∆ when X` = nx`/
∑

i nxi,
Y` = ny`/

∑
j nyj and Z` = nz`/

∑
k nzk.

9.

Then set VIJK = 2

 ∑
`≤I/2

nx`

1/3 ∑
`≤J/2

ny`

1/3 ∑
`≤K/2

nz`

1/3 ∏
y∈∆

nyy.

subject to the constraints on y ∈ ∆ given by

y ≥ 0 for all y ∈ ∆,
αijk(∆) ≥ 0 for every αijk /∈ S.

10. Find the setting of the y ∈ ∆ that maximizes the bound on VIJK . For any fixed guess for τ , this is
a linear program: Maximize

∑
y∈∆ y log ny subject to the above linear constraints.

Figure 3: The procedure to compute VIJK for tensor powers of 2.
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The technique below works not only for powers of 2 but also for any even power. However, if we apply
recursion to compute the values by using only the procedure below, we need K to be a power of 2.

To analyze the value VIJK of TI,J,K , we first take the 2N -th tensor power (instead of the N th) of
TI,J,K , the 2N -th tensor power of TK,I,J and the 2N -th tensor power of TJ,K,I , and then tensor multiply
these altogether. By the definition of value, VI,J,K is at least the 6N -th root of the value of the new trilinear
form.

Here is how we process the 2N -th tensor power of TI,J,K , the powers of TK,I,J and TJ,K,I are processed
similarly.

We pick values Xi ∈ [0, 1] for each block i of the 2κ−1 tensor power of C so that
∑

iXi = 2 and
Xi = XI−i for every i ≤ I/2. Set to 0 all x variables except those that have exactly Xi · N positions of
their index which are mapped to (i, I − i) by (pK

′
, pK

′
), for all i.

The number of nonzero x blocks is
(

2N
[N ·Xi]i<I/2,[N ·Xi]i<I/2,2N ·XI/2

)
.

Similarly pick values Yj for the y variables, with Yj = YJ−j , and retain only those with Yj index
positions mapped to (j, J − j). Similarly pick values Zk for the z variables, with Zk = ZK−k, and retain
only those with Zk index positions mapped to (k,K − k).

The number of nonzero y blocks is
(

2N
[N ·Yj ]j<J/2,[N ·Yj ]j<J/2,2N ·YJ/2

)
. The number of nonzero z blocks is(

2N
[N ·Zk]k<K/2,[N ·Zk]k<K/2,2N ·ZK/2

)
.

For i, j, k = P2κ−1 − i− j which are valid blocks of the 2κ−1 tensor power of C let αijk be variables
such that Xi =

∑
j αijk, Yj =

∑
i αijk and Zk =

∑
i αijk.

After taking the tensor power of what is remaining of the 2N th tensor powers of TI,J,K , TK,I,J and
TJ,K,I , the number of x, y or z blocks is

Γ =

(
2N

[N ·Xi]

)(
2N

[N · YJ ]

)(
2N

[N · ZK ]

)
.

The number of triples which contain a particular x, y or z block is now

ℵ =
∏
i<I/2

(
NXi

[Nαijk]j

)2 ∏
j<J/2

(
NYj

[Nαijk]i

)2 ∏
k<K/2

(
NZk

[Nαijk]i

)2( NXI/2

[Nα(I/2)jk]j

)(
NYJ/2

[Nαi(J/2)k]i

)(
NZK/2

[Nαij(K/2)]i

)
.

Hence the number of triples is Γ · ℵ.
Set M = Θ(ℵ) to be a large enough prime greater than ℵ. Create a Salem-Spencer set S of size roughly

M1−ε and perform the hashing just as before. Then set to 0 all variables that do not have blocks hashing to
elements of S. Again, any surviving block triple has all variables’ blocks mapped to the same element of S.
The expected fraction of block triples remaining is M1−ε/M2 which will be 1/M when we let ε go to 0.
After the usual pruning we have obtained Ω(Γ) independent trilinear forms, each of which has value at least∏

i,j,k

(Vi,j,k · VI−i,J−j,K−k)3Nαijk .

Because of symmetry, αijk = αI−i,J−j,K−k, so lettingWijk = Vi,j,k ·VI−i,J−j,K−k, we can write the above
as ∏

i<I/2,j,k

(Wi,j,k)
6Nαijk

∏
j<J/2,k

(WI/2,j,k)
6NαI/2,jk(WI/2,J/2,k)

3NαI/2,J/2,k .

21



We can make a change of variables now, so that αI/2,J/2,k is halved, and whereever we had αI/2,J/2,k
before, now we have 2αI/2,J/2,k.

The value inequality becomes

V 6N
I,J,K ≥

(
2N

[N ·Xi]

)(
2N

[N · Yj ]

)(
2N

[N · Zk]

) ∏
i≤I/2,j,k

(Wi,j,k)
6Nαijk .

Using Stirling’s approximation, we obtain that the right hand side is roughly

(2N)2N

(NXI/2)NXI/2
∏
i<I/2(NXi)2NXi

(2N)2N

(NYJ/2)NYJ/2
∏
j<J/2(NYj)2NYj

×

(2N)2N

(NZK/2)NZK/2
∏
k<K/2(NZk)2NZk

∏
i≤I/2,j,k

W
6Nαijk
i,j,k .

Taking square roots and restructuring:

23N−N(XI/2+YJ/2+ZK/2)/2

(
N

[N ·Xi]i<I/2, NXI/2/2

)(
N

[N · Yj ]j<J/2, NYJ/2/2

)
×(

N

[N · Zk]k<K/2, NZK/2/2

) ∏
i≤I/2,j,k

W
3Nαijk
i,j,k .

Because of the symmetry, we can focus only on the variables αijk for which

• i ≤ I/2

• if i = I/2, then j ≤ J/2.

A triple (i, j, k) is valid if i and j satisfy the above two conditions and (i, j, k) is good. When two of the
indices in a triple are fixed (say i, j), we will replace the third index by ?. If i ≤ I/2 is fixed, J(i) will refer
to the indices j for which (i, j, ?) is valid. Similarly one can define K(i), I(j),K(j), I(k) and J(k).

Now, recall we originally had the equalities Xi =
∑

j αij?, Yj =
∑

i αij? and Zk =
∑

i αi?k. These
now become:

Xi =
∑

j∈J(i) αij? when i < I/2 andXI/2 = 2
∑

j∈J(I/2) α(I/2)j?, Yj =
∑

i∈I(j) αij?+
∑

i∈I(J−j) αi,J−j,?
when j < J/2 and YJ/2 = 2

∑
i∈I(J/2) αi(J/2)?, and Zk =

∑
i∈I(k) αi?k +

∑
i∈I(K−k) αi,?,K−k for

k < K/2 and ZK/2 = 2
∑

i∈I(K/2) αi?K/2.
If we fix Xi, Yj , Zk over all i ≤ I/2, j ≤ J/2, k ≤ K/2, this forms a linear system which may not

have full rank. We pick a minimum set ∆ of variables αijk so that if they are treated as constants, the linear
system has full rank and the variables outside of ∆ can be written as linear combinations of variables in ∆
and of Xi, Yj , Zk.

Now, as before, we have that for every valid αijk,

αijk =
∑

y∈∆∪{Xi,Yj ,Zk}i,j,k

y
∂αijk
∂y

,

where for all αijk /∈ ∆ we use the linear function obtained from the linear system.
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Let δijk =
∑

y∈∆ y
∂αijk
∂y . Then,

W
3Nαijk
i,j,k = W

3N
∑
iXi

∂αijk
∂Xi

ijk W
3N

∑
i Yj

∂αijk
∂Yj

ijk W
3N

∑
k Zk

∂αijk
∂Zk

ijk W
3Nδijk
i,j,k .

We now define nx` =
∏
i≤I/2,j,kW

3
∂αijk
∂X`

ijk for ` < I/2 and nxI/2 =
∏
i≤I/2,j,kW

6
∂αijk
∂XI/2

ijk /2. Consider

FX =

(
N

[N ·Xi]i<I/2, NXI/2/2

) ∏
i≤I/2,j,k

(W
(NXI/2/2)6

∂αi,j,k
∂XI/2

i,j,k )/2NXI/2/2

 ∏
i≤I/2,j,k

W
3N

∑
`<I/2X`

∂αijk
∂X`

ijk .

By Lemma 1, FX is maximized for X` = nx`/
∑

`′ nx`′ for ` < I/2 and XI/2/2 = nxI/2/
∑

`′ nx`′ .
Then FX is essentially (

∑
`≤I/2 nx`)

N/ poly(N).

Define similarly ny` =
∏
i≤I/2,j,kW

3
∂αijk
∂Y`

ijk for ` < J/2 and nyJ/2 =
∏
i≤I/2,j,kW

6
∂αijk
∂YJ/2

ijk /2, and

nz` =
∏
i≤I/2,j,kW

3
∂αijk
∂Z`

ijk for ` < K/2 and nzK/2 =
∏
i≤I/2,j,kW

6
∂αijk
∂ZK/2

ijk /2 for ` = K/2. 3

We obtain that

V 3N
I,J,K ≥ 23N

∑
`≤I/2

nx`

N  ∑
`≤J/2

ny`

N  ∑
`≤K/2

nz`

N

/ poly(N)
∏

i≤I/2,j,k

W
3N(

∑
y∈∆ y

∂αijk
∂y

)

i,j,k .

Taking the 3N -th root and letting N go to∞, we finally obtain

VI,J,K ≥ 2

∑
`≤I/2

nx`

1/3 ∑
`≤J/2

ny`

1/3 ∑
`≤K/2

nz`

1/3 ∏
i≤I/2,j,k

(Vi,j,kVI−i,J−j,K−k)
(
∑
y∈∆ y

∂αijk
∂y

)
.

To maximize the lower bound on VI,J,K we need to pick values for the variables in ∆, while still
preserving the constraints that the values for the variables outside of ∆ (which are obtained from our settings
of the XI , YJ , ZK and the values for the ∆ variables) are nonnegative. The procedure is shown in Figure 3.

5 Analyzing the CW construction

We can make the following observations about some of the values for any tensor power K. First, VIJK =
VIKJ = VJKI = VKJI = VJIK = VKIJ . For the special case I = 0 we get:

Claim 7. Consider V0JK which is a value for the K = (J +K)/2 tensor power for J ≤ K. Then

V0JK ≥

 ∑
b≤J,J=b mod 2

(
(J +K)/2

b, (J − b)/2, (K − b)/2

)
qb

τ

.

3We note that with the change of variables X ′I/2 = 2XI/2, nxI/2 becomes
∏
i≤I/2,j,kW

3
∂αijk
∂XI/2

ijk /2; such a change of variables
can be used instead.
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Proof. The trilinear form T0JK contains triples of the form x0Kyszt where s and t are K length sequences
so that for fixed s, t is predetermined. Thus, T0JK is in fact a matrix product of the form 〈1, Q, 1〉 where Q
is the number of y indices s. Let us count the y indices containing a positions mapped to a 0 block (hence
0s), b positions mapped to a 1 block (integers in [q]) and K − a − b positions mapped to a 2 block (hence
q+1s). The number of such y indices is

( K
a,b,K−a−b

)
qb. However, since a ·0+1 · b+2 · (K−a− b) = J , we

must have J +K − 2a− b = J and a = (K − b)/2. Thus, the number of y indices containing (K − b)/2
0s, b positions in [q] and K − a− b = (J − b)/2 (q + 1)s is

( (J+K)/2
b,(J−b)/2,(K−b)/2

)
qb. The claim follows since

we can pick any b as long as (J − b)/2 is a nonnegative integer.

The calculations for the second tensor power were performed by hand. Those for the 4th and the 8th
tensor power were done by computer (using Maple and C++ with NLOPT). We write out the derivations as
lemmas for completeness.

Second tensor power. We will only give VIJK for I ≤ J ≤ K, and the values for other permutations of
I, J,K follow.

From the lemma above know that V004 = 1 and V013 = (2q)τ , and V022 = (q2 + 2)τ .
It remains to analyze V112. As expected, we obtain the same value as in [10].

Lemma 2. V112 ≥ 22/3qτ (q3τ + 2)1/3.

Proof. We follow the proof in the previous section. Here I = 1, J = 1,K = 2. The only valid variables
are α002 and α011, and we have that Z0 = α002 and Z1 = 2α011.

We obtain nx0 = ny0 = 1, nz1 = W
2·3/2
011 /2 = V 6

011/2 = q6τ/2 and nz0 = W 3
002 = V 3

011 = q3τ .
The lower bound becomes

V112 ≥ 2(q6τ/2 + q3τ )1/3 = 22/3qτ (q3τ + 2)1/3.

The program for the second power: The variables are a = a004, b = a013, c = a022, d = a112.
A0 = 2(a+ b) + c, A1 = 2(b+ d), A2 = 2c+ d, A3 = 2b, A4 = a.

We obtain the following program (where we take natural logs on the last constraint).
Minimize τ subject to
q ≥ 3, q ∈ Z,

a, b, c, d ≥ 0,

3a+ 6b+ 3c+ 3d = 1,

2 ln(q + 2) + (2(a+ b) + c) ln(2(a+ b) + c) + 2(b+ d) ln(2(b+ d)) + (2c+ d) ln(2c+ d)+

2b ln 2b+ a ln a = 6bτ ln 2q + 3cτ ln(q2 + 2) + d ln(4q3τ (q3τ + 2)).

Using Maple, we obtain the bound ω ≤ 2.37547691273933114 for the values a = .000232744788234356428, b =
.0125062362305418986, c = .102545675391892355, d = .205542440692123102, τ = .791825637579776975.
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The fourth tensor power. From Claim 7 we have, V008 = 1, V017 =
(

4
1,(1−1)/2,(7−1)/2

)
q1)τ = (4q)τ ,

V026 = (
∑

b≤2,b=2 mod 2

(
4

b,(2−b)/2,(6−b)/2
)
qb)τ = (4+6q2)τ , V035 = (

∑
b≤3,b=3 mod 2

(
4

b,(3−b)/2,(5−b)/2
)
qb)τ =

(12q + 4q3)τ , and V044 = (
∑

b≤4,b=4 mod 2

(
4

b,(4−b)/2,(4−b)/2
)
qb)τ = (6 + 12q2 + q4)τ .

Let’s consider the rest:

Lemma 3. V116 ≥ 22/3(8q3τ (q3τ + 2) + (2q)6τ )1/3.

Proof. Here I = J = 1,K = 6. The valid variables are α004 and α013.
We have the equalities X0 = X1 = Y0 = Y1 = 1, and so the free large variables are Z2 and Z3. The

linear system is: Z2 = α004, Z3 = 2α013.
We can conclude that α013 = Z3/2 and α004 = Z2.
We obtain nx0 = ny0 = 1, and nz2 = W 3

004 = (V112)3 = 4q3τ (q3τ + 2), nz3 = W
6/2
013 /2 =

(V013V103)3/2 = (2q)6τ/2. The lower bound becomes

V116 ≥ 2(4q3τ (q3τ + 2) + (2q)6τ/2)1/3 = 22/3(8q3τ (q3τ + 2) + (2q)6τ )1/3.

Lemma 4. V125 ≥ 22/3(2(q2 + 2)3τ + (4q3τ (q3τ + 2)))1/3((4q3τ (q3τ + 2))/(q2 + 2)3τ + (2q)3τ )1/3.

Proof. Here I = 1, J = 2 and K = 5. The valid variables are α004, α013, α022. We have the equalities
X0 = X1 = 1, and the free large variables are Y0, Y1 and Z1, Z2.

The linear system is as follows: Y0 = α004 + α022, Y1 = 2α013, Z1 = α004, Z2 = α013 + α022.
We solve: α004 = Z1, α022 = Y0 − Z1, α013 = Z2 − Y0 + Z1.
We obtain nx0 = 1, ny1 = 1/2, ny0 = W 3

022W
−3
013, nz1 = W 3

004W
−3
022W

3
013, nz2 = W 3

013.
ny0 + ny1 = (W022/W013)3 + 1/2 = ((2q(q2 + 2))τ/((2q)τ )22/3qτ (q3τ + 2)1/3)3 + 1/2 = (q2 +

2)3τ/(4q3τ (q3τ + 2)) + 1/2,
nz1 = (W004W013/W022)3 = (V121V013V112/(V022V103))3 = (V 2

112/V022)3 = (4q3τ (q3τ + 2))2/(q2 +
2)3τ . nz2 = (V013V112)3 = 4q3τ (q3τ + 2)(2q)3τ and nz1 + nz2 = (4q3τ (q3τ + 2))[(4q3τ (q3τ + 2))/(q2 +
2)3τ + (2q)3τ ].

We obtain

V125 ≥ 22/3(2(q2 + 2)3τ + (4q3τ (q3τ + 2)))1/3((4q3τ (q3τ + 2))/(q2 + 2)3τ + (2q)3τ )1/3.

Lemma 5. V134 ≥ 22/3((2q)3τ + 4q3τ (q3τ + 2))1/3(2 + 2(2q)3τ + (q2 + 2)3τ )1/3.

Proof. Here I = 1, J = 3,K = 4 and the valid variables are α004, α013, α022, α031. We have X0 = X1 =
1, and the large variables are Y0, Y1, Z0, Z1, Z2.

The linear system is: Y0 = α004 +α031, Y1 = α013 +α022, Z0 = α004, Z1 = α013 +α031, Z2 = 2α022.
We solve: α004 = Z0, α031 = Y0 − Z0, α013 = Z1 − Y0 + Z0, α022 = Z2/2.
ny0 = W 3

031W
−3
013 = (V103/V121)3, ny1 = 1.

ny0 + ny1 = (V 3
013 + V 3

112)/V 3
112.

nz0 = W 3
004W

−3
031W

3
013 = (V130V013V121/(V031V103))3 = (V121)3,

nz1 = W 3
013 = (V013V121)3, nz2 = W

6/2
022 /2 = (V022V112)3/2.

nz0 + nz1 + nz2 = V 3
121(1 + V 3

013 + V 3
022/2).
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We obtain:
V134 ≥ 22/3(V 3

013 + V 3
112)1/3(2 + 2V 3

013 + V 3
022)1/3 ≥

22/3((2q)3τ + 4q3τ (q3τ + 2))1/3(2 + 2(2q)3τ + (q2 + 2)3τ )1/3.

Lemma 6. V224 ≥ (2(q2 + 2)3τ + 4q3τ (q3τ + 2))2/3(2 + 2(2q)3τ + (q2 + 2)3τ )1/3

Proof. I = J = 2,K = 4, so the variables are α004, α013, α022, α103, α112.
The large variables are X0, X1, Y0, Y1, Z0, Z1, Z2.
The linear system is X0 = α004 + α013 + α022, Y0 = α004 + α103 + α022,
X1 = 2(α103 + α112), Y1 = 2(α013 + α112),
Z0 = α004, Z1 = α013 + α103, Z2 = 2(α022 + α112).
We solve: α004 = Z0,
(X1 + Y1)/2 = Z1 + 2α112, so α112 = (X1 + Y1)/4− Z1/2,
α022 = (Z1 + Z2)/2− (X1 + Y1)/4,
α013 = (Y1 −X1)/4 + Z1/2, α103 = (X1 − Y1)/4 + Z1/2.
nx0 = 1, ny0 = 1,
nx1 = (W

1/2
112W

1/2
103 /(W

1/2
013W

3/2
022 ))3/2 = V 3

112/(2V
3

022) = ny1, since W013 = W103;
nz0 = (W004)3 = V 3

022, nz1 = W
−3/2
112 W

3/2
022W

3
013 = (V022V013V211/(V112))3 = (V022V013)3, nz2 =

W 3
022/2 = V 6

022/2.
nx0 + nx1 = ny0 + ny1 = (2V 3

022 + V 3
112)/(2V 3

022), nz0 + nz1 + nz2 = V 3
022(2 + 2V 3

013 + V 3
022)/2.

V224 ≥ (2V 3
022 + V 3

112)2/3(2 + 2V 3
013 + V 3

022)1/3 ≥

(2(q2 + 2)3τ + 4q3τ (q3τ + 2))2/3(2 + 2(2q)3τ + (q2 + 2)3τ )1/3.

Lemma 7. V233 ≥ (2(q2 + 2)3τ + 4q3τ (q3τ + 2))1/3((2q)3τ + 4q3τ (q3τ + 2))2/3/(qτ (q3τ + 2)1/3).

Proof. I = 2, J = K = 3, so the variables are α013, α022, α031, α103, α112. The large variables are X0, X1,
Y0, Y1, Z0, Z1.

The linear system is: X0 = α013 + α022 + α031, X1 = 2(α103 + α112),
Y0 = α031 + α103, Y1 = α013 + α112 + α022,
Z0 = α013 + α103, Z1 = α022 + α031 + α112.
We solve it: Say that α031 = w. Then α103 = Y0 − w, α112 = X1/2− Y0 + w, α013 = Z0 − Y0 + w,

α022 = X0 − Z0 + Y0 − 2w,
∆ = {α031}.
nx0 = W 3

022 = (V022V112)3, nx1 = W 3
112/2 = (V112)6/2,

ny0 = (W103W022/(W112W013))3 = (V013/V112)3, ny1 = 1, nz0 = (W013/W022)3 = (V013/V112)3 =
ny0, nz1 = 1,

nw = (W031W112W013/(W103W
2
022))3 = (V 2

013V
2

022V
2

112/(V
2

013V
2

022V
2

112))3 = 1.
nx0 + nx1 = (V022V112)3 + (V112)6/2 = V 3

112(2V 3
022 + V 3

112)/2,
ny0 + ny1 = nz0 + nz1 = (V013/V112)3 + 1 = (V 3

013 + V 3
112)/V 3

112.
Hence,

V233 ≥ 22/3(2V 3
022 + V 3

112)1/3(V 3
013 + V 3

112)2/3/V112 ≥

22/3(2(q2 + 2)3τ + 4q3τ (q3τ + 2))1/3((2q)3τ + 4q3τ (q3τ + 2))2/3/(22/3qτ (q3τ + 2)1/3) =

26



(2(q2 + 2)3τ + 4q3τ (q3τ + 2))1/3((2q)3τ + 4q3τ (q3τ + 2))2/3/(qτ (q3τ + 2)1/3).

Now that we have the values, let’s form the program. The variables are as follows:
a for 008 (and its 3 permutations),
b for 017 (and its 6 permutations),
c for 026 (and its 6 permutations),
d for 035 (and its 6 permutations),
e for 044 (and its 3 permutations),
f for 116 (and its 3 permutations),
g for 125 (and its 6 permutations),
h for 134 (and its 6 permutations),
i for 224 (and its 3 permutations),
j for 233 (and its 3 permutations).

We have
A0 = 2a+ 2b+ 2c+ 2d+ e,
A1 = 2b+ 2f + 2g + 2h,
A2 = 2c+ 2g + 2i+ j,
A3 = 2d+ 2h+ 2j,
A4 = 2e+ 2h+ i,
A5 = 2d+ 2g,
A6 = 2c+ f,
A7 = 2b,
A8 = a.

The rank is 8 since
∑

I AI = 1. The number of variables is 10 so we pick two variables, c, d, to express
the rest in terms of. We obtain:

a = A8,
b = A7/2,
f = A6 − 2c,
g = A5/2− d,
e = A0 − 2(a+ b+ c+ d) = (A0 − 2A8 −A7)− 2c− 2d,
h = A1/2− b− f − g = (A1/2−A7/2−A6 −A5/2) + 2c+ d,
j = A3/2− d− h = (A3/2−A1/2 +A7/2 +A6 +A5/2)− 2c− 2d,
i = A4 − 2e− 2h = (A4 − 2A0 + 4A8 + 3A7 −A1 + 2A6 +A5) + 2d.

We get the settings for c and d:

c = (f6e6j6/h12)1/6 = fej/h2,

d = (g6e6j6/(h6i6))1/6 = egj/(hi).

We want to pick settings for integer q ≥ 3 and rationals a, b, e, f, g, h, i, h ∈ [0, 1] so that

• 3a+ 6(b+ c+ d) + 3(e+ f) + 6(g + h) + 3(i+ j) = 1,

• (q + 2)4
∏8
I=0AI = V 6b

017V
6c

026V
6d

035V
3e

044V
3f

116V
6g

125V
6h

134V
3i

224V
3j

233.
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We obtain the following solution to the above program:
q = 5, a = .1390273247112628782825070 · 10−6, b = .1703727372506798832238690 · 10−4, c =

.4957293537057908947335441·10−3, d = .004640168728942648075902061, e = .01249001020140475801901154, f =

.6775528221947777757442973·10−3, g = .009861728815103789329166789, h = .04629633915692083843268882, i =

.1255544141080093435410128, j = .07198921051760347329305915 which gives the bound τ = .7909756203179318247187658
and

ω ≤ 2.372926860953795474156297.

This bound is better than the one obtained by Stothers [18].

The eighth tensor power. Let’s first define the program to be solved. The variables are
a for 0016 and its 3 permutations,
b for 0115 and its 6 permutations,
c for 0214 and its 6 permutations,
d for 0313 and its 6 permutations,
e for 0412 and its 6 permutations,
f for 0511 and its 6 permutations,
g for 0610 and its 6 permutations,
h for 079 and its 6 permutations,
i for 088 and its 3 permutations,
j for 1114 and its 3 permutations,
k for 1213 and its 6 permutations,
l for 1312 and its 6 permutations,
m for 1411 and its 6 permutations,
n for 1510 and its 6 permutations,
p for 169 and its 6 permutations,
q̄ for 178 and its 6 permutations,
r for 2212 and its 3 permutations,
s for 2311 and its 6 permutations,
t for 2410 and its 6 permutations,
u for 259 and its 6 permutations,
v for 268 and its 6 permutations,
w for 277 and its 3 permutations,
x for 3310 and its 3 permutations,
y for 349 and its 6 permutations,
z for 358 and its 6 permutations,
α for 367 and its 6 permutations,
β for 448 and its 3 permutations,
γ for 457 and its 6 permutations,
δ for 466 and its 3 permutations,
ε for 556 and its 3 permutations.

Here we will set aIJK = āIJK in Figure 1, so these will be the only variables aside from q and τ .
Let’s figure out the constraints: First,

a, b, c, d, e, f, g, h, i, j, k, l,m, n, p, q̄, r, s, t, u, v, w, x, y, z, α, β, γ, δ, ε ≥ 0, and
3a + 6(b + c + d + e + f + g + h) + 3(i + j) + 6(k + l + m + n + p + q̄) + 3r + 6(s + t + u + v) +
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3(w + x) + 6(y + z + α) + 3β + 6γ + 3δ + 3ε = 1.
Now,
A0 = 2(a+ b+ c+ d+ e+ f + g + h) + i,
A1 = 2(b+ j + k + l +m+ n+ p+ q̄),
A2 = 2(c+ k + r + s+ t+ u+ v) + w,
A3 = 2(d+ l + s+ x+ y + z + α),
A4 = 2(e+m+ t+ y + β + γ) + δ,
A5 = 2(f + n+ u+ z + γ + ε),
A6 = 2(g + p+ v + α+ δ) + ε,
A7 = 2(h+ q̄ + w + α+ γ),
A8 = 2(i+ q̄ + v + z) + β,
A9 = 2(h+ p+ u+ y),
A10 = 2(g + n+ t) + x,
A11 = 2(f +m+ s),
A12 = 2(e+ l) + r,
A13 = 2(d+ k),
A14 = 2c+ j,
A15 = 2b,
A16 = a.

We pick ∆ = {c, d, e, f, g, h, l,m, n, p, t, u, v, z} to make the system have full rank.
After solving for the variables outside of ∆ and taking derivatives we obtain the following constraints

cq̄2 = iwj,
dq̄wεβ = iαγ2k,
ew2ε2β2 = iδγ4r,
fwαεβ2 = iδγ3s,
gα2εβ2 = iδ2γ2x,
hαεβ2 = iδγ2y,
lw2εβ = q̄αγ2r,
mwαεβ = q̄δγ2s,
nα2β = q̄δγx,
pαβ = q̄δy,
tα2 = wδx,
uαγ = wεy,
vγ2 = wεβ,
zδγ = αεβ.

We want to minimize τ subject to the above constraints and

8 ln(q + 2) +
∑

I AI lnAI =

6(b lnV0115 + c lnV0214 + d lnV0313 + e lnV0412 + f lnV0511 + g lnV0610 + h lnV079)+
3(i lnV088 + j lnV1114) + 6(k lnV1213 + l lnV1312 +m lnV1411 + n lnV1510 + p lnV169 + q̄ lnV178)+
3r lnV2212 + 6(s lnV2311 + t lnV2410 + u lnV259 + v lnV268) + 3(w lnV277 + x lnV3310)+
6(y lnV349 + z lnV358 + α lnV367) + 3β lnV448 + 6γ lnV457 + 3δ lnV466 + 3ε lnV556.
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Solving the above nonlinear program was more difficult than those for previous powers. In order to
obtain a solution, we noticed that it makes sense to set a = b = c = d = e = j = k = l = r = 0. This
sets A16 = A15 = A14 = A13 = A12 = 0 and removes

∑16
I=12AI lnAI from the above constraint. It also

has the effect of immediately satisfying the constraints cq̄2 = iwj, dq̄wεβ = iαγ2k, ew2ε2β2 = iδγ4r, and
lw2εβ = q̄αγ2r.

After this zeroing out, we were able to obtain a feasible solution to the program:

f = .76904278731524173835974719341500592·10−5, g = .52779571970583456142217926160277231·10−4,

h = .18349312152576520555015953918505585·10−3, i = .28974085405957814663889675518068511·10−3,

m = .17619509628846951788501570312541807·10−4, n = .15581079465829711951422697961378093·10−3,

p = .73149080115511507915121267119744180·−3, q̄ = .0016725182225690977304801218307798121,

s = .29876004071632620479001531184186025·10−4, t = .33126600758641744567264751282091960·10−3,

u = .0020039023972576900880963239316909024, v = .0061872256558682259557333671714328443,

w = .0089591745433740854840411358379077548, x = .41990656642645724773702340066269704·10−3,

y = .001849527644666567250763967832170627, z = .012670995924108805846876701669409286,

α = .024776513587073136473643192847543972, β = .015887713134315628953707475763736882,

γ = .040029410827982658759926560914676385, δ = .054055090596014771471231854142076605,

ε = .069650616403550648278948486731451479, τ ≤ 0.790886, q = 5.

This gives

ω ≤ 2.372658.

The values for the 8th power.
From Claim 7 we have:
V0016 = 1, V0115 = (8q)τ , V0214 = (

∑
b≤2,b=0 mod 2

(
8

b,(2−b)/2,(14−b)/2
)
qb)τ = (8 + 28q2)τ , V0313 =

(
(

8
1,1,6

)
q +

(
8

3,0,5

)
q3)τ = (56q + 56q3)τ ,

V0412 = (70q4+168q2+28)τ , V0511 = (280q3+168q+56q5)τ , V0610 = (56+420q2+280q4+28q6)τ ,
V079 = (280q + 560q3 + 168q5 + 8q7)τ , V088 = (70 + 560q2 + 420q4 + 56q6 + q8)τ .

Lemma 8. V1114 ≥ 22/3(2V 3
116 + V 6

017)1/3.

Proof. I = J = 1,K = 14, and the variables are α008, α017. The system of equations is
Z6 = α008,
Z7 = 2α017.

Solving we obtain α008 = Z6 and α017 = Z7/2.
nz6 = W 3

008 = V 3
116, and nz7 = W 3

017/2 = V 6
017/2.

The inequality becomes:
V1114 ≥ 22/3(2V 3

116 + V 6
017)1/3.
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Lemma 9. V1213 ≥ 22/3(V 3
116 + 2V 3

026)1/3((V125/V026)3 + V 3
017)1/3.

Proof. I = 1, J = 2,K = 13, and the variables are α008, α017, α026. The system of equations becomes
Y0 = α008 + α026,
Y1 = 2α017,
Z5 = α008,
Z6 = α017 + α026.

We can solve the system:
α008 = Z5, α026 = Y0 − Z5, α017 = Y1/2.

ny0 = W 3
026 = (V026V017)3,

ny1 = W 3
017/2 = (V017V116)3/2,

nz5 = W 3
008/W

3
026 = (V125/(V026V017))3, nz6 = 1.

ny0 + ny1 = V 3
017(2V 3

026 + V 3
116)/2.

nz5 + nz6 = ((V026V017)3 + V 3
125)/(V026V017)3.

V1213 ≥ 22/3((2V 3
026 + V 3

116))1/3(V 3
017 + V 3

125/V
3

026)1/3.

Lemma 10. V1312 ≥ 2(V 3
035/V

3
125 + 1)1/3(V 3

134V
3

125/V
3

035 + V 3
017V

3
125 + V 3

026V
3

116/2)1/3.

Proof. I = 1, J = 3,K = 12, and the variables are α008, α017, α026, α035. The system of equations is:
Y0 = α008 + α035,

Y1 = α017 + α026,
Z4 = α008,
Z5 = α017 + α035,
Z6 = 2α026.

We solve the system:
α008 = Z4, α026 = Z6/2, α017 = Y1 − Z6/2, α035 = Y0 − Z4.
ny0 = W 3

035 = (V035V017)3,
ny1 = W 3

017 = (V017V125)3,
nz4 = (W008/W035)3 = (V134/(V035V017))3,
nz5 = 1,
nz6 = (W026/W017)3/2 = (V026V116/(V017V125))3/2.

ny0 + ny1 = V 3
017(V 3

035 + V 3
125),

nz4 + nz5 + nz6 = [2V 3
017 + 2(V134/V035)3 + (V026V116/V125)3]/2V 3

017.

V1312 ≥ 22/3(V 3
035 + V 3

125)1/3

(
2V 3

017 +
2V 3

134

V 3
035

+
V 3

026V
3

116

V 3
125

)1/3

.

Lemma 11.

V1411 ≥ 2

(
V 3

044

V 3
134

+ 1 +
V 3

026V
3

125

(2V 3
035V

3
116)

)1/3(
V 6

134

V 3
044

+ V 3
017V

3
134 + V 3

035V
3

116

)1/3

.
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Proof. I = 1, J = 4, K = 11, the variables are α008, α017, α026, α035, α044. The linear system becomes
Y0 = α008 + α044,
Y1 = α017 + α035,
Y2 = 2α026,
Z3 = α008,
Z4 = α017 + α044,
Z5 = α026 + α035.

We solve it:
α008 = Z3,
α026 = Y2/2,
α044 = Y0 − Z3,
α017 = Z4 − Y0 + Z3,
α035 = Z5 − Y2/2.

ny0 = (W044/W017)3 = (V044V017/(V017V134))3 = V 3
044/V

3
134.

ny1 = 1,
ny2 = W 3

026/(2W
3
035) = V 3

026V
3

125/(2V
3

035V
3

116),
nz3 = W 3

008W
3
017/W

3
044 = (V 2

134/V044)3,
nz4 = W 3

017 = V 3
017V

3
134,

nz5 = W 3
035 = V 3

035V
3

116.

ny0 + ny1 + ny2 =
V 3

044

V 3
134

+ 1 +
V 3

026V
3
125

(2V 3
035V

3
116)

,

nz3 + nz4 + nz5 =
V 6

134

V 3
044

+ V 3
017V

3
134 + V 3

035V
3

116.
The inequality becomes

V1411 ≥ 2

(
V 3

044

V 3
134

+ 1 +
V 3

026V
3

125

(2V 3
035V

3
116)

)1/3(
V 6

134

V 3
044

+ V 3
017V

3
134 + V 3

035V
3

116

)1/3

.

Lemma 12.

V1510 ≥ 2

(
V 3

035

V 3
134

+ 1 +
V 3

026V
3

134

V 3
044V

3
116

)1/3(
V 3

125V
3

134

V 3
035

+ V 3
017V

3
134 + V 3

044V
3

116 +
V 3

035V
3

125V
3

044V
3

116

(2V 3
026V

3
134)

)1/3

.

Proof. I = 1, J = 5,K = 10. The variables are α008, α017, α026, α035, α044, α053. The linear system
becomes

Y0 = α008 + α053,
Y1 = α017 + α044,
Y2 = α026 + α035,
Z2 = α008,
Z3 = α017 + α053,
Z4 = α026 + α044 Z5 = 2α035.

We solve it:
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α008 = Z2,
α035 = Z5/2,
α053 = Y0 − Z2,
α026 = Y2 − Z5/2,
α017 = Z3 − Y0 + Z2,
α044 = Z4 − Y2 + Z5/2.
ny0 = (W053/W017)3 = V 3

035/V
3

134,
ny1 = 1,
ny2 = (W026/W044)3 = V 3

026V
3

134/(V
3

044V
3

116),
nz2 = (W008W017/W053)3 = V 3

125V
3

134/V
3

035,
nz3 = W 3

017 = V 3
017V

3
134,

nz4 = W 3
044 = V 3

044V
3

116,
nz5 = W 3

035W
3
044/(2W

3
026) = (V 3

035V
3

125V
3

044V
3

116)/(2V 3
026V

3
134).

ny0 + ny1 + ny2 =
V 3

035

V 3
134

+ 1 +
V 3

026V
3
134

V 3
044V

3
116

,

nz2 + nz3 + nz4 + nz5 =
V 3

125V
3
134

V 3
035

+ V 3
017V

3
134 + V 3

044V
3

116 +
V 3

035V
3
125V

3
044V

3
116

(2V 3
026V

3
134)

.
Hence we obtain

V1510 ≥ 2

(
V 3

035

V 3
134

+ 1 +
V 3

026V
3

134

V 3
044V

3
116

)1/3(
V 3

125V
3

134

V 3
035

+ V 3
017V

3
134 + V 3

044V
3

116 +
V 3

035V
3

125V
3

044V
3

116

(2V 3
026V

3
134)

)1/3

.

Lemma 13.

V169 ≥ 2

(
V 3

026

V 3
125

+ 1 +
V 3

026V
3

134

(V 3
035V

3
116)

+
V 6

134V
3

026

(2V 3
044V

3
125V

3
116)

)1/3(
V 3

116V
3

125

V 3
026

+ V 3
017V

3
125 + V 3

035V
3

116 +
V 3

044V
3

125V
3

035V
3

116

V 3
026V

3
134

)1/3

.

Proof. I = 1, J = 6,K = 9 so the variables are α008, α017, α026, α035, α044, α053, α062. The linear system
becomes
Y0 = α008 + α062,
Y1 = α017 + α053,
Y2 = α026 + α044,
Y3 = 2α035,
Z1 = α008,
Z2 = α017 + α062,
Z3 = α026 + α053,
Z4 = α035 + α044.

We solve it:
α008 = Z1,
α035 = Y3/2,
α062 = Y0 − Z1,
α044 = Z4 − Y3/2,
α026 = Y2 − Z4 + Y3/2,
α053 = Z3 − Y2 + Z4 − Y3/2,
α017 = Z2 − Y0 + Z1,
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ny0 = W 3
062/W

3
017 = V 3

026/V
3

125,
ny1 = 1,
ny2 = W 3

026/W
3
053 = V 3

026V
3

134/(V
3

035V
3

116),
ny3 = W 3

035W
3
026/(2W

3
044W

3
053) = V 6

134V
3

026/(2V
3

044V
3

125V
3

116),
nz1 = W 3

008W
3
017/W

3
062 = V 3

116V
3

125/V
3

026,
nz2 = W 3

017 = V 3
017V

3
125,

nz3 = W 3
053 = V 3

035V
3

116,
nz4 = W 3

044W
3
053/W

3
026 = (V 3

044V
3

125V
3

035V
3

116)/(V 3
026V

3
134).

ny0 + ny1 + ny2 + ny3 =
V 3

026

V 3
125

+ 1 +
V 3

026V
3
134

(V 3
035V

3
116)

+
V 6

134V
3
026

(2V 3
044V

3
125V

3
116)

.

nz1 + nz2 + nz3 + nz4 =
V 3

116V
3
125

V 3
026

+ V 3
017V

3
125 + V 3

035V
3

116 +
V 3

044V
3
125V

3
035V

3
116

V 3
026V

3
134

.

V169 ≥ 2

(
V 3

026

V 3
125

+ 1 +
V 3

026V
3

134

(V 3
035V

3
116)

+
V 6

134V
3

026

(2V 3
044V

3
125V

3
116)

)1/3(
V 3

116V
3

125

V 3
026

+ V 3
017V

3
125 + V 3

035V
3

116 +
V 3

044V
3

125V
3

035V
3

116

V 3
026V

3
134

)1/3

.

Lemma 14.

V178 ≥ 2(V 3
017 + V 3

116 + V 3
125 + V 3

134)1/3

(
1 + V 3

017 + V 3
026 + V 3

035 +
V 3

044

2

)1/3

.

Proof. I = 1, J = 7,K = 8, so the variables are α008, α017, α026, α035, α044, α053, α062, α071. The linear
system is
Y0 = α008 + α071,
Y1 = α017 + α062,
Y2 = α026 + α053,
Y3 = α035 + α044,
Z0 = α008,
Z1 = α017 + α071,
Z2 = α026 + α062,
Z3 = α035 + α053,
Z4 = 2α044.

We solve the system:
α008 = Z0,
α044 = Z4/2,
α071 = Y0 − Z0,
α035 = Y3 − Z4/2,
α017 = Z1 − Y0 + Z0,
α053 = Z3 − Y3 + Z4/2,
α062 = Y1 − Z1 + Y0 − Z0,
α026 = Z2 − Y1 + Z1 − Y0 + Z0.
ny0 = W 3

071W
3
062/(W017W026)3 = V 3

017/V
3

125,
ny1 = W 3

062/W
3
026 = V 3

116/V
3

125,
ny2 = 1,
ny3 = W 3

035/W
3
053 = V 3

134/V
3

125,
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nz0 = W 3
008W

3
017W

3
026/(W

3
071W

3
062) = V 3

017V
3

017V
3

116V
3

026V
3

125/(V
3

071V
3

017V
3

062V
3

116) = V 3
125,

nz1 = W 3
017W

3
026/W

3
062 = V 3

017V
3

125,
nz2 = W 3

026 = V 3
026V

3
125,

nz3 = W 3
053 = V 3

035V
3

125,
nz4 = W 3

044W
3
053/(2W

3
035) = V 3

044V
3

125/2.
ny0 + ny1 + ny2 + ny3 = (V 3

017 + V 3
116 + V 3

125 + V 3
134)/V 3

125,
nz0 + nz1 + nz2 + nz3 + nz4 = V 3

125(1 + V 3
017 + V 3

026 + V 3
035 + V 3

044/2).

V178 ≥ 2(V 3
017 + V 3

116 + V 3
125 + V 3

134)1/3

(
1 + V 3

017 + V 3
026 + V 3

035 +
V 3

044

2

)1/3

.

Lemma 15.

V2212 ≥ 2

(
V 3

026

V 3
116

+
1

2

)1/3(
V 3

017V
3

125V
3

026

V 3
116

+
V 3

017V
3

125

2

)1/3(
V 3

224V
6

116

V 3
017V

3
125V

6
026

+
V 3

116

V 3
026

+
V 6

116

2(V 3
017V

3
125)

)1/3

.

Proof. I = J = 2, K = 12, and the variables are a = α008, b = α017, c = α026, d = α107, e = α116.
The linear system is:

X0 = a+ b+ c,
X1 = 2(d+ e),
Y0 = a+ c+ d,
Y1 = 2(b+ e),
Z4 = a,
Z5 = b+ d,
Z6 = 2(c+ e).

We solve it:
a = Z4,
c = (X0 + Y0 − 2Z4 − Z5)/2,
e = Z6/2− c = (Z6 −X0 − Y0 + 2Z4 + Z5)/2,
d = Y0 − Z4 − c = (−X0 + Y0 + Z5)/2
b = Y1/2− e = (Y1 − Z6 +X0 + Y0 − 2Z4 − Z5)/2,

nx0 = (W026W017/(W116W107))3/2 = (V 2
026V017V215/(V

2
116V107V125))3/2 = V 3

026/V
3

116.
nx1 = 1/2,
ny0 = (W026W107W017/W116)3/2 = (V026V017V125/V116)3,
ny1 = W 3

017/2 = (V017V125)3/2,
nz4 = (W008W116/(W026W017))3 = (V224V

2
116/(V017V125V

2
026))3,

nz5 = (W
1/2
116W

1/2
107 /(W

1/2
026W

1/2
017 ))3 = V 3

116/V
3

026.
nz6 = (W116/W017)3/2 = V 6

116/(2V
3

017V
3

125).
Hence:

V2212 ≥ 2

(
V 3

026

V 3
116

+
1

2

)1/3(
(V026V017V125)3

V 3
116

+
(V017V125)3

2

)1/3(
V 3

224V
6

116

(V 3
017V

3
125V

6
026)

+
V 3

116

V 3
026

+
V 6

116

(2V 3
017V

3
125)

)1/3

.
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Lemma 16.

V2311 ≥ 2

(
1 +

V 3
134V

3
125

(2V 3
035V

3
224)

)1/3 (
(V035V026)3 + (V026V125)3

)1/3( V 3
233

(V 3
035V

3
026)

+
V 3

017V
3

224

V 3
026V

3
125

+ 1

)1/3(
V116V224V035

(V134V026V125)

)f
.

Let nx0 = 1, nx1 = V 3
134V

3
125/(2V

3
035V

3
224), ny0 = (V035V026)3, ny1 = (V026V125)3, nz3 = (V233/(V035V026))3,

nz4 = (V017V224/(V026V125))3, nz5 = 1.
Then, for q = 5, the following values satisfy the constraints of the above bound on V2311 (and attempt

to maximize the lower bound):

• when τ < 0.6954, for f = nx1
(nx0+nx1) + nz3

(nz3+nz4+nz5) −
ny0

(ny0+ny1) ,

• when 0.6955 ≤ τ < 0.767, for f = nx1
(nx0+nx1) −

nz4
(nz3+nz4+nz5) ,

• when τ > 0.767, for f = nx1/(nx0 + nx1).

Proof. I = 2, J = 3,K = 11, so the variables are a = α008, b = α017, c = α026, d = α035, e = α107, f =
α116.

The linear system is:
X0 = a+ b+ c+ d,
X1 = 2(e+ f),
Y0 = a+ d+ e,
Y1 = b+ c+ f ,
Z3 = a,
Z4 = b+ e,
Z5 = c+ d+ f .

The system has 6 variables but only rank 5. We pick f to be the variable in ∆. We can now solve the
system for the rest of the variables:
a = Z3,
e = X1/2− f ,
b = Z4 − e = Z4 −X1/2 + f ,
d = Y0 − Z3 − e = Y0 − Z3 −X1/2 + f ,
c = Y1 − b− f = Y1 − Z4 +X1/2− 2f .

nx0 = 1,
nx1 = (W107W026/(W017W035))3/2 = V 3

134V
3

125/(2V
3

035V
3

224),
ny0 = W 3

035 = (V035V026)3,
ny1 = W 3

026 = (V026V125)3,
nz3 = (W008/W035)3 = (V233/(V035V026))3,
nz4 = (W017/W026)3 = (V017V224/(V026V125))3,
nz5 = 1,
nf = W116W017W035/(W107W

2
026) = V116V224V035/(V134V026V125).

The inequality is

V2311 ≥ 2

(
1 +

V 3
134V

3
125

(2V 3
035V

3
224)

)1/3 (
(V035V026)3 + (V026V125)3

)1/3( V 3
233

(V 3
035V

3
026)

+
V 3

017V
3

224

V 3
026V

3
125

+ 1

)1/3(
V116V224V035

(V134V026V125)

)f
.

The constraints on f are as follows:
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Constraint 1: since e = X1/2 − f ≥ 0, and X1/2 was set to nx1/(nx0 + nx1), we get the constraint
that

f ≤ nx1/(nx0 + nx1) =
V 3

134V
3

125

2V 3
035V

3
224 + V 3

134V
3

125

= C1.

Constraint 2: since b = Z4 −X1/2 + f ≥ 0, Z4 was set to nz4/(nz3 + nz4 + nz5) and X1/2 was set
to nx1/(nx0 + nx1), we get the constraint

f ≥ nx1

(nx0 + nx1)
− nz4

(nz3 + nz4 + nz5)
= C2.

Constraint 3: since d = Y0 − Z3 −X1/2 + f ≥ 0, we get

f ≥ nx1

(nx0 + nx1)
+

nz3

(nz3 + nz4 + nz5)
− ny0

(ny0 + ny1)
= C3.

Constraint 4: since c = Y1 − Z4 +X1/2− 2f ≥ 0, we get that

f ≤ ny1

2(ny0 + ny1)
− nz4

2(nz3 + nz4 + nz5)
+

nx1

2(nx0 + nx1)
= C4.

Using Maple, we can see that for q = 5 and all τ ≥ 0.767, nf ≥ 1, and so to maximize V2311 as a
function of f , we need to maximize f , subject to the above four constraints.

The upper bounds given for f are nx1/(nx0 + nx1) and ny1

2(ny0+ny1) −
nz4

2(nz3+nz4+nz5) + nx1
2(nx0+nx1) ,

and for q = 5 and all τ ≥ 2/3, we have that nx1/(nx0 + nx1) is the smaller upper bound. Furthermore,
this upper bound is always larger than the two lower bounds given by constraints 2 and 3 above, for q = 5.
Hence we can safely set f = nx1/(nx0 + nx1) =

V 3
134V

3
125

2V 3
035V

3
224+V 3

134V
3
125

.
Suppose now that τ < 0.767. If τ < 0.695, then C3 > C2 > 0 and if τ > 0.6955, then C2 > C3 > 0.

In both cases, the upper bounds C1 and C4 are both larger than the lower bounds. Hence, for τ < 0.695 we
set f = C3, and for 0.6955 < τ < 0.767 we set f = C2.

Lemma 17.

V2410 ≥ 2

(
(V026V224V035)3/2

V
3/2

125

+
V

3/2
116 V

3/2
134

2

)1/3(
V 3

044V
3/2

026 V
3/2

125

(V
3/2

224 V
3/2

035 )
+ (V116V134)3/2 +

(V026V224V125)3/2

(2V
3/2

035 )

)1/3

×

(
V 3

224

V 3
044V

3
026

+
(V 2

017V
2

233V125)3/2

(V026V224V035V116V134)3/2
+ 1 +

(V035V
3

125)3/2

2(V026V224V116V134)3/2

)1/3(
V224V035V134

(V233V044V125)

)f
.

For q = 5 and any τ , the following value satisfies all constraints for the above bound and attempts to
maximize it:

f =
(V 2

017V
2

233V125)3/2

(V026V224V035V116V134)3/2
(

V 3
224

V 3
044V

3
026

+
(V 2

017V
2
233V125)3/2

(V026V224V035V116V134)3/2 + 1 +
(V035V 3

125)3/2

(2V026V224V116V134)3/2

) .
Then
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Proof. I = 2, J = 4,K = 10, and so the variables are a = α008, b = α017, c = α026, d = α035, e = α044,
f = α107, g = α116, h = α125.

The linear system is: X0 = a+ b+ c+ d+ e,
X1 = 2(f + g + h),
Y0 = a+ e+ f ,
Y1 = b+ d+ g,
Y2 = 2(c+ h),
Z2 = a,
Z3 = b+ f ,
Z4 = c+ e+ g,
Z5 = 2(d+ h),

The system has rank 7 and has 8 unknowns. Hence we pick a variable, f , to place into ∆.
We now solve the system:

a = Z2,
b = Z3 − f ,
e = Y0 − Z2 − f ,
c = (X0 − Y0 − Z5/2− Z3 + Y2/2)/2 + f ,
d = (X0 − Y0 − Y2/2 + Z5/2− Z3)/2 + f ,
g = (X1/2 + Y1 − Z5/2− Z3)/2,
h = (−X0 + Y0 + Z5/2 + Z3 + Y2/2)/2− f.

Calculate:
nx0 = W

3/2
026W

3/2
035 /W

3/2
125 = (V026V224V035/V125)3/2,

nx1 = W
3/2
116 /2 = V

3/2
116 V

3/2
134 /2,

ny0 = W 3
044W

3/2
125 /(W

3/2
026W

3/2
035 ) = V 3

044V
3/2

026 V
3/2

125 /(V
3/2

224 V
3/2

035 ),
ny1 = W

3/2
116 = (V116V134)3/2,

ny2 = W
3/2
026W

3/2
125 /(2W

3/2
035 ) = (V026V224V125)3/2/(2V

3/2
035 ),

nz2 = W 3
008/W

3
044 = (V224/(V044V026))3,

nz3 = W 3
017W

3/2
125 /(W

3/2
026W

3/2
035W

3/2
116 ) = (V 2

017V
2

233V125/(V026V224V035V116V134))3/2,
nz4 = 1,
nz5 = W

3/2
035W

3/2
125 /(2W

3/2
026W

3/2
116 ) = (V035V

3
125/(2V026V224V116V134))3/2,

nf = W026W035W107/(W017W044W125) = V224V035V134/(V233V044V125).
We obtain:

V2410 ≥ 2

(
(V026V224V035)3/2

V
3/2

125

+
V

3/2
116 V

3/2
134

2

)1/3(
V 3

044W
3/2
026 V

3/2
125

(V
3/2

224 V
3/2

035 )
+ (V116V134)3/2 +

(V026V224V125)3/2

(2V
3/2

035 )

)1/3

×

(
V 3

224

V 3
044V

3
026

+
(V 2

017V
2

233V125)3/2

(V026V224V035V116V134)3/2
+ 1 +

(V035V
3

125)3/2

(2V026V224V116V134)3/2

)1/3(
V224V035V134

(V233V044V125)

)f
.

We have some constraints on f :
Constraint 1 is from b = Z3 − f ≥ 0. Since Z3 was set to nz3/(nz2 + nz3 + nz4 + nz5), we obtain

f ≤ nz3/(nz2 + nz3 + nz4 + nz5).
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Constraint 2 is from c = (X0 − Y0 − Z5/2− Z3 + Y2/2)/2 + f ≥ 0. We obtain

f ≥ − nx0

2(nx0 + nx1)
+

(ny0 − ny2)

2(ny0 + ny1 + ny2)
+

(nz5 + nz3)

2(nz2 + nz3 + nz4 + nz5)
.

Constraint 3 is from d = (X0 − Y0 − Y2/2 + Z5/2− Z3)/2 + f ≥ 0. We obtain

f ≥ − nx0

2(nx0 + nx1)
+

(ny0 + ny2)

2(ny0 + ny1 + ny2)
+

(nz3 − nz5)

2(nz2 + nz3 + nz4 + nz5)
.

Constraint 4 is from e = Y0 − Z2 − f ≥ 0. We obtain

f ≤ ny0

(ny0 + ny1 + ny2)
− nz2

(nz2 + nz3 + nz4 + nz5)
.

Constraint 5 is from g = (X1/2 + Y1 − Z5/2− Z3)/2 ≥ 0. We obtain

nx1

nx0 + nx1
+

ny1

(ny0 + ny1 + ny2)
− nz3 + nz5

(nz2 + nz3 + nz4 + nz5)
≥ 0.

It turns out that constraint 5 is satisfied for q = 5 or q = 6 and τ ≥ 2/3.
Constraint 6 is from h = (−X0 + Y0 + Z5/2 + Z3 + Y2/2)/2− f ≥ 0. We obtain

f ≤ − nx0

2(nx0 + nx1)
+

ny0 + ny2

2(ny0 + ny1 + ny2)
+

nz3 + nz5

2(nz2 + nz3 + nz4 + nz5)
.

One can verify that nf ≥ 1 for q = 5 and all τ ≥ 2/3. Hence, we would like to maximize f in order
to maximize the lower bound on V2410. The constraints which give upper bounds on f are 1, 4 and 6, and
for q = 5 and τ ≥ 2/3, constraint 1 gives the lowest upper bound. The lower bounds given by constraints 2
and 3 are always negative, and so we can safely set f to nz3/(nz2 + nz3 + nz4 + nz5) =

(V 2
017V

2
233V125)3/2

(V026V224V035V116V134)3/2
(

V 3
224

V 3
044V

3
026

+
(V 2

017V
2
233V125)3/2

(V026V224V035V116V134)3/2 + 1 +
(V035V 3

125)3/2

2(V026V224V116V134)3/2

) .

Lemma 18.
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Suppose that nx1 = V 3
116V

3
134/2, ny0 = V 6
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3

224/(V
3
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3

044V
3

125), ny1 = 1, ny2 = V 3
035V

3
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3
233).

For q = 5 and τ ≥ 0.767, the following values satisfy all constraints for the above bound (and attempt
to maximize it): g = nz2/(nz1 + nz2 + nz3 + nz4) and j = (nz4 − nz2)/(nz1 + nz2 + nz3 + nz4) −
nx0/(nx0 + nx1) + ny0/(ny0 + ny1 + ny2).

For q = 5 and τ < 0.767 the above bound is maximized for g = 0 and j = (nz2 + nz4)/(nz1 + nz2 +
nz3 + nz4)− nx0/(nx0 + nx1) + ny0/(ny0 + ny1 + ny2).

39



Proof. I = 2, J = 5,K = 9, and the variables are a = α008, b = α017, c = α026, d = α035, e = α044,
f = α053, g = α107, h = α116, j = α125. The linear system is
X0 = a+ b+ c+ d+ e+ f ,
X1 = 2(g + h+ j),
Y0 = a+ f + g,
Y1 = b+ e+ h,
Y2 = c+ d+ j,
Z1 = a,
Z2 = b+ g,
Z3 = c+ f + h,
Z4 = d+ e+ j.

The system has rank 7 but it has 9 variables, so we pick two variables, g and j, and we solve the system
assuming them as constants.
a = Z1,
b = Z2 − g
e = 2g + j +X0 − Y0 − Y2 − Z2,
c = Y2 − Z4 + e = −Z4 + 2g + j +X0 − Y0 − Z2,
d = Z4 − e− j = Z4 − 2j − 2g −X0 + Y0 + Y2 + Z2,
f = Y0 − Z1 − g,
h = X1/2− g − j.
nx0 = (W044W026/W035)3 = (V044V125V026V233)3/(V 3
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Now let’s look at the constraints on g and j:
Constraint 1: since b = Z2 − g ≥ 0 and Z2 was set to nz2/(nz1 + nz2 + nz3 + nz4), we have that
g ≤ nz2/(nz1 + nz2 + nz3 + nz4) = C1.
Constraint 2: since e = 2g + j + X0 − Y0 − Y2 − Z2 ≥ 0 and we set X0 = nx0/(nx0 + nx1),

Y0 = ny0/(ny0 + ny1 + ny2), Y2 = ny2/(ny0 + ny1 + ny2), Z2 = nz2/(nz1 + nz2 + nz3 + nz4), we get
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2g + j ≥ (ny0 + ny2)/(ny0 + ny1 + ny2) + nz2/(nz1 + nz2 + nz3 + nz4)− nx0/(nx0 + nx1),

Constraint 3: since c = −Z4 + 2g + j +X0 − Y0 − Z2 ≥ 0 and Z4 = nz4/(nz1 + nz2 + nz3 + nz4),
we get:

2g+ j ≥ (nz2 +nz4)/(nz1 +nz2 +nz3 +nz4)−nx0/(nx0 +nx1) +ny0/(ny0 +ny1 +ny2) = C3,

Constraint 4: since d = Z4 − 2j − 2g −X0 + Y0 + Y2 + Z2 ≥ 0, we get:
g+j ≤ 0.5((nz2+nz4)/(nz1+nz2+nz3+nz4)+(ny0+ny2)/(ny0+ny1+ny2)−nx0/(nx0+nx1)),

Constraint 5: since f = Y0 − Z1 − g ≥ 0, we get:
g ≤ ny0/(ny0 + ny1 + ny2)− nz1/(nz1 + nz2 + nz3 + nz4),

Constraint 6: since h = X1/2− g − j ≥ 0 and we set X1/2 = nx1/(nx0 + nx1), we get
g + j ≤ nx1/(nx0 + nx1).
One can verify that for q = 5 and any τ > 2/3, ng and nj are < 1, and so in order to maximize the

lower bound on V259, we should try to minimize g and j as much as possible.
The lower bounds for g and j are in constraints 2 and 3, both for 2g + j. One can verify that for q = 5

and τ ≥ 2/3, constraint 3 gives a larger lower bound for 2g + j.
Thus we set 2g+j = (nz2+nz4)/(nz1+nz2+nz3+nz4)−nx0/(nx0+nx1)+ny0/(ny0+ny1+ny2) =

C3. Hence, j = C3 − 2g, and the part of our bound on V259 which depends on g and j becomes

nggnjj = nggnjC3−2g = njC3 · (ng/nj2)g.

We are hence interested in how large ng/nj2 is. One can verify that for q = 5 and τ < 0.767,
ng/nj2 > 1 and for τ ≥ 0.767, ng/nj2 > 1. Thus, to maximize our bound, we need to minimize g if
τ < 0.767 and maximize g if τ ≥ 0.767.

If τ < 0.767, then we can set g = 0, and hence j = C3 = (nz2 + nz4)/(nz1 + nz2 + nz3 + nz4) −
nx0/(nx0 + nx1) + ny0/(ny0 + ny1 + ny2). All constraints are satisfied.

Now suppose that τ ≥ 0.767. We consider the upper bounds on g given by constraints 1 and 5 and by 4
and 6 (for g + j).

For q = 5 and τ ≥ 2/3, the upper bound given by constraint 1 is smaller than that of constraint 5. We
set g = C1 = nz2/(nz1 +nz2 +nz3 +nz4) and j = C3− 2C1 = (nz4−nz2)/(nz1 +nz2 +nz3 +nz4)−
nx0/(nx0 + nx1) + ny0/(ny0 + ny1 + ny2).

One can verify that for q = 5 and τ ≥ 2/3, constraints 4 and 6 are both satisfied for these settings of g
and j.

Lemma 19.
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(
V125V026V134

V224V035V116

)g ( V 2
134V026

V233V044V116

)k
.

When q = 5 and τ < 0.767, the following values satisfy the constraints for the above bound and attempt
to maximize it:

g =
ny0

ny0 + ny1 + ny2 + ny3
− nz0

nz0 + nz1 + nz2 + nz3 + nz4
and

k =
ny0/2 + ny1 + ny2/2 + ny3

ny0 + ny1 + ny2 + ny3
− nx0 + nx1/2

nx0 + nx1
+

nz0 + nz2 + nz4

2(nz0 + nz1 + nz2 + nz3 + nz4)
,

and for τ ≥ 0.767, the right hand side is maximized for

g =
ny0

ny0 + ny1 + ny2 + ny3
− nz0 + nz1

nz0 + nz1 + nz2 + nz3 + nz4
, and

k =
ny0/2 + ny1 + ny2/2 + ny3

ny0 + ny1 + ny2 + ny3
− nx0 + nx1/2
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+

nz0 + nz2 + nz4

2(nz0 + nz1 + nz2 + nz3 + nz4)
, where
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Proof. I = 2, J = 6,K = 8, and the variables are a = α008, b = α017, c = α026, d = α035, e = α044,
f = α053, g = α062, h = α107, i = α116, j = α125, k = α134. The linear system becomes
X0 = a+ b+ c+ d+ e+ f + g,
X1 = 2(h+ i+ j + k),
Y0 = a+ g + h,
Y1 = b+ f + i,
Y2 = c+ e+ j,
Y3 = 2(d+ k),
Z0 = a,
Z1 = b+ h,
Z2 = c+ g + i,
Z3 = d+ f + j,
Z4 = 2(e+ k).

The system has rank 9 and 11 variables, and so we pick two of the variables, g and k to put in ∆. We
solve the system:
a = Z0,
e = (e+ k)− k = Z4/2− k,
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d = (d+ k)− k = Y3/2− k,
h = (a+ g + h)− a− g = Y0 − Z0 − g,
b = (b+ h)− h = Z1 − Y0 + Z0 + g,
c = ((c+ e+ j)− e+ (c+ g+ i)− g− (h+ i+ j+ k) +h+ k)/2 = (Y2−Z4/2 + k+Z2− g−X1/2 +
Y0 − Z0 − g + k)/2 = Y2/2− Z4/4 + Z2/2−X1/4 + Y0/2− Z0/2 + k − g,
f = (a+ b+ c+ d+ e+ f + g)− a− b− c− d− e− g = X0 − 3Z0/2− Z1 + Y0/2− Y2/2− Z4/4−
Z2/2 +X1/4− Y3/2 + k − g,
i = (b+ f + i)− b− f = Y1 + Y0/2 + Z0/2−X0 + Y2/2 + Z4/4 + Z2/2−X1/4 + Y3/2− k,
j = (d+ f + j)− f − d = Z3 −X0 + 3Z0/2 + Z1 − Y0/2 + Y2/2 + Z4/4 + Z2/2−X1/4 + g,
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We obtain
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The constraints on g and k are as follows:
Constraint 1: since e = Z4/2 − k ≥ 0, we get that k ≤ Z4/2, but since we set Z4/2 = nz4/(nz0 +

nz1 + nz2 + nz3 + nz4), we get
k ≤ nz4/(nz0 + nz1 + nz2 + nz3 + nz4) = C1.
Constraint 2: since d = Y3/2 − k ≥ 0, we get that k ≤ Y3/2 and since we set Y3/2 = ny3/(ny0 +

ny1 + ny2 + ny3), we get
k ≤ ny3/(ny0 + ny1 + ny2 + ny3) = C2.
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Constraint 3: since h = Y0 − Z0 − g ≥ 0 and we set Y0 = ny0/(ny0 + ny1 + ny2 + ny3) and
Z0 = nz0/(nz0 + nz1 + nz2 + nz3 + nz4), we get

g ≤ ny0/(ny0 + ny1 + ny2 + ny3)− nz0/(nz0 + nz1 + nz2 + nz3 + nz4) = C3.
Constraint 4: since b = Z1 − Y0 + Z0 + g ≥ 0 and we set Z1 = nz1/(nz0 + nz1 + nz2 + nz3 + nz4),

we get
g ≥ ny0/(ny0 + ny1 + ny2 + ny3)− (nz0 + nz1)/(nz0 + nz1 + nz2 + nz3 + nz4) = C4.
Constraint 5: since c = Y2/2 − Z4/4 + Z2/2 − X1/4 + Y0/2 − Z0/2 + k − g ≥ 0 and we set

Z4/2 = nz4/(nz0 + nz1 + nz2 + nz3 + nz4), Z2 = nz2/(nz0 + nz1 + nz2 + nz3 + nz4), and X1/2 =
nx1/(nx0 + nx1), we get

g− k ≤ (ny0 +ny2)/(2(ny0 +ny1 +ny2 +ny3)) + (nz2−nz0−nz4)/(2(nz0 +nz1 +nz2 +nz3 +
nz4))− nx1/(2(nx0 + nx1)) = C5.

Constraint 6: since f = (X0 +X1/4) + (Y0−Y2−Y3)/2− (3Z0 + 2Z1 +Z2 +Z4/2)/2 + k− g ≥ 0,
we get that

g − k ≤ (nx0 + nx1/2)/(nx0 + nx1) + (ny0 − ny2 − ny3)/(2(ny0 + ny1 + ny2 + ny3))− (3nz0 +
2nz1 + nz2 + nz4)/(2(nz0 + nz1 + nz2 + nz3 + nz4)) = C6.

Constraint 7: since i = (Y1 + Y0/2 + Y2/2 + Y3/2)− (X0 +X1/4) + (Z0 + Z2 + Z4/2)/2− k ≥ 0,
we get

k ≤ (ny0/2 +ny1 +ny2/2 +ny3)/(ny0 +ny1 +ny2 +ny3)− (nx0 +nx1/2)/(nx0 +nx1) + (nz0 +
nz2 + nz4)/(2(nz0 + nz1 + nz2 + nz3 + nz4)) = C7.

Constraint 8: since j = (−X0−X1/4) + (−Y0 +Y2)/2 + (3Z0 + 2Z1 +Z2 + 2Z3 +Z4/2)/2 + g ≥ 0,
we get

g ≥ (nx0 +nx1/2)/(nx0 +nx1) + (ny0−ny2)/(2(ny0 +ny1 +ny2 +ny3))− (3nz0 + 2nz1 +nz2 +
2nz3 + nz4)/(2(nz0 + nz1 + nz2 + nz3 + nz4)) = C8

Now let’s consider setting q = 5. We have that for any τ ≥ 2/3, nk ≥ 1, so we would like to maximize
k. The constraints are

k ≤ C1, k ≤ C2, g ≤ C3, C4 ≤ g, g − k ≤ C5, g − k ≤ C6, k ≤ C7, C8 ≤ g.

Since for any τ ≥ 2/3 and q = 5, 0 < C7 < C1, C2, the lowest upper bound on k is C7, so we can set
k = C7 and substitute in the constraints.

g ≤ C3, C4 ≤ g, g ≤ C5 + C7, g ≤ C6 + C7, C8 ≤ g.

For τ < 0.767, ng > 1 and for τ ≥ 0.767, ng < 1.
Hence, for τ < 0.767 we need to maximize g. The upper bounds on g are C3, C5 + C7, C6 + C7. For

τ < 0.767 we have that C3 is the smallest upper bound, and that the lower bounds on g, C4 and C8 are both
smaller than C3, so we set g = C3 and k = C7.

Consider now τ ≥ 0.767. Here we would like to minimize g. The lower bounds on g are C4 and C8.
For this interval, C8 < 0 < C4.

Suppose that we set g = C4 and k = C7. Then all remaining constraints are satisfied. Hence we get that
for these values of q, τ , the bound for V268 is maximized for g = C4 and k = C7.

Lemma 20.
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and
C3 = nz0/(nz0 + nz1 + nz2 + nz3),
C6 = (ny0 + ny2 + 2ny3)/(2(ny0 + ny1 + ny2 + ny3))− nx1/(2(nx0 + nx1))− (nz1 + nz3)/(2(nz0 +
nz1 + nz2 + nz3)),
C5 = (2nz0 + nz1 − nz3)/(2(nz0 + nz1 + nz2 + nz3)) + (ny3 − ny0/2 + ny2/2)/(ny0 + ny1 + ny2 +
ny3)− nx1/(2(nx0 + nx1)),
C7 = (nz1 + nz3 + 2nz0)/(2(nz0 + nz1 + nz2 + nz3)) − (ny0 + ny2)/(2(ny0 + ny1 + ny2 + ny3)) −
nx1/(2(nx0 + nx1)).

Then, the following values satisfy the constraints on the above bound on V277 and attempt to maximize
it: c = C6−C7 +C3, d = 2C7− 2C3 for τ < 0.767, and c = C5−C7 and d = 2C7− 2C3 for τ > 0.767.

Proof. I = 2, J = K = 7, and the variables are a = α017, b = α026, c = α035, d = α044, e = α053, f =
α062, g = α071, h = α107, i = α116, j = α125, k = α134. The linear system is
X0 = a+ b+ c+ d+ e+ f + g,
X1 = 2(h+ i+ j + k),
Y0 = g + h,
Y1 = a+ f + i,
Y2 = b+ e+ j,
Y3 = c+ d+ k,
Z0 = a+ h,
Z1 = b+ g + i,
Z2 = c+ f + j,
Z3 = d+ e+ k.

The system has rank 8 and 11 variables, so we pick 3 variables, a, c, d , and put them in ∆. We solve the
system:

k = (c+ d+ k)− c− d = Y3 − c− d,
e = (d+ e+ k)− d− k = Z3 − Y3 + c,
h = (a+ h)− a = Z0 − a,
g = (g + h)− h = Y0 − Z0 + a,
b = ((b+ g + i)− g + (b+ e+ j)− e− (h+ i+ j + k) + h+ k)/2 = Z1/2− Y0/2 + Y2/2− Z3/2−
X1/4 + Z0 + Y3 − a− c− d/2,
i = (b+ g + i)− b− g = Z1/2− Y0/2− Y2/2 + Z3/2 +X1/4− Y3 + c+ d/2,
j = (b+ e+ j)− b− e = −Z1/2 + Y0/2 + Y2/2− Z3/2 +X1/4− Z0 + a+ d/2,
f = (a+ f + i)− a− i = Y1 − Z1/2 + Y0/2 + Y2/2− Z3/2−X1/4 + Y3 − a− c− d/2.
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We now consider the constraints on a, c, d.
Constraint 1: since k = Y3 − c− d ≥ 0 and we set Y3 = ny3/(ny0 + ny1 + ny2 + ny3), we get that
c+ d ≤ ny3/(ny0 + ny1 + ny2 + ny3) = C1.
Constraint 2: since e = Z3 − Y3 + c ≥ 0, and we set Z3 = nz3/(nz0 + nz1 + nz2 + nz3), we get that
c ≥ ny3/(ny0 + ny1 + ny2 + ny3)− nz3/(nz0 + nz1 + nz2 + nz3) = C2.
Constraint 3: since h = Z0 − a ≥ 0 and we set Z0 = nz0/(nz0 + nz1 + nz2 + nz3), we get that
a ≤ nz0/(nz0 + nz1 + nz2 + nz3) = C3.
Constraint 4: since g = Y0 − Z0 + a ≥ 0 and we set Y0 = ny0/(ny0 + ny1 + ny2 + ny3), we get that
a ≥ nz0/(nz0 + nz1 + nz2 + nz3)− ny0/(ny0 + ny1 + ny2 + ny3) = C4.
Constraint 5: since b = Z1/2 − Y0/2 + Y2/2 − Z3/2 −X1/4 + Z0 + Y3 − a − c − d/2 ≥ 0, and we

set X1/2 = nx1/(nx0 + nx1), Z1 = nz1/(nz0 + nz1 + nz2 + nz3), Y2 = ny2/(ny0 + ny1 + ny2 + ny3),
we get that

a+ c+ d/2 ≤ (2nz0 + nz1 − nz3)/(2(nz0 + nz1 + nz2 + nz3)) + (ny3 − ny0/2 + ny2/2)/(ny0 +
ny1 + ny2 + ny3)− nx1/(2(nx0 + nx1)) = C5.

Constraint 6: since i = Z1/2− Y0/2− Y2/2 + Z3/2 +X1/4− Y3 + c+ d/2 ≥=, we get that
c + d/2 ≥ (ny0 + ny2 + 2ny3)/(2(ny0 + ny1 + ny2 + ny3)) − nx1/(2(nx0 + nx1)) − (nz1 +

nz3)/(2(nz0 + nz1 + nz2 + nz3)) = C6.
Constraint 7: since j = −Z1/2 + Y0/2 + Y2/2− Z3/2 +X1/4− Z0 + a+ d/2 ≥ 0, we get that
a+ d/2 ≥ (nz1 + nz3 + 2nz0)/(2(nz0 + nz1 + nz2 + nz3))− (ny0 + ny2)/(2(ny0 + ny1 + ny2 +

ny3))− nx1/(2(nx0 + nx1)) = C7.
Constraint 8: since f = Y1−Z1/2 +Y0/2 +Y2/2−Z3/2−X1/4 +Y3− a− c− d/2 ≥ 0, we get that
a + c + d/2 ≤ (ny0 + 2ny1 + ny2 + 2ny3)/(2(ny0 + ny1 + ny2 + ny3)) − (nz1 + nz3)/(2(nz0 +

nz1 + nz2 + nz3))− nx1/(2(nx0 + nx1)) = C8.
To summarize, our constraints are

c+ d ≤ C1, C2 ≤ c, a ≤ C3, C4 ≤ a, a+ c+ d/2 ≤ C5, C6 ≤ c+ d/2, C7 ≤ a+ d/2, a+ c+ d/2 ≤ C8.

For q = 5 we have that C5 = C8, so we can remove one constraint

c+ d ≤ C1, C2 ≤ c, a ≤ C3, C4 ≤ a, a+ c+ d/2 ≤ C5, C6 ≤ c+ d/2, C7 ≤ a+ d/2.

Our bound on V277 only depends on c and d. We look at two cases:
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• when τ < 0.767: we have that nc < 1 and nd < 1, so that both c and d should be minimized to
maximize our bound.

The lower bounds on c are C2 ≤ c, C6 ≤ c + d/2. Since 0 < C2 << C6 in this interval, we will
attempt to set C6 = c + d/2 and show that C2 ≤ c is still satisfied. We substitute c = C6 − d/2 and
add the constraint d ≤ 2C6. The constraints become

d/2 ≤ 2C1 − 2C6, d/2 ≤ 2C6 − 2C2, a ≤ C3, C4 ≤ a, a ≤ C5 − C6, d ≤ 2C6, C7 ≤ a+ d/2.

The part of our bound on V277 depending on c and d now becomes (nd/nc1/2)d and since (nd/nc1/2) <
1, we still need to minimize d.

The only lower bound is C7 ≤ a + d/2. We set d = 2C7 − 2a, add a ≤ C7 and try to maximize a
under the constraints

C7 − 2C1 + 2C6 ≤ a,C7 − 2C6 + 2C2 ≤ a, a ≤ C3, C4 ≤ a, a ≤ C5 − C6, C7 − C6 ≤ a, a ≤ C7.

Now the upper bounds on a are a ≤ C3, a ≤ C5 − C6, a ≤ C7. In this interval we have 0 < C3 <
C5 − C6 < C7, and so we should set a = C3. The remaining constraints become:

C7 − 2C1 + 2C6 ≤ C3, C7 − 2C6 + 2C2 ≤ C3, C4 ≤ C3, C7 − C6 ≤ C3.

Here we have C7 − C6, C7 − 2C6 + 2C2, C7 − 2C1 + 2C6 < 0, and 0 < C4 < C3.

The final setting becomes a = C3, c = C6 − C7 + C3, d = 2C7 − 2C3.

• when τ ≥ 0.767: we have that nc ≥ 1 and nd < 1 so c should be maximized and d minimized to
maximize our bound.

The upper bounds on c are c + d ≤ C1, a + c + d/2 ≤ C5. As C1 > C5, we attempt to set
a+ c+ d/2 = C5 and show later that c+ d ≤ C1 is satisfied. We substitute c = C5 − a− d/2 into
the constraints, adding the constraint c ≥ 0:

C5−a+d/2 ≤ C1, C2 ≤ C5−a−d/2, a ≤ C3, C4 ≤ a,C6 ≤ C5−a,C7 ≤ a+d/2, 0 ≤ C5−a−d/2.

C5−C1 ≤ a−d/2, a+d/2 ≤ C5−C2, a ≤ C3, C4 ≤ a, a ≤ C5−C6, C7 ≤ a+d/2, a+d/2 ≤ C5.

We still need to minimize d. Since the only lower bound on d is C7 ≤ a+ d/2, we set d = 2C7− 2a,
substitute and add the constraint d ≥ 0.

(C5 − C1 + C7)/2 ≤ a,C7 ≤ C5 − C2, a ≤ C3, C4 ≤ a, a ≤ C5 − C6, C7 ≤ C5, a ≤ C7.

We have that C5 − C2 > C7, C5 > C7, (C5 − C1 + C7)/2 < 0, C4 < 0, C7 > C5 − C6 > C3 > 0,
for the chosen interval, and since we want to maximize a, we should set a = C3.

The final setting becomes a = C3, d = 2C7 − 2C3 and c = C5 − C7.

47



Lemma 21.
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Then the following values satisfy the constraints of the lower bound for V3310 and attempt to maximize
it: d = 0 when τ < 0.767, and d = (nz4 + nz5 − nz2)/(2(nz2 + nz3 + nz4 + nz5)) − nx1/(2(nx0 +
nx1)) + ny0/(2(ny0 + ny1)) when τ ≥ 0.767.

Proof. I = J = 3,K = 10, and the variables are a = α008, b = α017, c = α026, d = α035, e = α116, f =
α125, g = α134, h = α107. The linear system is as follows:
X0 = a+ b+ c+ d,
X1 = e+ f + g + h,
Y0 = a+ d+ g + h,
Y1 = b+ c+ e+ f ,
Z2 = a,
Z3 = b+ h,
Z4 = c+ e+ g,
Z5 = 2(d+ f).

The system has rank 6 and 8 variables, so we pick two variables, b and d, and add them to ∆. We solve
the system:
a = Z2,
h = (b+ h)− b = Z3 − b,
f = (d+ f)− d = Z5/2− d,
c = (c+ e+ g)− (e+ f + g + h) + h+ f = Z4 −X1 + Z3 + Z5/2− b− d,
g = (a+ d+ g + h)− a− d− h = Y0 − Z2 − Z3 + b− d,
e = (c+ e+ g)− c− g = X1 − Z5/2− Y0 + Z2 + 2d.
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We now give the constraints on b, d:
Constraint 1: since h = Z3 − b ≥ 0 and Z3 = nz3/(nz2 + nz3 + nz4 + nz5), we get
b ≤ nz3/(nz2 + nz3 + nz4 + nz5) = C1.

Constraint 2: since f = Z5/2− d ≥ 0 and Z5/2 = nz5/(nz2 + nz3 + nz4 + nz5), we get
d ≤ nz5/(nz2 + nz3 + nz4 + nz5) = C2.

Constraint 3: since c = Z4 −X1 + Z3 + Z5/2− b− d ≥ 0 and Z4 = nz4/(nz2 + nz3 + nz4 + nz5),
X1 = nx1/(nx0 + nx1), we get

b+ d ≤ (nz3 + nz4 + nz5)/(nz2 + nz3 + nz4 + nz5)− nx1/(nx0 + nx1) = C3.

Constraint 4: since g = Y0 − Z2 − Z3 + b − d ≥ 0 and since Y0 = ny0/(ny0 + ny1) and Z2 =
nz2/(nz2 + nz3 + nz4 + nz5), we get

d− b ≤ ny0/(ny0 + ny1)− (nz2 + nz3)/(nz2 + nz3 + nz4 + nz5) = C4.

Constraint 5: since e = X1 − Z5/2− Y0 + Z2 + 2d ≥ 0, we get
d ≥ (ny0/(ny0 + ny1)− nx1/(nx0 + nx1) + (nz5 − nz2)/(nz2 + nz3 + nz4 + nz5))/2 = C5.
To summarize, the constraints are as follows:

b ≤ C1, d ≤ C2, b+ d ≤ C3, d− b ≤ C4, C5 ≤ d.

Now, when τ < 0.767 we have that nd < 1 so we should minimize d in order to maximize our bound,
and when τ ≥ 0.767, nd ≥ 1 and we should maximize d.

Consider the case τ < 0.767. The only lower bound on d isC5, which is negative in this interval. Hence,
let’s set d = 0. The remaining constraints become

b ≤ C1, 0 ≤ C2, b ≤ C3,−C4 ≤ b.

One can verify that −C4 < 0, C1, C2, C3 > 0. Hence, we can pick b = 0 to satisfy the inequalities.
Now consider the case τ ≥ 0.767. The upper bounds on d are C2, b+C4 and C3− b. In this interval we

have that 0 < C4 < C3 < C2, and so we can remove the constraint d ≤ C2. The other two upper bounds
coincide for b = (C3−C4)/2. Suppose that we set b = (C3−C4)/2 and d = (C3 +C4)/2. The remaining
constraints become:

(C3 − C4)/2 ≤ C1, (C3 + C4)/2 ≤ C2, C5 ≤ (C3 + C4)/2.

One can verify that all of these are satisfied in our interval. The final variable settings become b = (C3 −
C4)/2 and d = (C3 + C4)/2.
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Suppose that q = 5. Then the following values satisfy the constraints of the bound on V349 and attempt

to maximize it:

• for τ < 0.767, when b = nz2/(nz1 +nz2 +nz3 +nz4), c = (nz1 +nz3)/(nz1 +nz2 +nz3 +nz4)−
ny0/(ny0 + ny1 + ny2), g = 0,

• for τ ≥ 0.767, when b = c = 0 and g = (nz1 +nz2 +nz3)/(nz1 +nz2 +nz3 +nz4)−ny0/(ny0 +
ny1 + ny2).

Proof. I = 3, J = 4,K = 9, so the variables are a = α008, b = α017, c = α026, d = α035, e = α044, f =
α107, g = α116, h = α125, i = α134, j = α143. The linear system becomes
X0 = a+ b+ c+ d+ e,
X1 = f + g + h+ i+ j,
Y0 = a+ e+ f + j,
Y1 = b+ d+ g + i,
Y2 = 2(c+ h),
Z1 = a,
Z2 = b+ f ,
Z3 = c+ g + j,
Z4 = d+ e+ h+ i.

The rank is 7 and the number of variables is 10 so we pick 3 variables, b, c, g, to place into ∆. We solve
the system:
a = Z1,
h = (c+ h)− c = Y2/2− c,
f = (b+ f)− b = Z2 − b,
j = (c+ g + j)− c− g = Z3 − c− g,
e = (a+ e+ f + j)− a− f − j = Y0 − Z1 − Z2 − Z3 + b+ c+ g,
d = (a+ b+ c+ d+ e)− a− b− c− e = X0 − Y0 + Z2 + Z3 − 2b− 2c− g,
i = (f + g + h+ i+ j)− f − g − h− j = X1 − Z2 − Y2/2− Z3 + b+ 2c.
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We now look at the constraints on b, c, g:
Constraint 1: since h = Y2/2− c ≥ 0, and Y2/2 = ny2/(ny0 + ny1 + ny2), we get
c ≤ ny2/(ny0 + ny1 + ny2) = C1.

Constraint 2: since f = Z2 − b ≥ 0 and Z2 = nz2/(nz1 + nz2 + nz3 + nz4), we get
b ≤ nz2/(nz1 + nz2 + nz3 + nz4) = C2.

Constraint 3: since j = Z3 − c− g ≥ 0 and Z3 = nz3/(nz1 + nz2 + nz3 + nz4), we get
c+ g ≤ nz3/(nz1 + nz2 + nz3 + nz4) = C3.

Constraint 4: since e = Y0 − Z1 − Z2 − Z3 + b + c + g ≥ 0, and Y0 = ny0/(ny0 + ny1 + ny2) and
Z1 = nz1/(nz1 + nz2 + nz3 + nz4), we get

b+ c+ g ≥ (nz1 + nz2 + nz3)/(nz1 + nz2 + nz3 + nz4)− ny0/(ny0 + ny1 + ny2) = C4.

Constraint 5: since d = X0 − Y0 + Z2 + Z3 − 2b− 2c− g ≥ 0 and X0 = nx0/(nx0 + nx1), we get
2b+2c+g ≤ nx0/(nx0 +nx1)−ny0/(ny0 +ny1 +ny2)+(nz2 +nz3)/(nz1 +nz2 +nz3 +nz4) = C5.

Constraint 6: since i = X1 − Z2 − Y2/2− Z3 + b+ 2c ≥ 0, we get that
b+ 2c ≥ (nz2 + nz3)/(nz1 + nz2 + nz3 + nz4) + ny2/(ny0 + ny1 + ny2)− nx1/(nx0 + nx1) = C6.
To summarize, the constraints are

c ≤ C1, b ≤ C2, c+ g ≤ C3, C4 ≤ b+ c+ g, 2b+ 2c+ g ≤ C5, C6 ≤ b+ 2c.

Now, for all τ ≥ 2/3, nb = nc ≤ 1 and ng ≤ 1, and so we should minimize b, c and g.
There are two lower bounds: C4 ≤ b + c + g and C6 ≤ b + 2c. However, C6 < 0 for all τ ≥ 2/3,

and C4 > 0 for τ ≥ 2/3 and τ < 0.95. Hence we set b + c + g = C4 for τ < 0.95 (otherwise we can set
b = c = g). Substitute b = C4 − c− g into the constraints adding the constraint c+ g ≤ C4.

c ≤ C1, C4 − C2 ≤ c+ g, c+ g ≤ C3, 2C4 − C5 ≤ g, c+ g ≤ C4.

Now, after setting b = C4 − c − g, the part of the bound on V349 depending on c and g becomes
(nc/nb)c(ng/nb)g = (ng/nb)g.

Say that q = 5. For τ < 0.767 we have that ng/nb < 1 and for τ ≥ 0.767 we have ng/nb ≥ 1.
Suppose that τ < 0.767. We want to minimize g. The lower bounds for g are C4 − C2 ≤ c + g and

2C4 − C5 ≤ g. One can verify that for this interval, 2C4 − C5 < 0 and C4 − C2 > 0. Hence, we set
c = C4 − C2 − g, substitute in the constraints and add g ≤ C4 − C2.
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C4 − C2 − C1 ≤ g, C4 − C2 ≤ C3, 0 ≤ C2, g ≤ C4 − C2.

It turns out that in this interval, C4−C2−C1 < 0. Furthermore, C4−C2 ≤ C3, 0 ≤ C2. Hence we can set
g = 0 and all constraints are satisfied. The final settings are b = C2, c = C4 − C2, g = 0.

Suppose now that τ ≥ 0.767. We want to maximize g. The upper bounds on g are c + g ≤ C3 and
c+ g ≤ C4. In this interval, C4 < C3, so we set c = C4 − g, and substitute:

C4 − C1 ≤ g, 0 ≤ C2, 2C4 − C5 ≤ g, g ≤ C4.

In this interval we have that C1 > 0, so that C4−C1 < C4. Also, C5−C4 > 0 so that 2C4−C5 < C4.
Finally, C2 > 0. Hence we can set g = C4 and hence b = c = 0.
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Then for q = 5, the following settings of h and e obey the constraints and attempt to maximize the above
lower bound on V358:

• for τ < 0.767, e = h = 0,

• for 0.767 < τ < 0.7773, e = 0 and h = nz2/(nz0 + nz1 + nz2 + nz3 + nz4),

• for 0.7773 < τ < 0.7828, e = 0 and h = nx0/(nx0 + nx1) − (ny0 + ny2)/(ny0 + ny1 + ny2) +
(nz1 + nz2 + nz4)/(nz0 + nz1 + nz2 + nz3 + nz4),

• for τ > 0.7829, h = nz2/(nz0 + nz1 + nz2 + nz3 + nz4) and e = nx0/(2(nx0 + nx1))− (ny0 +
ny2)/(2(ny0 + ny1 + ny2)) + (nz1 + nz4)/(2(nz0 + nz1 + nz2 + nz3 + nz4)).

Proof. I = 3, J = 5,K = 8, so the variables are a = α008, b = α017, c = α026, d = α035, e = α044,
f = α053, g = α107, h = α116, i = α125, j = α134, k = α143, l = α152. The linear system becomes
X0 = a+ b+ c+ d+ e+ f ,
X1 = g + h+ i+ j + k + l,
Y0 = a+ f + g + l,
Y1 = b+ e+ h+ k,
Y2 = c+ d+ i+ j,
Z0 = a,
Z1 = b+ g,
Z2 = c+ h+ l,
Z3 = d+ f + i+ k,
Z4 = 2(e+ j).
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The system has rank 8 and 12 variables, so we pick 4 variables, b, c, h, e to put in ∆. We then solve the
system:
a = Z0,
g = (b+ g)− b = Z1 − b,
j = (e+ j)− e = Z4/2− e,
l = (c+ h+ l)− c− h = Z2 − c− h,
f = (a+ f + g + l)− a− g − l = Y0 − Z0 − Z1 − Z2 + b+ c+ h,
d = (a+ b+ c+ d+ e+ f)− a− b− c− e− f = X0 − Y0 + Z1 + Z2 − 2b− 2c− e− h,
i = (c+ d+ i+ j)− c− d− j = Y2 − Z4/2−X0 + Y0 − Z1 − Z2 + 2b+ c+ 2e+ h,
k = (b+ e+ h+ k)− b− e− h = Y1 − b− e− h.
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Let’s look at the constraints on b, c, h, e:
Constraint 1: since g = Z1 − b ≥ 0 and we set Z1 = nz1/(nz0 + nz1 + nz2 + nz3 + nz4), we get
b ≤ nz1/(nz0 + nz1 + nz2 + nz3 + nz4) = C1.

Constraint 2: since j = Z4/2− e ≥ 0 and we set Z4/2 = nz4/(nz0 + nz1 + nz2 + nz3 + nz4), we get
e ≤ nz4/(nz0 + nz1 + nz2 + nz3 + nz4) = C2.

Constraint 3: since l = Z2 − c− h ≥ 0 and Z2 = nz2/(nz0 + nz1 + nz2 + nz3 + nz4), we get
c+ h ≤ nz2/(nz0 + nz1 + nz2 + nz3 + nz4) = C3.

Constraint 4: since f = Y0 − Z0 − Z1 − Z2 + b + c + h ≥ 0 and Y0 = ny0/(ny0 + ny1 + ny2) and
Z0 = nz0/(nz0 + nz1 + nz2 + nz3 + nz4), we get

53



b+ c+ h ≥ (nz0 + nz1 + nz2)/(nz0 + nz1 + nz2 + nz3 + nz4)− ny0/(ny0 + ny1 + ny2) = C4.

Constraint 5: since d = X0−Y0 +Z1 +Z2− 2b− 2c− e−h ≥ 0 and X0 = nx0/(nx0 +nx1), we get
2b+ 2c+ e+ h ≤ nx0/(nx0 + nx1)− ny0/(ny0 + ny1 + ny2) + (nz1 + nz2)/(nz0 + nz1 + nz2 +

nz3 + nz4) = C5.

Constraint 6: since i = Y2 − Z4/2−X0 + Y0 − Z1 − Z2 + 2b+ c+ 2e+ h ≥ 0, we get
2b+ c+ 2e+ h ≥ nx0/(nx0 + nx1)− (ny0 + ny2)/(ny0 + ny1 + ny2) + (nz1 + nz2 + nz4)/(nz0 +

nz1 + nz2 + nz3 + nz4) = C6.

Constraint 7: since k = Y1 − b− e− h ≥ 0, we get
b+ e+ h ≤ ny1/(ny0 + ny1 + ny2).
Now fix q = 5. We will distinguish several cases:

• τ < 0.767. Recall that our constraints are:

b ≤ C1, e ≤ C2, c+h ≤ C3, b+c+h ≥ C4, 2b+2c+e+h ≤ C5, 2b+c+2e+h ≥ C6, b+e+h ≤ C7.

One can verify that for τ < 0.767, 0 ≤ nh < 1 and 0 ≤ ne < 1. Hence in order to maximize the
bound on V358, we should minimize both e and h. Let’s try to set them both to 0. The constraints
become

b ≤ C1, 0 ≤ C2, c ≤ C3, b+ c ≥ C4, 2b+ 2c ≤ C5, 2b+ c ≥ C6, b ≤ C7.

One can verify that C2 ≥ 0 and that C1 < C7 for the chosen values of q and τ . The constraints that
remain are

b ≤ C1, c ≤ C3, C4 ≤ b+ c ≤ C5/2, 2b+ c ≥ C6.

As C6 < 0 < C4 < C3 < C5/2 in the chosen interval, we can just set e = h = b = 0 and c = C3.
This will both satisfy all constraints and maximize the bound on V358.

• 0.767 ≤ τ < 0.7773 In this interval, nh > 0 and 0 ≤ ne < 1. Hence we should strive to maximize h
and minimize e.

Recall that our constraints are:

b ≤ C1, e ≤ C2, c+h ≤ C3, b+c+h ≥ C4, 2b+2c+e+h ≤ C5, 2b+c+2e+h ≥ C6, b+e+h ≤ C7.

Here, since we want to maximize h and c + h ≤ C3, we will show that we can set this constraint to
be equality, and moreover with c = 0. Set h = C3. The rest of the constraints become

b ≤ C1, e ≤ C2, b ≥ C4 − C3, 2b+ e ≤ C5 − C3, 2b+ 2e ≥ C6 − C3, b+ e ≤ C7 − C3.

In the chosen interval, C4 − C3 < 0, C6 − C3 < 0, C1 > 0, C2 > 0, C5 − C3 > 0, C7 − C3 > 0.
Hence, we can set b = e = 0. The final setting becomes b = c = e = 0 and h = C3.
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• 0.7773 ≤ τ < 0.7828 Here we still need to minimize e and maximize h. Recall that our constraints
are:

b ≤ C1, e ≤ C2, c+h ≤ C3, b+c+h ≥ C4, 2b+2c+e+h ≤ C5, 2b+c+2e+h ≥ C6, b+e+h ≤ C7.

The only lower bound on e is 2b + c + 2e + h ≥ C6, so let us set it to equality. We get e =
(C6 − 2b− c− h)/2, and in the end we will require that C6 − 2b− c− h ≥ 0 so we add it to our list
of constraints. We substitute in the constraints:

b ≤ C1, C6−2C2 ≤ 2b+c+h, c+h ≤ C3, C4 ≤ b+c+h, 2b+3c+h ≤ 2C5−C6, h−c ≤ 2C7−C6, 2b+c+h ≤ C6.

Since 2C7 − C6 > C3 in the interval, then constraint h − c ≤ 2C7 − C6 can be removed since no
matter the choice of c, c+ h ≤ C3 would always supersede it. All upper bounds on h go down if c is
increased, so we set c = 0. We are left with

b ≤ C1, C6 − 2C2 ≤ 2b+ h, h ≤ C3, C4 ≤ b+ h, 2b+ h ≤ 2C5 − C6, 2b+ h ≤ C6.

No matter what we set b to, we have that C6− 2b < C3 and C6− 2b < 2C5−C6− 2b in this interval,
so we can just set h = C6 − 2b. Substituting, we get the new constraints

b ≤ C1, 0 ≤ C2, b ≤ C6 − C4, b ≤ C6/2.

Now, since in this interval, C1 > 0, C2 > 0 and C6 −C4 > 0 we can set b = 0 and all constraints are
satisfied. The final settings are b = c = e = 0 and h = C6.

• τ ≥ 0.7829

In this interval, we can take the same settings of c = 0 and e = (C6 − 2b − h)/2 as in the previous
bullet, until we get to the constraints

b ≤ C1, C6 − 2C2 ≤ 2b+ h, h ≤ C3, C4 ≤ b+ h, 2b+ h ≤ 2C5 − C6, 2b+ h ≤ C6.

We still need maximize h and minimize e. In this interval, C3 > 0 and C3 < 2C5 − C6 − 2b and
C3 < C6 − 2b even when b = C1 (i.e. when it is as large as is allowed). Hence, we can set h = C3

and are left with the constraints

b ≤ C1, C6 − 2C2 − C3 ≤ 2b, C4 − C3 ≤ b.

In this interval, C6 − 2C2 − C3 < 0 and C4 − C3 < 0, while C1 > 0 and so we can set b = 0. The
final setting is b = c = 0, h = C3 and e = (C6 − C3)/2.
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C3 = nx0/(nx0 + nx1) + nz0/(nz0 + nz1 + nz2 + nz3)− ny0/(ny0 + ny1 + ny2 + ny3),
C6 = (ny2 + ny3)/(ny0 + ny1 + ny2 + ny3)− nz3/(nz0 + nz1 + nz2 + nz3),
C7 = (ny2 +ny3)/(ny0 +ny1 +ny2 +ny3) +nx0/(nx0 +nx1)− (nz2 +nz3)/(nz0 +nz1 +nz2 +nz3)
and
C8 = (ny1+ny2+ny3)/(ny0+ny1+ny2+ny3)+nx0/(nx0+nx1)−(nz2+nz3)/(nz0+nz1+nz2+nz3).

Then for q = 5, the following values satisfy the constraints of the bound on V367 and attempt to maximize
it:

• for τ < 0.705, b = C8 − C3 and d = 0,

• for 0.705 ≤ τ < 0.767, b = C8 − C3 and d = C3 − C6 − 2C8 + 2C7,

• for 0.767 ≤ τ , b = C8 − C3 and d = 2C7 + C3 − C6 − 2C8.

Proof. I = 3, J = 6,K = 7 so the variables are a = α017, b = α026, c = α035, d = α044, e = α053, f =
α062, g = α107, h = α116, i = α125, j = α134, k = α143, l = α152,m = α161. The linear system is as
follows.
X0 = a+ b+ c+ d+ e+ f ,
X1 = g + h+ i+ j + k + l +m,
Y0 = f + g +m,
Y1 = a+ e+ h+ l,
Y2 = b+ d+ i+ k,
Y3 = 2(c+ j),
Z0 = a+ g,
Z1 = b+ h+m,
Z2 = c+ f + i+ l,
Z3 = d+ e+ j + k.

The rank is 8 and the number of variables is 13, so we pick 5 variables, a, b, c, d, e, and place them in ∆.
Now we solve the system.
g = (a+ g)− a = Z0 − a,
f = (a+ b+ c+ d+ e+ f)− a− b− c− d− e = X0 − a− b− c− d− e,
m = (f + g +m)− f − g = Y0 − Z0 −X0 + 2a+ b+ c+ d+ e,
j = (c+ j)− c = Y3/2− c,
k = (d+ e+ j + k)− d− e− j = Z3 − Y3/2− d− e+ c,
i = (b+ d+ i+ k)− b− d− k = Y2 − Z3 + Y3/2 + e− b− c,
l = (c+ f + i+ l)− c− f − i = Z2 + Z3 −X0 − Y2 − Y3/2 + a+ 2b+ c+ d,
h = (a+ e+ h+ l)− a− e− l = Y1 + Y2 + Y3/2− Z2 − Z3 +X0 − 2a− 2b− c− d− e.
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Now we consider the constraints on a, b, c, d, e.
Constraint 1: since g = Z0 − a ≥ 0
a ≤ nz0/(nz0 + nz1 + nz2 + nz3) = C1.
Constraint 2: since f = X0 − a− b− c− d− e ≥ 0
a+ b+ c+ d+ e ≤ nx0/(nx0 + nx1) = C2.
Constraint 3: since m = Y0 − Z0 −X0 + 2a+ b+ c+ d+ e ≥ 0
2a+b+c+d+e ≥ nx0/(nx0+nx1)+nz0/(nz0+nz1+nz2+nz3)−ny0/(ny0+ny1+ny2+ny3) = C3.
Constraint 4: since j = Y3/2− c ≥ 0
c ≤ ny3/(ny0 + ny1 + ny2 + ny3) = C4.
Constraint 5: since k = Z3 − Y3/2− d− e+ c ≥ 0
d+ e− c ≤ nz3/(nz0 + nz1 + nz2 + nz3)− ny3/(ny0 + ny1 + ny2 + ny3) = C5.
Constraint 6: since i = Y2 − Z3 + Y3/2 + e− b− c ≥ 0
b+ c− e ≤ (ny2 + ny3)/(ny0 + ny1 + ny2 + ny3)− nz3/(nz0 + nz1 + nz2 + nz3) = C6.
Constraint 7: since l = Z2 + Z3 −X0 − Y2 − Y3/2 + a+ 2b+ c+ d ≥ 0
a+ 2b+ c+ d ≥ (ny2 + ny3)/(ny0 + ny1 + ny2 + ny3) + nx0/(nx0 + nx1)− (nz2 + nz3)/(nz0 +

nz1 + nz2 + nz3) = C7..
Constraint 8: since h = Y1 + Y2 + Y3/2− Z2 − Z3 +X0 − 2a− 2b− c− d− e ≥ 0
2a+ 2b+ c+ d+ e ≤ (ny1 + ny2 + ny3)/(ny0 + ny1 + ny2 + ny3) + nx0/(nx0 + nx1)− (nz2 +

nz3)/(nz0 + nz1 + nz2 + nz3) = C8.
To summarize, the constraints are

a ≤ C1, a+ b+ c+ d+ e ≤ C2, C3 ≤ 2a+ b+ c+ d+ e, c ≤ C4, d+ e− c ≤ C5, and

b+ c− e ≤ C6, C7 ≤ a+ 2b+ c+ d, 2a+ 2b+ c+ d+ e ≤ C8.

For all τ ≥ 2/3, we have that nd ≤ 1 so we want to minimize d. The lower bounds on d are C3 ≤
2a+ b+ c+ d+ e and C7 ≤ a+ 2b+ c+ d.
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We will try to make the first constraint tight, this setting c = C3 − 2a− b− d− e, when the constraints
become

a ≤ C1, C3−C2 ≤ a, 2a+ b+ d+ e ≤ C3, C3−C4 ≤ 2a+ b+ d+ e, 2a+ b+ 2d+ 2e ≤ C5 +C3, and

C3 − C6 ≤ 2a+ d+ 2e, a+ e− b ≤ C3 − C7, b ≤ C8 − C3.

For τ < 0.767 we have nb ≥ 1 so we want to maximize b, and for τ ≥ 0.767 we have nb < 1 so we
want to minimize b.

Consider the case τ < 0.767. Suppose that we set c = C3 − 2a − b − d − e. The upper bounds on b
here are 2a+ b+ d+ e ≤ C3, 2a+ b+ 2d+ 2e ≤ C5 + C3, and b ≤ C8 − C3.

Since C8 − C3 < C3, C5 + C3 in this interval, let us attempt to set b = C8 − C3.

a ≤ C1, C3−C2 ≤ a, 2a+d+e ≤ 2C3−C8, 2C3−C4−C8 ≤ 2a+d+e, a+d+e ≤ (C5+2C3−C8)/2, and

C3 − C6 ≤ 2a+ d+ 2e, a+ e ≤ C8 − C7.

There are two lower bounds on d: 2C3 − C4 − C8 ≤ 2a + d + e and C3 − C6 ≤ 2a + d + 2e. In this
interval, 2C3 − C4 − C8 < 0 < C3 − C6, and so we set d = C3 − C6 − 2a− 2e. The constraints become

a ≤ C1, C3 − C2 ≤ a,C8 − C6 − C3 ≤ e,−C6 + (−C5 + C8)/2 ≤ a+ e, and

a+ e ≤ (C3 − C6)/2, a+ e ≤ C8 − C7.

It turns out that in this interval, all the lower bounds are negative: C3 −C2, C8 −C6 −C3,−C6 + (−C5 +
C8)/2) < 0. Also, all the upper bounds are positive: 0 < C1 < (C3 − C6)/2, C8 − C7.

In order to minimize d, we want to maximize a + e. For τ < 0.705 we have (C3 − C6)/2 < C8 − C7

and so we can set d = 0 and e = (C3−C6)/2− a. The constraints become a ≤ C1, a ≤ (C3−C6)/2, and
we can set a = C1, b = C8 − C3, c = 3C3/2− C1 − C8 + C6/2, d = 0 and e = (C3 − C6)/2− C1.

For 0.705 ≤ τ < 0.767 we have that (C3 − C6)/2 ≥ C8 − C7 and we can set e = C8 − C7 − a and so
d = C3−C6− 2C8 + 2C7. The constraints become a ≤ C1, a ≤ C8−C7, so we set a = C1, b = C8−C3,
c = −C1 + C3 + C6 − C7, d = C3 − C6 − 2C8 + 2C7, e = C8 − C7 − C1.

Now suppose that τ ≥ 0.767. We want to minimize b and d. Recall that we set c = C3−2a− b−d− e,
and the constraints are

a ≤ C1, C3−C2 ≤ a, 2a+ b+ d+ e ≤ C3, C3−C4 ≤ 2a+ b+ d+ e, 2a+ b+ 2d+ 2e ≤ C5 +C3, and

C3 − C6 ≤ 2a+ d+ 2e, C7 − C3 ≤ b− a− e, b ≤ C8 − C3.

The lower bounds involving b are C3 − C4 ≤ 2a + b + d + e and C7 − C3 ≤ b − a − e. Let us set
e = C3 − C7 + b− a. The constraints become

a ≤ C1, C3−C2 ≤ a, a+2b+d ≤ C7, C7−C4 ≤ a+2b+d, 3b+2d ≤ C5−C3+2C7, 2C7−C3−C6 ≤ 2b+d,−C3+C7 ≤ b−a, b ≤ C8−C3.

The lower bounds involving b and d areC7−C4 < 0, 2C7−C3−C6 > 0, a−C3+C7 ≤ C1−C3+C7 < 0
Hence what remains is

a ≤ C1, C3−C2 ≤ a, a+ 2b+d ≤ C7, 3b+ 2d ≤ C5−C3 + 2C7, 2C7−C3−C6 ≤ 2b+d, b ≤ C8−C3.

We set 2C7 − C3 − C6 = 2b+ d, and hence d = 2C7 − C3 − C6 − 2b.
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The part in the bound depending on b and d now becomes (nb/nd2)b > 1, and so now we need to
maximize b under the constraints:

a ≤ C1, C3−C2 ≤ a, a ≤ −C7+C3+C6, 2C7−C3−2C6−C5 ≤ b, b ≤ (2C7−C3−C6)/2, b ≤ C8−C3.

In this interval, 2C7 − C3 − 2C6 − C5 < 0 and 0 < C8 − C3 < (2C7 − C3 − C6)/2, and so we set
b = C8 − C3. Also, C3 − C2 < 0 and C1,−C7 + C3 + C6 > 0 and so we can set a = 0. The final settings
become a = 0, b = C8 − C3, c = C3 + C6 − C7, d = 2C7 + C3 − C6 − 2C8, e = C8 − C7.
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Then for q = 5, the following values obey all constraints of the above bound and attempt to maximize it:

• for τ < 0.767, e = g = 0,

• for τ ≥ 0.767, e = 0 and g = nz2/(nz0 + nz1 + nz2 + nz3 + nz4).

Proof. I = J = 4, K = 8 and the variables are a = α008, b = α017, c = α026, d = α035, e = α044, f =
α107, g = α116, h = α125, i = α134, j = α143, k = α206, l = α215,m = α224. The linear system becomes
X0 = a+ b+ c+ d+ e,
X1 = f + g + h+ i+ j,
X2 = 2(k + l +m),
Y0 = a+ e+ f + j + k,
Y1 = b+ d+ g + i+ l,
Y2 = 2(c+ h+m),
Z0 = a,
Z1 = b+ f ,
Z2 = c+ g + k,
Z3 = d+ h+ j + l,
Z4 = 2(e+ i+m).

The rank is 9 and the number of variables is 13 so we pick 4 variables, b, c, e, g, and we put them in ∆.
We now solve the system.
a = Z0,
f = (b+ f)− b = Z1 − b,
k = (c+ g + k)− c− g = Z2 − c− g,
d = (a+ b+ c+ d+ e)− a− b− c− e = X0 − Z0 − b− c− e,
j = (a+ e+ f + j + k)− a− e− f − k = Y0 − Z0 − Z1 − Z2 + b+ c+ g − e,
i = ((f+g+h+ i+j)+(b+d+g+ i+ l)−(d+h+j+ l)−f−2g−b)/2 = (X1 +Y1−Z3−Z1)/2−g,
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h = (f + g + h+ i+ j)− f − g − i− j = X1/2− Y0 − Y1/2 + Z0 + Z1/2 + Z2 + Z3/2− c− g + e,
m = (e+ i+m)− e− i = (−X1 − Y1 + Z3 + Z1)/2 + Z4/2 + g − e,
l = (k + l +m)− k −m = X2/2 + (X1 + Y1 − Z3 − Z1)/2− Z2 − Z4/2 + c+ e.
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Let’s look at the constraints on b, c, g, e.
Constraint 1: since f = Z1 − b ≥ 0 we get
b ≤ nz1/(nz0 + nz1 + nz2 + nz3 + nz4) = C1.
Constraint 2: since k = Z2 − c− g ≥ 0 we get
c+ g ≤ nz2/(nz0 + nz1 + nz2 + nz3 + nz4) = C2.
Constraint 3: since d = X0 − Z0 − b− c− e ≥ 0 we get
b+ c+ e ≤ nx0/(nx0 + nx1 + nx2)− nz0/(nz0 + nz1 + nz2 + nz3 + nz4) = C3.
Constraint 4: since j = Y0 − Z0 − Z1 − Z2 + b+ c+ g − e ≥ 0 we get
b+ c+ g− e ≥ −ny0/(ny0 +ny1 +ny2) + (nz0 +nz1 +nz2)/(nz0 +nz1 +nz2 +nz3 +nz4) = C4.
Constraint 5: since i = (X1 + Y1 − Z3 − Z1)/2− g ≥ 0 we get
g ≤ nx1/(2(nx0 + nx1 + nx2)) + ny1/(2(ny0 + ny1 + ny2))− (nz1 + nz3)/(2(nz0 + nz1 + nz2 +

nz3 + nz4)) = C5.
Constraint 6: since h = X1/2− Y0 − Y1/2 + Z0 + Z1/2 + Z2 + Z3/2− c− g + e ≥ 0 we get
c+ g− e ≤ nx1/(2(nx0 +nx1 +nx2))− (ny0 +ny1/2)/(ny0 +ny1 +ny2) + (nz0 +nz1/2 +nz2 +

nz3/2)/(nz0 + nz1 + nz2 + nz3 + nz4) = C6.
Constraint 7: since m = (−X1 − Y1 + Z3 + Z1)/2 + Z4/2 + g − e ≥ 0 we get
e− g ≤ −nx1/(2(nx0 +nx1 +nx2))−ny1/(2(ny0 +ny1 +ny2)) + (nz3/2 +nz1/2 +nz4)/(nz0 +

nz1 + nz2 + nz3 + nz4) = C7.
Constraint 8: since l = X2/2 + (X1 + Y1 − Z3 − Z1)/2− Z2 − Z4/2 + c+ e ≥ 0 we get
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c+ e ≥ −(nx2 +nx1/2)/(nx0 +nx1 +nx2)−ny1/(2(ny0 +ny1 +ny2)) + (nz3/2 +nz1/2−nz2−
nz4)/(nz0 + nz1 + nz2 + nz3 + nz4) = C8.

To summarize, the constraints are

b ≤ C1, c+ g ≤ C2, b+ c+ e ≤ C3, C4 ≤ b+ c+ g− e, g ≤ C5, c+ g− e ≤ C6, e− g ≤ C7, C8 ≤ c+ e.

For any τ ≥ 2/3 we have that ne ≤ 1. Hence we always need to minimize e. The lower bounds for e
are−C6 ≤ e− c− g and C8 ≤ c+ e. However, for any τ ≥ 2/3 we have that C8 < 0 and so the only lower
bound involving e is −C6 ≤ e− c− g, where −C6 < 0 as well.

For τ < 0.767 we have that ng < 1 and for τ ≥ 0.767, we have ng ≥ 1. For τ < 0.767 we want to
minimize g and e. For τ ≥ 0.767 we want to maximize g and minimize e.

Suppose that τ < 0.767. Setting b = c = g = e = 0 leaves us with the constraints which are all satisfied
in this interval

0 ≤ C1, 0 ≤ C2, 0 ≤ C3, C4 ≤ 0, 0 ≤ C5, 0 ≤ C6, 0 ≤ C7.

Now suppose that τ ≥ 0.767. Here we want to maximize g and minimize e. Let’s set e = 0.

b ≤ C1, c+ g ≤ C2, b+ c ≤ C3, C4 ≤ b+ c+ g, g ≤ C5, c+ g ≤ C6,−C7 ≤ g.

The upper bounds on g are C2 − c, C5 and C6 − c. Let’s set c = 0. The constraints become

b ≤ C1, g ≤ C2, b ≤ C3, C4 ≤ b+ g, g ≤ C5, g ≤ C6,−C7 ≤ g.

Here we have −C7 < 0 < C2 < C5, C6 and so we set g = C2.

b ≤ C1, b ≤ C3, C4 − C2 ≤ b.

We have that C4 − C2 < 0 and 0 < C1 < C3. We can safely set b = 0. The final settings become
b = c = e = 0 and g = C2.

Lemma 26.
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Then for q = 5, the following settings obey the constraints of the bound on V457 and attempt to maximize

it:

• for τ < 0.767, b = C2, c = C4 − C2, g = 0, and

• for 0.767 ≤ τ < 0.9, b = 0, c = C4, g = C2.
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Proof. I = 4, J = 5,K = 7 and so the variables are a = α017, b = α026, c = α035, d = α044, e = α053,
f = α107, g = α116, h = α125, i = α134, j = α143, k = α152, l = α206,m = α215, n = α224. The linear
system becomes
X0 = a+ b+ c+ d+ e,
X1 = f + g + h+ i+ j + k,
X2 = 2(l +m+ n),
Y0 = e+ f + k + l,
Y1 = a+ d+ g + j +m,
Y2 = b+ c+ h+ i+ n,
Z0 = a+ f ,
Z1 = b+ g + l,
Z2 = c+ h+ k +m,
Z3 = d+ e+ i+ j + n.

The rank is 8 and the number of variables is 14 so we pick 6 variables, a, b, c, e, g, h, and place them in
∆. We then solve the system.
f = (a+ f)− a = Z0 − a,
l = (b+ g + l)− b− g = Z1 − b− g,
k = (e+ f + k + l)− e− f − l = Y0 − Z0 − Z1 + a+ b+ g − e,
d = (a+ b+ c+ d+ e)− a− b− c− e = X0 − a− b− c− e,
m = (c+ h+ k +m)− c− h− k = −Y0 + Z0 + Z1 + Z2 − a− b− c− g − h+ e,
j = (a+ d+ g + j +m)− a− d− g −m = −X0 + Y0 + Y1 − Z0 − Z1 − Z2 + a+ 2b+ 2c+ h,
i = (f+g+h+i+j+k)−f−g−h−j−k = X1+X0−2Y0−Y1+2Z1+Z2+Z0−a−2c−3b−2g+e−2h,
n = (l +m+ n)− l −m = X2/2 + Y0 − Z0 − 2Z1 − Z2 + a+ 2b+ c+ 2g + h− e.
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Now we look at the constraints on a, b, c, e, g, h.
Constraint 1: since f = Z0 − a ≥ 0 we get
a ≤ nz0/(nz0 + nz1 + nz2 + nz3) = C1.
Constraint 2: since l = Z1 − b− g ≥ 0 we get
b+ g ≤ nz1/(nz0 + nz1 + nz2 + nz3) = C2.
Constraint 3: since k = Y0 − Z0 − Z1 + a+ b+ g − e ≥ 0 we get
a+ b+ g − e ≥ −ny0/(ny0 + ny1 + ny2) + (nz0 + nz1)/(nz0 + nz1 + nz2 + nz3) = C3.
Constraint 4: since d = X0 − a− b− c− e ≥ 0 we get
a+ b+ c+ e ≤ nx0/(nx0 + nx1 + nx2) = C4.
Constraint 5: since m = −Y0 + Z0 + Z1 + Z2 − a− b− c− g − h+ e ≥ 0 we get
a+ b+ c+g+h−e ≤ −ny0/(ny0 +ny1 +ny2)+(nz0 +nz1 +nz2)/(nz0 +nz1 +nz2 +nz3) = C5.
Constraint 6: since j = −X0 + Y0 + Y1 − Z0 − Z1 − Z2 + a+ 2b+ 2c+ h ≥ 0 we get
a + 2b + 2c + h ≥ nx0/(nx0 + nx1 + nx2) − (ny0 + ny1)/(ny0 + ny1 + ny2) + (nz0 + nz1 +

nz2)/(nz0 + nz1 + nz2 + nz3) = C6.
Constraint 7: since i = X1 +X0− 2Y0−Y1 + 2Z1 +Z2 +Z0− a− 2c− 3b− 2g+ e− 2h ≥ 0 we get
a+ 2c+ 3b+ 2g− e+ 2h ≤ (nx1 + nx0)/(nx0 + nx1 + nx2)− (2ny0 + ny1)/(ny0 + ny1 + ny2) +

(2nz1 + nz2 + nz0)/(nz0 + nz1 + nz2 + nz3) = C7.
Constraint 8: since n = X2/2 + Y0 − Z0 − 2Z1 − Z2 + a+ 2b+ c+ 2g + h− e ≥ 0 we get
a + 2b + c + 2g + h − e ≥ −nx2/(nx0 + nx1 + nx2) − ny0/(ny0 + ny1 + ny2) + (nz0 + 2nz1 +

nz2)/(nz0 + nz1 + nz2 + nz3) = C8.
We summarize the constraints:

a ≤ C1, b+ g ≤ C2, C3 ≤ a+ b+ g − e, a+ b+ c+ e ≤ C4, a+ b+ c+ g + h− e ≤ C5,

C6 ≤ a+ 2b+ 2c+ h, a+ 2c+ 3b+ 2g − e+ 2h ≤ C7, C8 ≤ a+ 2b+ c+ 2g + h− e.

We have that C6 < 0 for τ ≥ 0.683 and C6 > 0 otherwise. We have that C3, C8 < 0 for all τ .
We have that for all τ , nb = nc ≥ 1 so we should maximize b+ c. We have that for τ < 0.767, ng < 1

and so we should minimize g, and for τ ≥ 0.767, ng ≥ 1 and we should maximize g.
We also have that 0 < C2 < C4 < C5 < C7.
Suppose that τ ≥ 0.767 (and τ < 0.9). We want to maximize b, c, g. Since C2 is the smallest of the

upper bounds, let’s set b+ g = C2. We’ll substitute b = C2 − g and add g ≤ C2.

a ≤ C1, g ≤ C2, C3 − C2 ≤ a− e, a− g + c+ e ≤ C4 − C2, a+ c+ h− e ≤ C5 − C2,

C6 − 2C2 ≤ a− 2g + 2c+ h, a+ 2c− g − e+ 2h ≤ C7 − 3C2, C8 − 2C2 ≤ a+ c+ h− e.

Since all inequalities involving upper bounds that include a or h, include a or h on the left of the ≤ sign
and since a and h do not influence our bound on V457, we attempt to set a = 0 and h = 0.

g ≤ C2, e ≤ C2 − C3,−g + c+ e ≤ C4 − C2, c− e ≤ C5 − C2,

C6 − 2C2 ≤ −2g + 2c, 2c− g − e ≤ C7 − 3C2, C8 − 2C2 ≤ c− e.

The new upper bounds involving c are C4 − C2 < C5 − C2 < (C7 − 3C2)/2. To maximize c in the
constraint with upper bound C4 − C2, we set e = 0 and g = c+ C2 − C4. The constraints now become:
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c ≤ C4, 0 ≤ C2 − C3, C4 − C2 ≤ c, c ≤ C5 − C2,

C6 ≤ 2C4, 0 ≤ C7 − 2C2 − C4, C8 − 2C2 ≤ c.

We see that C2 − C3 > 0, 2C4 − C6 > 0 and C7 − 2C2 − C4 > 0. The upper bounds on c are
C4 < C5 − C2. The lower bounds are C8 − 2C2 < 0, and C4 − C2 < C4. Hence we can just set c = C4.
The final setting is a = 0, b = 0, c = C4, e = 0, g = C2, h = 0.

Suppose now that τ < 0.767. Since we need to minimize g, let’s set g = 0. The constraints become

a ≤ C1, b ≤ C2, C3 ≤ a+ b− e, a+ b+ c+ e ≤ C4, a+ b+ c+ h− e ≤ C5,

C6 ≤ a+ 2b+ 2c+ h, a+ 2c+ 3b− e+ 2h ≤ C7, C8 ≤ a+ 2b+ c+ h− e.

Now we need to maximize b+ c as before. We proceed just as before: We set b = C2:

a ≤ C1, C3 − C2 ≤ a− e, a+ c+ e ≤ C4 − C2, a+ c+ h− e ≤ C5 − C2,

C6 − 2C2 ≤ a+ 2c+ h, a+ 2c− e+ 2h ≤ C7 − 3C2, C8 − 2C2 ≤ a+ c+ h− e.

We then set a = e = h = 0 and c = C4 − C2.

0 ≤ C2 − C3, 0 ≤ C5 − C4, 0 ≤ 2C4 − C6, 0 ≤ C7 − C2 − 2C4, 0 ≤ C4 + C2 − C8.

One can verify that all constraints are satisfied.
The final settings become a = 0, b = C2, c = C4 − C2, e = 0, g = 0, h = 0.
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C1 = nx0/(nx0 +nx1 +nx2), C2 = nz0/(nz0 +nz1 +nz2 +nz3), C5 = nz0/(nz0 +nz1 +nz2 +nz3)−
ny0/(ny0 +ny1 +ny2 +ny3), C6 = (ny1−ny3)/(2(ny0 +ny1 +ny2 +ny3))− (X0 +X2/2)/(2(nx0 +
nx1 + nx2)) + (nz0 + nz2)/(2(nz0 + nz1 + nz2 + nz3)), C8 = (nx0 + nx2)/(2(nx0 + nx1 + nx2))−
(nz0 + nz2)/(2(nz0 + nz1 + nz2 + nz3)) + (ny1 + ny3)/(2(ny0 + ny1 + ny2 + ny3)).

Suppose that q = 5. Then the following settings of the variables satisfy the constraints in the above
bound on V466 and attempt to maximize it.

• for τ < 0.767, a = 0, b = C1 − C6 + C5 − C8, d = C6 − C5 + C8, e = 0, f = C5, and
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• for τ ≥ 0.767, a = 0, b = C1 − C6 + C2 − C8, d = C6 − C2 + C8, e = 0, f = C2.

Proof. I = 4, J = K = 6 so the variables are a = α026, b = α035, c = α044, d = α053, e = α062, f =
α116, g = α125, h = α134, i = α143, j = α152, k = α161, l = α206,m = α215, n = α224, p = α233. The
system becomes
X0 = a+ b+ c+ d+ e,
X1 = f + g + h+ i+ j + k,
X2 = 2(l +m+ n+ p),
Y0 = e+ k + l,
Y1 = d+ f + j +m,
Y2 = a+ c+ g + i+ n,
Y3 = 2(b+ h+ p),
Z0 = a+ f + l,
Z1 = b+ g + k +m,
Z2 = c+ e+ h+ j + n,
Z3 = 2(d+ i+ p).

The rank is 9 and the number of variables is 15 so we pick 6 variables, a, b, d, e, f, p, and place them in
∆. Now we solve the system:
c = (a+ b+ c+ d+ e)− a− b− d− e = X0 − a− b− d− e,
l = (a+ f + l)− a− f = Z0 − a− f ,
h = (b+ h+ p)− b− p = Y3/2− b− p,
i = (d+ i+ p)− d− p = Z3/2− d− p,
k = (e+ k + l)− e− l = Y0 − Z0 + a+ f − e,
j = ((d + f + j + m) − d − f + (c + e + h + j + n) − c − e − h − (l + m + n + p) + l + p)/2 =
(Y1 − Y3/2−X0 −X2/2 + Z0 + Z2 + 2b− 2f + 2p)/2,
n = (c+ e+ h+ j + n)− c− e− h− j = (Z2 −X0 − Y3/2− Y1 +X2/2− Z0)/2 + a+ b+ d+ f,
m = (l +m+ n+ p)− l − n− p = X2/4X0/2− Z0/2− Z2/2 + Y3/4 + Y1/2− b− d− p,
g = (b+g+k+m)−b−k−m = Z1+Z2/2+3Z0/2−X2/4−X0/2−Y0−Y3/4−Y1/2−a+d−f+e+p.
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The constraints on the variables are as follows.
Constraint 1: since c = X0 − a− b− d− e ≥ 0,

a+ b+ d+ e ≤ nx0/(nx0 + nx1 + nx2) = C1,

Constraint 2: since l = Z0 − a− f ≥ 0,

a+ f ≤ nz0/(nz0 + nz1 + nz2 + nz3) = C2,

Constraint 3: since h = Y3/2− b− p ≥ 0,

b+ p ≤ ny3/(ny0 + ny1 + ny2 + ny3) = C3,

Constraints 4: since i = Z3/2− d− p ≥ 0,

d+ p ≤ nz3/(nz0 + nz1 + nz2 + nz3) = C4,

Constraint 5: since k = Y0 − Z0 + a+ f − e ≥ 0,

a+ f − e ≥ nz0/(nz0 + nz1 + nz2 + nz3)− ny0/(ny0 + ny1 + ny2 + ny3) = C5,

Constraint 6: since j = (Y1 − Y3/2−X0 −X2/2 + Z0 + Z2 + 2b− 2f + 2p)/2 ≥ 0,

f − b−p ≤ (ny1−ny3)/(2(ny0 +ny1 +ny2 +ny3))− (X0 +X2/2)/(2(nx0 +nx1 +nx2))+(nz0 +
nz2)/(2(nz0 + nz1 + nz2 + nz3)) = C6,

Constraint 7: since n = (Z2 −X0 − Y3/2− Y1 +X2/2− Z0)/2 + a+ b+ d+ f ≥ 0,

a+ b+ d+ f ≥ (nx0 − nx2)/(2(nx0 + nx1 + nx2)) + (ny3 + ny1)/(2(ny0 + ny1 + ny2 + ny3)) +
(nz0 − nz2)/(2(nz0 + nz1 + nz2 + nz3)) = C7,

Constraint 8: since m = X2/4 +X0/2− Z0/2− Z2/2 + Y3/4 + Y1/2− b− d− p ≥ 0,

b+ d+ p ≤ (nx0 +nx2)/(2(nx0 +nx1 +nx2))− (nz0 +nz2)/(2(nz0 +nz1 +nz2 +nz3)) + (ny1 +
ny3)/(2(ny0 + ny1 + ny2 + ny3)) = C8,
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Constraint 9: since g = −X2/4−X0/2−Y0−Y3/4−Y1/2+Z1+3Z0/2+Z2/2+d−a−f+e+p ≥ 0,

a+ f − d− e− p ≤ −(nx0 + nx2)/(2(nx0 + nx1 + nx2))− (2ny0 + ny1 + ny3)/(2(ny0 + ny1 +
ny2 + ny3)) + (3nz0 + 2nz1 + nz2)/(2(nz0 + nz1 + nz2 + nz3)) = C9.

We want to maximize for each choice of τ the linear function a log na+ b log nb+d log nd+e log ne+
f log nf under the constraints a, b, d, e, f ∈ [0, 1] and

a+ b+ d+ e ≤ C1, a+ f ≤ C2, b+ p ≤ C3, d+ p ≤ C4, C5 ≤ a+ f − e,

f − b− p ≤ C6, C7 ≤ a+ 3b+ d+ f, b+ d+ p ≤ C8, a+ f − d− e− p ≤ C9.

***we could take the dual but we’ll just find a feasible solution***
For τ < 0.767 we get na < 1, nb = nd > 1, ne > 1, nf < 1. Let’s set a + b + d + e = C1 since we

want to maximize b+ d, so that b = C1 − a− d− e. The constraints become

a+ d+ e ≤ C1, a+ f ≤ C2, p− a− d− e ≤ C3 − C1, d+ p ≤ C4, C5 ≤ a+ f − e,

f+a+d+e−p ≤ C6 +C1, C7−3C1 ≤ −2a−3e−2d+f,−a−e+p ≤ C8−C1, a+f−d−e−p ≤ C9.

Since we want to minimize a+ f , set a = e = 0, C5 = f . The constraints become:

d ≤ C1, C5 ≤ C2, p− d ≤ C3 − C1, d+ p ≤ C4, d− p ≤ C6 + C1 − C5,

d ≤ (−C7 + 3C1 + C5)/2, p ≤ C8 − C1, C5 − C9 ≤ d+ p.

Since C2 > C5 for τ < 0.767, we can remove the constraint C5 ≤ C2.
We want to maximize d so set d = C6 + C1 − C5 + p.

p ≤ −C6 + C5, 0 ≤ C3 + C6 − C5, p ≤ (C4 − C6 − C1 + C5)/2,

p ≤ (−C7 + C1 + 3C5)/2− C6, p ≤ C8 − C1, (2C5 − C9 − C6 − C1)/2 ≤ p.

We see that C3 + C6 − C5 > 0 for q = 5 and τ < 0.767.
The upper bounds of p are 0 < C8−C1 < −C6+C5, (C4−C6−C1+C5)/2, (−C7+C1+3C5)/2−C6.

The lower bound for p is (2C5 − C9 − C6 − C1)/2 < C8 − C1, and so we can set p = C8 − C1.
The final setting becomes a = 0, b = C1−C6+C5−C8, d = C6−C5+C8, e = 0, f = C5, p = C8−C1.
Suppose now that τ > 0.767. Here ne < 1 and na, nb = nd, nf > 1.
The constraints are

a+ b+ d+ e ≤ C1, a+ f ≤ C2, b+ p ≤ C3, d+ p ≤ C4, C5 ≤ a+ f − e,

f − b− p ≤ C6, C7 ≤ a+ 3b+ d+ f, b+ d+ p ≤ C8, a+ f − d− e− p ≤ C9.

Since we are maximizing a+ b+ d and minimizing e, let’s set e = 0 and a = C1 − b− d:

b+ d ≤ C1, f − b− d ≤ C2 − C1, b+ p ≤ C3, d+ p ≤ C4, C5 − C1 ≤ f − b− d,

f − b− p ≤ C6, C7 − C1 ≤ 2b+ f, b+ d+ p ≤ C8, f − 2d− p− b ≤ C9 − C1.

Since we are also maximizing f , let’s set f = C2 − C1 + b+ d:

b+ d ≤ C1, C1 − C2 ≤ b+ d, b+ p ≤ C3, d+ p ≤ C4, C5 ≤ C2,
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d− p ≤ C6 − C2 + C1, C7 − C2 ≤ 3b+ d, b+ d+ p ≤ C8,−d− p ≤ C9 − C2.

After setting e = 0, a = C1 − b− d and f = C2 − C1 + b+ d, the variable part of our bound on V466

becomes (nb · nf/na)b+d. Since for q = 5 and τ > 0.767 we have that nb · nf/na > 1, we still need to
maximize b+ d.

Since we are maximizing b+ d, set b+ d+ p = C8, or p = C8 − b− d:

b+ d ≤ C1, C1 − C2 ≤ b+ d,C8 − C3 ≤ d,C8 − C4 ≤ b, C5 ≤ C2,

b+ 2d ≤ C6 − C2 + C1 + C8, C7 − C2 ≤ 3b+ d, b+ d ≤ C8,−C9 + C2 − C8 ≤ b.

The upper bounds on b + d are now C1, C6 − C2 + C1 + C8 − d,C8. The smallest out of these is C1

(for small d), so let’s set b+ d = C1, thus setting a = 0. We substitute b = C1 − d.

d ≤ C1, 0 ≤ C2, C8 − C3 ≤ d, d ≤ C1 − C8 + C4, C5 ≤ C2,

d ≤ C6 − C2 + C8, d ≤ (3C1 − C7 + C2)/2, d ≤ C1 + C9 − C2 + C8.

We have that in this interval C2 > 0 and C2 − C5 > 0, so we only need to find a setting for d.
The upper bounds for d are C1, C1−C8 +C4, C6−C2 +C8, (3C1−C7 +C2)/2, C1 +C9−C2 +C8

and the smallest out of them in this interval is C6 − C2 + C8 > 0. The lower bound on d is C8 − C3 < 0,
so it would be satisfied if we set d = C6 − C2 + C8.

The final settings become a = 0, b = C1 − C6 + C2 − C8, d = C6 − C2 + C8, e = 0, f = C2,
p = C8 − C1.

Lemma 28.
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For q = 5 the above bound is maximized (by obeying all constraints) by the setting c = e = i = 0.

Proof. Since I = J = 5 and K = 6, the variables are a = α026, b = α035, c = α044, d = α053, e =
α116, f = α125, g = α134, h = α143, i = α152, j = α206, k = α215, l = α224,m = α233, n = α242, p =
α251. The system is
X0 = a+ b+ c+ d,
X1 = e+ f + g + h+ i,
X2 = j + k + l +m+ n+ p,
Y0 = d+ i+ j + p,
Y1 = c+ e+ h+ k + n,
Y2 = a+ b+ f + g + l +m,
Z0 = a+ e+ j,
Z1 = b+ f + k + p,
Z2 = c+ g + i+ l + n,
Z3 = 2(d+ h+m).
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The rank is 8 and there are 15 variables, so we pick 7 variables, a, b, c, e, f, h, i, and place them into ∆.
We then solve the system:
d = (a+ b+ c+ d)− a− b− c = X0 − a− b− c,
j = (a+ e+ j)− a− e = Z0 − a− e,
m = (d+ h+m)− (a+ b+ c+ d) + a+ b+ c− h = Z3/2−X0 + a+ b+ c− h,
p = (d+ i+ j+p)− (a+ b+ c+d)− (a+e+ j)+2a+ b+ c− i+e = Y0−X0−Z0 +2a+ b+ c− i+e,
k = (b + f + k + p) − (d + i + j + p) + (a + b + c + d) + (a + e + j) − 2b − f − 2a − c + i − e =
Z1 − Y0 +X0 + Z0 − 2b− f − 2a− c+ i− e,
n = (c+e+h+k+n)−(b+f+k+p)+(d+i+j+p)−(a+b+c+d)−(a+e+j)−h+2b+f+2a−i =
Y1 − Z1 + Y0 −X0 − Z0 − h+ 2b+ f + 2a− i,
g = (e+ f + g + h+ i)− e− f − h− i = X1 − e− f − h− i,
l = (c+g+ i+ l+n)−(e+f+g+h+ i)−(c+e+h+k+n)+(b+f+k+p)−(d+ i+j+p)+(a+b+
c+d)+(a+e+j)−c+e+2h+i−2b−2a = Z2−X1−Y1 +Z1−Y0 +X0 +Z0−c+e+2h+i−2b−2a.
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Now let’s consider the constraints:
Constraint 1: d = X0 − a− b− c ≥ 0, and so
a+ b+ c ≤ nx0/(nx0 + nx1 + nx2) = C1,

Constraint 2: j = Z0 − a− e ≥ 0, and so

69



a+ e ≤ nz0/(nz0 + nz1 + nz2 + nz3) = C2,

Constraint 3: m = Z3/2−X0 + a+ b+ c− h ≥ 0, and so
h− a− b− c ≤ nz3/(nz0 + nz1 + nz2 + nz3)− nx0/(nx0 + nx1 + nx2) = C3,

Constraint 4: p = Y0 −X0 − Z0 + 2a+ b+ c− i+ e ≥ 0, and so
i−2a−b−c−e ≤ ny0/(ny0+ny1+ny2)−nx0/(nx0+nx1+nx2)−nz0/(nz0+nz1+nz2+nz3) = C4,

Constraint 5: k = Z1 − Y0 +X0 + Z0 − 2b− f − 2a− c+ i− e ≥ 0, and so
2a+ 2b+ c+ e+ f − i ≤ nx0/(nx0 + nx1 + nx2)− ny0/(ny0 + ny1 + ny2) + (nz0 + nz1)/(nz0 +

nz1 + nz2 + nz3) = C5,

Constraint 6: n = Y1 + Y0 −X0 − Z0 − Z1 − h+ 2b+ f + 2a− i ≥ 0, and so
h+ i−2a−2b−f ≤ (ny0 +ny1)/(ny0 +ny1 +ny2)−nx0/(nx0 +nx1 +nx2)−(nz0 +nz1)/(nz0 +

nz1 + nz2 + nz3) = C6,

Constraint 7: g = X1 − e− f − h− i ≥ 0, and so
e+ f + h+ i ≤ nx1/(nx0 + nx1 + nx2) = C7,

Constraint 8: l = X0 −X1 − Y1 − Y0 + Z0 + Z1 + Z2 − c+ e+ 2h+ i− 2b− 2a, and so
2a + 2b + c− e− 2h− i ≤ (nx0 − nx1)/(nx0 + nx1 + nx2)− (ny0 + ny1)/(ny0 + ny1 + ny2) +

(nz0 + nz1 + nz2)/(nz0 + nz1 + nz2 + nz3) = C8.
For each fixed τ we want to solve the linear program: maximize c log nc+ e log ne+ i log ni subject to

the following constraints

a+ b+ c ≤ C1, a+ e ≤ C2, h− a− b− c ≤ C3, i− 2a− b− c− e ≤ C4,

2a+2b+ c+e+f − i ≤ C5, h+ i−2a−2b−f ≤ C6, e+f +h+ i ≤ C7, 2a+2b+ c−e−2h− i ≤ C8.

Now, nc = ni ≤ 1, ne ≤ 1 for all τ and so we want to minimize c+ i and e.
Suppose we set c = e = i = 0. The constraints become

a+ b ≤ C1, a ≤ C2, h− a− b ≤ C3,−2a− b ≤ C4,

2a+ 2b+ f ≤ C5, h− 2a− 2b− f ≤ C6, f + h ≤ C7, 2a+ 2b− 2h ≤ C8.

To satisfy the rest, we can set b = h = f = 0:

a ≤ C1, a ≤ C2,−C3 ≤ a,−C4/2 ≤ a,

a ≤ C5/2,−C6/2 ≤ a, 0 ≤ C7, a ≤ C8/2.

C7 > 0 for all τ .
The upper bounds on a are C1, C2, C5/2, C8/2 and C2 > 0 is the smallest out of them.
The lower bounds on a are −C3,−C4/2,−C6/2. Out of them only −C4/2 is positive and we also have

−C4/2 < C2. Hence we can set a = C2.
The final settings become a = C2, b = c = e = f = h = i = 0.
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