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Abstract

We develop new tools for analyzing matrix multiplication constructions similar to the Coppersmith-
Winograd construction, and obtain a new improved bound on w < 2.3727.

1 Introduction

The product of two matrices is one of the most basic operations in mathematics and computer science. Many
other essential matrix operations can be efficiently reduced to it, such as Gaussian elimination, LUP decom-
position, the determinant or the inverse of a matrix [1]. Matrix multiplication is also used as a subroutine in
many computational problems that, on the face of it, have nothing to do with matrices. As a small sample
illustrating the variety of applications, there are faster algorithms relying on matrix multiplication for graph
transitive closure (see e.g. [1]), context free grammar parsing [20], and even learning juntas [13].

Until the late 1960s it was believed that computing the product C of two n X m matrices requires
essentially a cubic number of operations, as the fastest algorithm known was the naive algorithm which
indeed runs in O(n?) time. In 1969, Strassen [19] excited the research community by giving the first
subcubic time algorithm for matrix multiplication, running in O(n?%%) time. This amazing discovery
spawned a long line of research which gradually reduced the matrix multiplication exponent w over time.
In 1978, Pan [14] showed w < 2.796. The following year, Bini et al. [4] introduced the notion of border
rank and obtained w < 2.78. Schonhage [17] generalized this notion in 1981, proved his 7-theorem (also
called the asymptotic sum inequality), and showed that w < 2.548. In the same paper, combining his work
with ideas by Pan, he also showed w < 2.522. The following year, Romani [15] found that w < 2.517. The
first result to break 2.5 was by Coppersmith and Winograd [9] who obtained w < 2.496. In 1986, Strassen
introduced his laser method which allowed for an entirely new attack on the matrix multiplication problem.
He also decreased the bound to w < 2.479. Three years later, Coppersmith and Winograd [10] combined
Strassen’s technique with a novel form of analysis based on large sets avoiding arithmetic progressions and
obtained the famous bound of w < 2.376 which has remained unchanged for more than twenty years.

In 2003, Cohn and Umans [8] introduced a new, group-theoretic framework for designing and analyzing
matrix multiplication algorithms. In 2005, together with Kleinberg and Szegedy [7], they obtained several
novel matrix multiplication algorithms using the new framework, however they were not able to beat 2.376.

Many researchers believe that the true value of w is 2. In fact, both Coppersmith and Winograd [10]
and Cohn et al. [7] presented conjectures which if true would imply w = 2. Recently, Alon, Shpilka and
Umans [2] showed that both the Coppersmith-Winograd conjecture and one of the Cohn et al. [7] conjectures
contradict a variant of the widely believed sunflower conjecture of Erdos and Rado [11]. Nevertheless, it
could be that at least the remaining Cohn et al. conjecture could lead to a proof that w = 2.



The Coppersmith-Winograd Algorithm. In this paper we revisit the Coppersmith-Winograd (CW) ap-
proach [10]. We give a very brief summary of the approach here; we will give a more detailed account in
later sections.

One first constructs an algorithm A which given Q-length vectors x and y for constant (), computes )
values of the form z, = Zz j Lijkwiyy, say with ;5. € {0, 1}, using a smaller number of products than would
naively be necessary. The values z; do not necessarily have to correspond to entries from a matrix product.
Then, one considers the algorithm A™ obtained by applying A to vectors z, y of length ", recursively n
times as follows. Split = and y into Q subvectors of length Q™ ~'. Then run A on z and y treating them
as vectors of length Q with entries that are vectors of length Q™. When the product of two entries is
needed, use A"~ to compute it. This algorithm A" is called the nth tensor power of A. Its running time is
essentially O(r™) if r is the number of multiplications performed by A.

The goal of the approach is to show that for very large n one can set enough variables x;, y;, z; to 0 so
that running A™ on the resulting vectors = and y actually computes a matrix product. That is, as n grows,
some subvectors 2’ of 2 and 3’ of y can be thought to represent square matrices and when A™ is run on z
and y, a subvector of z is actually the matrix product of 2’ and 3/’

If A™ can be used to multiply m X m matrices in O(r"™) time, then this implies that w < log,, 7", so
that the larger m is, the better the bound on w.

Coppersmith and Winograd [10] introduced techniques which, when combined with previous techniques
by Schonhage [17], allowed them to effectively choose which variables to set to 0 so that one can compute
very large matrix products using A™. Part of their techniques rely on partitioning the index triples i, j, k €
[Q]™ into groups and analyzing how “similar” each group g computation {zrg = >_, .. (; i k)eg Lijk®i¥j }i 18
to a matrix product. The similarity measure used is called the value of the group.

Depending on the underlying algorithm A, the partitioning into groups varies and can affect the final
bound on w. Coppersmith and Winograd analyzed a particular algorithm A which resulted in w < 2.39.
Then they noticed that if one uses A? as the basic algorithm (the “base case”) instead, one can obtain the
better bound w < 2.376. They left as an open problem what happens if one uses A3 as the basic algorithm
instead.

Our contribution. We give a new way to more tightly analyze the techniques behind the Coppersmith-
Winograd (CW) approach [10]. We demonstrate the effectiveness of our new analysis by showing that the
8th tensor power of the CW algorithm [10] in fact gives w < 2.3727. (It is likely that higher tensor powers
can give tighter estimates, and this could be the subject of future work.)

There are two main theorems behind our approach. The first theorem takes any tensor power A™ of a
basic algorithm A, picks a particular group partitioning for A™ and derives an efficient procedure computing
formulas for the values of these groups. The second theorem assumes that one knows the values for A"
and derives an efficient procedure which outputs a (nonlinear) constraint program on O(n?) variables, the
solution of which gives a bound on w.

We then apply the procedures given by the theorems to the second, fourth and eighth tensor powers of
the Coppersmith-Winograd algorithm, obtaining improved bounds with each new tensor power.

Similar to [10], our proofs apply to any starting algorithm that satisfies a simple uniformity requirement
which we formalize later. The upshot of our approach is that now any such algorithm and its higher tensor
powers can be analyzed entirely by computer. (In fact, our analysis of the 8th tensor power of the CW
algorithm is done this way.) The burden is now entirely offloaded to constructing base algorithms satisfying
the requirement. We hope that some of the new group-theoretic techniques can help in this regard.



Why wasn’t an improvement on CW found in the 1990s?  After all, the CW paper explicitly posed the
analysis of the third tensor power as an open problem.

The answer to this question is twofold. Firstly, several people have attempted to analyze the third tensor
power (from personal communication with Umans, Kleinberg and Coppersmith). As the author found out
from personal experience, analyzing the third tensor power reveals to be very disappointing. In fact no
improvement whatsoever can be found. This finding led some to believe that 2.376 may be the final answer,
at least for the CW algorithm.

The second issue is that with each new tensor power, the number of new values that need to be analyzed
grows quadratically. For the eighth tensor power for instance, 30 separate analyses are required! Prior to
our work, each of these analyses would require a separate application of the CW techniques. It would have
required an enormous amount of patience to analyze larger tensor powers, and since the third tensor power
does not give any improvement, the prospects looked bleak.

Stothers’ work. We were recently made aware of the thesis work of A. Stothers [18] in which he claims an
improvement to w. Stothers argues that w < 2.3737 by analyzing the 4th tensor power of the Coppersmith-
Winograd construction. Our approach can be seen as a vast generalization of Stothers’ analysis, and part of
our proof has benefited from an observation of Stothers’ which we will point out in the main text.

There are several differences between our approach and Stothers’. The first is relatively minor: the CW
approach requires the use of some hash functions; ours are different and simpler than Stothers’. The main
difference is that because of the generality of our analysis, we do not need to fully analyze all groups of
each tensor power construction. Instead we can just apply our formulas in a mechanical way. Stothers, on
the other hand, did a completely separate analysis of each group.

Finally, Stothers’ approach only works for tensor powers up to 4. Starting with the 5-th tensor power,
the values of some of the groups begin to depend on more variables and a more careful analysis is needed.

(Incidentally, we also obtain a better bound from the 4th tensor power, w < 2.37293, however this is an
artifact of our optimization software, as we end up solving essentially the same constraint program.)

Acknowledgments. The author is grateful to Satish Rao for encouraging her to explore the matrix multi-
plication problem more thoroughly and to Ryan Williams for his unconditional support. The author would
also like to thank Francois Le Gall who alerted her to Stothers” work, suggested the use of the NLOPT
software developed at MIT, and pointed out that the feasible solution obtained by Stothers for his 4th tensor
power constraint program is not optimal and that one can obtain w < 2.37294 with a different setting of the
parameters[12].

Preliminaries We use the following notation: [n] := {1,...,n}, and ([ai]zji [k]) = (al’.].\( )

We define w > 2 to be the infimum over the set of all reals r such that n x n matrix multiplication
over QQ can be computed in n” additions and multiplications for some natural number n. (However, the CW
approach and our extensions work over any ring.)

A three-term arithmetic progression is a sequence of three integers a < b < c¢sothatb —a =c— b, or
equivalently, a 4+ ¢ = 2b. An arithmetic progression is nontrivial if a < b < c.

The following is a theorem by Behrend [3] improving on Salem and Spencer [16]. The subset A com-
puted by the theorem is called a Salem-Spencer set.

Theorem 1. There exists an absolute constant ¢ such that for every N > exp(c?), one can construct in
poly(N) time a subset A C [N] with no three-term arithmetic progressions and |A| > N exp(—cy/log N).



The following lemma is needed in our analysis.

Lemma 1. Let k be a constant and N be sufficiently large. Let B; be fixed for i € [k]. Let a; fori € [k] be
variables such that a; > 0 and El a; = 1. Then the quantity

() 1L

is maximized for the choices a; = B;/ Z?Zl Bj for all i € [k] and for these choices it is at least

N

k
YoBi| /(N4
j=1

Proof. We will prove the lemma by induction on k. Suppose that £ = 2 and consider
N aN, N(1—a) _ , N N aN
(oo = ( 2 ) )
where z < .

When (z/y) < 1, the function f(a) = (QN) (z/y)*N of a is concave for a < 1/2. Hence its maximum
is achieved when df(a)/0a = 0. Consider f(a): itis N!/((aN)!(N(1 — a))!)(z/y)*". We can take the
logarithm to obtain In f(a) = In(N!) + Naln(z/y) — In(aN!) — In((N(1 — a))!). f(a) grows exactly
when aln(z/y) — In(aN!)/N —In(N(1 — a))!/N does. Taking Stirling’s approximation, we obtain

aln(z/y)—In(aN!)/N—In(N(1—a))!/N = aln(z/y)—aln(a)—(1—a) In(1—a)—In N—-O((log N)/N).

Since N is large, the O((log N)/N) term is negligible. Thus we are interested in when g(a) =
aln(z/y) — aln(a) — (1 — a)In(1 — a) is maximized. Because of concavity, for a < 1/2 and = < y,
the function is maximized when dg(a)/da = 0, i.e. when

0=In(z/y) —In(a) —14+In(1 —a) + 1 =In(z/y) — In(a/(1 — a)).

Hence a/(1 —a) = x/y andsoa = z/(z + y).
Furthermore, since the maximum is attained for this value of a, we get that for each ¢t € {0,..., N}
we have that (]27) xlyN—t < (ajy\f) 2N yN(1=a) "and since Zt 0 ( Ja'yN ! = (z + y)", we obtain that for

a=zx/(z+y),

alN

Now let’s consider the case £k > 2. First assume that the B; are sorted so that B; < B;;;1. Since

>, a; = 1, we obtain
k
B; = B, b,
( al ze[k]) H (Z ) ( al zE[k]) H

where b, = B;/ > y B;. We will prove the claim for ([ai}]ive M) Hi:l b;, and the lemma will follow for the

B; as well. Hence we can assume that ) . b; = 1.

(o)™ = o )08+ 1),



Suppose that we have proven the claim for £ — 1. This means that in particular

N—a1 N

< _‘“N>ku_ Zb J(N 1)k

and the quantity is maximized for a; N/(N —a1N) = b;/ > ;55 b; forall j > 2.
N—aiN -
Now consider (aiVN) b‘l”N (Z?:Q bj) ' . By our base case we get that this is maximized and is at

least (Z?Zl b;)N /N for the setting a; = b;. Hence, we will get

N

( ]E[k]>Hb> Zb /(N + 1),

for the setting a1 = by and for j > 2, a;N/(N — a1 N) = b;/ >~ bj implies a;/(1 — b1) = b;/(1 — b1)
and hence a; = b;. We have proven the lemma. O

1.1 A brief summary of the techniques used in bilinear matrix multiplication algorithms

A full exposition of the techniques can be found in the book by Biirgisser, Clausen and Shokrollahi [6]. The
lecture notes by Bliser [5] are also a nice read.

Bilinear algorithms and trilinear forms. Matrix multiplication is an example of a trilinear form. n x n
matrix multiplication, for instance, can be written as

Z E LikYkjZijs

i,j€[n] ken

which corresponds to the equalities z;; = > ken TikYkj forall i, 5 € [n]. In general, a trilinear form has the
form ZZ ;i tijeTiyjze where i, j, k are indices in some range and ¢;;;, are the coefficients which define the
trilinear form; #;, is also called a tensor. The trilinear form for the product of a £ x m by an m x n matrix
is denoted by (k, m, n).

Strassen’s algorithm for matrix multiplication is an example of a bilinear algorithm which computes a
trilinear form. A bilinear algorithm is equivalent to a representation of a trilinear form of the following form:

> tigrriyize = > (O anaw) O Brgyi) O akzk)-
=1 i J %

i7j7k

Given the above representation, the algorithm is then to first compute the 7 products Py = (3, axi%i) (3 Bx,9;)

and then for each & to compute z;, = Y, 7axPa.
For instance, Strassen’s algorithm for 2 x 2 matrix multiplication can be represented as follows:

(z11y11 + T12y21) 211 + (T11Y12 + T12y22) 212 + (T21Y11 + T22y21)221 + (T21y12 + T22Y22) 222 =

(11 + 222) (Y11 + Y22) (211 + 222) + (21 + x22)y11(221 — 222) + 11 (Y12 — Y22) (212 + 222)+
£C22(y21 - y11)(211 + 221) + (x11 + $12)y22(—211 + 212) + (w21 — m11) (Y11 + Y12) 200+



(x12 — T22) (Y21 + y22)211-

The minimum number of products 7 in a bilinear construction is called the rank of the trilinear form
(or its tensor). It is known that the rank of 2 x 2 matrix multiplication is 7, and hence Strassen’s bilinear
algorithm is optimal for the product of 2 x 2 matrices. A basic property of the rank R of matrix multiplication
is that R((k,m,n)) = R((k,n,m)) = R((m,k,n)) = R((m,n,k)) = R((n,m,k)) = R((n,k,m)).
This property holds in fact for any tensor and the tensors obtained by permuting the roles of the x, y and z
variables.

Any algorithm for n x n matrix multiplication can be applied recursively & times to obtain a bilinear
algorithm for n* x n* matrices, for any integer k. Furthermore, one can obtain a bilinear algorithm for
(k1ka, m1ma, ning) by splitting the k1 ko X mimo matrix into blocks of size k1 x m; and the myma X ning
matrix into blocks of size m; xn;. The one can apply a bilinear algorithm for (k2, ma2, n2) on the matrix with
block entries, and an algorithm for (k1,m1,n1) to multiply the blocks. This composition multiplies the ranks
and hence R((k1ko, mima,ning)) < R((k1,my,n1))-R({k2, ma,n2)). Because of this, R((2¥,2F, 2%)) <
(R({2,2,2)))F = 7F and if N = 2%, R((N, N, N)) < 7982 N = N°¢27 Hence, w < logy R((N, N, N)).

In general, if one has a bound R((k,m,n)) < r, then one can symmetrize and obtain a bound on
R((kmn, kmn, kmn)) < 73, and hence w < 31log,,,, -

The above composition of two matrix product trilinear forms to form a new trilinear form is called
the tensor product t; ® to of the two forms ¢1,t2. For two generic trilinear forms ZZ ik tijkwiyjzr and
Zi,’ P t; kT Y 2R s their tensor product is the trilinear form

Z (tz‘jktfuj/k/)x(i,i')y(j,j')z(k,k'),
(4,3),(5,5"), (K, k")

i.e. the new form has variables that are indexed by pairs if indices, and the coordinate tensors are multiplied.

The direct sum t1 @ to of two trilinear forms ¢1, ¢2 is just their sum, but where the variable sets that they
use are disjoint. That is, the direct sum of Z”k tijkxiy; 2 and Z”k t;jk:ciyjzk is a new trilinear form
with the set of variables {xio, i1, Y505 Y51, Zk0, Zkl}i,j,k:

/
§ LijkTi0Yj02k0 + LijrTi1Yj12k1-
i,k

A lot of interesting work ensued after Strassen’s discovery. Bini et al. [4] showed that one can extend
the form of a bilinear construction to allow the coefficients v ;, 8 ; and 7, x to be linear functions of the
integer powers of an indeterminate, €. In particular, Bini et al. gave the following construction for three
entries of the product of 2 X 2 matrices in terms of 5 bilinear products:

(11911 + 12901) 211 + (T11Y12 + T12Y22) 212 + (T21y11 + T22y21)201 + Of€) =
(212 4 €22)y21 (211 + € '221) + 211 (Y11 + eyr2) (211 + € ' z12)+
212(y11 + Y21 + eyan)(—e 1221) + (211 + 712 + e y11(—€ Lz12)+
(212 + €21) (Y11 + eyaz) (€ 212 + € 221),

where the O(¢€) term hides triples which have coefficients that depend on positive powers of e.

The minimum number of products of a construction of this type is called the border rank R of a trilinear
form (or its tensor). Border rank is a stronger notion of rank and it allows for better bounds on w. Most of
the properties of rank also extend to border rank, so that if R((k,m,n)) < r, then w < 3 * logy,,,, . For



instance, Bini et al. used their construction above to obtain a border rank of 10 for the product of a 2 x 2 by
a 2 x 3 matrix and, by symmetry, a border rank of 10? for the product of two 12 x 12 matrices. This gave
the new bound of w < 3log, 10 < 2.78.

Schonhage [17] generalized Bini et al.’s approach and proved his 7-theorem (also known as the asymp-
totic sum inequality). Up until his paper, all constructions used in designing matrix multiplication alr-
gorithms explicitly computed a single matrix product trilinear form. Schonhage’s theorem allowed a whole
new family of contructions. In particular, he showed that constructions that are direct sums of rectangular
matrix products suffice to give a bound on w.

Theorem 2 (Schonhage’s 7-theorem). IfR(@g:l(ki, mi,n;)) < 1 forr > q, then let T be defined as
S (kymgni)™ = r. Then w < 3.

2 Coppersmith and Winograd’s algorithm

We recall Coppersmith and Winograd’s [10] (CW) construction:

q q

q q
AT (w0 4 Aw) (yo + Ai) (20 + Azi) = A7 (o + XY @) (yo+ XY w20+ AP z)+
i=1 i=1 i=1 =1

+(AT = gA%) - (w0 + Nagrn) (Yo + Myge) (20 + XN 2gr1) =
q
Z(:riyizo + 202z + Toyizi) + (Z0YoZg+1 + ToYg+120 + Tg+1Y020) + O(N).
i=1
The construction computes a particular symmetric trilinear form. The indices of the variables are either
0, ¢ + 1 or some integer in [g]. We define

0 if7=0
pliy=4 1 ifielq
2 ifi=qg+1

The important property of the CW construction is that for any triple ;y; 2y, in the trilinear form, p(i) +
p(j) + p(k) = 2.

In general, the CW approach applies to any construction for which we can define an integer function p
on the indices so that there exists a number P so that for every z;y;2;, in the trilinear form computed by the
construction, p(i) + p(j) + p(k) = P. We call such constructions (p, P)-uniform.

Definition 1. Let p be a function from [n] to [N]. Let P € [N] A trilinear form ), ; .ci1 tijriy; 2k is
(p, P)-uniform if whenever t;j;, # 0, p(i) + p(j) + p(k) = P. A construction computing a (p, P)-uniform
trilinear form is also called (p, P)-uniform.

Any tensor power of a (p, P)-uniform construction is (p’, P’) uniform for some p’ and P’. There
are many ways to define p’ and P’ in terms of p and P. For the K-th tensor power the variable indices
are length K sequences of the original indices: wzindex[l],...,zindex|[K]|, yindex[1],...,yindex|[K]
and zindex[l],...,zindex[K]. Then, for instance, one can pick p’ to be an arbitrary linear combina-
tion, p'[zindex] = YK a; - xindex[i], and similarly p/[yindex] = X a; - yindex[i] and p/[zindex] =
S°K 4 - zindex|i). Clearly then P’ = P'Y"; a;, and the K -th tensor power construction is (p, P’)-uniform.



In this paper we will focus on the case where a; = 1 for all ¢ € [K], so that p[index]| = ZZK index|i]
and P/ = PK. Similar results can be obtained for other choices of p/.

The CW approach proceeds roughly as follows. Suppose we are given a (p, P)-uniform construction
and we wish to derive a bound on w from it. (The approach only works when the range of p is at least
2.) Let C be the trilinear form computed by the construction and let r be the number of bilinear products
performed. If the trilinear form happens to be a direct sum of different matrix products, then one can just
apply the Schonhage 7-theorem [17] to obtain a bound on w in terms of r and the dimensions of the small
matrix products. However, typically the triples in the trilinear form C' cannot be partitioned into matrix
products on disjoint sets of variables.

The first CW idea is to partition the triples of C' into groups which look like matrix products but may
share variables. Then the idea is to apply procedures to remove the shared variables by carefully setting
variables to 0. In the end one obtains a smaller, but not much smaller, number of independent matrix
products and can use Schonhage’s 7-theorem.

Two procedures are used to remove the shared variables. The first one defines a random hash func-
tion h mapping variables to integers so that there is a large set S such that for any triple x;y;2; with
h(x;), h(y;), h(zx) € S one actually has h(z;) = h(y;) = h(zx). Then one can set all variables mapped
outside of S to 0 and be guaranteed that the triples are partitioned into groups according to what element
of S they were mapped to, and moreover, the groups do not share any variables. Since S is large and h
maps variables independently, there is a setting of the random bits of & so that a lot of triples (at least the
expectation) are mapped into .S and are hence preserved by this partitioning step. The construction of S uses
the Salem-Spencer theorem and # is a cleverly constructed linear function.

After this first step, the remaining nonzero triples have been partitioned into groups according to what
element of S they were mapped to, and the groups do not share any variables. The second step removes
shared variables within each group. This is accomplished by a greedy procedure that guarantees that a
constant fraction of the triples remain. More details can be found in the next section.

When applied to the CW construction above, the above procedures gave the bound w < 2.388.

The next idea that Coppersmith and Winograd had was to extend the 7-theorem to Theorem 3 below
using the notion of value V;. The intuition is that V. assigns a weight to a trilinear form 7" according to
how “close” an algorithm computing 7 is to an O(n37) matrix product algorithm. Suppose that for some
N, the Nth tensor power of T' I can be reduced to ?:1 (ki, mj,n;) by substitution of variables. Then we

introduce the constraint
q 1/N
VA(T) > (Z(kimmz‘)T> :

i=1
Furthermore, if 7 is the cyclic permutation of the x,y and z variables in 7', then we also have V. (T) =
(VAT @ A @ w2T))/3 > (Vo(T) V4 (xT) V7 (x%T))'/3. With this notion of value as a function of 7, we
can state an extended 7-theorem, implicit in [10].

Theorem 3 ([10]). Let T be a trilinear form such that T = @;_, T;. If there is an algorithm that computes
T by performing at most r multiplications for r > q, then w < 37 for T given by Zgzl VA(T;) =r.

It is clear that values are superadditive and supermultiplicative, so that V(17 ® 1) > V(11)V-(T3)
and VT(Tl D Tg) > VT(Tl) + VT(TQ).

Theorem 3 has the following effect on the CW approach. Instead of partitioning the trilinear form into
matrix product pieces, one could partition it into different types of pieces, provided that their value is easy

!"Tensor powers of trilinear forms can be defined analogously to how we defined tensor powers of an algorithm computing them.



to analyze. A natural way to partition the trilinear form C'is to group all triples x;y;z2;, for which (i, j, k) are
mapped by p to the same integer 3-tuple (p(i), p(j), p(k)). This partitioning is particularly good for the CW
construction and its tensor powers: in Claim 7 we show for instance that the trilinear form which consists of
the triples mapped to (0, J, K) for any J, K is always a matrix product of the form (1, @, 1) for some Q.

Using this extra ingredient, Coppersmith and Winograd were able to analyze the second tensor power of
their construction and to improve the estimate to the current best bound w < 2.376.

In the following section we show how with a few extra ingredients one can algorithmically analyze an
arbitrary tensor power of any (p, P)-uniform construction. (Amusingly, the algorithms involve the solution
of linear systems, indicating that faster matrix multiplication algorithms can help improve the search for
faster matrix multiplication algorithms.)

3 Analyzing the K tensor power of a (p, P)-uniform construction, for any

Let K > 2 be an integer. Let p be an integer function with range size at least 2. We will show how to analyze
the KC-tensor power of any (p, P)-uniform construction by proving the following theorem:

Theorem 4. Given a (p, P)-uniform construction and the values for its IKC-tensor power, the procedure in
Figure I outputs a constraint program the solution T of which implies w < 37.

Consider the the K-tensor power of a particular (p, P)-uniform construction. Call the trilinear form
computed by the construction C'. Let r be the bound on the (border) rank of the original construction. Then
X is a bound on the (border) rank of C.

The variables in C have indices which are C-length sequences of the original indices. Moreover, for
every triple T indesYyinder Zzindex 10 the trilinear form and any particular position pos in the index sequences,
p(zindex[pos|) + p(yindex[pos]) + p(zindex[pos]) = P. Recall that we defined the extension p of p for
the C tensor power as p(index) = Zfi 1 p(indezx[i]), and that the X tensor power is (p, PXC)-uniform.

Now, we can represent C' as a sum of trilinear forms XY/ ZK  where XY’ Z" only contains the
triples TzindesYyindes 2zindex i1 C' for which p maps xindex to I, yindex to J and zindex to K. That is, if
C =Yk tijrxiyjz, then XY ZK =37, i)=1,p(j)=7 LijkTiyj k. We refer to I,J,K as blocks.

Following the CW analysis, we will later compute the value V7 (as a function of 7) for each trilin-
ear form X'Y 7 ZK separately. If the trilinear forms X'Y”Z% didn’t share variables, we could just use
Theorem 3 to estimate w as 37 where 7 is given by r* = Y~ Vi k(7).

However, the forms can share variables. For instance, XY/ Z% and XY/ ' 7K' share the x variables
mapped to block I. We use the CW tools to zero-out some variables until the remaining trilinear forms no
longer share variables, and moreover a nontrivial number of the forms remain so that one can obtain a good
estimate on 7 and hence w. We outline the approach in what follows.

Take the N-th tensor power CV of C for large N; we will eventually let N go to co. Now the indices of
the variables of C are N-length sequences of K length sequences. The blocks of CV are N-length sequences
of blocks of C.

We will pick (rational) values A; € [0, 1] for every block I of C, so that Y~ ; AT = 1. Then we will
set to zero all z, y, z variables of C' the indices of which map to blocks which do not have exactly N - Ay
positions of block I for every I. (For large enough N, N - Ay is an integer.) o

For each triple of blocks of CV (I,.J, K) we will consider the trilinear subform of CV, X1y’ ZK,
where as before C'V is the sum of these trilinear forms.



1. Foreach I, J, K = PK — I — J, determine the value Vj s of the trilinear form
2_ij: pli)y=I p(j)=J LijkTiY;Zk, as a nondecreasing function of 7.

2. Define variables ajji and ayji for I < J < K =PK —-1-—J.
3. Form the linear system: forall I, A; = ) ; arjx, where ajjx = Usort(I1JK)-

4. Determine the rank of the linear system, and if necessary, pick enough variables
arji toplace in .S and treat as constants, so the system has full rank.

5. Solve for the variables outside of S in terms of the A; and the variables in S.
6. Compute the derivatives py/ j/g/1 7K -
7. Form the program:

Minimize 7 subject to
_arjK perm(IJK) perm(IJK)-ay ji
K _ ArIK Virk

= oY e —— T—

HISJSK <a15§(1{ I, AII )
arjK Z O,CL]JK Z OforaIII,J,K
>r<j<xperm(IJK) -arkx = 1,
(1 . ] Pyt gl it
AIJK HaI'J/K’¢57P1'J/K’IJK>O(aI’J’K’) PIRLIE
o aI’J’K'¢S,p1/J’K/UK<O(aI’J’K’)_pI,J/K,”K foralla;jx € 5,
Y. jarjk =y aryk for all I( unless one is setting arjx = GrjK)-

8. Solve the program to obtain w < 37.

Figure 1: The procedure to analyze the K tensor power.

Consider values ayjx for all valid block triples I, J, K of C which satisfy
Ar= Z arj(p-K-1-J) = Z ajrpK-I1-J) = Z Qp-K—I1-J)JI-
J J J

_The values ayjx will correspond to the number of index positions pos such that any trilinear form
X1y 77K of CN we have that I[pos] = I, J[pos] = J, K[pos] = K.
The a; i need to satisfy the following additional two constraints:

1 :ZAI = Z arjK,
7

1,JK
and
PK =3 Z I-A;.
I

We note that although the second constraint is explicitly stated in [10], it actually automatically holds as
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a consequence of constraint 1 and the definition of ay g since

3 TA; =) TA;+Y JA;+> KAk =
i i 7 K
S Tappr-r—n + > Jarspc-1-n + > Y Kapk—g-r)ux =
T 7T K J

Y>> T+ T+ (PK—TI~=0)arspc-1-5=PK> arypr-1-5 = PK.
T 7 I

Thus the only constraint that needs to be satisfied by the arjx is D ; JK a1k = 1.
Recall that ([R} ) denotes ( R R N

R ) where 11, ..., 145 are the elements of S. When S is im-
217 127"'7 Z‘S‘
plicit, we only write ([ R,]).

By our choice of which variables to set to 0, we get that the number of C'V block triples which still have
nonzero trilinear forms is

([N]'VAI]> . Z H ( NNaIil; )

where the sum ranges over the values aj i Wthh satisfy the above constraint. This is since the number
of nonzero blocks is ([ NAA ]) and the number of block triples which contain a particular X block is exactly

II; ([NN " ) for every partltlon of Ayinto [a;jk]s (for K = PK — 1 — J).

arjK

Let R = Z[a] ] II; ([N auK} ) The current number of nonzero block triples is N - ([N{\AI]).

Our goal will be to process the remaining nonzero triples by zeroing out variables sharing the same
block until the remaining trilinear forms corresponding to different block triples do not share variables.
Furthermore, to simplify our analysis, we would like for the remaining nonzero trilinear forms to have the
same value.

The triples would have the same value if we fix for each I a partition [a;;x N]; of A;N: Suppose
that each remaining triple X’Y/Z% has exactly a;;x N positions pos such that Ipos] = I, J[pos] =
J, K[pos] = K. Then each remaining triple would have value at least ]| 17 Vi IJ<K by supermultiplicativ-
ity.

Suppose that we have fixed a particular choice of the arjr. We will later show how to pick a choice
which maximizes our bound on w.

The number of small trilinear forms (corresponding to different block triples of C*V) is ¥’ - ([ N]'\xf‘h])’

where oA
N = < - )
]‘;[ [N -arjkls

Let us show how to process the triples so that they no longer share variables.

Pick M to be a prime which is ©(X). Let S be a Salem-Spencer set of size roughly M 1=0(1) a5 in the
Salem-Spencer theorem. The o(1) term will go to 0 when we let N go to infinity. In the following we’ll let
|S| = M'~¢ and in the end we’ll let £ go to 0, similar to [10]; this is possible since our final inequality will
depend on 1/M /N which goes to 1 as N goes to oo and ¢ goes to 0.

Choose random numbers wg, wy, . .., wy in {0, ..., M — 1}.

For an index sequence I, define the hash functions which map the variable indices to integers, just as
n [10]:

11



N
be(I) = Z Wpos - I[pos] mod M,

pos=1
N
by(I) = wo + Z Wypos - I[pos] mod M,
pos=1
N
b.(I) =1/2(wo + Y (PK — wpos - I[pos])) mod M.
pos=1

Set to 0 all variables with blocks mapping to outside S.

For any triple with blocks 7, J, K in the remaining trilinear form we have that b, (1) +by(J)+2b,(K) =
0. Hence, the hashes of the blocks form an arithmetic progression of length 3. Since S contains no nontrivial
arithmetic progressions, we get that for any nonzero triple

ba(1) = by(J) = b.(K).

Thus, the Salem-Spencer set S has allowed us to do some partitioning of the triples.

Let us analyze how many triples remain. Since M is prime, and due to our choice of functions, the z,y
and z blocks are independent and are hashed uniformly to {0, ..., M — 1}. If the I and .J blocks of a triple
XTy7 ZX are mapped to the same value, so is the & block. The expected fraction of triples which remain
is hence

(M'¢/M) - (1/M), whichis 1 /M T

This holds for the triples that satisfy our choice of partition [a7x].

The trilinear forms corresponding to block triples mapped to the same value in S can still share variables.
We do some pruning in order to remove shared blocks, similar to [10], with a minor change. For each s € S,
process the triples hashing to s separately.

We first process the triples that obey our choice of a7 s ], until they do not share any variables. After that
we also process the remaining triples, zeroing them out if necessary. (This is slightly different from [10].)

Greedily build a list L of independent triples as follows. Suppose we process a triple with blocks I, J, K.
If I is among the  blocks in another triple in L, then set to 0 all y variables with block .J. Similarly, if I is
not shared but .J or K is, then set all z variables with block I to 0. If no blocks are shared, add the triple to
L.

Suppose that when we process a triple I, .J, K, we find that it shares a block, say I, with a triple I, J/, K’
in L. Suppose that we then eliminate all variables sharing block .J, and thus eliminate U new triples for some
U. Then we eliminate at least ((2]) + 1 pairs of triples which share a block: the ((2]) pairs of the eliminated
triples that share block .J, and the pair I, J, K and I, J’, K’ which share I.

Since ([2]) + 1 > U, we eliminate at least as many pairs as triples. The expected number of unordered
pairs of triples sharing an X (or Y or Z) block and for which at least one triple obeys our choice of [asx]
is

[(1/ 2 <<[N]~VAI]> Nl) (N=1+ (([NJ-VAID Nl) R~ N')} M= <<[N]-VAI]> Nl) (/212 /M

Thus at most this many triples obeying our choice of [a; k] have been eliminated. Hence the expected
number of such triples remaining after the pruning is

12



N ! 141 _ !
<[N.AI]>N/M T - R/M +N/(2M)] > <[N.AI]

for some constant C' (depending on how large we pick M to be in terms of X). We can pick values for
the variables w; in the hash functions which we defined so that at least this many triples remain. (Picking
these values determines our algorithm.)

e,

We have that
N - A ) ( N - A )
max <N < poly(N) max .
larsx) ([N cargrls) =0 P v larsk] 1;[ [N -arjkls
Hence, we will approximate X by Rpax = max(q, 1 [1; ([N{Z;;‘;]J).

We have obtained

. (([N]-VAI]) o poly&vwe)

trilinear forms that do not share any variables and each of which has value []; ; V/'j#* N

(nap)

If we were to set X = R, we would get 2 poly(N) M=

trilinear forms instead. We use this setting

in our analyses, though a better analysis may be possible if you allow X’ to vary.

We will see later that the best choice of [arjx] sets arjx = asor(1K) for each I, J, K, where
sort(IJK) is the permutation of /.JK sorting them in lexicographic order (so that I < J < K). Since
tensor rank is invariant under permutations of the roles of the z,y and z variables, we also have that
Vs = Vioryrsx) forall I, J, K. Let perm(I, J, K) be the number of unique permutations of I, J, K.

Recall that  was the bound on the (border) rank of C' given by the construction. Then, by Theorem 3,
we get the inequality

_— <[ 3 )NN/ : [T (Visx(r)yperm@IK)Nars,

N - Af]) Npax  poly(N)Me 1<ISK
Let' arj K be the choices which achieve Ny« so that R =[] 7 ([ th\if;j; ]J). Then, by taking Stirling’s
approximation we get that
/ 1/N a?IJJI?
(N /R ) Y = H i
1JK 1JK

Taking the N-th root, taking /V to go to oo and ¢ to go to 0, and using Stirling’s approximation we obtain
the following inequality:

GOIK perm(IJK) yrerm(IJK)-arsx
K> IJK VK
I<J<K

arJjK A
arji I, A"

If we set aryx = arjx, we get the simpler inequality
K IJK)- A
K > H (VUK)pef‘m( )aIJK/HA I
I<J<K I

which is what we use in our application of the theorem as it reduces the number of variables and does not
seem to change the final bound on w by much.

The values V7 are nondecreasing functions of 7, where 7 = w/3. The inequality above gives an
upper bound on 7 and hence on w.
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Computing a;;x and ajjix. Here we show how to compute the values ajjx forming Ny and ayjg
which maximize our bound on w.

The only restriction on aj g is that Ay = ZJ arjK = ZJ arjk, and so if we know how to pick aj sk,
we can let ay i vary subject to the constraints ) | ; arjx = ) ; arjk. Hence we will focus on computing
arjK-

Recall that aj s is the setting of the variables ajx which maximizes [ [, ([ NZ I‘j}’{ ]J) for fixed Aj.

Because of our symmetric choice of the Ay, the above is maximized for drjx = Gsori(17K), Where
sort(IJK) is the permutation of I, J, K which sorts them in lexicographic order.
Let perm(I, J, K) be the number of unique permutations of I, .J, K. The constraint satisfied by the
arji becomes
1= ZAI = Z perm(I, J,K) - arx.
I I<J<K

The constraint above together with ayjx = s0r4(17 1) are the only constraints in the original CW paper.
However, it turns out that more constraints are necessary for > 2.

The equalities Ay = ) jaryi form a system of linear equations involving the variables a;x and the
fixed values Aj. If this system had full rank, then the aj i values (for ajjx = @sori(17K)) Would be

determined from the A; and hence Y would be exactly [], ([ N];Ié; ]J), and a further maximization step
would not be necessary. This is exactly the case for K = 2 in [10]. This is also why in [10], setting
arjK = GjjK Was necessary.

However, the system of equations may not have full rank. Because of this, let us pick a minimum set S
of variables ay;z so that viewing these variables as constaints would make the system have full rank.

Then, all variables ayjx ¢ S would be determined as linear functions depending on the A; and the
variables in S.

Consider the function GG of A; and the variables in S, defined as

N-A; )
G = .
1;1 ([N'C_LIJK]EL”K¢5’7 [N -arkla;ces

G is only a function of {ar;x € S} for fixed {4;};. We want to know for what values of the variables
of S, GG is maximized.

G is maximized when [[,;(a;jxN)! is minimized, which in turn is minimized exactly when F' =
> ryIn((Narjk)!) is minimized, where K = PKC — 1 — J.

Using Stirling’s approximation In(n!) = nlnn — n 4+ O(lnn), we get that F' is roughly equal to

N[Z argr n(aryx) —argx + argx In N + O(log(Narjk)/N)| =
77

NInN + N[Z arjK 111((1[JK) —arjK + O(log(NELUK)/N)L
1J

since ZU arjgk = »_;Ar = 1. As N goes to oo, for any fixed setting of the aj i variables, the
O(log N/N) term vanishes, and F'isroughly N In N+N (>, ; arjx In(arsx)—arsx ). Hence to minimize
F we need to minimize f = (3_;; arjx In(arjrx) — aryk).

We want to know for what values of ajx, f is minimized. Since f is convex for positive asjx, it

is actually minimized when 8681]; — = 0 for every ayjx € S. Recall that the variables not in S are linear
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combinations of those in 5.2
Taking the derivatives, we obtain for each ayjx in S:

of S (@ day yk
0= — = hl(a]/J/K/)i_ .
aa[‘]K I'J' K! 8aIJK
We can write this out as )
Qay g1 gt
1= H (dI’J’K’) dargi .
I'JK'

Since each variable @ j/ i in the above equality for @ jx is a linear combination of variables in 5,
the exponent pr j i1 7 = % is actually a constant, and so we get a system of polynomial equality
constraints which define the variables in S in terms of the variables outside of S: for any a;jx € S, we get

arjK - H (aI/J,K,)pI/J/K/IJK — H (C_L[/J/K/)_pI'J'K'”K- (])

arr gt €Sy g1t 1y >0 Gt gt €S0 g1 et 1y <O

Given values for the variables not in S, we can use (1) to get valid values for the variables in .S, and
hence also for the A;. For that choice of the A;, G is maximized for exactly the variable settings we have
picked. Now all we have to do is find the correct values for the variables outside of S and for @k, given
the constraints A; = ) ; arjk.

We cannot pick arbitrary values for the variables outside of S. They need to satisfy the following
constraints:

e the obtained A; satisfy ), Ay =1, and
o the variables in S obtained from Equation 1 are nonnegative.

In summary, we obtain the procedure to analyze the C tensor power shown in Figure 1.

4 Analyzing the smaller tensors.

Consider the trilinear form consisting only of the variables from the I tensor power of C, with blocks
1,J, K,where I +J + K = P - K. In this section we will prove the following theorem:

Theorem 5. Given a (p, P)-uniform construction C, using the procedure in Figure 2 one can compute the
values Vi jc for any tensor power of C. The K tensor power requires O(K?) applications of the procedure.

Suppose that we have analyzed the values for some powers X' and K — K’ of the trilinear form from
the construction with X' < K. We will show how to inductively analyze the values for the K power, using
the values for these smaller powers. The theorem will follow by noting that the number of values for the
power is O(K?2) and that one can use recursion to first compute the values for the |KC/2| and [K/2] powers
and then combining them to obtain the values for the I power.

*We could have instead written f = > 1y @rsr In(@rx) and minimized f, and the equalities we would have obtained
would have been exactly the same since the system of equations includes the equation >, aryx = 1, and although 0f/0a

is > ;5 W = > %é%(ln&aufq — 1), the —1 in the brackets would be canceled out: if @p,0,pc = (1 —

dag,0, Pk Indg0,PKc _ 7. (= 9ag,0,PKc Oar: gt
R = In(@0,0,p0) 5 2o (1,0 £(0,0) —on

200 (1,7)£(0,0) G1JK ), then
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10.

. Define variables o, and X, Y}, Z;, for all good triples i, j, k.
. Form the linear system consisting of X; = Zj Qijks Y5 = D, g and Zy = > aiijig.

. Determine the rank of the system: it is exactly #i + #7 + #k — 2 because of the fact

that 0, X; = Zj Y =231 Zn.

. If the system does not have full rank, then pick enough variables «;;, to treat as con-

stants; place them in a set A.

. Solve the system for the variables outside of A in terms of the ones in A and X;,Y, Zj.

Now we have ;i = ;i ([X], [Y5], [Xk],y € A).

. Let Wi 1 = Vi ;xViei,g—j k—k. Compute for every £,
Yijk
axe
nLe = H ijk
4,5,k
Oaz]k
Y,
nyYe = H ijk , and,
4,5,k
”k
nze = ]._.[ Uk
1,5,k
. Compute for every variable y € A,
Yijk
Dy,
ny = H w, Jk’
1,5,k

. Compute for each oy, its setting ;;5(A) as a function of the y € A when X, =

ne/ Y nwi, Yo = nye/ Y2 ny; and Zg = nze/ Yy nz.

Viik = Zniﬂé )3 Znye )M3( ZTLZZ )3 H ny”.

yEA

. Then set

subject to the constraints on y € A given by

y>0forally € A,
aijk(A) > 0 for every o, ¢ S.

Find the setting of the y € A that maximizes the bound on V; k. For any fixed guess
for 7, this is a linear program: Maximize Eye AY log ny subject to the above linear
constraints. Or, alternatively, let V; ;i be a function of y € A and add the above two
constraints to the final program in Figure 1 computing w.

Figure 2: The procedure for computing V7 g for arbitrary tensor powers.
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Consider the K tensor power of the trilinear form C'. It can actually be viewed as the tensor product of
the K" and K — K’ tensor powers of C.

Recall that the indices of the variables of the X tensor power of C are K-length sequences of indices of
the variables of C. Also recall that if p was the function which maps the indices of C to blocks, then we
define p* to be a function which maps the K power indices to blocks as p* (index) = Y pos Plindex[pos]).

An index of a variable in the K tensor power of C' can also be viewed as a pair ([, m) such that [ is an
index of a variable in the K’ tensor power of C' and m is an index of a variable in the L — K’ tensor power
of C. Hence we get that p’*((1,m)) = p (1) + p* ' (m).

For any I, J, K which form a valid block triple of the I tensor power, we consider the trilinear form
Ty J i consisting of all triples x;y; 2, of the K tensor power of the construction for which p* (i) = I, p(j) =
J,p* k) = K.

Ty, 1,k consists of the trilinear forms T; ;1 ® T7_; j—; i for all ¢, 7, k that form a valid block triple for
the K’ power, and such that I — i, J — j, K — k form a valid block triple for the K — K’ power. Call such
blocks i, j, k good. Then:

Tk = Z Tijk @I J—j,K—k-
good ijk

(The sum above is a regular sum, not a disjoint sum, so the trilinear forms in it may share indices.) The
above decomposition of 17y was first observed by Stothers [18]. It has greatly simplified our analysis.

Let Qi1 = Tijx ® Tr—; j—j k—k- By supermultiplicativity, the value Wi of Q. satisfies Wi >
VijkVi—ij—j k. If the trilinear forms ();;x didn’t share variables, then we would immediately obtain a
lower bound on the value V7 ki as Zijk VijkVi—i j—j.x—k. However, the trilinear forms ();;, may share
variables, and we’ll apply the techniques from the previous section to remove the dependencies.

To analyze the value Vi x of T j i, we first take the N-th tensor power of 17 j i, the N-th tensor
power of Tk 1, ; and the N-th tensor power of T’ i, and then tensor multiply these altogether. By the
definition of value, V7 j g is at least the 3/N-th root of the value of the new trilinear form.

Here is how we process the IV-th tensor power of 17 ; x. The powers of T’k ; j and T; g 1 are processed
similarly.

We pick values X; € [0, 1] for each block 7 of the K’ tensor power of C so that ), X; = 1. Set to 0 all
x variables except those that have exactly X; - N positions of their index which are mapped to (i, — i) by
(p’C/,p’C*’C/), for all i.

The number of nonzero x blocks is ( [ N.]}f(i]i).

Similarly pick values Y; for the y variables, with ;Y; = 1, and retain only those with Y; index
positions mapped to (j, J — j). Similarly pick values Zj, for the z variables, with ), Z;, = 1, and retain
only those with Zj, index positions mapped to (k, K — k).

The number of nonzero y blocks is ([ N_];[,j b)' The number of nonzero z blocks is ([ N-Zk]k)‘

For i, j,k = PK’' — i — j which are valid blocks of the K’ tensor power of C' with good i, j, k, let o,
be variables such that X; = Zj Qijk, Y = D auji and Zy, = Y7 v

After taking the tensor product of what is remaining of the Nth tensor powers of 17 j i, Tk 1y and
T Kk,1, the number of x, y or z blocks is

b= <[NJ-VX1']> ([NJ-VY]-]) <[N ]-VZ'J)’

The number of block triples which contain a particular x, y or z block is
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"= H(N%k >1:[<N%k: >H<N]\LZZJZ >

k

Hence the number of triples is I - N.

Set M = O(R) to be a large enough prime greater than X. Create a Salem-Spencer set .S of size roughly
M*'¢. Pick random values wg, w1, wa, . . ., w3y in {0,..., M — 1}.

The blocks for x, y, or z variables of the new big trilinear form are sequences of length 3V; the first NV
positions of a sequence contain pairs (i, ] — i), the second N contain pairs (j, .J — 7) and the last N contain
pairs (k, K — k). We can thus represent the block sequences I of the K tensor power as (I1, I3) where I is
a sequence of length 3N of blocks of the K’ power of C and I is a sequence of length 3N of blocks of the
K — K’ power of C (the first N are x blocks, the second N are y blocks and the third N are z blocks).

For a particular block sequence I = (I, I2), we define the hash functions that depend only on I;:

Z Wpos - 11[pos]  mod M,

pos=1

I)=wy+ g Wpos = I 1[pos] mod M,
pos=1

3N
bo(1) = 1/2(wo + Y (PK' = (wpos - 1[pos]))) mod M.
pos=1

We then set to 0 all variables that do not have blocks hashing to elements of S. Again, any surviving
triple has all variables’ blocks mapped to the same element of S. The expected fraction of triples remaining
is M'=¢/M? =1/M'*e,

As before, we do the pruning of the triples mapped to each element of .S separately. The expected number
of unordered pairs of triples sharing an x,y or z block is (3/2)I'R(R — 1)/M3 < TR/(c - M?) for large
constant ¢, and the number of remaining block triples over all elements of .S is Q(I'N /M) = Q(I'/M?).
(Recall that I" is the number of blocks and I'N was the original number of triples.) Analogously to [10], we
will let € go to 0 and so the expected number of remaining triples is roughly I'. Hence we can pick a setting
of the w; variables so that roughly I" triples remain. We have obtained about I" independent trilinear forms,
each of which has value at least

LT Vi - Vicig—jsc—i) PN,
W5,k
This follows since values are supermultiplicative.
The final inequality becomes

N N N AP S 3Naji
V[ JK = <[N . Xz]) <[N . ij]) ([N . Zk]) H(m,],k Vv]—z,J-],K—k) jk |
Recall that we have equalities X; = Zj Qijks Y = D jk, and Zy, = oy If we fix X5, Y, Z;,
over all 4, j, k, this forms a linear system.
The linear system does not necessarily have full rank, and so we pick a minimum set A of variables oy,
so that if they are treated as constants, the linear system has full rank, and the variables outside of A can be
written as linear combinations of variables in A and of X}, Y}, Zj,.
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Now we have that for every o,

Oavjk
Qjjk = Z 4 8Z ]

yEAU{X,L-/,Yj/ 7Zk’}i’,j/,k’

where for all o, ¢ A we use the linear function obtained from the linear system.
oy
Let 5ijk = ZyGAy ik et W igk = Vi,j,k . ‘/[_Z'”]_j’K_k. Then,

Baljk da 9%k zgk
e I L Wik,
i,k T gk ijk gk 1,5,k
Do‘z‘jk
Xe iy — T
Define nzy = H”k wk for any £. Set nnxy = S, nag

Ba [o2eY

'L]k zgk

7 7, L
”k and nzp =[], ;4 wk‘ , setting ny, = Z : ny - and nz, =

Define similarly ny, = HZ gk

nzp
Do nzg”
Consider the right hand side of our inequality for V7 j:

(1 ) () () T2 -

1,9,k

N Yijk
(P D o e
N - Zy ¢ ik
By Lemma 1, the above is maximized for X, = nxy, Y; = nys, and Zy = nz, for all £, and for these
settings ([ N{VXi]) I nxévxe, for instance, is essentially (Y, nx,)"/ poly(IV), and hence after taking the
3N'th root and letting NV go to co, we obtain

ao‘i"k)

Vigr > ( ang 1/ an 1/3 Z”Z 1/3H ’]kyeAyTyJ

i,9,k

If A = (), then the above is a complete formula for V1,4, - Otherwise, to maximize the lower bound on
V1,7, we need to pick values for the variables in A, while still preserving the constraints that the values for
the variables outside of A (which are obtained from our settings of the X;, Y;, Zj, and the values for the A
variables) are nonnegative.

We obtain the procedure for computing the values V7 ; x shown in Figure 2.

4.1 Powers of two

Because the constraint program in the previous section is tricky to solve, we want to be able to reduce the
number of variables. It turns out that when the tensor power K is a power of 2, say K = 2%, we can use
K' = K — K' = 25! and we can reduce the number of variables (roughly by half) by exploiting the
symmetry. We will outline the changes that occur. We prove the following theorem.

Theorem 6. Given a (p, P)-uniform construction C, using the procedure in Figure 3 one can compute the
values Vi j i for any tensor power of 2 of C.
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1. Define variables o and X;, Y, Z, for all valid triples i, j, k, i.e. the good triples with ¢ < I/2
and if i = I/2, then j < J/2.

2. Form the linear system consisting of
Xi =2 jes(i) Qigs Wheni < I/2and Xyjo =23 c 101/9) (1/2)jx5

Y; = Ziel(j) Qijx + ZieI(ij) @i j—j«wWhenj < J/2and Yy, = 221.61(']/2) @i(/2)%» and

Zk = Yicr(h) Qisk + 2icr(x k) Vin K-k for k < K/2and Zxjo = 237, 1k ja) Qinkc/2-
3. Determine the rank of the system: it is exactly #i + #7j + #k — 2.

4. If the system does not have full rank, then pick enough variables «;;;, to put in A and hence treat as
constants.

5. Solve the system for the variables outside of A in terms of the ones in A and X;,Y}, Z,. Now we
have Qi = O(ij;g([Xi}, [YVJL [Xk],y S A) for all Ak ¢ A.

6. Compute for every ¢,

aijk Yijk
. (')X[ o OXI/Q
nry = H Wik for ¢ < I/2and nxy/ = H Wik
i<1/2,5,k i<1/2,5,k
gk ik
nye = W ayf for ¢ < J/2, and, n = W.. dY’/Q
Yy = ijk ) ) y.]/2 - ij
i<I/2,5,k i<I/2,5,k
804
gk ijk
o azz _ azK/2
nzy = H ij for ¢ < K/2and nzg /o = H Wik
i<I/2,5,k i<I/2,5,k

7. Compute for every variable y € A,

8a”k
ny= [I VigVieio—jx—e) " .
i<1/2,jk

8. Compute for each «jy, its setting ;5 (A) as a function of the y € A when X, = nzy/ ), nx;,
Y, = nyg/zj ny; and Z, = nz¢/ Y, nzg.

1/3 1/3 1/3

Thenset Vij =2 Z nTy Z nyYy Z nzy H nyy.

0<1/2 0<J)2 I<K/2 yeA

subject to the constraints on y € A given by

y>0forally € A,
aijk(A) > 0 for every o, ¢S.

10. Find the setting of the y € A that maximizes the bound on V7 ;. For any fixed guess for 7, this is
a linear program: Maximize N log ny subject to the above linear constraints.

Figure 3: The procedure to compute V7 jx for tensor powers of 2.
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The technique below works not only for powers of 2 but also for any even power. However, if we apply
recursion to compute the values by using only the procedure below, we need K to be a power of 2.

To analyze the value Vi i of Ty j i, we first take the 2/N-th tensor power (instead of the Nth) of
17,5 K, the 2N-th tensor power of T’k 1 ; and the 2N-th tensor power of T'; 7, and then tensor multiply
these altogether. By the definition of value, V7 j i is at least the 6 N-th root of the value of the new trilinear
form.

Here is how we process the 2N -th tensor power of 17 j i, the powers of T ; j and Tj k1 are processed
similarly.

We pick values X; € [0,1] for each block i of the 257! tensor power of C so that y_, X; = 2 and
X; = Xj_; forevery i < I/2. Setto 0 all x variables except those that have exactly X; - N positions of
their index which are mapped to (i, I — 4) by (p', p'), for all 4.

The number of nonzero x blocks is ([N'Xi]i<l/27[N'2)](\Z]i<1/272N'XI/2)'

Similarly pick values Y; for the y variables, with Y; = Y;_;, and retain only those with Y index
positions mapped to (4, J — 7). Similarly pick values Zj, for the z variables, with Z;, = Zj _, and retain
only those with Zj, index positions mapped to (k, K . k).

: N
The number of nonzero y blocks is ([N-Y]-]]-<J/2,[N~Yj]j<J/2,2N-YJ/2

). The number of nonzero z blocks is
( I )
IN-Zlk<rc/2:IN-Zil o< i j2:2N-Z g j27*
For 4, j,k = P2%~! — i — j which are valid blocks of the 2! tensor power of C let i, be variables
such that X; = Zj Qjjks YJ = Zz Qijk; and Z; = Zz Qjjk-
After taking the tensor power of what is remaining of the 2Nth tensor powers of 17 j i, Tk 1,7 and
T’ k.1, the number of x, y or z blocks is

P= (i) (i) (o 2

The number of triples which contain a particular z, y or z block is now

=11 <[N]\;jjli]j)2 11 <[N]\0]Z<]i>2 11 <[N]\;i];]i>2<[]\7]0\‘7(i</;/)jk]j> ([NZOZ(Y;/22)k]i) ([Nj;fzii//z)]i)'

i<I/2 j<J/2 k<K/2

Hence the number of triples is I" - N.

Set M = O(R) to be a large enough prime greater than N. Create a Salem-Spencer set .S of size roughly
M1'~¢ and perform the hashing just as before. Then set to 0 all variables that do not have blocks hashing to
elements of S. Again, any surviving block triple has all variables’ blocks mapped to the same element of S.
The expected fraction of block triples remaining is M1~ /M? which will be 1/M when we let € go to 0.
After the usual pruning we have obtained €2(I") independent trilinear forms, each of which has value at least

H(‘/;/’Jak : ‘/I_Z7J_.]7K_k) O[Z.]k.
1,5,k

Because of symmetry, a;jx = oy j—j Kk, 80 letting Wi, = Vi ;1. - Vi_i j_j k—k, we can write the above
as

6N ; 6N« : 3N«
H (Wi )™ “idk H (Wijajp) " “H236 (W g gro ) “1/27/2:0,
i<I/2,5.k G<J/2,k
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We can make a change of variables now, so that vy /3 j/2 1 1s halved, and whereever we had oy /2 j/2,k
before, now we have 2a; /3 j/2 k-
The value inequality becomes

2N 2N IN
IJK N-xi ) \IV-v ) \IN- 2z H (Wiik)
i<1/2,5,k
Using Stirling’s approximation, we obtain that the right hand side is roughly

(2N)2N (2N)2N y
(NX 1) N2 T g o (N XG) 2NN (NY ) VY02 T] o (N2

(NZij2) V75602 Tl g jo (N Zi) 2N 2 i<I/2,jk ’

Taking square roots and restructuring:

93N=N(X1/2+Y /242K /2)/2 ( N > ( N > X
[N - Xilicr/2s NX1/2/2) \[N - Yjlicy/2, NYj/2/2

N ) 3Nk
W ik
([N'Zk]k<K/2’NZK/2/2 i<11_/2[,j,k W

Because of the symmetry, we can focus only on the variables «;;;, for which
e i<JI/2
o ifi =1/2,thenj < .J/2.

A triple (7, j, k) is valid if i and j satisfy the above two conditions and (i, 7, k) is good. When two of the
indices in a triple are fixed (say ¢, j), we will replace the third index by *. If i < I /2 is fixed, J (i) will refer
to the indices j for which (i, 7, x) is valid. Similarly one can define K (i), I(5),K(j), I(k) and J (k).

Now, recall we originally had the equalities X; = > j Qijws Yj = > @ijx and Z, = > aiug. These
now become:

Xi =2 ey e Wheni < I/2and Xpjp = 23 e 1179y Q1250 i = Dicr(g) Qe t2ier(s—j) Qg —jx
when j < J/2 and Y;, = 2 ZiGI(J/Q) Qi(J/2)x and Zy = Zie[(k) Qs + ZieI(K_k) Q4 K- for
k< K/2and Zg/, =2 ZieI(K/Z) QixK/2-

If we fix X;,Y;, Z overalli < I/2,5 < J/2,k < K/2, this forms a linear system which may not
have full rank. We pick a minimum set A of variables «;;;, so that if they are treated as constants, the linear
system has full rank and the variables outside of A can be written as linear combinations of variables in A
and of X;, Y}, Zj.

Now, as before, we have that for every valid o,

Oavjjk

YyEAU{X4,Y;,Zk }i 5,k

where for all oy, ¢ A we use the linear function obtained from the linear system.
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aai~
Let 0jjk = D en Y ayjk- Then,

jk uk Ocijk
igk Wik ijk ijk ik

8a”k 6 6“1]]@

We now define nze = [[;<7/0 ;4 Wik %t for ¢ < I/2 and nzrsa = [Li<rjaj6 Wik e /2. Consider

) da
(NX7/2/2)6 TRl 3N o<1z ik

N 8X Xex,
FX:( ) [[ e wy .
vl Jok ik
N Xilicty NX1p2/2) \ 13 i<Ij2.ik

By Lemma 1, Fy is maximized for X, = nxe/ Y, nwey for £ < I/2and X/9/2 = nxrsa/ Y p nae.
Then F is essentially (3, nxe)™ / poly(N).

Ba”k 66‘1

Define similarly ny, = [[;<1/2.;6 Wijn e for £ < J/2 and nyye = Ili<ijin I/szk Y /2, and

Ba”k O

0Z
nzg = His[/g’jk ka 7%t forl < K/2and nzg/y = Higl/%k W]k K/2 /2 for £ = K/2.3
We obtain that

ijk

ijk

N N N
6(11 ik

S3N(XCyen¥—a5)
VIJK > 23N Z ny Z nyy Z nzg |/ poly(N) H Wi ik vea¥=ay .
(<I/2 (<J/2 (<K/2 i<I/2,5,k

Taking the 3N -th root and letting N go to oo, we finally obtain

1/3 1/3 1/3

(Cyea v 55)
Vigk =2 > na > ny > nz T ViiwVicis—gr—r)'> v
0<I/2 0<J/2 (<K/2 i<I/2,5.k

To maximize the lower bound on V7 ;x we need to pick values for the variables in A, while still
preserving the constraints that the values for the variables outside of A (which are obtained from our settings
of the X1, Yy, Zx and the values for the A variables) are nonnegative. The procedure is shown in Figure 3.

S Analyzing the CW construction

We can make the following observations about some of the values for any tensor power K. First, Vijx =
Viks = Vikr = Vikjr = Vyrx = Vkrg. For the special case I = 0 we get:

Claim 7. Consider Vi which is a value for the K = (J + K) /2 tensor power for J < K. Then

(J+K)/2
Vorr = > (b, (J —b)/2,(K — b)/2> ¢

b<J,J=b mod 2

T

an‘ijk
. . X .
*We note that with the change of variables XI,/2 = 2X7/2, nx1/2 becomes Hi<]/2 ik Wik /2 /2; such a change of variables
can be used instead.
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Proof. The trilinear form 7Ty 75 contains triples of the form xy«cys2; where s and ¢ are IC length sequences
so that for fixed s, t is predetermined. Thus, Ty is in fact a matrix product of the form (1, @, 1) where @
is the number of y indices s. Let us count the y indices containing a positions mapped to a 0 block (hence
0s), b positions mapped to a 1 block (integers in [¢]) and L — a — b positions mapped to a 2 block (hence
q+ 1s). The number of such y indices is (a,,b,IC’C—a—b) q®. However, since a-0+1-b+2- (K—a—0b)=J,we
must have J + K — 2a — b = J and a = (K — b)/2. Thus, the number of y indices containing (K — b)/2
0s, b positions in [g] and L —a — b= (J —b)/2 (¢ + 1)s is (b,(J—(l;])—/’—;,(()Ié?—b)/Q) q°. The claim follows since
we can pick any b as long as (J — b)/2 is a nonnegative integer. O

The calculations for the second tensor power were performed by hand. Those for the 4th and the 8th
tensor power were done by computer (using Maple and C++ with NLOPT). We write out the derivations as
lemmas for completeness.

Second tensor power. We will only give V; ;i for I < J < K, and the values for other permutations of
1, J, K follow.

From the lemma above know that Vs = 1 and V13 = (2¢)7, and Voo = (¢% +2).

It remains to analyze V715. As expected, we obtain the same value as in [10].

Lemma 2. Vj0 > 22/3q7(q37 + 2)1/3.

Proof. We follow the proof in the previous section. Here I = 1, J = 1, K = 2. The only valid variables
are ago2 and a1, and we have that Zy = a2 and 27 = 2a011.

We obtain nzo = nyo = 1, nz1 = Weo' 2 /2 = V8, /2 = ¢57/2 and nzg = Wy, = V3, = ¢*".

The lower bound becomes

‘/112 > 2(q67—/2 + q37—)1/3 — 22/3q7(q37 + 2)1/3'
L]

The program for the second power: The variables are a = ago4,b = agi3,¢ = agee,d = aiis.
Ay = 2(a—|—b)—|—c,A1 :2(b—|—d),A2 =2c+d, A3 = 2b, Ay = a.

We obtain the following program (where we take natural logs on the last constraint).

Minimize 7 subject to

q=>3,q€Z,

a,b,c,d >0,
3a+6b+3c+3d=1,
2In(g+2)+ (2(a+b) + c)In(2(a +b) + ¢) + 2(b+ d) In(2(b + d)) + (2¢ + d) In(2c + d)+

2bIn2b 4 alna = 6b7In2q + 3cr In(¢? 4 2) + dIn(4¢*7 (¢*" + 2)).

Using Maple, we obtain the bound w < 2.37547691273933114 for the values a = .000232744788234356428,b =
.0125062362305418986, c = .102545675391892355, d = .205542440692123102, 7 = .791825637579776975.
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The fourth tensor power. From Claim 7 we have, Voos = 1, Voir = (; (1_1)/3 (7_1)/2)(11)7 = (4q)7,
4

Vo2s = (Xp<2,6=2 mod 2 (b,(z—b)/g,(ﬁ—b)/z)qb)T = (4+6¢°)", Vozs = (X p<3.6=3 mod 2 (b,(3—b)/2,(5—b)/2)qb)T =

(12q +4¢%)7, and Vous = (Zp<s 51 mod 2 (b, (a—p)2,(4-1)/2) )7 = (6 +12¢° +¢*)7.
Let’s consider the rest:

Lemma 3. Vi > 22/3(8¢°7 (¢ + 2) + (2¢)°7)1/3.

Proof. Here I = J = 1, K = 6. The valid variables are agp4 and 13-

We have the equalities Xg = X1 = Yy = Y7 = 1, and so the free large variables are Z5 and Z3. The
linear system is: Za = ago4, £3 = 20013-

We can conclude that ag13 = Z3/2 and agoq = Za.

We obtain nzg = nyo = 1, and nzg = Wi, = (Vi12)® = 4¢3 (¢* + 2), nzg = W(?1/32/2 =
(Vo13Vio3)?/2 = (2¢)%7 /2. The lower bound becomes

V116 > 2(4q37(q37 + 2) + (2q)67/2)1/3 _ 22/3(8(]37((]37 + 2) + (2q)67')1/3.

Lemma 4. Vo5 > 2%/3(2(¢® + 2)*" + (4¢°(¢*" + 2)) V3 (46> (¢*™ + 2)) /(¢® + 2)37 + (2¢)°")V/3.

Proof. Here I = 1, J = 2 and K = 5. The valid variables are a4, ag13, 2p22. We have the equalities
Xo = X1 =1, and the free large variables are Yy, Y7 and Z1, Zs.

The linear system is as follows: Yy = agos + 22, Y1 = 20013, Z1 = oo, Z2 = Q913 + Qp22.

We solve: apo4 = Zl, Q022 = Yb — Zl, ap13 = ZQ - YE) + Zl.

We obtain nzg = 1, ny1 = 1/2, nyo = Wi Wors, n21 = Wi WogaWiis, nze = W3,

nyo + ny1 = (Woaa/Worz)® +1/2 = ((24(¢® + 2))7/((29)7)2*3¢7 (¢* + 2)1/3)* +1/2 = (¢* +
2)%7 /(46¥ (¢ +2)) +1/2,

nzy = (WooaWoiz/Woza)? = (Vi21Vo13Virz/ (Voza Vies))® = (Viia/Voe)? = (4¢°7 (¢°7 +2))%/(
2)°T. nze = (VorsVine)® = 467 (¢°7 + 2)(2¢)°" and nz1 + nze = (4¢°7(¢* +2))[(4¢°7 (¢*™ +2)) /(
2)°" + (29)7).

We obtain

q* +
>+
Viss > 223(2(¢* + 2)*" + (46% (¢* + 2))3((46° (¢*" +2))/(¢* + 2)* + (29)*")"/2.

Lemma 5. Vizq > 2%/3((29)°7 + 4¢°7(¢°™ + 2))V/3(2 + 2(29)% + (g% + 2)%7) /3.

Proof. Here I = 1,J = 3, K = 4 and the valid variables are ago4, 013, 022, o31. We have Xg = X; =
1, and the large variables are Yy, Y1, Zy, Z1, Zo.

The linear system is: Yo = agoq + @031, Y1 = Qp13 + 22, Zo = o4, Z1 = 13 + @31, Z2 = 20922.

We solve: agos = Zo, 31 = Yo — Zo, 13 = Z1 — Yo + Zo, 22 = Z2/2.

nyo = Wiy Wois = (Vios/Viz)%, nyp = 1.

nyo +ny1 = (Viis + Vite) /Vila-

nzo = WinaWoziWiis = (VisoVor3Viar/ (Vos1Vios))® = (Vim)?,

nz1 = Wiy = (Vor13Viz1)3, nze = W062/22/2 = (Va2 Vi12)3/2.

nzo 4+ nz1 +nzg = Viyy (14 Vils + Vi /2).
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We obtain:
Viza > 22/3(‘/0313 =+ V1312)1/3(2 +2Vis + V0322)1/3 >

22/3((2(])37'+4q37(q37+2))1/3(2+2(2q>3r+(q2+2>37)1/3_

Lemma 6. Vaoy > (2(¢? + 2)3™ + 4¢%7 (¢*™ + 2))2/3(2 +2(29)% + (¢* + 2)37)1/3

Proof. I=J= 2, K = 4, so the variables are 004, X013, X022, A103, OX112.

The large variables are Xq, X1, Yo, Y1, Zo, Z1, Z>.

The linear system is Xo = agos + 013 + 22, Yo = aoo4 + @103 + vo22,

X1 = 2(a103 + a112), Y1 = 2(a013 + a112),

Zy = apoa, Z1 = ap13 + @103, Zo = 2(an22 + q12).

We solve: agos = Zo,

(X14+Y1)/2 =21+ 20112, 80 a2 = (X1 + Y1) /4 — Z1/2,

aoe = (Z1+ Z2)/2 — (X1 +Y1)/4,

agiz3 = (Y1 — X1)/4+ Z1/2, 103 = (X1 — Y1) /4 + Z1 /2.

nrog=1,nyo =1,

na1 = (Wils Wids | (Wols Wiis) 2 /2 = Vily/ (2Vihs) = nun, since Wors = Wigs:

nzg = (Woos)® = Voo n21 = Wﬁg/QWOBQ/fWS’lg = (VozeVoi3Va11/(Vi12))? = (Voo2Vous)?, nze =
W522/2 = V0622/2-

nwo +nry = nyo + ny1 = (2Vih + Viha)/(2Viha)s 120 + n21 + nza = Vihy (2 + 2Viis + Vi) /2.

Vasa > (2Vihy + Vilg) 3 (2 + 2Viis + Vi) /3 >
(2(q2 +2)3~r +4q3‘r(q37 +2))2/3(2+2(2Q)3T + (q2 +2)3T>1/3.

Lemma 7. Vags > (2(q2+2)3T+4q3T(q37+2))1/3((2q)3T+4q37(q37+2))2/3/(qT(q3T+2)1/3).

Proof. I =2, J = K = 3, so the variables are ag13, o2, @31, @103, @112. The large variables are Xy, X1,
Yo, Y1, Zo, Z1.

The linear system is: Xy = ap13 + @22 + @31, X1 = 2(a103 + @112),

Yo = ap31 + a103, Y1 = @13 + @112 + Qp22,

Zy = ap13 + 103, £1 = Q22 + Qo31 + Q112

We solve it: Say that ag3; = w. Then aijp3 = Yo — w, a112 = X1/2 — Yo + w, agi3 = Zp — Yo + w,
ap22 = Xo — Zp + Yo — 2w,

A = {aogl}.

nzo = Wiy = (Vo2 Vi12)?, ney = Wijn/2 = (Vi12)°/2,

nyo = (WiosWozz/ (W112Wois))? = (Voi3/Virz)®, nyr = 1, nz0 = (Woiz/Woz2)® = (Vors/Vaiz)? =
nyo, nz1 = 1,

nw = (Woz1 Wi12Wois/ (Wi0sWeaa))? = (Viis Vo Vida/ (Viis Vi Vide))® = 1.

nao +nwr = (Voo Viz)® + (Vi12)°/2 = Vi, (2Vihe + Vila) /2,

nyo +ny1 = nzo +nz1 = (Vorz/Viz)* + 1 = (Vi + Viia) /Vile-

Hence,

Vasg = 2232V + Vi) P (Vils + Vite) ™ /Vire =

22/3(2(q2+2)37+4q3‘r(q37+2))1/3((2q)37+4q37(q3~r+2))2/3/(22/3q7(q37+2)1/3) _
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(2(¢* +2)*" +4¢°(¢* +2))Y3((20)* + 4% (¢* + 2))*3/(¢" (¢*" +2)'/3).

Now that we have the values, let’s form the program. The variables are as follows:
a for 008 (and its 3 permutations),
b for 017 (and its 6 permutations),
c for 026 (and its 6 permutations),
d for 035 (and its 6 permutations),
e for 044 (and its 3 permutations),
f for 116 (and its 3 permutations),
g for 125 (and its 6 permutations),
h for 134 (and its 6 permutations),
1 for 224 (and its 3 permutations),
7 for 233 (and its 3 permutations).

We have
Ag=2a+2b+2c+2d +e,

A1 =2b+2f 4 29 + 2h,
As =2¢c+ 29+ 2i+ 7,
Az =2d + 2h + 27,
A4:2€+2h+i,

A5 = 2d+2g,
A(; =2c+ f,
Ay = 2b,

Ag = a.

The rank is 8 since ) ; A; = 1. The number of variables is 10 so we pick two variables, ¢, d, to express
the rest in terms of. We obtain:

a=As,

b= A7/2,

f :Aﬁ —20,
g=A5/2—d,

6:A0—2(a+b+c+d)=(A0—2A8—A7)—26—2d,
h:A1/2—b—f—g:(A1/2—A7/2—A6—A5/2)+2C+d,
j=As/2—d—h=(A3)2 — A1/2+ A7/2 + Ag + A5/2) — 2c — 2d,
i:A4—2€—2h:(A4—2A0—|—4A8—|-3A7—A1+2A6—|—A5)—|—2d.

We get the settings for ¢ and d:
e = (£9e°5° /)0 = fej/n?,

d = (g%¢%5/(h°i%))/6 = egj/ (hi).
We want to pick settings for integer ¢ > 3 and rationals a, b, e, f, g, h,i, h € [0, 1] so that

® 3a+6(b+c+d)+3e+f)+6(g+h)+30+7) =1,
8 c e 3 6 ) 37
e (¢+2)'[Ij—o A1 = V061b7V0626V063%VO?Z4V11J;V1295V1%}51V2324V23]3'
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We obtain the following solution to the above program:

q = 5,a = .1390273247112628782825070 - 1076, b = .1703727372506798832238690 - 104, ¢ =
14957293537057908947335441-1073, d = .004640168728942648075902061, ¢ = .01249001020140475801901154, f =
6775528221947777757442973-1073, g = .009861728815103789329166789, h = .04629633915692083843268882, 1 =
.1255544141080093435410128, j = .07198921051760347329305915 which gives the bound 7 = .79097562031793182471
and

w < 2.372926860953795474156297.

This bound is better than the one obtained by Stothers [18].

The eighth tensor power. Let’s first define the program to be solved. The variables are
a for 0016 and its 3 permutations,
b for 0115 and its 6 permutations,
c for 0214 and its 6 permutations,
d for 0313 and its 6 permutations,
e for 0412 and its 6 permutations,
f for 0511 and its 6 permutations,
g for 0610 and its 6 permutations,
h for 079 and its 6 permutations,
7 for 088 and its 3 permutations,
j for 1114 and its 3 permutations,
k for 1213 and its 6 permutations,
[ for 1312 and its 6 permutations,
m for 1411 and its 6 permutations,
n for 1510 and its 6 permutations,
p for 169 and its 6 permutations,
@ for 178 and its 6 permutations,
r for 2212 and its 3 permutations,
s for 2311 and its 6 permutations,
t for 2410 and its 6 permutations,
u for 259 and its 6 permutations,
v for 268 and its 6 permutations,
w for 277 and its 3 permutations,
x for 3310 and its 3 permutations,
y for 349 and its 6 permutations,
z for 358 and its 6 permutations,
o for 367 and its 6 permutations,
[ for 448 and its 3 permutations,
~ for 457 and its 6 permutations,
0 for 466 and its 3 permutations,
€ for 556 and its 3 permutations.

Here we will set aj jx = ay i in Figure 1, so these will be the only variables aside from ¢ and 7.
Let’s figure out the constraints: First,
a,be,de, f,g,h, i, 5,k l,m,n,p,q,r,s,t,u,v,w,x,y, 2, 3,7,0,€ > 0, and
3a+6(b+ct+dtet+f+g+h)+3(i+7)+6(k+l+m4n+p+q +3r+6(s+t+u+v)+
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3w+x)+6(y+2z+a)+38+67+30+3e=1.
Now,
Ay=2(a+b+c+d+e+f+g+h)+i,
Ay =2b+j+k+1l+m+n+p+7q),
Ay =2(c+k+r+s+t+u+v)+w,
A3 =2d+1l+s+x+y+z+ ),
Ay=2(e+m+t+y+B+7) +9,

As =2(f+n+u+z+~y+e),
Ag=2(g+p+v+a+d)+e,

A7 =2h+q+w+a+7),
Ag=2(1+q+v+2)+ 06,

Ag =2(h+p+u-+y),

A =2(g+n+t)+u,

Ay =2(f +m+s),

App =2(e+1)+r,

A3 =2(d+ k),
Arq =2c+ 7,
A = 20,

A16 = Q.

We pick A = {¢,d,e, f,g,h,l,m,n,p,t,u,v, z} to make the system have full rank.
After solving for the variables outside of A and taking derivatives we obtain the following constraints

g = iwy,

dqwef = iavy?k,

ew?e2B? = iovtr,

fwaeB? = i6v3s,

galeff? = i%y’x,

hoef? = 672y,

lw?ef = qary>r,

mwaef = §oy3s,

no?f = govye,

paf = qoy,

ta? = wor,

uy = wey,

vy? = wep,

20y = aef.

We want to minimize 7 subject to the above constraints and

8In(¢+2)+> ;ArlnA; =

6(bIn Vo115 + cln Vg4 + dIn Voz13 + eln Vogr2 + fIn Vosi1 + g1n Vigio + hIn Vorg )+

3(iln Vogs + jIn Vit1a) + 6(kInVigig + 1In Vigio + mIn Vign + nlnVisio + pln Vigg + ¢ln Vizg)+
3r1n Vagia + 6(sIn Vagir + t1n Vagro + wln Vasg + v1n Vagg) + 3(wln Vary + 2 1n Vagig)+

6(3/ InVg49 + 21n V358 + a1n ‘/33)67) + 38 1In Vius + 6v1In Vys7 + 30 In Vyge + 3eln Vise.
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Solving the above nonlinear program was more difficult than those for previous powers. In order to
obtain a solution, we noticed that it makes sensetoseta =b=c=d=e=j =k =1[1=1r = 0. This

sets A1g = A1 = Ag = A3 = A1o = 0 and removes 2}212 Ajln A from the above constraint. It also
has the effect of immediately satisfying the constraints ¢ = iwj, dqwef = iavy’k, ew?e?? = idy*r, and
lw?eB = Gary>r.

After this zeroing out, we were able to obtain a feasible solution to the program:

= .76904278731524173835974719341500592-10~°, g = .52779571970583456142217926160277231-10~*,

h = .18349312152576520555015953918505585-10 72, i = .28974085405957814663889675518068511-107,
m = .17619509628846951788501570312541807-10~%, n = .15581079465829711951422697961378093-10 3,
p = .73149080115511507915121267119744180- 2, § = .0016725182225690977304801218307798121,
5 = .29876004071632620479001531184186025-1074, ¢ = .33126600758641744567264751282091960-103,
u = .0020039023972576900880963239316909024, v = .0061872256558682259557333671714328443,
w = .0089591745433740854840411358379077548, 2 = .41990656642645724773702340066269704-10~3,
y = .001849527644666567250763967832170627, z = .012670995924108805846876701669409286,
o = .024776513587073136473643192847543972, B = .015887713134315628953707475763 736882,
v = .040029410827982658759926560914676385, § = .054055090596014771471231854142076605,

€ = .069650616403550648278948486731451479, 7 < 0.790886, ¢ = 5.
This gives

|w < 2.372658. |

The values for the Sth power.

From Claim 7 we have:

Voors = 1, Vouis = (89)", Vo214 = (Xp<2.p=0 mod 2 (b,(2—b)/28,(14_b)/2)qb)7— = (8 +28¢%)7, Vozi3 =

((1,51;,6)(] + (3,3,5)q3)T = (56 + 56¢°)7,
Voarz = (70¢* +168¢%+28)7, Vos11 = (280¢34-168¢+56¢°)7, Vos1o = (56+420¢° +280¢* +284¢°)",
Vore = (280q + 560¢> + 168¢° + 8¢7)™, Voss = (70 + 560¢> + 420¢* + 564° + ¢®)7.

Lemma 8. Viyis > 22/3(2Vil + Vi) /5.

Proof. I = J =1, K = 14, and the variables are ags, ®g17. The system of equations is
Zg = Qo8>
Z7 = 2a017.
Solving we obtain cvgog = Zg and ag17 = Z7/2.
nze = Wios = Vites and nzg = W7 /2 = Vi /2.
The inequality becomes:
Vit > 2732V + Vi) '/2.
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Lemma 9. Vigi3 > 2%/3(V36 + 2Vihe) /3 ((Vias/Voze)® + Viia) /2.

Proof. I =1,J =2, K = 13, and the variables are aggs, 17, @g26. The system of equations becomes
Yo = agos + @26,

Y1 = 2aq17,

Z5 = Qos»

Zg = ap17 + Q026-

We can solve the system:

aoog = 25, 26 = Yo — Zs, ap17 = Y1/2.
nyo = Win = (VozeVor7)?,

ny1 = Wiiz/2 = (VoirVaie)? /2,

nzs = Wins/Wine = (Vizs/ (VoasVorr))3, nzg = 1.
nyo + ny1 = Vg7 (2Vise + Vide) /2.

nzs + nzg = (Vo2sVor7)® + Vids)/ VozsVorr)®.

Vi213 > 22/3((2%326 + V1316))1/3(V0317 + V1325/V0326)1/3-

Lemma 10. Vizio > 2(Vihs/Vibs + DYV, Vibs /Viks + Vil Vids + VibeVite/2)'/.

Proof. I =1,J =3, K = 12, and the variables are aqgs, @17, @026, ®o35- The system of equations is:
Yo = agos + o35,
Y1 = ao17 + oz,

Z4 = Qoog,
Z5 = ap17 + ao3s,
ZG = 204026.

We solve the system:
aoos = Z4, 26 = Z6/2, 17 = Y1 — Z6 /2, 35 = Yo — Z.
nyo = Wegs = (VossVorr)?,
ny1 = Wiy = (VorrVizs)?,
nzs = (Woos/Woss)® = (Visa/(Voss Voir))?,
nzs = 1,
nze = (Woze/Wor7)?/2 = (Vo2sVaie/ (Vor7Vizs))? /2.
nyo +ny1 = Vg (Viss + Vids):
nzg +nzs +nze = 2V, + 2(Visa/Voss)® + (Voo Vite/Vazs)?]/2Vir-

1/3
2V, %32614%6) -

Vigia > 223 (Vs + Vibs) /3 <2V0317 + V3 V3
035 125

Lemma 11.

Vi VibeVibs N2 (Vs s s s os )Y
Vian = 2 < +1+ ) < + Voi17Vize + V(J35V116) :
Vi, (2VibsVide) Vi
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Proof. I =1, J =4, K = 11, the variables are agsg, ®017, @026, C035, ®o44. The linear system becomes
Yo = agos + @044,

Y1 = ap17 + aoss,

Y2 = 2ap26,

Z3 = agos,

Zy = ao17 + Qo44,

Z5 = ap26 + Q035-

We solve it:
oo = 43,
a6 = Yo /2,

g4 = Yo — 23,
ao17 = Zs — Yo + Z3,
ap3s = Zs — Yo /2.

nyo = (Woaa/Wo17)? = (VoasVor7/ (Vor7Vaza))® = Vi /Vida.
ny; =1,
nyz = W(i’%/ (23W69’35)3: ‘/()?’2621325/ (2@5‘/?16)’
nz3 = W%08W017?{W0§4 = (Vi34/Voua),
nzy = W%N = V0317V1334’
nzs = Wyss = %35‘{}%6' -
o+ -+ = -+ 1+ s,
VG

nzg 4z +nz = gt 4 Vi Vida + Vs Vide:

The inequality becomes

Vil VibeVibs NP (Vs s s os s )Y
Viair > 2 < +1+ > < + Voi17Vize + V()35V116) :
Vi, (2VihsVide) Vi

Lemma 12.

V3 V3 V3 1/3 V3 V3 V3 V3 V3 V3 1/3
Visio > 2 ( 035 11+ 026 134> (125134 + VoirVida + VouVils + — 05 s 116) :
Viky ViuaVile Viss 2V Vids)

Proof. I = 1,J = 5, K = 10. The variables are aqos, @017, 2026, 035, X044, C053- Lhe linear system
becomes

Yo = agos + aoss,

Y| = ap17 + apaa,

Y2 = ag2e + aoss,

Zy = aos,

Z3 = ao17 + Qo53,

Zy = 026 + Qoas L5 = 20035.
We solve it:
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apos = 42,
o35 = Z5/2,
aps3 = Yo — Zo,
ao26 = Yo — Z5/2,
ap17 = 43 — Yo + Zo,
Qogs = Zy — Yo + Zs /2.
nyo = (Woss/Worr)® = Vs /Vidas
nyy =1,
nyz = (Woze/Woaa)® = Vo Viza/ (ViuaVise)-
29 = (WoosWoir/Wos3)® = VissVida/Viisss
nz3 = W(:)317 = %317‘/13347
nzy = W044 = V044V116’
nzs = Wo35W044/(2W026) (V035V125V044V116)/(2V0326V1334)~
nyo -+ nyy +nys = 15+ 1+ 323533
nZQIin- nzs + nz;-}- nzs = V1%/§V134 + ‘/017‘/134 + V044V316 + VO%EQ%;;@?%;:)/PM'
ence we ovtain

VS VS VS 1/3 V3 VS V3 VS V3 VS 1/3
V151o 22< 035 +1+ 026 134> ( 125 Y134 —i—V0317V1%4+%344V1316+ 035Y125 Y044 116> .
V134 %344‘/1316 V035 (2V 26‘/134)
Il
Lemma 13.
Ve Vs Vi VeV NP (VB s os Lo s VeuVdsVisVie )
1/16922<+1+ ) (+V Vior + Vi Vioe + > .
Vi (VisVie) | (@ViuVibsVide) Vibe 0171z T TS5 O VibsVisa

Proof. I =1,J = 6,K = 9 so the variables are agog, 17, ®026, X035, C044, X053, Q2. The linear system
becomes

Yo = aogos + @62,

Y1 = ap17 + aos3,

Yo = 26 + @oad,

Y3 = 2ap3s,

Z1 = Qo8>

Za = ap17 + Q625

Z3 = ap26 + Q0535

Zy = Qo35 + Qoa4.

We solve it:
apog = 21,
ag3s = Y3/2,

ape2 = Yo — Z1,

Qogs = 2y — Y3/2,

ao26 = Yo — Z4 + Y3/2,

aos3 = 23 — Yo+ Z4 — Y3/2,
ap17 = Za — Yo + 21,
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nyo = Wea/ Wotr = Vise/ Vids:

ny; =1,

nyz = W026/W053 = V026V134/(V035V116)

nys = WO35WO26/ (2Wo44W053) V134V026/ (2‘/()?114‘/1325‘/1316)’
nz = W(?OSng?/WgﬁQ = ‘/1?)16V1325/%326’

nzz = ng? = V0317V1325’

nz3 = W053 = V035V116’

nz4 = Wo44W053/ W026 = (V()44V125V035V116)/ (V()326V1?§4)-

n + n + n + n 026 + 1 + V026V134 V1634V0326
yo yl y2 y3 (V0335 V1316) (2V0344 V1325 Vl 16)
V116V1

VS,V VA VB
25 044 Y125 Y035 116
S+ Vi Vids + Vs Vide + V3 VE,

nz1 +nzg +nzz3+nzy =

VS VS V3 V6 V3 1/3 V3 V3 V3 VS VS VS 1/3
‘/169 Z2< 026 +1+ 026 Y134 134 ¥ 026 ) ( 116 ¥ 125 _|_V'0317V1325_’_‘/0335V~1316+ 044 Y125 %035 116> .
Vi (VissViie) (Vi VisVide) Vs Vi Viba
]
Lemma 14.

3\ 1/3
Vizs > 2(Vihy + Vite + Vids + Vig)'/? (1 + Voir + Vibe + Viss + V0244> :
PFOOf. I = 1, J = 7, K = 8, so the variables are 008, X017, X026, X035, X044 5 X053, X062, Q71 - The linear
system is
Yo = agos + aor1,
Y1 = ap17 + aoe2,
Y2 = 26 + aoss,
Y3 = ap3s + aoas,
Zy = Qos»
Z1 = ao17 + Qor1,
Zo = Q26 + 062,
Z3 = ap3s + Q053,
We solve the system:
apos = Zo,
Qogs = Z4/2,
agr1 = Yo — Zo,
o35 = Y3 — Z4/2,
ap17r = 21 — Yo + Zp,
Qos3 = 23 — Y3+ Z4/2,
ape2 = Y1 — Z1 + Yy — 2o,
ap2e = Z2 — Y1+ Z1 — Yo + Zo.
nyo = Wi Wsa/ WorrWoze)® = Viir/Vids,
nyL = W062/W026 = V116/V125’
nys =1,
nys = Wss/ Wiss = Visa/Vids:
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nzo = Wins W1z Weae/ (Won Woez) = Vii7VoirVite Voo Vids/ (Vor Voir Vo2 Vite) = Vids,
nzy = W(?NW(?QG/W[%Q = V0317V1325,
nza = Wg’zﬁ = V0326V1325’
nz3 = W§53 = %%5‘/1325’
nzg = W5’44W5’53/ (2W5’35) = %?Z4V1?’25/ 2.
nyo + ny1 + nyz + nys = (Viir + Vg + Vids + Vi%,) /Vids,
nzo +mne1 +nz + nzg + nzg = Vids(1+ Viig + Vabe + Viis + Viia/2)-

V3 1/3
Vizs > 2(Vihs + Vite + Vids + Vig)'/? (1 + Voir + Vobe + Voss + %44> .

Lemma 15.

1/3 1/3 .
Vagta > 2 <V0326 1> / <V0317V1325V0326 . V0317‘/1?’25> / ( Vs Vite |, Vil Vie /
_ )

+Z + 20+
V131 6 2 V1316 2 VvO?)l 7 ‘/1325 %626 %326 2 ( ‘/031 7 V1325

Proof. I = J =2, K =12, and the variables are a = «aqog, b = 17, ¢ = Qp2g, d = 107, € = Q116-
The linear system is:

X():a—i-b—i-c,
X1 :2(d—|—6),
YQZCL-‘rC-i-d,
Y: =2(b+e),
Zy = a,
Zs=b+d,
Z6:2(6+6).

We solve it:
a = Zy,

c=(Xo+Yo—224—7Z5)/2,
GZZG/Q—C:(Z6—X0—Y2)+QZ4+Z5)/2,
d=Yy—Zy—c=(—Xo+ Yo+ Z5)/2
b:YV1/2—6:(Yl—Z6—|—X0—|—}/(]—QZ4—Z5)/2,

nzo = (WoasWorr/ (Wi16Wior))*/2 = (Vi VorrVais/ (VA VierVizs))?/? = Vibe/Vide-
nxry =1/2,

nyo = (Wo2eWiorWor7/Wii6)*? = (VoasVor7Vaas/ Vie) s

nyr = Wihz/2 = (Vo7 Vaas)? /2,

nzy = (WoosWite/ (Wo2sWoi7))? = (VazaViie/ (Vor7Vazs Vise)) s

nzs = (WHEWIGE | (Wodd WolD))? = Viie/ Vibo:

nze = (Wiie/Woir)*/2 = Viie/ (2Vii7Vids)-

Hence:
3 1/3 3 3\ 1/3 3 1/6 3 6
Vaolo > 2 <V026 + 1> <(V026V017V125) + (V017V125) > < V224V116 + V116 + V116
T\ 2 Vi 2 (Vo VibsVoss)  Vise  (2VGirVids)
O
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Lemma 16.

‘/1%,4‘/1325 )1/3 3 3\1/3
B RN (VossVoze)” + (Vo2eVi2s)
(2VihsVana) ( ) (

Viis +v0%7v2324+1>”3 ( ViagVaoaVoss >f
‘/()?5,5%326) V0326V1325 (V134V026V125)

Letnzg = 1, nz1 = Vi, Vs /(2Vids Vaba), nyo = (VossVoze)®, nyr = (VoaeVaas ), nzs = (Vass/ (Voss Voze) ),
nzy = (VorrVaza/(VoasVizs))?, nzs = 1.

Then, for q = 5, the following values satisfy the constraints of the above bound on Va311 (and attempt
to maximize the lower bound):

Vas11 > 2 <1+

o when T < 0.6954, for f = (nx?iiml) + (TLZ3+Z§2+TLZ5) - (ny:}i?zyl)’
e when 0.6955 < 7 < 0.767, for f = (mg_ﬁwl) — (nZ3+Z§i+nZ5),

e when T > 0.767, for f = nxz1/(nxo + nxy).

Proof. 1 =2,J =3, K = 11, so the variables are a = aqos, b = ag17,¢c = @026, d = apz5, e = 107, f =
0116-

The linear system is:
Xo=a+b+c+d,

X1:2(6+f),
Yo=a+d+e,
Yi=b+c+f,
Zgz(l,
Zy=b+e,
Z5:C+d—|—f.

The system has 6 variables but only rank 5. We pick f to be the variable in A. We can now solve the
system for the rest of the variables:
a= Zs,
€ = X1/2 — f
b=Zy—e=2,—X1/2+ f,
d=Yy—Z3—e=Yy— 23— X1/2+ [,
CIYi—b—fZYl—Z4+X1/2—2f.
nrg =1,
ney = (W107W026/ (W017W035)) /2 = Vis,Vibs [ (2V535Vaha),
nyo = W035 (VossVoze)?,
nyr = Wihg = (V()26V125)3
nz3 = (Woos/Waoss)® = (Vass/(Voss Voze))?,
nzy = (Woir/Woze)® = (Vor7Vaza/ (Voze Vias))?,
nzs = 1,
nf = WiiWorrWoss/ (W10t Weas) = Vi16Va24Vo3s/ (VizaVoe Vias).
The inequality is

Vi n Vi Vibs )1/3 < Vi16V224 Vo35 >f

Vazi1 > 2 (1 + %> . ((V()35V026)3 + (V026V125)3)1/3 ( +1
- ) (VissVins)  VioneVids (V134 Vo26V125)

(2%?:35 ‘/'2324

The constraints on f are as follows:
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Constraint 1: since e = X;/2 — f > 0, and X;/2 was set to nx;/(nxo + nx1), we get the constraint
that 5 3
VizaVios
f < nzi/(nzo + nxy) = 13 = (1.
2Vihs Vabs + VisaVids
Constraint 2: since b = Zy — X1/2+ f > 0, Z4 was set to nzy/(nz3 + nzy + nzs) and X5 /2 was set
to nz1/(nxo + nx1), we get the constraint

nriy nz4
> — = Cs.
F= (nzg 4+ nw1) (nzs+mnzq+nzs) 2

Constraint 3: since d = Yy — Z3 — X1 /2 + f > 0, we get

nIi nzs nyYyo
> + — = (4.
= (nzg +nxy) (nzs+mnzg+nzs)  (nyo + ny1) 3

Constraint 4: since c = Y] — Zy + X1 /2 — 2f > 0, we get that

nyi nzy nry
< — + = Cy.
= 2(nyo + ny1)  2(nzs +mnzg+nzs)  2(nzo + nwp) 4

Using Maple, we can see that for ¢ = 5 and all 7 > 0.767, nf > 1, and so to maximize V2311 as a
function of f, we need to maximize f, subject to the above four constraints.

. ny1 _ nz4 nwy
The upper bounds given for f are nzy/(nzo + nzy) and T IR e il crrsry E

and for ¢ = 5 and all 7 > 2/3, we have that nx;/(nxo + nz1) is the smaller upper bound. Furthermore,

this upper bound is always larger than the two lower bounds given by constraints 2 and 3 above, for ¢ = 5.
3 3
Hence we can safely set f = nx1/(nzg + nr1) = 5 V§34V12§ —
2Vo35VanatVizaVins©
Suppose now that 7 < 0.767. If 7 < 0.695, then C'5 > C3 > 0 and if 7 > 0.6955, then Cy > C3 > 0.
In both cases, the upper bounds C; and Cjy are both larger than the lower bounds. Hence, for 7 < 0.695 we

set f = Cf, and for 0.6955 < 7 < 0.767 we set f = (. O
Lemma 17.
1/3 1/3

(VozsVa2aVoss)*? | Vil Vs ! ViiaVoss Vids 32, (VoosVaaaVigs)™/ /

Vaa10 = 2 3/ +— gy, T (Vi16Vi3a) " + 32 X
Viss (Va2a Voss ) (2Vo3s )
1/3
Viby (VA7 Vs Vizs)*/? T14 (VossVids)%/2 ( V224Vi35 V134 )f
VeuVie  (VoosVa2aVoss ViteViza)?/2 2(VoaeVa24V116Vi34)3/2 (VasgzVouaVias)

For ¢ = 5 and any T, the following value satisfies all constraints for the above bound and attempts to
maximize it:

2 2 3/2
_ (V017V233V125) /
- V3 (V2 \ V125)3/2 (V035V3 )3/2 .
Voor Voou Ve Vite Viay)3/2 ( 224 017 Y233 1 125
( 026 ¥224 V035116 134) Viid Vs + (Vo2e Va2a Vozs Vit Viza)3/2 Tl (2Vo26V224Vi16Vi34)3/2

Then
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PI’OOf. I = 2, J = 4, K = 10, and so the variables are a = ap08; b= 017, C = X026, d= 035, € = (X044,
[ = aio07, 9 = o116, h = a125.

The linear system is: Xo =a+b+c+d +e,
X1 =2(f+g+h),

Yo=a+e+f,
Yi=b+d+y,
Ys =2(c+h),
Zy = a,
Z3="b+ f,
Zy=c+e+g,
Zs =2(d+h),

The system has rank 7 and has 8 unknowns. Hence we pick a variable, f, to place into A.
We now solve the system:
a = Zy,
b=123—f,
e=Yy—Z2—f,
c= (X() Yy — Z5/2 — 73 +Y2/2>/2 + f,
d=(Xo—Yo—Ya/2+ Z5/2 — Z3)/2+ f,
9= (X1/24+Y1—Z5/2 — Z3)/2,
h=(—Xo+ Yo+ Zs/2+ Z3+ Y>/2)/2 — [.
Calculate:
nzo = Wi Wk /Wike = (VozsVazaVoss /Vizs) V2.
nay = Wile /2 = Vi Vili /2,
nyo = Wi Wit | (Wede Wosa) = ViiaVss Vide / (Vass Vo)
ny; = ngl/g = (Vi16Visa)*/2,
nys = Wose Wise | 2Weta) = (VoasVazaVizs)?/?/ (2Vis ).
nzz = Wens/Weua = (Vaza/ (VoaaVoe))?,
nzs = W Wins | (Wose Wors Wile) = (Vg Vi Vizs/ (VozsVaza Vs Vs Visa)) ¥/,
nzy = 1,
nzs = ngngg/g (2W§2/62W51/62) = (VossVids/ (2VoaeVazaVi16Visa))>/2,
nf = WoasWossWio7/(Wo1rWoaaWias) = Va24Voss5V134/(Vazs VoaaVis ).

We obtain:

1/3 1/3

(VozsVa2aVoss)*' | Vil Vs / Vi Wohs Vids 372, (VozoVa2aVizs)*/? /
Vaa10 = 2 372 L = e, T (ViieViza)” T 4 3/2 X
Vigs (Vasa Voss ) (2Vos5)
1/3
Viby (V7 Vs Vizs)*/? 14+ (Voss Vibs)?/? ( V24 Vo35 V134 )f
VeuVie  (VooeVa2aVossViieViza)?/2 (2Vo26 V224 V116 V134)3/2 (Vas3VouaVias)

We have some constraints on f:
Constraint 1 is from b = Z3 — f > 0. Since Z3 was set to nzs/(nzy + nzs + nz4 + nzs), we obtain

f < nzs3/(nza + nzs + nzq + nzs).
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Constraint 2 is from ¢ = (Xo — Yo — Z5/2 — Z3 + Y>/2) /2 + f > 0. We obtain

nxo N (nyo — nys) (nzs + nz3)
2(nzo +nw1)  2(nyo +ny1 +ny2)  2(nza + nzz + nzy +nzs)

f>-

Constraint 3 is from d = (Xo — Yy — Y2/2 4+ Z5/2 — Z3)/2 4+ f > 0. We obtain

nTo (nyo + ny2) (nzs — nzs)
2(nzo +nw1)  2(nyo +ny1 +ny2)  2(nze + nzg + nzg +nzs)

f>-

Constraint 4 is from e = Yy — Z3 — f > 0. We obtain
< nyYo nzo
= (nyo +ny1 +ny2)  (nze + nzz +nzg +nzs)

Constraint 5 is from g = (X1/24+ Y1 — Z5/2 — Z3)/2 > 0. We obtain

nry ny1 nzg + nzs >0

- - >
nxo+nr1  (nyo +nyr +ny2)  (nza + nzs 4+ nzg + nzs)

It turns out that constraint 5 is satisfied for ¢ = 5 or ¢ = 6 and 7 > 2/3.
Constraint 6 is from h = (—Xo + Yo + Z5/2 + Z3 + Y>2/2)/2 — f > 0. We obtain

nToy nyYo + nys nzs3 + nzs

< — .
F= 2(nxo +nxy)  2(nyo +ny1 +ny2)  2(nze + nzs +nzg+ nzs)

One can verify that nf > 1 for ¢ = 5 and all 7 > 2/3. Hence, we would like to maximize f in order
to maximize the lower bound on V5419. The constraints which give upper bounds on f are 1,4 and 6, and
for ¢ = 5 and 7 > 2/3, constraint 1 gives the lowest upper bound. The lower bounds given by constraints 2
and 3 are always negative, and so we can safely set f to nz3/(nzs + nzs + nz4 + nzs) =

(Vi VihsVizs )/

V3 (V2 \e V125)3/2 (V03fv3r)3/2 :
Voor Voou Vaar Vi1a Vi 3/2( 224 017 Y233 _ 1 5V125 _
( 026 7224 Y035 V116 134) ViaVobe (Voze Va2a Voss Viie Viza)3/2 Tl 2(Vo2eVazaVi16Vi3a)3/2

O]
Lemma 18.
V3 VB V3 V3 V3 V3 1/3 VG V3 V3 V3 1/3
Vaso > 2< 044 1325 0326 233 V116 134> ( 30353 2243 +14+ 03?5 2324)
Vo5 V324 2 V333 VouaVios VouaViss

1/3 i

< Vibs Vi1 VaraVibs 14 %%5‘@4) / <%244V1%5%26V2233>g (%26‘/233%44‘/1225)j‘
%?35%326 %326‘/2?33‘/03114‘/1?% V0326V2?é3 ‘/()%5‘/2324‘/116‘/134 V0235V2224V116

Suppose ghat m? :3‘/1316‘/1%4/2’ ??JO = ‘/6235‘63243/(‘/%3‘/6214‘/13325); nyr =1, nys = ‘/30?%5‘/?:2324/“@324‘21325)’
nz1 = Vips/ (Vs Vize)» m22 = Vi17Vana Viss/ (Vize Vazs Voaa Vi) mzs = L nza = ViasViaa/ (Ve Vass)-
For g = 5 and T > 0.767, the following values satisfy all constraints for the above bound (and attempt
to maximize it): g = nza/(nzy + nza + nzz + nzy) and j = (nzy — nzy)/(nz1 + nze + nzg + nzy) —
nxo/(nxo + nxy) + nyo/(nyo + ny1 + nys).
For ¢ =5 and T < 0.767 the above bound is maximized for g = 0 and j = (nza + nzs)/(nz1 + nza +
nzs + nz4) — nxo/(nxo + nxy) + nyo/ (nyo + ny1 + nys).
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PI’OOf. I = 2, J = 5,K = 9, and the variables are a = 008, b= ap17, C = 026, d = @035, € = O044,
f = aos3, 9 = a107, h = 116, ] = a195. The linear system is

Xo=a+b+c+d+e+f,

X1 =2(g+h+7j),

YO:a+f+g,
Yi=b+e+h,
Y2:C+d+j,
Z = a,
Z2:b+g,
Zs=c+ f+h,
Z4:d+€+j.

The system has rank 7 but it has 9 variables, so we pick two variables, g and j, and we solve the system
assuming them as constants.
a = Zl,
b= Z2 —4g
6229+j+X0—}/()—Y2—ZQ,
c=Yo—Zyte=—Zy+29+j+ Xo—Yo— 2o,
d:Z4—e—j:Z4—2j—29—X0+Yb—|—YQ—|—Z2,
f=Y%—21—g
h=X1/2—g—73.
nzo = (WoaaWoze/Woss)> = (VoaaVias VozeVass)® | (Vs Vana)s
na1 = Wiie/2 = Vi Visa/2,
nyo = WossWeiss/ (WeasWoaa) = Vs Vara/ (Vaas Vaia Vids )
nyy =1,
ny2 = Woss /Wi = Viss Vaba/ (Viaa Vids):
nz1 = Wens/Wiss = Viss / (Viks Ve )
nzy = Wi Wi/ (Wea W) = ViirVaaaVibs/ (Vihe Vass Voua Vids )
nzgy = 1,
nzy = Wess /Wesg = Viss Vara/ (Viae Vasa):

ng = Wit Wiy Weas/ (Wss Woss W s Woir) =
V0244V1325 V026V2233/ (Vo335 V2324V116 V134),

nj = WosWoaaWizs/ (WissWiie) = VozeVaszVousVins/ (Vs Vs Viie)-

+1+

1/3
%%14‘/1325%326‘/2333 4 Vflﬁ%%ﬂ) ( %635‘/2324

3 13 \ 1/3
V035V224>
3 3 3 3 3
‘/035‘/224 2 ‘/233 ‘/044‘/125

Vasg > 2 <
VihaVids

1/3 j
( Vi VoiViuVes +1+%%5v2%4>/ (%i4v1%5%26v2%3>g<%26x@33%4m%5>{

VossVine  VibeVass Vo Vids Va6 Vass Vis5Vana VieVisa Viiss VaaaVite

Now let’s look at the constraints on g and j:

Constraint 1: since b = Zs — g > 0 and Zy was set to nza/(nz1 + nzo + nzs + nzy), we have that

g <nzo/(nzy +nzy +nzs +nzy) = Ch.

Constraint 2: since e = 2g + j + Xo — Yy — Yo — Z» > 0 and we set Xg = nzo/(nxo + nwy),
Yo = nyo/(nyo + ny1 + ny2), Yo = nya/(nyo + ny1 + nyz2), Zo = nze/(nz1 + nze + nzs + nzy), we get
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29+ j > (nyo + ny2)/(nyo + ny1 + nya) + nza/(nz1 + nze + nzs + nzg) — nxo/(nze + nxy),

Constraint 3: since c = —Z4 +2g + j + Xo — Yo — Zo > 0 and Zy = nz4/(nz1 + nze + nzs + nzy),
we get:
29+ 7 > (nza+nz4)/(nz1 + nze + nzs + nzg) — nxo/(nxe + nxy) + nyo/(nyo + nyr + nys) = Cs,

Constraint 4: since d = Z, — 2j — 29 — Xo + Yy + Yo + Z5 > 0, we get:
g+Jj < 0.5((nze+nzy)/(nz1 +nzo+nz3+nzy) + (nyo+ny2) /(nyo+ny1 +ny2) —nxo/(nxo+nxy)),

Constraint 5: since f = Yy — Z; — g > 0, we get:
9 < nyo/(nyo + ny1 + ny2) — nz1/(nz1 + nze + nzg + nza),

Constraint 6: since h = X1/2 — g — j > 0 and we set X1 /2 = nx1/(nxo + nxy), we get

g+ 7 <nzi/(nxo+ nwy).

One can verify that for ¢ = 5 and any 7 > 2/3, ng and nj are < 1, and so in order to maximize the
lower bound on Va59, we should try to minimize g and j as much as possible.

The lower bounds for g and j are in constraints 2 and 3, both for 2g + j. One can verify that for ¢ = 5
and 7 > 2/3, constraint 3 gives a larger lower bound for 2¢g + j.

Thus we set 2g+7 = (nze+nz4)/(nz1+nze+nzs+nzy) —nxo/(nxo+nzy)+nyo/(nyo+ny1+ny2) =
Cs. Hence, j = C3 — 2g, and the part of our bound on Va59 which depends on g and j becomes

ng'njl = ngInj< % = nj . (ng/nj?)’.

We are hence interested in how large ng/nj? is. One can verify that for ¢ = 5 and 7 < 0.767,
ng/nj? > 1 and for 7 > 0.767, ng/nj? > 1. Thus, to maximize our bound, we need to minimize g if
7 < 0.767 and maximize g if 7 > 0.767.

If 7 < 0.767, then we can set ¢ = 0, and hence j = C3 = (nza + nz4)/(nz1 + nza + nzz + nzg) —
nxo/(nxo + nx1) + nyo/(nyo + ny1 + ny2). All constraints are satisfied.

Now suppose that 7 > 0.767. We consider the upper bounds on g given by constraints 1 and 5 and by 4
and 6 (for g + 7).

For ¢ = 5 and 7 > 2/3, the upper bound given by constraint 1 is smaller than that of constraint 5. We
set g = C1 = nzy/(nz1 +nzo+nzs+nzy) and j = C3—2C1 = (nzg —nza)/(nz1 +nzo+nzs+nzy) —
nxo/(nxo + nx1) + nyo/(nyo + ny1 + ny2).

One can verify that for ¢ = 5 and 7 > 2/3, constraints 4 and 6 are both satisfied for these settings of ¢
and j.

O
Lemma 19. 13
3/2
T O\ViasVileVin vtV v vl
3/21,3/2+,3/2 3/2 3/21,3/2v,3/21,3/2¢ ,3/2 1/3
V02/6 V22/4 V03/5 V1316V11/6 i V131 6‘/1325 i V02/6 V22/4 V11/6 V13/4 V12/5 n Vs Vi %
VIV Vit 2
3/21,9/2+,9/2 3/21,3/2x,3/21 ,3/21 ,3/2 3/2:,3/2:,3/2+,3/2\ 1/3
Vous Vitgs Vs, Vit VidbsVisa | Vot Vs Vite Viss Vith s ys . VouVash Vit Viss Vs
3/2v,9/2+1,3/2 + V3 + 3/2 + ViasViza + 3/2+,3/2
Va4 Voss Vite 035 Voss 2V26 Voss

41



<V125V026V134)g < Vi3 Vose )k
V224Vo35 V116 VossVouaViie )

When q = 5 and 7 < 0.767, the following values satisfy the constraints for the above bound and attempt
to maximize it:

nYo nzo d
_ _ an
nYyo +ny1 +nys +Nys nzo+nz1 +ne +nz3+nzy
b nyo/2 + ny1 + ny2/2 + nys _ nxo+ nxy/2 N nzo + nzo + nza
nyo + ny1 + ny2 + nys nro + nry 2(nzo + nz1 + nzg + nzg + nzy)’
and for T > 0.767, the right hand side is maximized for
nYo nzy + nz J
= — , an
nYyo + NYy1 +nys +nys  N2o + N2+ n2e + N3+ nzy
_ nyo/2 + ny1 + nya/2 + nys _nw0+nx1/2+ nzo + nze + nzy here
nyo + ny1 + nys + nys nro + nwy 2(nzo + nz1 + nze +nzs +nzy)’

nro = %335/(1/1325{/1316V1334),

na1 = Vol [ (Ve Ve Vil Vil Vids ),
nyo = Vs Vari Vo VitsVire / (Ve Vide ),
nyr = V1316V13257

3/2v,3/2x,3/2+v,3/2v,3/2 3/2
nys = Vo?g% V§2/4 Vil Vit Vine [ Vi
nys = V233V116/2’

3/2+,9/2+,9/2 3/21,9/2+,3/2
nzo = VOQ/G V12/5 V13/4 (V22/4 V03/5 V11/6 )s

e %21/72‘/1?%5};/%51//2%3%% 3/2 1 3/2

nzy = Vg Vaos Vite Vizs Visa /Voss

s V1325V1§?,/42: 3/21,3/2¢,3/2 3/2¢,3/2

nzy = ViiaVass Vits Viss Viaa /(2Voog Voss )-

Proof. I = 2, J = 6,K = 8§, and the variables are a = 008, b= Qp17, C = 026, d= 035, € = (44,
f = (X053, § = 062, h = 107, 1= 116, j = (X125, k= 134. The linear system becomes
Xo=a+b+c+d+e+ f+yg,

X1 =2(h+i+j+k),

Yo=a+g+h,
Yi=b0+f+1,
Yo=c+e+],
Y3 = 2(d + k),
Zy = a,
Z1=b+h,
ZQZC‘l‘Q‘l‘i,
Zs=d+ f+7,
Z4:2(6+1€).

The system has rank 9 and 11 variables, and so we pick two of the variables, g and & to put in A. We
solve the system:
a = Zp,
e=(e+k)—k=24/2—k,
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d=(d+k) —k=Ys/2—k,
h:(a+g+h)—a—g:Y0—Zo—g,
b=0b+h)—h=2-Yo+ Zo+g,.

c=((cte+j)—e+(c+g+i)—g—(h+i+j+k)+h+k)/2=Ya—Zs/2+k+Zo—g—X1/2+

Y()—Z()—g+k)/2:Y2/2—Z4/4+ZQ/2—X1/4+YE)/2—Z0/2+]€—Qa

f=la+b+c+d+e+f+g)—a-b—c—d—e—g=Xo—320/2—-Z1+Yo/2—-Y2/2 — Z4/4 —

Z2/2+X1/4—Y3/2+k—g,

i=0b+f+i)—b—f=Y1+Y/24 Zo/2 — X0+ Ya/2 + Z4/4+ Zo)2 — X1/4+ Y3/2 — k,
j=d+f+j)—f—-d=25—Xo+32/2+ Z1 —Yo/2+ Yo /2 + Z4/A+ Z2/2 — X1 /4 + g,

nro = (VVO53/(I/Vllﬁl/Vl%))3 = %%5/(‘/1?’25V1316‘/1?§4)7

nz1 = Wola [2(Wohe Wite Wit)) = Vigls [ (2Viag Vo Vit Vit Vige ),

nyo = Wiy Wote Wota Wike /(W Wike) = Ve Vasa Visla ViieVite / (Vi Vit ),
ny1 = W1316 = V1316V1325’

nyz = Wi Wils Wide /Wl = Vet Vot Vite Vise Vids [ Vit »

nys = ngswfw/@w(%?,) = ‘/2?%3‘/1316/2’

nz0 = Wins Weis Wil Wiks /(Wi Wooss Wk ) = Vo Vit Vis |/ (Vo Vo Vit )
nz = W(?17W1325/W§53 = V0317V1325V1334/V0%57

nz = Wold Wile Wise [ Wats = Vi Vaga Vit Vide Vs /Vasss

nzg = W1325 = V1325V1?§4a

nza = WuWileWils [ (2Wete Wok) = VidiaVass Vite Vit Vids | 2V Vi)

ng = WosaWor17Wias/(WiorWo26Wos3) = ViasVoeViza/ (V24 Voss Vite)s
nk = WizaWo26Woss/ (WoaaWossWiie) = ViiaVoze/ (VaszsVoaaViie),

We obtain 13
3/2
Vs > 2 [ Vs Vi .
T \VisViieVine 2t vivie Vv
3/21,3/2+,3/2 3/2 3/21,3/2+ ,3/2+ ,3/2+ ,3/2 1/3
Voss Vo Vists VitsVils | s o Vo Vasa Vit Vs Vs, Vi Vil
3/2¢,3/2 + Vit Vizs + 3/2 + 2
Viga Vigs Voss
3/21,9/21,9/2 3/21,3/21,3/21,3/21 ,3/2 3/21,3/2+,3/2+,3/2\ 1/3
Vose Vizs Vige | ViiaVissViba | Voo Vass Vile Vigs Vit , ys s VouVass Vite Viss Vi
V3/2V9/2V3/2 V3 Vs/z 125134 2V3/2V3/2
224 Y035 Y116 035 035 026 Y035

<V125 Vo26 V134 > g < Vi34 Vose > g
V224Vo35 V16 V233Vo4aVi16

The constraints on g and k are as follows:

Constraint 1: since e = Z;/2 — k > 0, we get that k < Z,/2, but since we set Z,/2

nzy + nzy + nzz + nzy), we get
kE <nzy/(nzo+mnzi +nze +nzs +nzy) = Ch.

Constraint 2: since d = Y3/2 — k > 0, we get that k£ < Y3/2 and since we set Y3/2

ny1 + ny2 + nys), we get
k < nys/(nyo + ny1 + ny2 + nys) = Co.
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Constraint 3: since h = Yy — Zyp — g > 0 and we set Yo = nyo/(nyo + ny1 + ny2 + nys) and
Zy =nzo/(nzo + nz1 + nze + nzs + nzy), we get

g < nyo/(nyo + ny1 + ny2 + nys) — nzo/(nzo + nz1 + nza + nzg + nzg) = Cs.

Constraint 4: since b = Z1 — Yy + Zy + g > 0 and we set Z1 = nz1/(nzo + nz1 + nze + nzs + nzy),
we get

g > nyo/(nyo + ny1 + nyz + nyz) — (nzg + nz1)/(nzo + nz1 + nzo + nzs + nzy) = Cy.

Constraint 5: since ¢ = Y2/2 — Z4/4 + Z2/2 — X1 /4 + Yo/2 — Zp/2 + k — g > 0 and we set
Z4/2 = nzq/(nzo + nzy + nze + nzs + nzy), Zo = nze/(nzo + nz1 + nzy + nzg + nzy), and X7 /2 =
nx1/(nxo + nxy), we get

g—k < (nyo+ny2)/(2(nyo + ny1 +ny2 +nys3)) + (nzo — nzg —nzq)/(2(nzp + nzy + nze + nzs +
nzq)) — nz1/(2(nxo + nx1)) = Cs.

Constraint 6: since f = (Xo+ X1/4)+ Yo —Y2—Y3)/2— (3204221 + Z2+ Z4/2)/2+ Kk — g > 0,
we get that

g —k < (nzo + nxz1/2)/(nxo + nxy) + (nyo — ny2 — nys)/(2(nyo + ny1 + ny2 + nys)) — (3nzo +
2nz1 +nzo +nzq)/(2(nzo + nz1 + nze + nzs + nzy)) = C.

Constraint 7: since ¢ = (Y1 + Yo/2 4+ Y2/2 4 Y3/2) — (Xo + X1 /4) + (Zo + Z2 + Z4/2)/2 — k > 0,
we get

kE < (nyo/2+ny1 +ny2/2 +nys)/(nyo + ny1 + nya + nys) — (nxo + nx1/2)/(nxe +nxy) + (nzo +
nzy +nzq4)/(2(nzo + nz1 + nze + nzs +nzy)) = Cr.

Constraint 8: since j = (—Xo— X1/4) + (=Yoo +Y2)/2+ (320 + 221 + Zo+2Z3+ Z4/2) /24 g > 0,
we get

g > (nxo+nx1/2)/(nxo+nx1) + (nyo — ny2) /(2(nyo + ny1 + ny2 +nys)) — (3nzo + 2nz1 +nzg +
2nzz +nzq)/(2(nzo + nz1 + nze +nzs +nzy)) = Cs

Now let’s consider setting ¢ = 5. We have that for any 7 > 2/3, nk > 1, so we would like to maximize
k. The constraints are

kSClukSCZ,gS03704ngg_k§057g_k§067k§07708Sg'

Since for any 7 > 2/3 and ¢ = 5, 0 < C%7 < C1, Co, the lowest upper bound on k is C7, so we can set
k = C7 and substitute in the constraints.

9<C3,C0,<g9,9<C5+Cr,g<Cs+C7,C3 < g.

For 7 < 0.767, ng > 1 and for 7 > 0.767, ng < 1.

Hence, for 7 < 0.767 we need to maximize g. The upper bounds on g are Cs, C5 + C7, Cg 4+ C. For
7 < 0.767 we have that C'5 is the smallest upper bound, and that the lower bounds on g, Cy and Cg are both
smaller than C3, so we set g = C'3 and k = C.

Consider now 7 > 0.767. Here we would like to minimize g. The lower bounds on ¢ are C4 and Cg.
For this interval, Cs < 0 < (Y.

Suppose that we set g = Cy and & = C'. Then all remaining constraints are satisfied. Hence we get that

for these values of ¢, 7, the bound for Vagg is maximized for g = C4 and k = C'.
O

Lemma 20.

V3 1/3 V3 VS V3 V3 VG VG V6 VG 1/3
V277 > 2 (1 + 116 ) ( 0177026 Y125 4+ ‘/0326‘/1325 + 026 ¥ 125 + 134 Y026 125>
2VYO:))QG ‘/1316 Vv1316 %%5‘/2324‘/1616
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1/3 c d
<V0317 Vi V0335V2324V1316> / <V0235V2224V1216) (‘/044‘/233‘/116) _

— F+ = +1+
V1325 V1325 V0326V1625 V1234V()226V1225 V1234V026

Let nzg = 1, nz1 = Viig/(2Vihe). nyo = ViirVodeVids/Vite ny1 = ViasVids ny2 = VibeVids/Vile
”3/2 = Vi3V Vids/ (Vilss VabaVite). nizo = Viig/Vids, na1 = Vile/Viss, mza = 1 nzs = Vs Vaha Vite/ (Ve Vids):
an
C3 =nzp/(nzo +nzy + nzy + nzs),
Cs = (nyo + ny2 + 2nys3) /(2(nyo + ny1 + ny2 + nys)) — nx1/(2(nxo + nz1)) — (nz1 +nzs)/(2(nzo +
nzy + nzy + nzs)),
Cs = (2nzo + nz1 —nzs3)/(2(nzo + nz1 + nza + nz3)) + (nys — nyo/2 + ny2/2)/(nyo + ny1 + nys +
nys) — nx1/(2(nxg + nzy)),
C7 = (nz1 + nzs + 2n20)/(2(nzo + nz1 + nza +nz3)) — (nyo + nye) /(2(nyo + nyr + nyz + nys)) —
nx1/(2(nxo + nxy)).

Then, the following values satisfy the constraints on the above bound on Va7 and attempt to maximize
it: c=Cg—C7+Cs,d=2C7—2Cs fort < 0.767, and ¢ = C5 — C7 and d = 2C7 — 2C's for 7 > 0.767.

Proof. I = 2, J=K = 7, and the variables are a = a017,b = (026,C = Oz035,d = (X044, € = (53, f =
Q62,9 = ao71, h = Q07,1 = 116, § = 125, kK = a134. The linear system is
Xo=a+b+c+d+e+ f+ug,

X1 =2(h+i+j+k),

Yo=g+h,

Yi=a+ f+1,
Yo=b+e+],
Y3:C+d+k,
Z0:a+h,

Zi=b+g+1,
Zy=c+ f+7],
Zg=d+€+/€.

The system has rank 8 and 11 variables, so we pick 3 variables, a, ¢, d , and put them in A. We solve the
system:

k=(c+d+k)—c—d=Ys—c—d,
e=(d+e+k)—d—k=2Z5—-Ys+¢,
h=(a+h)—a=2y—a,
g=(g+h)—h=Yy—Zy+a,
b=(b+g+i)—g+(b+e+j)—e—(h+i+j+k)+h+k)/2=21/2—Yy/2+Y2/2— Z3/2—
X1/4+Z0+Y3—(Z—C—d/2,
i=0b+g+i)—b—g=21/2-Yy/2—Ys/2+ Z3/2+ X1/4— Y3+ c+d/2,
j=0b+e+j)—b—e=-21/2+Yy/2+Ya/2 - Z3/2+ X1 /4 — Zo +a+d/2,
f:(a+f+i)—a—i:Y1—Z1/2+Y0/2+Y2/2—Z3/2—X1/4+}/3—a—0—d/2.

nry = 1,
3/211,3/2 3/211,3/2

nry = 11/6 W/%/%) (3/(2”/02/6 ;/)/206/2 2’;2: Vl?)lﬁ/(2v()326)’

nyo = Woz71W1253W06§ (W026 Wile) = VO317V0326V1325/V1316’

ny1 = Wiga = ViaeVids
3/211,3/21173/2 11173/2

ny2 = W%z/a W%Q/E) Wgoﬁ/z /W%1/6 :3%326‘/16256:/‘/1326’ . s s 6

nys = W134W026W062/(W053W116) = V134V026V125/(V035V224V116)’
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nzy = Wli%w%%/ (ng}yfﬂg% = Viir/Vids,
nz1 = Wogs Wits | (Wigs Wods ) = Vide/Vids,
nzg = 1,
3/2 3/211,3/211,3/2
nz3 = W(:)))53W11/6 (W02/6 W12/5 W06/2) = ‘/()%5‘6324‘/1316/ (Vo326V1625)’

na = WorrWor1 Wias/(Wi07Wo2sWos2) = 1,

ne = WossWossWite/ (WisaWosWos2) = ViasVaaa Vide/ (Viza Vs Vids)»
1/20:1/2 1/2.:1/2

nd = W044W11/6 W12/5 / W134W02/6 W06/2 = VouaVassViie/ (Vi Vooe)-

VS 1/3 V3 VS V3 VS VG VG V6 VG 1/3
V277 > 2 (1+ 116) ( 0177026 Y125 +VE)326VY1325+ 026 ¥ 125 + 134 Y026 125> %

2Vog% V1316 V1316 Vo335 V2324V1616
1/3 d
<V0317 + Viie +1+ V0335V2324V1316> / <V0235V2224V1216>c <V044V233V116> .
V1325 V1325 V0326V1625 V1234V0226V1225 V1234V026

We now consider the constraints on a, ¢, d.

Constraint 1: since k = Y3 — ¢ —d > 0 and we set Y3 = nys/(nyo + ny1 + ny2 + nys), we get that

c+d < nys3/(nyo + ny1 + nys + nys) = C1.

Constraint 2: since e = Z3 — Y3 + ¢ > 0, and we set Z3 = nz3/(nzp + nz; + nzy + nz3), we get that

¢ > nys/(nyo + ny1 + nys + nys) — nzs/(nzo + nzy + nza + nzg) = Co.

Constraint 3: since h = Zy — a > 0 and we set Zy = nzo/(nzo + nz1 + nza + nzs), we get that

a <nzy/(nzy + nz1 + nze +nzg) = Cs.

Constraint 4: since g = Yy — Zop + a > 0 and we set Yy = nyo/(nyo + ny1 + ny2 + nys), we get that

a > nzy/(nzo +nzy +nze +nzz) — nyo/(nyo + ny1 + nye + nyz) = Cy.

Constraint 5: since b = Z1/2 — Yp/2 + Y2 /2 — Z3/2 — X1 /4+ Zp+ Y3 —a — ¢ — d/2 > 0, and we
set X1/2 = nx1/(nxo + nx1), Z1 = nz1/(nzo +nzy + nzg + nzs), Yo = nye/(nyo + ny1 + ny2 + nys),
we get that

a+c+d/2 < (2nzo + nz —nzg)/(2(nzo + nzp + nze + nzs)) + (nys — nyo/2 + ny2/2)/(nyo +
ny1 + nys + nys) — nx1/(2(nxg + nxy)) = Cs.

Constraint 6: since i = 21 /2 — Yo /2 — Y2 /2 4+ Z3/2 + X1 /4 — Y3 + ¢+ d/2 >=, we get that

c+d/2 > (nyo + ny2 + 2ny3)/(2(nyo + ny1 + ny2 + ny3)) — nx1/(2(nxe + nz1)) — (n21 +
nz3)/(2(nzo + nz1 + nza + nzg)) = Cs.

Constraint 7: since j = —Z1/2+ Yy /2 4+ Ya/2 — Z3/2 + X1 /4 — Zo + a + d/2 > 0, we get that

a+d/2 > (nz1 + nzz + 2nz)/(2(nzo + nz1 + nze + nzz)) — (nyo + ny2)/(2(nyo + ny1 + ny2 +
nys)) —nz1/(2(nxo + nz1)) = Cr.

Constraint 8: since f =Y — Z1/24+Yy/2+Ys/2—Z5/2 — X1/4+ Y3 —a—c—d/2 > 0, we get that

a+c+d/2 < (nyo+ 2ny1 + ny2 + 2ny3)/(2(nyo + ny1 + ny2 + nys)) — (nz1 + nzz)/(2(nzo +
nzy +nzy +nzz)) —nxry/(2(nxg + nxp)) = Cs.

To summarize, our constraints are

c+d<C,0y<c,a<C3,Cy<a,a+c+d/2<C5Cs<c+d/2,C; <a+d/2,a+c+d/2 < k.
For ¢ = 5 we have that C5 = (g, so we can remove one constraint
c+d<C,0C<c,a<(Cs,Cy<a,a+c+d/2<C5Cs<c+d/2,C; <a+d/2.

Our bound on Va77 only depends on ¢ and d. We look at two cases:
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e when 7 < 0.767: we have that nc < 1 and nd < 1, so that both ¢ and d should be minimized to
maximize our bound.

The lower bounds on ¢ are Cy < ¢, Cg < ¢+ d/2. Since 0 < Cy << Cj in this interval, we will
attempt to set Cs = ¢ + d/2 and show that Cy < c is still satisfied. We substitute ¢ = Cs — d/2 and
add the constraint d < 2C§g. The constraints become

d/2 SQCl *206,61/2 S 2C6*2CQ,CL§ 03,04 S a,a§ 05*06,d§206,07 §a+d/2

The part of our bound on Va77 depending on ¢ and d now becomes (nd/nc'/?)? and since (nd/nc'/?) <
1, we still need to minimize d.

The only lower bound is C7 < a + d/2. We set d = 2C7 — 2a, add a < C7 and try to maximize a
under the constraints

C7;—201+42Cs<a,C; —2C+203<a,a<C3,Cy<a,a<C5—Cs,Cr—Cs<a,a<Cy.

Now the upper bounds on a are a < Cs,a < C5 — Cg,a < Cy. In this interval we have 0 < C5 <
Cs — Cg < Cr, and so we should set a = C'3. The remaining constraints become:

C7 — 20, +2Cs < (3,07 —2Cg + 203 < C3,Cy < 03,07 — Cg < Cs.

Here we have C'7y — Cg, C7 — 2Cg + 2C5,C7 — 2C1 4+ 2Cs < 0,and 0 < Cy < Cs.
The final setting becomes a = C3, ¢ = Cg — C7 + C3, d = 2C7 — 2C5.

e when 7 > 0.767: we have that nc > 1 and nd < 1 so ¢ should be maximized and d minimized to
maximize our bound.

The upper bounds on ¢ are ¢ + d < Ci,a+ ¢+ d/2 < C5. As C1 > (5, we attempt to set
a+ ¢+ d/2 = C5 and show later that ¢ + d < (1 is satisfied. We substitute ¢ = C5 — a — d/2 into
the constraints, adding the constraint ¢ > 0:

C5—Cl+d/2 < (Ch,05 < C’5—a—d/2,a < 05,04 <a,Ce<C5—a,Cr < a+d/2,0 < C’5—a—d/2.
C5—C1 <a—d/2,a+d/2 < C5—Cy,a < C3,Cy < a,a <Cs—C4,C7 <a+d/2,a+d/2 < C5.

We still need to minimize d. Since the only lower bound on d is C7 < a + d/2, we set d = 2C7 — 2a,
substitute and add the constraint d > 0.

(Cs—C14+C7)/2<a,C; <C5—Co,a<C3,Cy <a,a<Cs—Cs,C7 <Cs,a < Cr.
We have that C5 — Cy > C7, C5 > C7, (C5—C1—|—C7)/2 <0,04<0,C7 >C5—Cg>C35>0,

for the chosen interval, and since we want to maximize a, we should set a = Cs.

The final setting becomes a = C3,d = 2C; — 2C5 and ¢ = C5 — C.
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Lemma 21.

VitV ) (VibaVids |, 1)
‘/3331022<1+V3 V3 TR X
026 V134 116 V324

+ ViurVass + VineVise +

3 173 1/3 6 173 173 \ 1/3 2 172 172 \ @

(V233V116V224 Vios Viae Visa ) ( Voas ViieVa24 )

3 1/3 3 1/3 2 172 1/2 .
VizaVioe 2Vi16Va24 Vios Vias Viaa

Letnzo = 1, nwy = Vi6Vas/ (Vi Visa) 1o = VisaVibe/ (ViieVaba) nyn = L nzo = V33 Vil Viha/ (Viss Vide ),
nzz = Vit Vass, nza = Vi Vi and nzs = ViysViheVisa /(2Vi6Vaby).

Then the following values satisfy the constraints of the lower bound for Vs319 and attempt to maximize
it: d =0 when T < 0.767, and d = (nz4 + nzs — nza)/(2(nz2 + nzs + nzg + nzs)) — nxy/(2(nzo +
nx1)) + nyo/(2(nyo + ny1)) when T > 0.767.

Proof. I=J= 3,K = 10, and the variables are a = a008, b= 017, C = 026, d= @035, € = (X116, f =
@125, 9 = 134, h = a107. The linear system is as follows:

Xo=a+b+c+d,

Xi=e+ f+g+h,

Yo=a+d+g+h,

Yi=b+cte+f,

Zy = a,
Z3=b+ h,
Zy=c+e+gqg,
Z5 =2(d+ [).
The system has rank 6 and 8 variables, so we pick two variables, b and d, and add them to A. We solve
the system:
a = Za,

h=((b+h)—b=2Z3—b,

f=(d+f)—d=2Z5/2—4d,
c=(ctetg)—(e+fHg+h)+h+f=2—X1+2Z3+2Z5/2-b—d,
g=(a+d+g+h)—a—d—h=Yy—Zy—Zs+b—d,
e=(ct+e+g)—c—g=X1—Z5/2—-Yy+ Zy + 2d.

nry = 1,

nry = W§16/W§26 = ‘/1;6V2:33)24/(‘/E)}6V§34)’

nyo = Wiy /Wite = VizaVine/ (ViieVs24)s

ny; =1,

Nz = W5’08W5)16/W1334 = V231)33V1316V2324/(V1%4V0326)’
nzg = W1§07W5’26?{ W%A = V57 Vasas

nzy = W%% :3‘/026‘/13%’ 6 3 13 3 <r3
nzs = WinsWne/(2Wiie) = VinsViaeViza/ (2Vi16V524)s

nb = WorrWiza/(WiorWozs) = Vo17Va33VizaVoze/ (ViorVazszVoze Vize) = 1,
nd = Wozs Wi/ (Wi2sWoasWiza) = Vias Vi Vaaa/ (Vias Vs Visa)-

1/3 1/3
‘/3310 >9 (1 + Vl?)lﬁ‘/2324) (‘/1%4‘/0326 4 1) %
N Vs Vida V6V
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V3 V?) V3
(Pterhe v v, + Vo +

Vi, Vs
We now give the constraints on b, d:
Constraint 1: since h = Z3 — b > 0 and Z3 = nz3/(nz2 + nzs + nzy + nzs), we get
b <mnzs/(nzo 4+ nzs + nzy + nzs) = C1.

1/3 d
%%5%326%334)/ (%%5Vﬁ6v2%4> |
2V 16V ViV Vi

Constraint 2: since f = Z5/2 —d > 0 and Z5/2 = nz5/(nza + nzs + nz4 + nzs), we get
d < nzs/(nze + nzs + nzqy + nzs) = Cs.

Constraint 3: since c = Z4 — X1 + Z3 + Z5/2 —b—d > 0and Z4 = nzy/(nze + nzs + nzq + nzs),
X1 =nx1/(nxy + nxy), we get
b+ d < (nzs+nzq +nzs)/(nze + nzg + nzg + nzs) — nxy /(nxg + nxy) = Cs.

Constraint 4: since g = Yp — Zo — Z3 + b — d > 0 and since Yy = nyo/(nyo + ny1) and Zy =
nzy/(nze + nzs + nzg + nzs), we get
d—b < nyo/(nyo + ny1) — (nz2 + nz3)/(nza + nzz + nzq + nzs) = Cy.

Constraint 5: since e = X1 — Z5/2 — Yo + Z2 + 2d > 0, we get
d > (nyo/(nyo + ny1) — nx1/(nxo + nxy) + (nzs —nze)/(nze + nzs + nze + nzs)) /2 = Cs.
To summarize, the constraints are as follows:

b< Cp,d<Cyb+d<Cs,d—b<CyCs<d.

Now, when 7 < 0.767 we have that nd < 1 so we should minimize d in order to maximize our bound,
and when 7 > 0.767, nd > 1 and we should maximize d.

Consider the case 7 < 0.767. The only lower bound on d is Cs, which is negative in this interval. Hence,
let’s set d = 0. The remaining constraints become

bSCl,OSCQ,bSC?,,_C;le.

One can verify that —Cy < 0, C, Cy, C3 > 0. Hence, we can pick b = 0 to satisfy the inequalities.

Now consider the case 7 > 0.767. The upper bounds on d are Co, b+ Cy and C3 — b. In this interval we
have that 0 < Cy < (3 < (9, and so we can remove the constraint d < C'5. The other two upper bounds
coincide for b = (C5 — Cy)/2. Suppose that we set b = (C3 — Cy4)/2 and d = (C'3 + C4) /2. The remaining
constraints become:

(C3—C4)/2 < C1,(Cs5+C4)/2 < Cq,C5 < (Cg+ Cy) /2.

One can verify that all of these are satisfied in our interval. The final variable settings become b = (C5 —
C4)/2 and d = (Cg + 04)/2.
O

Lemma 22.

1/3 3 3 13 3 13 1/3
: : 1/3 Vo%m V2324 Vigy Vo17Vaoa | ViaeVisa
Vagg > 2 (ViasVids + VisaVids) ( +1+ + + +1 X
V1%4 2V1?§4 VO?Z4V0?§5 %:314‘/1325 ‘/()324V1:325
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(V233V044V125 ) b (V233 VoaaVias > ¢ <V116V233 Voaa > g
Vo24V035 V134 Vo24V134 Vo35 Vo2sViss '

5 Let 7?30 3: Vibs Vika, ;Wl 3: ‘/13%4‘/13235’ Yo = ‘/(%4/‘21%4’ ”gl :3 L nys = Vihy/(2Viy), nzy =
Viza/ (VoaaViiss)» nz2 = Vi17Vs0a/ (VoaaVias), nzs = ViigeVisa/ (VoaaVins ) nza = L.
Suppose that ¢ = 5. Then the following values satisfy the constraints of the bound on V349 and attempt
fo maximize it:

o forT < 0.767, when b = nza/(nz1 +nze +nz3+nzs), c = (nz1 +nz3)/(nzr +nze +nzs+nzy) —
nyo/(nyo + ny1 + nya), g = 0,

e forT > 0.767, whenb = c=0and g = (nz1 +nzy+nz3)/(nz1 + nze + nzs +nzyq) — nyo/(nyo +
ny1 + ny2).

Proof. I = 3, J = 4,K = 9, so the variables are a = O(()(]g,b = p17,C = Oé026,d = (X035, € = 05044,f =
a107,9 = Q116, h = @125,% = 134, ] = a143. The linear system becomes

Xo=a+b+c+d+e,

Xi=f+g+h+i+7,

Yo=a+e+ f+7,

Yi=b+d+g+1,

Yo =2(c+ h),
Z1 = a,
Zo=b+ f,
Zs=c+g+7,

Zy=d+e+h+1i.

The rank is 7 and the number of variables is 10 so we pick 3 variables, b, ¢, g, to place into A. We solve
the system:
a:Zl,
h=(c+h)—c=Y3/2—c,
f=0+f)—b=2Z-1,
j=(c+g+j)—c—g=2Zs—c—g,
e=(at+et+f+j)—a—f-j=Yo—-Z1—Z2—Z3+b+c+y,
d=(a+b+c+d+e)—a—-b—c—e=Xo—Yy+ Zo+ Z3—2b—2c—g,
i=(f+g+h+i+j)—f—g-—h—7=X1—2Zo-Ys/2—Z3+ b+ 2c.

nrp = Wg’ss = ‘/()?%5‘/1%4’

nry = W1334 = V1?§4V1325’

nyYyo = W5’44/ W§35 = Vo%m/ V1334’

ny; =1,

nyz2 = W1325/(2W1334) = %%4/(2‘/1334)7

nz = Wg’os/ W§44 = V1%34/ (%i4%?§:,5),

nzz = W1307W5’35/(W5’44W1334) = V0317V2324/(V0344V1325)a
nz3 = W1343W5’35/ (W(?44W1334) = V0326V1%4/ (‘/0%14‘/1325)’

nzy = 1,
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nb = WorrWoasWiza/(WiorWiss) = VazzVoaaVias / (Va2 Voss Viza),
ne = WoosWoasWisy/(WiosWiasWeiss) = VassVoaaVizs/ (Va24V134Voss ).
ng = Wi16Woaa/ (Wi1a3Woss) = Vi16VassVoaa/ (Vo2 Vize)-

1/3 3 3 13 3 13 1/3
1/3 V0344 V2324 Visy VoirVana | ViasVisa
Vagg > 2 (ViasVids + VisaVids) < +1+ + + +1 X
V1334 2V1?§4 V()?Z4Vo?§5 ‘/()%14‘/1325 V()?Z4V1325

(V233 VoaaVi2s ) b (V233 VoaaVi2s > ¢ < V116 V233 Va4 > g
Vo24V035 V134 Vo24V134 Vo35 VozeVisa

We now look at the constraints on b, ¢, g:

Constraint 1: since h = Y2/2 — ¢ > 0, and Y2/2 = nys/(nyo + ny1 + nys2), we get
¢ < nyz/(nyo + ny1 + nys) = C1.

Constraint 2: since f = Z3 — b > 0 and Zy = nzy/(nz; + nze + nzs + nzy), we get
b <nzs/(nz1 + nza + nzs +nzq) = Co.

Constraint 3: since j = Z3 —c¢ — g > 0 and Z3 = nz3/(nz1 + nze + nzs + nzy), we get
c+ g <nz3/(nz1 +nze + nzs +nzy) = Cs.

Constraint 4: sincee = Yy — Z1 — Zo — Z3 + b+ c+ g > 0, and Y = nyo/(nyo + ny1 + ny2) and
Z1 =nz1/(nz1 + nze + nzs + nzy), we get
b+c+g> (nz +nze +nz3)/(nz + nze + nzg + nzy) — nyo/(nyo + ny1 + ny2) = Ca.

Constraint 5: since d = Xog — Yy + Zo + Z3 — 2b — 2¢ — g > 0 and Xy = nzo/(nxo + nxy), we get
2b+2c+g < nxo/(nzo+nxi) —nyo/(nyo+nyr +nys)+ (nze+nzs)/(nz1+nze+nzs+nzy) = Cs.

Constraint 6: since i = X7 — Zs — Y2/2 — Z3 + b+ 2¢ > 0, we get that
b+2c > (nza+nz3)/(nz1 + nze + nzs +nza) + ny2/(nyo + ny1 + ny2) — nxy/(nxo + nxy) = Cs.
To summarize, the constraints are

c<CL,b<Coc+g<C5,Ci <b4+c+g,2b4+2c+ g < C5,C < b+ 2c.

Now, for all 7 > 2/3, nb = nc < 1 and ng < 1, and so we should minimize b, ¢ and g.

There are two lower bounds: Cy < b+ ¢+ g and Cs < b+ 2¢. However, Cg < 0 for all 7 > 2/3,
and Cy > 0 for 7 > 2/3 and 7 < 0.95. Hence we set b+ ¢ + g = Cy for 7 < 0.95 (otherwise we can set
b = ¢ = g). Substitute b = C'y — ¢ — g into the constraints adding the constraint ¢ 4+ g < Cj.

c<C,C4—Cy<c+g,c+9<C3,20, —Cs < g,c+g < Cy.

Now, after setting b = Cy — ¢ — g, the part of the bound on V349 depending on ¢ and g becomes
(ne/nb)*(ng/nb)? = (ng/nb)".

Say that ¢ = 5. For 7 < 0.767 we have that ng/nb < 1 and for 7 > 0.767 we have ng/nb > 1.

Suppose that 7 < 0.767. We want to minimize g. The lower bounds for g are Cy — C5 < ¢+ g and
2Cy — C5 < g. One can verify that for this interval, 2Cy — C5 < 0 and Cy — Co > 0. Hence, we set
c = Cy — (5 — g, substitute in the constraints and add g < Cy — Cs.
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Cy—Cy—C1<g9,C4—Cy <(C5,0<Cq,9g<Cy—Co.

It turns out that in this interval, C4 — Cy — C7 < 0. Furthermore, Cy — Cy < C3,0 < Cs. Hence we can set
g = 0 and all constraints are satisfied. The final settings are b = Co, ¢ = C4 — Cs, g = 0.

Suppose now that 7 > 0.767. We want to maximize g. The upper bounds on g are ¢ + g < C3 and
c+ g < Cy. In this interval, Cy < Cjs, so we set ¢ = C'y — g, and substitute:

Cy—C1 <9,0< 09,20, —C5 < g,9 < Uy

In this interval we have that C; > 0, so that Cy — C7 < Cy. Also, Cs — C4 > 0so that 2Cy — C5 < C4.
Finally, Cs > 0. Hence we can set g = Cy and hence b = ¢ = 0.
O

Lemma 23.

3 3
1 ‘/017 ‘/026

3 3 3
VE)SS VE)SS VE)SS

1+

1/3 1/3 V3 V3 1/3
Vass 2 2 (Vs + Vi) (Vs + Vi + i) )"

2‘/1325‘/2333

<V116V035V224>h <V044V125V233)e
Vo26V134V125 VaoaVizaViss )

_ 3 3 _ _ U3 y3 _ 3 3 —_ v3 3 _ 3
Let ”?5)”0 —3V035/V125’ 7;951 A L nyo = Voz5Vizs :7;3/1 . V134;/125’3”3/2 = ViosVazs n20 = 1/Vizs,
nz1 = Vii7/Viss: nz2 = Viae/ Viss n23 = L nza = Vigy Vaoy /(2Vi5Vass)-
Then for g = 5, the following settings of h and e obey the constraints and attempt to maximize the above
lower bound on V3sg:

e forT <0.767, e =h =0,
e for0.767 <1 < 0.7773, e = 0 and h = nza/(nzp + nzy + nzo + nzs + nzy),

e for0.7773 < 7 < 0.7828, ¢ = 0 and h = nxo/(nxo + nx1) — (nyo + ny2)/(nyo + ny1 + ny2) +
(nz1 + nzo + nzq)/(nzo + nz1 + nze + nzs + nzy),

o forT > 0.7829, h = nzy/(nzp + nz1 + nze + nzs + nzy) and e = nxo/(2(nxo + nxy)) — (nyo +
ny2)/(2(nyo + ny1 + ny2)) + (nz1 + nz4)/(2(nzo + nz1 + nze + nzg + nzg)).

Proof. I = 3,J = 5, K = 8, so the variables are a = agos, b = ag17, ¢ = Qgog, d = 35, € = 44,
f = aoss, 9 = @107, h = 116, © = 195, ] = 134, kK = 143, | = a159. The linear system becomes
Xo=a+b+c+d+e+f,

Xi=g+h+it+j+k+l,

Yo=a+f+g+1,

YiI=b+e+h+Ek,

Yo=c+d+i+],

Z(]:(Z,
leb+g,
Z2:C+h+la
Zz=d+ f+i+k,
Z4:2(€—|—j).
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The system has rank 8 and 12 variables, so we pick 4 variables, b, ¢, h, e to put in A. We then solve the
system:
a = Zy,
g=0b+g)—b=21 -1,
j=(e+j)—e=2Z4/2 e,
l=(c+h+l)—c—h=Zy—c—h,
f=la+f+9+l)—a—g—1=Yo—20—2Z1—Za+b+c+h,
d=(a+b+c+d+e+f)—a—-b—c—e—f=Xo—Yo+2Z1+Z2—2b—2c—e—h,
i=(c+d+i+j)—c—d—j=Yo—Z4/2 - Xo+Yo—Z1 — Zo+2b+c+2e+h,
k=(b+e+h+k)—b—e—h=Y1—b—e—h.

nry = W§35/W1325 = V0335/V1325’

nry =1,

nYyo = W(?53Wf’25/ W(:))’35 = ‘/()??35‘/1325’

ny1 = W1343 = V1334V1325’

ny2 = W1325 = Vl?’25V2?§3’

nzo = Wg’os/ W§53 =1/ 1/(%5,

nz = Wf’o7W5’35/(W(?53W1325) = V0317/V0?%5’
Nz = W1352W5’35/(W5’53W§25) = ‘/()?56/‘/()335’
nzz = 1,

nzy = W1334/(2W1325) = ‘/1334V2:324/(2V1?§5‘/§%3)’

nb = Wo1rWossWihs/ (Wi07Wiss Wiaz) = 1,

ne = WoasWossWizs/WisaWess = 1,

nh = Wi16Wos3sWias/(WisaWozs Wiaz) = Vi16Voss Vaza/ (Vo2 VizaVizs),
ne = WouaWeys/(Wi3aWossWias) = VouaViasVass/(Vaz2aVizaVoss).

3 3
1 ‘/017 ‘/026

3 3 3
‘/035 ‘/035 ‘/035

1/3
1 ‘/1%4‘/2324)/ %

1/3 1/3
Vass > 2 (Vos + Vids) " (Voss + Vida + Vads) < V3 V3.
125 V233
(V116V035V224 ) " <V044V125Vz33 ) ¢
Vo26V134V125 Va2uVizaVoss )
Let’s look at the constraints on b, ¢, h, e:
Constraint 1: since g = Z; — b > 0 and we set Z1 = nz1/(nzo + nz1 + nzg + nzs + nzy), we get
b <nz/(nzo +nzi + nza + nzsz + nzq) = Ch.

Constraint 2: since j = Z4/2 — e > 0 and we set Z4/2 = nzy/(nzo + nz1 + nza + nzs + nzy), we get
e <nzy/(nzo +nz1 + nze + nzs +nzy) = Co.

Constraint 3: since | = Zo — ¢ — h > 0 and Zs = nza/(nzg + nz1 + nze + nzs + nzy), we get
¢+ h < nzy/(nzo +nz + nza + nzg + nzy) = Cs.

Constraint 4: since f = Yy — Zo — Z1 — Za+ b+ c+ h > 0and Yy = nyo/(nyo + ny1 + ny2) and
Zy = nzo/(nzo + nz1 + nza + nzs + nzy), we get
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b+c+h > (nzg+ nzy 4+ nze)/(nzo + nzy + nzg + nzs + nza) — nyo/(nyo + nyr + ny2) = Cy.

Constraint 5: sinced = Xog—Yp+ 21+ Z2 —2b—2c—e—h > 0 and Xy = nzo/(nzo+nxy), we get
2b+2c+ e+ h < nxo/(nxo + nxr) — nyo/(nyo + ny1 + ny2) + (nz1 + nze)/(nzg + nzy + nzg +
nz3 +nzg) = Cs.

Constraint 6: since i = Yo — Z4/2 — Xo+ Yo — Z1 — Za + 2b+ ¢+ 2e + h > 0, we get
2b+c+2e+h > nxo/(nxo +nx1) — (nyo + ny2)/(nyo + ny1 + ny2) + (nz1 + nze + nza)/(nzo +
nz1 +nzg +nzz + nz4) = Cs.

Constraint 7: since k =Y, —b—e — h > 0, we get
b+ e+ h < ny/(nyo + ny1 + ny2).
Now fix ¢ = 5. We will distinguish several cases:

e 7 < (0.767. Recall that our constraints are:

b< Ci,e < Cycth < C3,b+ct+h > Cy, 20+2c+e+h < Cy, 2b+c+2e+h > Cg,b+e+h < C.

One can verify that for 7 < 0.767, 0 < nh < 1 and 0 < ne < 1. Hence in order to maximize the
bound on V355, we should minimize both e and h. Let’s try to set them both to 0. The constraints
become

b<C1,0<Co,c<C3,b4+¢>Cy,204+2c < C5,20+ ¢ > Cg,b < Cf.

One can verify that Co > 0 and that C'y < C; for the chosen values of ¢ and 7. The constraints that
remain are

bSCl,C§C3,C4§b+C§C5/2,2b+CZCG.

As Cs < 0 < C4 < C3 < (C5/2 in the chosen interval, we can just sete = h = b = 0 and ¢ = Cs.
This will both satisfy all constraints and maximize the bound on V3ss.

e 0.767 < 7 < 0.7773 In this interval, nh > 0 and 0 < ne < 1. Hence we should strive to maximize h
and minimize e.

Recall that our constraints are:

b< Ci,e <Oy c+h < C5,b4+ct+h > Cy,2b4+2c+e+h < C5, 2b+c+2e+h > Cg,b+e+h < Cr.

Here, since we want to maximize h and ¢ + h < (3, we will show that we can set this constraint to
be equality, and moreover with ¢ = 0. Set h = C'3. The rest of the constraints become

b<C1,e<C,b>Cy—C3,2b6+e<Cs—C3,2b+2e¢ > Cs — C3,b+ e < C7 — Cs.

In the chosen interval, Cy — C3 < 0,Cs — C3 < 0,C; > 0,Cy >0,C5 —C3 > 0,C7 — C3 > 0.
Hence, we can set b = ¢ = 0. The final setting becomes b = c=e = 0and h = C5.
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e 0.7773 < 7 < 0.7828 Here we still need to minimize ¢ and maximize h. Recall that our constraints
are:

b<Ci,e <Cyct+h <C3,b+ct+h > C4,20+2c+e+h < Cs, 2b+c+2e+h > Cg,b+e+h < Cr.

The only lower bound on e is 2b + ¢ + 2e + h > Cjg, so let us set it to equality. We get e =
(Cs —2b— ¢ — h)/2, and in the end we will require that Cs — 2b — ¢ — h > 0 so we add it to our list
of constraints. We substitute in the constraints:

b < C1,C—2C < 2b+c+h,c+h < C3,C4 < b+cth, 2b+3c+h < 2C5—Cq, h—c < 2C7—Cg, 2b+c+h < Cy.

Since 2C7 — Cg > Cj in the interval, then constraint h — ¢ < 2C7 — Cg can be removed since no
matter the choice of ¢, c + h < C5 would always supersede it. All upper bounds on h go down if c is
increased, so we set ¢ = (. We are left with

b<C1,C6—2C2 <2b+h,h <C5,C4 <b+h,2b+h <2Cs5 — Cg,2b+ h < Cs.

No matter what we set b to, we have that Cs — 2b < C3 and Cg — 2b < 2C'5 — Cg — 2b in this interval,
so we can just set h = Cg — 2b. Substituting, we get the new constraints

bg0170§027bS06_C47b§06/2'

Now, since in this interval, C7 > 0, Co > 0 and Cg — C4y > 0 we can set b = 0 and all constraints are
satisfied. The final settings are b = ¢ = e = 0 and h = C§.

o 72>0.7829

In this interval, we can take the same settings of ¢ = 0 and e = (Cs — 2b — h)/2 as in the previous
bullet, until we get to the constraints

b<C1,C6—2C2 <2b+h,h <C5,C4 <b+h,2b+h <2C5 — Cg,2b+ h < Cs.

We still need maximize h and minimize e. In this interval, C'3 > 0 and C3 < 2C5 — Cg — 2b and
C3 < Cg — 2b even when b = C (i.e. when it is as large as is allowed). Hence, we can set h = Cjy
and are left with the constraints

b< Oy, C5— 205 — Cs < 2b,C4 — C3 < b.

In this interval, Cs — 2Cy — C3 < 0 and Cy — (5 < 0, while C; > 0 and so we can set b = 0. The
final settingisb = ¢ =0, h = Csand e = (Cs — C3)/2.

O]

Lemma 24.

% 1/3 1/3 1/3
Vg7 > 2 <V0335 + 1) (Vs + Vids + Vi + Visz/2) / (Virr + Vi + Vids + Vida) %
125
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(V026V134V125 > b (%44V233V125 > d
Voss V24 V116 VossVizaVaoa )

Let nzg = Vghs /Viys, a1 = 1, nyo = ViigVike ny1 = VileVids ny2 = Viby Vile nys = VaisVile/2,
nzo = Viiz/Vile n21 = 1, nzg = Vibs/Viyg nzs = Viky/Vilg and
C3 = nxo/(nxo + nx1) + nzo/(nzo + nz1 + nze + nzz) — nyo/(nyo + ny1 + ny2 + nys),
Cs = (ny2 + ny3)/(nyo + ny1 + ny2 + ny3) — nz3/(nzo + nzy + nzo + nzz),
C7 = (ny2 +ny3) /(nyo + ny1 + ny2 + ny3) + nxo/(nxo + nw1) — (nze +nzsz)/(nzo +nz1 +nzo +nzy)
and
Cs = (ny1+ny2+nys)/(nyo+ny1 +nys+nys)+nzo/(nro+nzy) — (nza+nzs) /(nzg+nz; +nze+nzs).
Then for q = 5, the following values satisfy the constraints of the bound on Vg7 and attempt to maximize
it:

o forT <0.705,b=Cs — Csand d = 0,
e for0.705 <71 <0.767, b=Cs — Csand d = C3 — Cg — 2Cg + 2C7,
0f0r0.767§7',bZCg—Cgandd:207+Cg—06—208.

Proof. I = 3,J = 6, K = 7 so the variables are a = ag17,b = @26, ¢ = Qp35,d = a4, € = ags3, [ =
62,9 = a107,h = a116,7j = 04125,j = 04134,k' = 04143,1 = (152, M = (161- The linear system is as
follows.

Xo=a+b+c+d+e+f,

Xi=g+h+i+ji+k+1+m,

Yo=f+g+m,

Yi=a+e+h+l,

Yo=b+d+i+k,

Y3:2(C—|—j),
Zyp=a+g,
Z1=b+h+m,

Zy=cH+ fH+i+l,
Zs=d+e+j+Ek.

The rank is 8 and the number of variables is 13, so we pick 5 variables, a, b, ¢, d, e, and place them in A.
Now we solve the system.
g=(a+tyg)—a=2Z—a,
f=la+b+c+d+e+f)—a—b—c—d—e=Xo—a—b—c—d—e,
m=(f+g+m)—f—g=Yo—Zp—Xo+2a+b+c+d+e,
j=(c+j)—c=Y3/2—c
k=(d+e+j+k)—d—e—j=2Z3-Y3/2—d—e+c,
’L':(b+d—|—i+k)—b—d—k:YQ—Z3—|—Y3/2—|—€—b—c,
l=(C—i-f—i-i—i—l)—C—f—i:Z2+Z3—Xo—E—Y3/2+a+2b+C+d,
h=(a+e+h+l)—a—e—1l=Y1+Yo+Y3/2—Zy—Zs+Xo—2a—2b—c—d—e.

_ 13 3 3 3\ _ 13 3
nzo = WoeaWite/ (Wiei Wis2) = Vizs/Viass
nry =1,

_ w3 13 1/3
nyo = W%61 - V1316V0326’
ny1 = Wite = ViiVisss
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nyz = W§25W€16/VZ§52 = ‘/2;24‘/13:1))6’ 5 3
nys = W%34W12§W116/§2W1§3W152) = Vs33Vi16/2
nzo = Winr/Wier = Vorr/Viies

nz = 1,

nza = W1252/Mg1316 = ‘;1325/3‘)/1316’ . .

nz3 = W143W152/(W125W116) = V134/V116’

na = Wort Wi Wisa ) (WiotWoea W) = 1,

nb = WoasWie1 Wisa/ (Wos2Wi2sWiis) = VooeVi34Vizs/ (Voss Va2a Vise).
nc = Wozs Wiet WiasWisa / (Woe2 Wi3aWiasWiie) = 1,

nd = WouaWi61Wisa/ (Wos2W143Wiie) = VoaaVaszVias/(Voss VizaVaoa),
ne = WossWie1Wi2s/(Woe2W143W116) = 1.

1% 1/3 1/3
Vaer > 2 <V%35 + 1) (VO326 + Vibs + Vi + Vas3/2) / (Vs + Vide + Vids + Vise)
125

1/3

(VO26V134V125 > b (VO44V233V125 > d
Voss V24 V116 VossVizaVaoa )

Now we consider the constraints on a, b, ¢, d, €.

Constraint 1: since g = Zg —a > 0

a < nzy/(nzy + nz1 + nzg + nzg) = C1.

Constraint 2: since f = Xg—a—b—c—d—e >0

a+b+c+d+e<nxy/(nry+ nzy) = Ch.

Constraint 3: sincem =Yy — Zyp — Xo+2a+b+c+d+e>0

2a+b+c+d+e > nxy/(nxo+nz)+nzo/(nzo+nzi+nze+nzs) —nyo/(nyo+ny1 +nys+nys) = Cs.

Constraint 4: since j = Y3/2 — ¢ >0

¢ < nys/(nyo + ny1 + ny2 + nys) = Cy.

Constraint 5: since k = Z3 — Y3/2 —d—e+c¢c >0

d+e—c<nz3/(nzp+nz + nzy + nz3) — nys/(nyo + ny1 + ny2 + nys) = Cs.

Constraint 6: since i = Yo — Z3 + Y3/2+e—b—c>0

b+c—e < (ny2 +nys)/(nyo + ny1 + ny2 + nys) — nz3/(nzo + nzy + nza + nzs) = Cs.

Constraint 7: since | = Zo + Z5 — X — Y2 — Y3/24+a+2b+c+d >0

a+2b+c+d> (ny2 +nys)/(nyo + ny1 + ny2 + nys) + nwo/(nxe + nxy) — (nze + nzz)/(nz +
nzy +nzy +nzz) = Cr..

Constraint 8: sinceh =Y1 + Yo+ Y3/2 — Z9 — Zs+ Xo—2a —2b—c—d—e >0

20+ 2b+c+d+e < (ny1 + ny2 + nys)/(nyo + ny1 + ny2 + nys) + nxg/(nxo + nz1) — (nze +
nzs)/(nzo + nz1 + nze + nzsg) = Cs.

To summarize, the constraints are

a<Cra+b+c+d+e<(Cy,C3<2a+b+c+d+e,c<Cyd+e—c<(C5 and

b+c—e<Cs,Cr<a+2btc+d,2a+2b+c+d+e<Cs.

For all 7 > 2/3, we have that nd < 1 so we want to minimize d. The lower bounds on d are C3 <
2a+b+c+d+eand Cr <a+2b+c+d.
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We will try to make the first constraint tight, this setting ¢ = C's — 2a — b — d — e, when the constraints
become

a<C,C3—Cy<a,2a+b+d+e<C3,C3—Cy <2a+b+d+e2a+b+2d+2e < Cs+ (s, and

C3—Cs<2a+d+2e,a+e—b<C3—Cr,b<Cg— Ch.

For 7 < 0.767 we have nb > 1 so we want to maximize b, and for 7 > 0.767 we have nb < 1 so we
want to minimize b.

Consider the case 7 < 0.767. Suppose that we set ¢ = C'3 — 2a — b — d — e. The upper bounds on b
hereare 2a +b+d+e < C5,2a+b+2d+2e < Cs5+ Cs,and b < Cg — C5.

Since Cg — C3 < C3, C5 + Cjs in this interval, let us attempt to set b = C's — Cj.

a < Ci,C3—Cy < a,2a+d+e < 203—Cg,203—C4—Cg < 2a+d+e, at+d+e < (C5+203—C'8)/2, and

C3—Csg<2a+d+2e,a+e<Csg—Cy.

There are two lower bounds on d: 2C3 — Cy — Cs < 2a +d + e and C3 — Cg < 2a + d + 2e. In this
interval, 2C3 — Cy — Cg < 0 < C3 — (Y, and so we set d = C3 — Cg — 2a — 2e. The constraints become

aSC’l,C’g—CQSa,Cg—C’g—Cg,Se,—06+(—05+08)/2§a+e, and

a+e<(C3—Cg)/2,a+e<Cs—Cr.

It turns out that in this interval, all the lower bounds are negative: C'5 — Cy,Cs — Cs — C3, —Cg + (—C5 +
C3)/2) < 0. Also, all the upper bounds are positive: 0 < C; < (C3 — Cs)/2,Cs — Cr.

In order to minimize d, we want to maximize a + e. For 7 < 0.705 we have (C5 — Cj)/2 < Cg — Cx
and so we can set d = 0 and e = (C3 — Cg) /2 — a. The constraints become a < C1,a < (C3 — Cg)/2, and
wecanseta =C1,b=Cs — Cs3,c=3C3/2—-C; — Cs+Cg/2,d=0and e = (C5 — Cg)/2 — C1.

For 0.705 < 7 < 0.767 we have that (C3 — Cg)/2 > Cs — C7 and we can set e = Cs — C7 — a and so
d = C3— Cg — 2Cs + 2C7. The constraints become a < C,a < Cg—C7,soweseta = C1,b = Cg — Cs,
c=-C1+C3+Cs—Cr,d=C3—Cg—2Cs +2C7, e = Cg — C7 — C4.

Now suppose that 7 > 0.767. We want to minimize b and d. Recall that we setc = C3 —2a —b—d — e,
and the constraints are

a<C,C3—Cy<a,2a+b+d+e<C3,C3—Cy <2a+b+d+e,2a+b+2d+2e < C5+ (3, and

C3—Cs<2a+d+2e,C;—C3<b—a—eb<Cg—Chs.

The lower bounds involving b are C3 — Cy < 2a+b+d+eand C7; — C3 < b—a — e. Let us set
e = C3 — C7 + b — a. The constraints become

a<Ci,C3—C5 < a,a+2b+d < C7,C7—Cy < a+2b+d, 3b+2d < C5—C3+2C7,2C7—C3—Cg < 2b+d, —C3+C7 < b—

The lower bounds involving b and d are C7—Cy < 0,2C7—C5—Cg > 0,a—C5+C7 < C1—C5+C7 < 0
Hence what remains is

a<C,03—Cy<a,a+2b+d<C7,30+2d < C5—C35+2C7,207—C3—Cg < 2b+d,b < Cg—Cj.

We set 2C7 — C3 — Cg = 2b + d, and hence d = 2C7 — C3 — Cg — 2b.
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The part in the bound depending on b and d now becomes (nb/nd?)’ > 1, and so now we need to
maximize b under the constraints:

a<C,03-Cy < a,a < —Cr+C3+C4,207—C3—-20—C5 < b,b < (207 -C3—C5)/2,b < Cy—C3.

In this interval, 2C7 — C3 — 2Cs — C5 < 0and 0 < Cg — C3 < (2C7 — C3 — C§) /2, and so we set
b= Cs— (Cs. Also, C3 — Cy < 0and C, —C%7 + C3 4+ Cg > 0 and so we can set a = 0. The final settings
become a = 0,0 =Cs — C3,c = C3+ Cg — C7,d =2C7 + C3 — Cg — 2Cs,e = Cs — C4.

L]

Lemma 25.

1/3 1/3
Viag > (1/(%5‘/1%4+ Vi3 Viss Vass i V1325V2%3> <V1%4V0335 i Visa i 1) y

V2324 2 V1325 ‘/2%3 ‘/2324 2

—+

3 173 1/3 3 13 3 1/3 3 6 1/3 3 172 172 \¢© g

<Vo44V125V233 + V017V224 VO26V224 Vsoy Vooy > <V044V125V233> <V116V035V224>
6 1/6 3 1/3 3 1/3 3 3 1/3 2 /2 1/2 :
V035V134 V134V035 V134V035 V134 2‘/125‘/233 %35‘/134‘/224 Vo2eVi34Vias

Let "5530 = ;/0%5‘/1?3@ nry = ‘/1334‘/1325;/2%33{ V232§1r ”9526: 2/1325‘/2%3/ 2, ”?J30 :3 V1334‘§03§5/3(V1325V2333),
= V134/3V224§ ny2 = 1/23, nzo = ‘/044‘/12%V233/(§/035§/134)’ nz1 = Vii7Vaoa/ (VizaViss), nze =
Vo6 Vaaa/ (VigaVass ), nz3 = Vaoy /Vige nza = Vaoa /(2Vi55Vs33)-

Then for q = 5, the following values obey all constraints of the above bound and attempt to maximize it:

e forT < 0.767, e =g =0,
e forT > 0.767, e = 0and g = nze/(nzp + nz1 + nzy + nzs + nzy).

Proof. I = J = 4, K = 8 and the variables are a = aqpg, b = ag17,¢ = Qg26,d = Q35,6 = Qpad, [ =
107, 9 = (116, h = Oé125,i = 04134,]' = (X143, k= Oé206,l = (215, 1M = (¥224. The linear system becomes
Xo=a+b+c+d+e,

X1:f+g~|—h+i~l—j,

Xo =2(k+1+4m),

Yo=a+e+f+j+Ek,

Yi=b+d+g+i+],

Yo = 2(c+ h +m),

Z(]:(l,
Z1=b+ f,
Zy=c+g+k,

Zz=d+h+j+I,
Zy =2(e+1i+m).

The rank is 9 and the number of variables is 13 so we pick 4 variables, b, ¢, e, g, and we put them in A.
We now solve the system.
a = Zp,
f=0b+f)—b=2-b,
k=(ctg+k)—c—g=2Za—c—y.
d=(a+b+c+d+e)—a—-b—c—e=Xo—Zp—b—c—e,
j=la+e+f+j+k)—a—e—f—-k=Yo—Zo—Z1—Zo+b+c+g—e,
i=((f+g+h+i+ti)+Ob+d+g+i+l)—(d+h+ji+1)—f—29-0b)/2=(X1+Y1—Z3—Z1)/2—y,
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h=(f+g+h+i+j)—f—g—i—7j=X1/2-Yo-V1/24+ 20+ Z1/2+ Zo+ Z3/2 —c— g +e,
m:(e—i—i—l—m)—e—i:(—X1—1/1+Z3+Z1)/2—|—Z4/2—|—g—e,
l:(k—l—l—l—m)—k—m:Xg/?-i-(Xl—i-Yl—Zg—Zl)/Q—Zz—Z4/2+C+6.

nro = Wg’35 = Vo%s5V1334’

nay = Wid Wi W2 [Woil = Vi, Vibs Vs Viha,

nwy = W3y5/2 = ViysViss /2,

nYyo = W1343/ W1325 = V1?§4V0335/ (V1325V2333),

nyy = ng?fW;l/E? (W132/52W232/42) = V1334/V2324’

ny2 =1/2,

nzp = W(:)))OSWIB%/ (W§35W1343) = V0314V1325V2%3/ (%635‘/1634)’
nz = Wfo7Wf2/5>2W2?’2/42 (W1343W133/42W231/52) = ‘/()317‘/5324/(‘/1?%4%%5)’
nzg = W2306W1325/(W1343W2315) = %326V2324/(V1%4%%5)’
nz3 = W132/52Wi32/42 (Wf?(fWS{s?) = V2324/V1%4’

nzy = Wi/ (2W3h5) = Vaha/(2Vis5Vass),

nb = WorrWiag/(WiorWoss) = 1,

ne == WoasW143Wais/(WaosWo3zs Wias) = 1,

ne = WoasWiasWais /(Wozs WiasWaza) = Vihy Vi Viaas/ (Vs Visa Vioa):
ng = Wi16WiasWaoa/ (Waos W134Wias) = Vi16VossVaza/ (Vo2eVi3aVias).

1/3 1/3
Vi Vids Vs V1325V2333> / <V1334%%5 Vi 1) /

V2324 2

Viag > (‘/()%5‘/1334 +
V1325 ‘/2%3 ‘/2324 2

1/3
( ‘/()?114‘/1325 V2333 V0317V2324 V0326 V2324 + V2324 + V2624 > ( Voglm V1225 V2233 > ‘ < V116 Vo35 V224 ) g .
Vo%5 V1634 V1?§4 Vo?é5 ‘/1%4 ‘/()?35 V1%4 2‘/1325 Vz?é?, Vo235 V1234 V2224 Vo26V134Vi25

Let’s look at the constraints on b, c, g, e.

Constraint 1: since f = Z7 — b > 0 we get

b < nzi/(nzg+ nz1 + nze + nzs + nzy) = C.

Constraint 2: since k = Zo — ¢ — g > 0 we get

c+ g <nzy/(nzg+ nz1 + nze + nzs + nzy) = Ca.

Constraint 3: since d = Xg — Zp —b—c— e > 0 we get

b+ c+ e < nxg/(nzo + nxy + nxe) —nzo/(nzo + nz1 + nza + nzg + nzg) = Cs.

Constraint 4: since j = Yy — Zg — Z1 — Za+ b+ c+ g — e > 0 we get

b+c+g—e > —nyo/(nyo+nyr +ny2) + (nzo + nzy +nz2)/(nzo + nzy +nze +nzg +nzy) = Cy.

Constraint 5: since i = (X7 + Y1 — Z3 — Z1)/2 — g > 0 we get

g < nx1/(2(nxo + ne1 + nxe)) + ny1/(2(nyo + ny1 + ny2)) — (nz1 + nzs)/(2(nzo + nzy + nze +
nzz +nzg)) = Cs.

Constraint 6: since h = X1/2 — Yo —Y1/2+ Zog+ Z1/2+ Zo + Z3/2 —c — g+ e > 0 we get

c+g—e <nxi/(2(nxo+nz1+nx2)) — (nyo +ny1/2)/(nyo + ny1 +ny2) + (nzo + nz1 /2 +nze +
nzs/2)/(nzo + nz1 + nza + nzs + nzy) = Cp.

Constraint 7: sincem = (—X1 — Y1+ Zs + Z1)/2 + Z4/2 + g — e > 0 we get

e —g < —nx1/(2(nzo + nx1 +nx2)) —ny1/(2(nyo + ny1 +ny2)) + (n23/2 +nz1 /2 +nz) /(nzo +
nzi + nzo + nzs + nzy) = Cr.

Constraint 8: since | = Xo/2 + (X1 + Y1 — 23— Z1)/2 — Zy — Z4/2 + ¢+ e > 0 we get
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c+e> —(nxg+nxi/2)/(nxo+nzy +nx) —ny1 /(2(nyo + ny1 +ny2)) + (nz3 /2 +nz1 /2 —nzg —
nz4)/(nzo + nz1 + nze + nzs + nzy) = Cs.
To summarize, the constraints are

b<Ci,c+g<Cob+c+e<(C3,Cy<b4+c+g—e,g<Cs,ct+g—e<Cs,e—g<Cr;,Cs<c+e.

For any 7 > 2/3 we have that ne < 1. Hence we always need to minimize e. The lower bounds for e
are —Cs < e —c— g and Cs < ¢+ e. However, for any 7 > 2/3 we have that Cs < 0 and so the only lower
bound involving e is —Cs < e — ¢ — g, where —Cg < 0 as well.

For 7 < 0.767 we have that ng < 1 and for 7 > 0.767, we have ng > 1. For 7 < 0.767 we want to
minimize g and e. For 7 > 0.767 we want to maximize g and minimize e.

Suppose that 7 < 0.767. Setting b = ¢ = g = e = ( leaves us with the constraints which are all satisfied
in this interval

0<C,0<0%,0<L05,04<0,0<05,0<LC6,0<Cy.

Now suppose that 7 > 0.767. Here we want to maximize g and minimize e. Let’s set e = 0.
b<Ci,c+9g<Cyb+c¢<C3,Cyi<b+c+g,9<Cs,c+g<Cqs—Cr<g.
The upper bounds on g are Cs — ¢, Cs and Cg — c. Let’s set ¢ = 0. The constraints become
b<C1,9<Co,b<(C5,Cy<b+9g,9<C5,9=<Cs,—C7r<g.
Here we have —C7 < 0 < Cy < (5, Cg and so we set g = (5.
b<(C1,b<(C5,Cy—Co <0
We have that Cy — Cy < 0 and 0 < Cy < C3. We can safely set b = 0. The final settings become

b=c=e=0and g = Ch.
O

Lemma 26.

1/3 3 3 13 3 1/3
13 (Vs | Vi V ViV, 1%
Vias7 > 2 (‘/()?214‘/2%3 + VisaVabs + V2?§4‘/2?§>3/2) <V0335 + ‘/15)4 +1 VO?’N + ‘/0??6‘/1325 + ‘/1325 +1 X
233 233 134 035 V224 134

( Vo35 V134V224 ) ’ <V035V134V224 ) ¢ (V116V035V224 > g
Vo44 V125 Vass V44 V125 V233 VoosVi2sViza )

Let nxo = V()344V2%3’ nry = V1?§4V2§33: nra = V2324V2?§3/ 2, nyo = Vo%5/ Vz%s» ny1 = ‘/1%4/ V2?§3’ ny2 =
L nzo = Vgin/Vise n21 = Vi Vids/ (Viss Vasa), nze = Vibs /Viky, nzs = 1, and Co = nz1/(nzo +nz1 +
nzg + nz3), C4 = nxg/(nxo + nry + naa).

Then for q = 5, the following settings obey the constraints of the bound on V57 and attempt to maximize
it:

o forT <0.767,b=Cy,c=Cy — Co,9 =0, and

o for0.767 <7 <0.9b=0,c=Cy,g = Co.

61



PI’OOf. I = 4,J = 5,K = 7 and so the variables are a = 01017,1) = (p26,C = 04035,d = (044, € — (53,
f = aio7,9 = a1, h = 125,71 = @134, ] = o143,k = ai152,1 = ag06, M = 215, = 24. The linear
system becomes
Xo=a+b+c+d+e,
Xi=f+g+h+i+j+k,
Xo=2(l+m+n),
Yo=e+ f+k+1,
Yy=a+d+g+j+m,
Yo=b+c+h+i+n,
Zoza+f,
Zi=b+g+1,
Zo=c+h+k+m,
Zy=d+e+i1+75+n.

The rank is 8 and the number of variables is 14 so we pick 6 variables, a, b, c, €, g, h, and place them in
A. We then solve the system.
f=(a+f)—a=2Zy—a,
l=0b+g+l)-b—g=2Z1-b—g,
k=(e+f4+k+l)—e—f—-1=Yo—Zp—Z1+a+b+g—e,
d=(a+b+c+d+e)—a—b—c—e=Xo—a—b—c—e,
m=(c+h+k+m)—c—h—k=-Yo+Zop+7Z1+Zo—a—b—c—g—h+e,
j=(a+d+g+j+m)—a—d—g-—m=-Xo+Yo+Y1—-Zo— 21— Zy+a+2b+2c+h,
= (f+g+h+i+j—|—/~c)—f—g—h—j—k:X1+X0—2Y0—Y1—1—221+Z2+Z0—a—2c—3b—2g+e—2h,
n=0+m+n)—l—-m=Xo/24+Yo—20—-2Z1—Zy+a+2b+c+29+h—e.

nro = W§44Wf’34/ W1343 = ‘/6344‘/2%3’

nriy = W1334 = ‘/1%4‘/2%3’

nrg = W2324/2 = V2324V2?§3/2’

nyo = W1352Wf43W2?’24/(W5’15W1634) = %%5/‘/2%3’

ny1 = W1343/ W1334 = ‘/1%4/ VQ%S’

nys = 1,

nzp = W1307W2315W1334/(Wf’52W1343W2324) - V0317/V1%4’

nzy = W306W§’15W1634/(W1352W1343W2624) = V0326V1325/(V0335V2324),
nzz = W2315W1334/(W1343W2324) = ‘/1325/‘/1%4’

nzg = 1,

na = WorrWisaWiasWaoa / (W10t WoaaWa1sWizs) = 1,
nb = WoasWisaWiisWiha/ (WaosWoaaWois Wisy) = VossVisaVaza/ (VoaaVias Vass),
ne = Woss WeisWaza/ (WoaaWais Wisy) = Voss VisaVaza/ (VoaaVizs Vass),
ne = WossWa1sWiza/(WisaWoaaWazs) = 1,
ng = Wi1sWisaWiha/ WaosWa1sWiss) = ViteVoss Vaza/(Voze Vias Visa),
nh = WiasWiasWaoa/ (WarsWi,) = 1.

VS VS 1/3 V3 V3 V3 VS 1/3
Vasz > 2 (VOPZ4V2333 + Vihy Vibs + V2324V2333/2) e < 055 + 1??4 + 1) < 0317 + 0326 1325 + 1325 + 1) X
Viss  Vags Visg  VossVoaa  Visa
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(%35‘/134V224 ) b <V()35V134V224 > ¢ < V116 Vo35 V224 ) g
Vo4aVi25 Vo33 Vo4aV125 Vo33 Vo2sVi2sVisa )

Now we look at the constraints on a, b, ¢, e, g, h.

Constraint 1: since f = Zyg — a > 0 we get

a < nzy/(nzo + nz + nze + nzs) = Cy.

Constraint 2: since l = Z; — b — g > 0 we get

b+ g < nzi/(nzo+ nz1 + nze + nzg) = Co.

Constraint 3: since k =Yy — Zg— Z1 +a+b+g—e > 0 we get

a+b+g—e>—nyy/(nyo + ny1 + ny2) + (nzo + nz1)/(nzo + nz1 + nze + nzz) = Cs.

Constraint 4: sinced = Xo —a — b —c—e > 0 we get

a+b+c+e<nxy/(nry+ nry + nre) = Cy.

Constraint 5: sincem = =Yy + Zo+ 21+ Za —a—b—c—g—h+e > 0 we get

a+b+c+g+h—e < —nyo/(nyo+ny1 +nyz) + (n20 +nz1 +nz2)/(nzo +nz +nze+nzs) = Cs.

Constraint 6: since j = —Xo+ Yo+ Y1 — Zg— 21 — Zo+a+ 2b+ 2c+ h > 0 we get

a+2b+2c+ h > nxg/(nxg + nry + nxa) — (nyo + ny1)/(nyo + ny1 + ny2) + (nzo + nzy +
nzs)/(nzo + nz1 + nze + nzsg) = Cs.

Constraint 7: sincet = X1+ Xo —2Yo—Y1+221+ 2o+ Zp —a—2c—3b—2g+e—2h > 0 we get

a+2c+3b+2g — e+ 2h < (nz1 + nxg)/(nzo + nr1 + nxa) — (2nyo + ny1)/(nyo + ny1 + ny2) +
(2nz1 + nze + nzy)/(nzp + nzy + nzg + nzs) = C.

Constraint 8: since n = Xo/2 + Yy — Zog — 271 — Zo+a+2b+c+ 29+ h —e > 0 we get

a+2b+c+29+h—e> —nxe/(nzy+ nxy + nxe) — nyo/(nyo + ny1 + ny2) + (nzo + 2nz; +
nza)/(nzo + nzi + nze + nzz) = Cs.

We summarize the constraints:

a<C,b+9g<Cy,Cs5<a+b+g—ea+bt+c+e<Cha+b+c+g+h—e<Cs,

Ce<a+2b+2c+h,a+2c+3b+29g—e+2h<C7,Cs<a+2b+c+29+h—e.

We have that Cs < 0 for 7 > 0.683 and Cs > 0 otherwise. We have that C'3, Cg < 0 for all 7.

We have that for all 7, nb = nc > 1 so we should maximize b + c¢. We have that for 7 < 0.767, ng < 1
and so we should minimize g, and for 7 > 0.767, ng > 1 and we should maximize g.

We also have that 0 < Cy < Cy < C5 < C7.

Suppose that 7 > 0.767 (and 7 < 0.9). We want to maximize b, ¢, g. Since Cs is the smallest of the
upper bounds, let’s set b + g = Co. We’ll substitute b = C5 — g and add g < Cs.

aSCl,ggCg,Cg—Cgga—e,a—g—i-c—i-eéC4—02,a+c+h—e§C'5—Cg,

Ce—205<a—-29+2c+h,a+2c—g—e+2h<C7;—-3Cy,Csg—2Cy <a+c+h—e.
Since all inequalities involving upper bounds that include a or h, include a or i on the left of the < sign
and since a and h do not influence our bound on V57, we attempt to set « = 0 and h = 0.
g<Ce<Cy—C3,—g+ct+e<Cy—Czc—e<C5— 0y,
Ce—20C5 < —2g+4+2c,2c—g—e < C7 —3C,Csg —2C <c—e.

The new upper bounds involving ¢ are Cy — Cy < C5 — Cy < (C7 — 3C5)/2. To maximize c in the
constraint with upper bound Cy — Co, we set e = 0 and g = ¢ + Cy — (4. The constraints now become:
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C§C4,0§02—C3,C4—02SC,C§C5—02,
Cg <204,0 < C7—20C9 — Cy4,Cg — 205 < c.

We see that Co — C5 > 0, 2Cy — Cg > 0 and C7 — 2Cy — Cy > 0. The upper bounds on ¢ are
C4 < Cs — (5. The lower bounds are C's — 2C5 < 0, and Cy — Cy < Cy4. Hence we can just set ¢ = Cy.
The final settingisa = 0,6 =0,c = Cy,e = 0,9 = Co, h = 0.

Suppose now that 7 < 0.767. Since we need to minimize g, let’s set g = 0. The constraints become

a<(C,b<Cy,C3<a+b—ec,a+b+c+e<Cy,a+b+c+h—e<C(Cs,

Cs<a+2b+2c+h,a+2c+3b—e+2h<C7,Cs5<a+2b+c+h—e.

Now we need to maximize b + ¢ as before. We proceed just as before: We set b = Co:
a<(C,C3—-Cy<a—e,at+c+e<Cy—Cha+c+h—e<C5—Cy,

Ce—205<a+2c+h,a+2c—e+2h<C7;—3C,Cs—20C<a+c+h—e.
Wethenseta =e=h =0and c = Cy — (.

0<Cy—C53,0<C5—Cy,0<2C) —C,0<Cr—Cy—2C4,0<Cy+Co —Cs.
One can verify that all constraints are satisfied.

The final settings become a = 0,b = Co,c = Cy — C3,e =0,9g =0,h = 0.

Lemma 27.

V3 V3 1/3 V3 V3 V3 V3 1/3
‘/466 > 2 < 044 +14+ 224 ) < 116 ¥ 035 + 125 +14+ 233 ) >
‘/1%4 2 %%4 ‘/1325 ‘/1%4 V2324 2 V2324
VS Vﬁ V6
< o LB + ‘/1325‘/1%4 + ‘/1%4‘/2%4 +

3 173 \ 1/3
V134V233> %
3 173 1/3
Vi6Voa5 V94

2

<V224V116V035 > ¢ <V035V134V224 ) b <V035V134V224 > d ( V026V125V134) ‘ <‘/1216‘/()2:g5‘/§224 > !
Vi25V134Viy2e Vo44Va233V125 Vo4aV233V125 V116 Vo35 Vo24 VA VELVEs)

Let nwo = Vg /Visy nay = 1, nwy = Vahy/(2Viky), nyo = ViViss/(Vids Vida), ny1 = Vibs/Viby,

nyz = 1, nys = Vihs/(2Vihy), nzo = VidsVisyVide/ (ViieViss Vada) nz1 = VidsVidy nzo = Viy, Vb,
nzg = Vit Viss/2,
Cy = nxo/(nxo+nxy +nwg), Co = nzp/(nzo+nz1 +nze+nzs), Cs = nzo/(nzo+nz1 +nze+nzs) —
nyo/ (nyo +ny1 +ny2 +nys), Cs = (ny1 — nys3)/(2(nyo + ny1 +nyz2 +nysz)) — (Xo + X2/2)/(2(nxo +
nxi + nxe)) + (nzo + nz2)/(2(nzo + nz1 + nza + nzs)), Cs = (nxg + nwa)/(2(nxe + nry + nxa)) —
(nzo + nz2)/(2(nzo + nzy + nzo + nzg)) + (ny1 + ny3)/(2(nyo + ny1 + ny2 + nys)).

Suppose that ¢ = 5. Then the following settings of the variables satisfy the constraints in the above
bound on Vg6 and attempt to maximize it.

o forTt <0.767,a=0,b=C1 —Cs+C5 —Cs,d=Cs — C5 +Cg,e =0, f =Cs, and
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o fort >0.767,a=0,b=C1 —Csg+Co —Cg, d=Cs —Co+Cg,e =0, f =Cho.

Proof. I = 4, J = K = 6 so the variables are a = «ag26,b = p35,¢ = Qoaq,d = Qps3,€ = Qpg2, [ =
a116,9 = 125, = Q134,17 = Q143,J = a152,k = a161,1 = @206, m = a215,1 = Q224,p = i233. The
system becomes
Xo=a+b+ct+d+te,
Xi=f4+g+h+i+j+k,
Xo=2(l+m+n+p),
Yo=e+k+1,
Yi=d+f+5+m,
Yo=a+c+g+i+n,
Y3 =2(b+h+p),
ZOZ(l+f+l,
Zi=b+g+k+m,
Zo=c+e+h+j+n,
Z3:2(d+z+p)
The rank is 9 and the number of variables is 15 so we pick 6 variables, a, b, d, e, f, p, and place them in
A. Now we solve the system:
c=(a+b+c+d+e)—a—-b—-—d—e=Xo—a—b—d—e,
l=(a+f+l)—a—-f=Zy—a—f,
h=0b+h+p)—b—p=Y3/2—b—p,
i=(d+i+p) —d—p=23/2—d—p,
k=(e+k+l)—e—1l=Yo—Zp+a+f—e,
j=d+f+j+m)—d—f+(c+e+th+j+n)—c—e—h—(l+m+n+p) +1+p)/2=
(Y1 —Y3/2—Xo—Xo/2+ Zo+ Zo+2b—2f +2p)/2,
n=(c+e+h+j+n)—c—e—h—j=(Zo—Xo—Y3/2—-Y1+ X9/2—2Zp)/24+a+b+d+ f,
m=(I+m+n+p)—l—n—p=Xo/4Xo/2— Z0/2 — Z2/2+ Y3/4+Y1/2—b—d —p,
9= (b+g+k+m)—b—k—m=Z1+25/24+3Z/2— X3/4—Xo/2=Yo—Y3/4=Y1/2—a+d— f+e+p.
nxo = Vou/Viks,
nry =1,
nws = Vi, /(2Viky),
nyo = V1316V0?§5/(V1325V1%4)’
nyr = Vibs/ Vahas
nys = 1,
nys = Vbs/(2V3hy),
nzo = Vibs Vi Vise/ (Vi Vobs Vaba)s
nz = V1325V1334’
nzy = Visy Vas,
nz3 = ‘/1%4‘/2%3/ 2,

na = Va24Vi16Vo35/(Vias Vi34 Vo2s ),
nb = Vi35Vi34Va24/(Voaa Vo33 Vias),
nd = Vo35V134V24/ (Va4 Vo33 Vias),
ne = VooeVi25Viza/ (Vi Voss Va2a),
nf = I/1216%2i’,5‘6224/(‘/1225vl23;4%226)’
np = 1.
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VS V3 1/3 VS V3 V3 ‘/'22?33 1/3
V46622<0,44+1+ 2?“) 1167035 | "125 4 1 y
V1334 2 V1334 V1525 VI?EM V2324 2 V2324

VS Vﬁ V6
< e + ‘/1325‘/1%4 + ‘/1334‘/2324 +

3 173 \ 1/3
V134V233> %
3 173 1/3
Vi6 Vo35 V94

2

<V224V116V035 > ¢ <V035V134V224 ) b <V035V134V224 > d ( V026V125V134) ¢ <‘/1216‘/()2:;5‘6224 > !
Vi25V134Vo26 VoaaVa33Vias VoaaVa33Vizs V116 V035 V224 V3 VLV

The constraints on the variables are as follows.
Constraint 1: sincec = Xg—a—b—d—e >0,

a+b+d+e<nxy/(nxg+ nry+ nry) = Cy,

Constraint 2: sincel = Zg —a — f > 0,

a+ f <nzy/(nzo + nz1 + nza + nzg) = Co,

Constraint 3: since h = Y3/2 —b—p > 0,

b+p < nys/(nyo + ny1 + ny2 + nys) = Cs,

Constraints 4: since i = Z3/2 —d — p > 0,

d+p < nz3/(nzp + nz1 + nzy + nz3) = Cy,

Constraint 5: since k =Yy — Zg+a+ f —e >0,

a+ f—e>nz/(nzo + nz1 + nza + nzs) — nyo/(nyo + ny1 + nya + nys) = Cs,
Constraint 6: since j = (Y1 — Y3/2 — X — Xo/2+ Zo+ Zo+2b—2f +2p)/2 > 0,

f=b—p < (ny1 —nys3)/(2(nyo +ny1 +ny2 +nys)) — (Xo + X2/2)/(2(nzo +nx1 +nw2)) + (n2o +
nza)/(2(nzo + nz1 + nze + nzsz)) = Cs,

Constraint 7: since n = (Zy — X0 — Y3/2 = Y1 + X9/2 — Zp)/24+a+b+d+ f >0,

a+b+d+ f > (nxg—nxe)/(2(nxo + nxy + nxs)) + (nys + ny1)/(2(nyo + ny1 + ny2 + nys)) +
(nzo —nz2)/(2(nzo + nz1 + nze + nzs3)) = C,

Constraint 8: since m = Xo/4 + Xo/2 — Zo/2 — Z3/2+ Y3/4+Y1/2—b—d—p >0,

b+d+p < (nxo+nx2)/(2(nxo+ nzy+nxs)) — (nzo +nze)/(2(nzo +nz1 +nze +nz3)) + (ny; +
nys)/(2(nyo + ny1 + ny2 +nys3)) = Cs,
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Constraint 9: since g = —Xo/4— X /2—-Yy—Y3/4—-Y1/2+Z1+32Zy/2+ Z2/24+d—a— f+e+p > 0,

a+ f—d—e—p< —(nzo+ nxa)/(2(nxo + nxy + nxe)) — (2nyo + ny1 + nys)/(2(nyo + ny1 +
nys + ny3)) + (3nzg + 2nz1 + nz9)/(2(nzo + nz1 + nze + nzs)) = Cy.

We want to maximize for each choice of 7 the linear function a log na + blog nb+ dlog nd + e log ne +
flog nf under the constraints a, b, d, e, f € [0,1] and

a+b+d+e<Cra+f<Cyb+p<Cs5,d+p<CyCs<a—+f—e,

F—-b—p<CsCr<a+3b+d+ f,b+d+p<Cg,a+f—d—e—p<C(Cy.

***we could take the dual but we’ll just find a feasible solution***
For 7 < 0.767 we get na < 1,nb =nd > 1,ne > 1,nf < 1. Let’sseta + b+ d + e = (] since we
want to maximize b + d, so that b = C; — a — d — e. The constraints become

at+d+e<Cia+f<Cyp—a—d—e<C3—C1,d+p<Cy,Cs<a+f—e,
fta+d+e—p<Ce+C,C7—3C < —2a—3e—2d+f,—a—e+p < Cs—Cr,a+f—d—e—p < (.
Since we want to minimize a + f, set a = e = 0, C5 = f. The constraints become:
d< (1,05 <Cyp—d<C3—Cr,d+p<Cyd—p<Cs+C1—Cs,

d<(=C7+3C1+C5)/2,p< Cy —C,C5 — Cy < d +p.

Since Cy > (5 for 7 < 0.767, we can remove the constraint C5 < (.
We want to maximize d so set d = Cg + C1 — C5 + p.

p<—Cs+C5,0<C3+Cs—Cs,p< (Cy—Cs— C1 4+ C5)/2,

p<(=C7+C1+3C5)/2 —Cgs,p<Cs—C1,(2C5 — Cyg — Cs — C1)/2 < p.

We see that C'5 + Cg — C5 > O forg = 5 and 7 < 0.767.

The upper bounds of pare 0 < Cs—C < —Cs+C5, (C4—Cs—C1+C5) /2, (—C7+C1+3C5) /2—C.
The lower bound for pis (2C5 — C9 — Cs — C1)/2 < Cg — C1, and so we can set p = Cg — (.

The final setting becomes a = 0,0 = C1—Cg+Cs—Cs,d = Cg—Cs+Cs,e =0, f = Cs,p = Cs—C1.

Suppose now that 7 > 0.767. Here ne < 1 and na,nb = nd,nf > 1.

The constraints are

a+b+d+e<Cra+f<Cyb+p<Cs5,d+p<CyCs<a—+f—e,

f—b—p§06,07Sa—i—Sb—l—d—i—f,b—i—d—i—pSCg,a+f—d—e—p§Cg.

Since we are maximizing a + b + d and minimizing e, let’s sete = 0 anda = C; — b — d:
b+d<Cp,f-b-d<Cy—Cpib+p<C3,d+p<Cy,Cs—C1 < f—b—d,

J=-b—p<CsCr—C1<2b+ fib+d+p<Cs,f—-2d—p—-b<Cy—Ci.

Since we are also maximizing f,let’sset f = Cy — C1 + b+ d:

b+d<Cp,Cr —Co<b+d,b+p<C3,d+p < Cy,C5 < Oy,
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d—p<Cs—Co+C,C; —Cy <3b+d,b+d+p<Cs,—d—p < Cy — Ch.

After settinge = 0,a = Cy —b—dand f = Cy — C + b + d, the variable part of our bound on Vg
becomes (nb - nf/na)’*?. Since for ¢ = 5 and 7 > 0.767 we have that nb - nf/na > 1, we still need to
maximize b + d.

Since we are maximizing b + d,setb+d+p = Cg,orp=Cs — b —d:

b+d<C,C1 — Oy <b+d,Cs—C3<d,Cg —Cy <b,C5 <Oy,

b+2d<Ceg—Co+C1+Cs,C7; —Cy <3b+d,b+d<Cg,—Cog+Cy —Cg <b.

The upper bounds on b + d are now C,Cs — Co + C1 + Cs — d, Cs. The smallest out of these is C
(for small d), so let’s set b + d = (', thus setting a = 0. We substitute b = C; — d.

d<C1,0<0y,C3—C3<d,d<Cy —Cg+ Cy,C5 < Oy,
d<Cg—Cy+Cg,d< (301—C7—|—02)/2,d§01—|—09—02+08.

We have that in this interval Co > 0 and Cs — C5 > 0, so we only need to find a setting for d.

The upper bounds for d are C,C; — Cs + Cy, Cg — Co + Cs, (3C1 — C7 4+ C2)/2,C1 4+ Cy — Cy + Cs
and the smallest out of them in this interval is Cs — Cy + Cg > 0. The lower bound on d is Cs — C3 < 0,
so it would be satisfied if we set d = Cg — Cq + Cks.

The final settings become a = 0,0 = Cy — Cg + Cy — Cs,d = Cg — Cy + Cs, e = 0, f = Cy,
p= Cg - Cl.

O

Lemma 28.

Voss | Vit EAN A 3 173 T ¢ A
Vss6 > 2 (Vg, tye, 1> <V026V233 + ViosVigs + VaaaVazs + = > X
333 V233

(V044Vlz5V233 ) c ( Vi16V044 Vo233 > ¢ <V044V125V233 ) '
Vo35 V134V224 V4, Voze VossVizaVaoa )

For g = 5 the above bound is maximized (by obeying all constraints) by the setting c = e =1 = Q.

Proof. Since I = J = 5 and K = 6, the variables are a = «qg26,0 = ap35,¢ = agaa,d = Qps3,€ =
ai16, [ = Q125,9 = @134, h = Q143,71 = au52,J = 206,k = Qo15,1 = Q224, M = Q33,1 = Q42,p =
aos51. The system is

Xo=a+b+c+d,

X1:6+f+g+h+’i>

Xo=j+k+l+m+n+p,

Y0:d+i+j+p’

Yi=ct+e+h+k+n,

Yo=a+b+f+g+l+m,

Zo=a+e+7,

leb—i—f—i—k‘-i-p,

Zo=c+g+i+1l+n,
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The rank is 8 and there are 15 variables, so we pick 7 variables, a, b, ¢, e, f, h, i, and place them into A.
We then solve the system:
d=(a+b+c+d)—a—-b—c=Xo—a—-b—c,
j=(a+e+j)—a—e=Zy—a—e,
m=(d+h+m)—(a+bt+c+d)+a+b+c—h=23/2—Xo+a+b+c—h,
p=(d+i+j+p)—(a+b+c+d)—(a+e+j)+2a+b+c—i+e=Yy—Xo—Zp+2a+b+c—i+e,
k=0b+f+k+p —(d+i+j+p)+(a+b+c+d) +(ate+j)—2b—f—2a—c+i—e=
Z1—-Yo+Xo+Zp—2b— f—2a—c+i—e,
n=(ctet+h+k+n)—(b+f+k+p)+(d+i+j+p)—(a+bt+ct+d)—(a+e+j)—h+20+f+2a—i=
Yi—Z1+Yo—Xo—2Zo—h+2b+ f+2a—1,
g=(e+f+g+h+i)—e—f—h—i=X1—e—f—h—i,
l=(ctg+i+l+n)—(e+f+g+h+i)—(cteth+k+n)+(b+f+k+p)—(d+i+j+p)+(a+b+
ct+d)+(a+e+j)—ct+e+2h+i—20—2a = Zy— X1 - Y1+ 21— Yo+ Xo+ Zp —c+e+2h+i—2b—2a.

nry = ‘/()?35/‘/2%3’
nry = V1334/V2?§3’
nrg =1,

nyYyo = Vo%s5/ ‘/2%3»
ny1 = V1334/ Vz%s’
ny2 =1,

nzp = %3)26%%3’
nz = V1325V2333’
nz = V2324V2?§3’
nzz = Vi /2,

na =1,

nb=1,

nc = VouaVi25Va33/ (Vozs VizaVa2s),
ne = Vi16VoaaVazs/ (Vi Vo2s)s

nf =1,

nh =1,

ni = VoaaViasVazz/ (Vozs VizaVaza).

Finally,

Voss |, Vit M 3 173 T ¢ AN
Vis6 > 2 (Vg, tye, 1> <V026V233 + ViasVigs + VaaaVazs + = > X
333 V233

<V()44V125V233 ) ¢ ( V116 V044 V233 > ¢ <V044V125V233 ) '
Vo35 V134V224 Vi34 Vozs VossVizaVaoa )

Now let’s consider the constraints:
Constraint 1: d = Xg —a — b — ¢ >0, and so
a+b+c< naro/(na:o + nxq —i—nxg) = (1,

Constraint 2: j = Zg — a — e > 0, and so
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a+e <nzy/(nzyp+nz +nzy +nzz) = Coy,

Constraint 3: m = Z3/2 — Xo+a+ b+ c— h > 0, and so
h—a—0b—c<nzs/(nzo+nz + nzy + nz3) — nrg/(nxg + nxy + nry) = Cs,

Constraint4: p=Yy — Xo— Zp+2a+b+c—i+e>0,andso
i—2a—b—c—e < nyo/(nyo+ny1+ny2) —nxo/(nro+nri+nre)—nzo/(nzo+nzi+nze+nzs) = Cy,

Constraint5: k=721 — Yo+ Xg+Zp—2b— f —2a—c+i—e >0, and so
20 +2b+c+e+ f—i < nxy/(nzo + nxy + nxe) —nyo/(nyo + ny1 + ny2) + (nzo +nz1)/(nzo +
nzy + nzy +nzz) = Cs,

Constraint6: n =Y, +Yy— Xo—Zg—Z1 —h+2b+ f+2a—1i > 0,and so
h+i—2a—2b— f < (nyo+ny1)/(nyo+ny1 +ny2) —nzo/(nxo+nzi +nxe) — (nzo+nz1)/(nzo+
nzy + nzy + nzz) = Cg,

Constraint 7: g = X1 —e— f —h — i >0, and so
e+ f+h+i<nxi/(nzo+ nwy + nxg) = C,

Constraint 8: | = Xog— X1 - Y1 Yo+ 2o+ 21 +2Zy —c+e+2h+17— 2b— 2a, and so

2a 4+ 2b+c—e—2h—i < (nxg —nxy)/(nxg + nxy + nxa) — (nyo + ny1)/(nyo + nyr + nyz) +
(nzo + nz1 + nza)/(nzo + nzy + nza + nzz) = Cs.

For each fixed 7 we want to solve the linear program: maximize clog nc + e log ne + ¢ log ni subject to
the following constraints

a+b+c<Ciya+e<Cy,h—a—-b—c<Cs,i—2a—b—c—e<(Cy,

20 +2b+c+e+f—i<Cs,h+i—2a—2b—f < Cg, e+ f+h+i<C7,2a+2b+c—e—2h—1i < Cs.
Now, nc = ni < 1,ne < 1 for all 7 and so we want to minimize ¢ + ¢ and e.
Suppose we set ¢ = e = ¢ = 0. The constraints become
a+b<Ci,a<Cy,h—a—b<Cs,—2a—b<C(Cy,
20 +2b+ f <Cs,h—2a—2b— f < Cg, f+h <C7,2a+ 20— 2h < Cs.

To satisfy the rest, we cansetb = h = f = 0:
a S Cl7a S 027_03 S a, _614/2 S a,

a < 05/2,—06/2 < a,O < 07,61 < 08/2-

C7 > Oforall 7.

The upper bounds on a are C1, Ca, C5/2,Cg/2 and Cy > 0 is the smallest out of them.

The lower bounds on a are —C'3, —C4/2, —Cg /2. Out of them only —C4 /2 is positive and we also have
—Cy/2 < C5. Hence we can set a = Co.

The final settings become a = Cy,b=c=e=f=h =i =0.
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