On the equation $x^{n}+y^{n}=z^{n} 1$

A. David Christopher

Abstract

We prove the non existence of non zero integral solution to the equation $x^{n}+y^{n}=z^{n}$ for few cases by categorizing the triplet (x, y, z).

2000 Mathematics Subject Classification: 11D41.
Key words and phrases: Fermat's last theorem, Integral solution.

1 Introduction

Fermat's last theorem states that the equation:

$$
\begin{equation*}
x^{n}+y^{n}=z^{n} \tag{1}
\end{equation*}
$$

(where n is a positive integer) has no non-zero integral solution x, y, z when n exceeds 2.

This theorem was coined by mathematician Fermat, he himself has not given any formal proof for this theorem, but he proved this result for the case $n=4$ using the method of infinite descendant. Using a similar method, Euler proved the theorem for $n=3$ (see [1]). Like wise many mathematicians have proved particular cases of this theorem (for recent one see [4]). However no correct proof was found for 357 years when Andrew wiles finally published a proof using very deep methods in 1995.(see [2], [3])

In this note we prove few cases of Fermat's last theorem by categorising the triplet (x, y, z) involved in equation(1)

[^0]
1.1 Alternate form of Fermat's last theorem

Equation (1) is equivalent to the following set of equations:

$$
\begin{align*}
& (4 x+1)^{n}+(4 y+1)^{n}=(2 z)^{n} \tag{2}\\
& (4 x+3)^{n}+(4 y+3)^{n}=(2 z)^{n} \tag{3}\\
& (4 x+1)^{n}+(4 y+3)^{n}=(2 z)^{n} \tag{4}\\
& (4 x+1)^{n}+(2 y)^{n}=(4 z+1)^{n} \tag{5}\\
& (4 x+1)^{n}+(2 y)^{n}=(4 z+3)^{n} \tag{6}\\
& (4 x+3)^{n}+(2 y)^{n}=(4 z+1)^{n} \tag{7}\\
& (4 x+1)^{n}+(2 y)^{n}=(4 z+3)^{n} \tag{8}
\end{align*}
$$

where x, y, z are integer variables and n is a positive integer. Therefore proving Fermat's last theorem is equivalent to proving the non existence of non zero integral solution of the equations (2) to (8) when n exceeds 2 .

2 Main results

2.1 Lemmas

Lemma $1 \frac{1+3^{2 k}}{2}$ is always an odd integer.
Proof. First we prove the relation $3^{2 k} \equiv 1 \bmod 4$. This relation is true when $k=1$. Assume that the relation is true for $k=1,2, \ldots, r$. Consider $3^{2(r+1)}=3^{2} 3^{2 r} \equiv$ $1 \bmod 4$. Hence the relation is true when $k=r+1$, so by induction priciple this relation is true for any positive integer k. Now consider $3^{2 k}+1=\left(3^{2 k}-1\right)+2=$ $4 m+2=2(2 m+1)$ for some positive integer m. This establishes the lemma.

Lemma $2 \frac{1+3^{2 k-1}}{4}$ is always an odd integer.
Proof. Proof is immediate from the expression

$$
3^{2 k-1}+1=(3+1)\left(1-3+3^{2}-\cdots+3^{2 k-2}\right)
$$

Lemma $3 \frac{3^{2 k-1}-1}{2}$ is always an odd integer.
Proof. Proof is immediate from the expression

$$
3^{2 k-1}-1=(3-1)\left(1+3+3^{2}+\cdots+3^{2 k-2}\right)
$$

2.2 Theorems

Theorem 1 Equation(2) and (3) has no integer solution if $n \geq 2$
Proof. Consider the following binomial expansion

$$
(4 n+1)^{k}+(4 m+1)^{k}=\sum_{i=0}^{k-1}\binom{k}{i}\left((4 n)^{k-i}+(4 m)^{k-i}\right)+2
$$

which equals 2 times an odd integer for any integers m, n and positive integer k.This gives us the inferration that: 2 divides $(4 n+1)^{k}+(4 m+1)^{k}$, but no other higher powers of 2 divides $(4 n+1)^{k}+(4 m+1)^{k}$, in similar way we can show that 2 divides $(4 n+3)^{k}+(4 m+3)^{k}$, but no other higher powers of 2 divides $(4 n+3)^{k}+(4 m+3)^{k}$, this proves the theorem.

Theorem 2 Equation(4) has no integer solution if n is even, and in case when $n \geq$ 3 is odd it has no integer solution if the variables x, y is of the form $x=2 x^{\prime}, y=2 y^{\prime}$ or $x=2 x^{\prime}-1, y=2 y^{\prime}-1$

Proof. Consider the following binomial expansion

$$
\begin{gathered}
(4 n+1)^{k}+(4 m+3)^{k}=\sum_{i=0}^{k-1}\binom{k}{i}\left((4 n)^{k-i}+(4 m)^{k-i} 3^{i}\right)+\left(1+3^{k}\right) \\
=2(\text { an odd integer })
\end{gathered}
$$

for any integer m, n when k is even (by lemma1). From this we conclude that 2 divides $(4 n+1)^{k}+(4 m+3)^{k}$ and no other higher powers of 2 divides $(4 n+1)^{k}+$ $(4 m+3)^{k}$. This proves the first part of the theorem. If n and m belongs to the same parity and $k \geq 3$ is odd, then from the above expansion we conclude that 2^{2} divides $(4 n+1)^{k}+(4 m+3)^{k}$ (by lemma 2$)$ and no other higher powers of 2 divides $(4 n+1)^{k}+(4 m+3)^{k}$. This proves the second part of the theorem.

Theorem 3 Equation (5) and (8) has no integer solution if the following conditions are satisfied (i) $n \geq 3$ is odd and (ii) if the variables x, z is of the form $x=2 x^{\prime}-1, z=$ $2 z^{\prime}$ or $x=2 x^{\prime}, z=2 z^{\prime}-1$

Proof. Consider the following binomial expansion,

$$
(4 n+1)^{k}-(4 m+1)^{k}=\sum_{i=0}^{k-1}\binom{k}{i}\left((4 n)^{k-i}-(4 m)^{k-i}\right)
$$

From this expansion, we conclude that: if n and m belongs to different parity and $k \geq 3$ is odd then 2^{2} divides $(4 n+1)^{k}-(4 m+1)^{k}$ and no other higher powers of 2 divides $(4 n+1)^{k}-(4 m+1)^{k}$, this proves the first part of the theorem, analogous proof goes to the second part of the theorem.

Theorem 4 Equation (6) and (7) has no integer solution if $n \geq 3$ is odd.
Proof. Consider the following binomial expansion,

$$
(4 n+3)^{k}-(4 m+1)^{k}=\sum_{i=0}^{k-1}\binom{k}{i}\left((4 n)^{k-i} 3^{i}-(4 m)^{k-i}\right)+\left(3^{k}-1\right)
$$

From this expansion we conclude that: if $k \geq 3$ is odd then 2 divides $(4 n+3)^{k}-$ $(4 m+1)^{k}$ and no other higher powers of 2 divides $(4 n+3)^{k}-(4 m+1)^{k}$ (by lemma $3)$. Thus we got the first part of the theorem. An analogous proof goes to the second part of the theorem.

References

[1] L. Euler, Theorematum quorundam arithmeticorum demonstrationes, Commentarii academiae scientiarum petropolintanae, 10, 1747, 125-146.
[2] G. Fatlings, The proof of Fermat's last theorem by R. Taylor and A. Wiles, Notices of the AMS, 42(7), 1995, 743-746.
[3] A. Wiles, Modular elliptic curves and Fermat's Last theorem, Annals of Mathematics 141(3), 1995, 443-551.
[4] E. Lampakis, In gaussian integers $x^{3}+y^{3}=z^{3}$ has only trivial solutions- A new approach, Electronic Journal of Combinatorial Number Theory, 8, 2008, Article 32.

A. David Christopher

The American College
Department of Mathematics
Madurai, Tamilnadu state, India
e-mail: davchrame@yahoo.co.in

[^0]: ${ }^{1}$ Received 19 October, 2009
 Accepted for publication (in revised form) 02 April, 2011

