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Abstract

We prove the non existence of non zero integral solution to the equation
xn + yn = zn for few cases by categorizing the triplet (x, y, z).

2000 Mathematics Subject Classification: 11D41.

Key words and phrases: Fermat’s last theorem, Integral solution.

1 Introduction

Fermat’s last theorem states that the equation:

(1) xn + yn = zn

(where n is a positive integer) has no non-zero integral solution x, y, z when n exceeds
2.

This theorem was coined by mathematician Fermat, he himself has not given any
formal proof for this theorem, but he proved this result for the case n = 4 using the
method of infinite descendant. Using a similar method, Euler proved the theorem
for n = 3 (see [1]). Like wise many mathematicians have proved particular cases
of this theorem (for recent one see [4]). However no correct proof was found for
357 years when Andrew wiles finally published a proof using very deep methods in
1995.(see [2], [3])

In this note we prove few cases of Fermat’s last theorem by categorising the
triplet (x, y, z) involved in equation(1)
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1.1 Alternate form of Fermat’s last theorem

Equation (1) is equivalent to the following set of equations:

(2) (4x+ 1)n + (4y + 1)n = (2z)n

(3) (4x+ 3)n + (4y + 3)n = (2z)n

(4) (4x+ 1)n + (4y + 3)n = (2z)n

(5) (4x+ 1)n + (2y)n = (4z + 1)n

(6) (4x+ 1)n + (2y)n = (4z + 3)n

(7) (4x+ 3)n + (2y)n = (4z + 1)n

(8) (4x+ 1)n + (2y)n = (4z + 3)n

where x, y, z are integer variables and n is a positive integer. Therefore proving
Fermat’s last theorem is equivalent to proving the non existence of non zero integral
solution of the equations (2) to (8) when n exceeds 2.

2 Main results

2.1 Lemmas

Lemma 1 1+32k

2 is always an odd integer.

Proof. First we prove the relation 32k ≡ 1 mod 4. This relation is true when k = 1.
Assume that the relation is true for k = 1, 2, ..., r. Consider 32(r+1) = 3232r ≡

1 mod 4. Hence the relation is true when k = r + 1, so by induction priciple this
relation is true for any positive integer k. Now consider 32k + 1 = (32k − 1) + 2 =
4m+ 2 = 2(2m+ 1) for some positive integer m. This establishes the lemma.

Lemma 2 1+32k−1

4 is always an odd integer.

Proof. Proof is immediate from the expression

32k−1 + 1 = (3 + 1)(1 − 3 + 32 − · · · + 32k−2)

Lemma 3 32k−1
−1

2 is always an odd integer.

Proof. Proof is immediate from the expression

32k−1
− 1 = (3− 1)(1 + 3 + 32 + · · · + 32k−2)
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2.2 Theorems

Theorem 1 Equation(2) and (3) has no integer solution if n ≥ 2

Proof. Consider the following binomial expansion

(4n + 1)k + (4m+ 1)k =

k−1
∑

i=0

(

k

i

)

(

(4n)k−i + (4m)k−i

)

+ 2

which equals 2 times an odd integer for any integers m,n and positive integer k.This
gives us the inferration that: 2 divides (4n + 1)k + (4m + 1)k, but no other higher
powers of 2 divides (4n+1)k +(4m+1)k, in similar way we can show that 2 divides
(4n+3)k+(4m+3)k, but no other higher powers of 2 divides (4n+3)k+(4m+3)k,
this proves the theorem.

Theorem 2 Equation(4) has no integer solution if n is even, and in case when n ≥

3 is odd it has no integer solution if the variables x, y is of the form x = 2x′, y = 2y′

or x = 2x′ − 1, y = 2y′ − 1

Proof. Consider the following binomial expansion

(4n+ 1)k + (4m+ 3)k =
k−1
∑

i=0

(

k

i

)

(

(4n)k−i + (4m)k−i3i
)

+ (1 + 3k)

= 2(an odd integer)

for any integer m,n when k is even (by lemma1). From this we conclude that 2
divides (4n + 1)k + (4m + 3)k and no other higher powers of 2 divides (4n + 1)k +
(4m + 3)k. This proves the first part of the theorem. If n and m belongs to the
same parity and k ≥ 3 is odd, then from the above expansion we conclude that 22

divides (4n+1)k + (4m+3)k (by lemma 2) and no other higher powers of 2 divides
(4n+ 1)k + (4m+ 3)k. This proves the second part of the theorem.

Theorem 3 Equation (5) and (8) has no integer solution if the following conditions
are satisfied (i) n ≥ 3 is odd and (ii) if the variables x, z is of the form x = 2x′−1, z =
2z′ or x = 2x′, z = 2z′ − 1

Proof. Consider the following binomial expansion,

(4n+ 1)k − (4m+ 1)k =

k−1
∑

i=0

(

k

i

)

(

(4n)k−i
− (4m)k−i

)

From this expansion, we conclude that: if n and m belongs to different parity and
k ≥ 3 is odd then 22 divides (4n+ 1)k − (4m+ 1)k and no other higher powers of 2
divides (4n + 1)k − (4m + 1)k, this proves the first part of the theorem, analogous
proof goes to the second part of the theorem.
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Theorem 4 Equation (6) and (7) has no integer solution if n ≥ 3 is odd.

Proof. Consider the following binomial expansion,

(4n+ 3)k − (4m+ 1)k =
k−1
∑

i=0

(

k

i

)

(

(4n)k−i3i − (4m)k−i

)

+ (3k − 1)

From this expansion we conclude that: if k ≥ 3 is odd then 2 divides (4n + 3)k −

(4m+1)k and no other higher powers of 2 divides (4n+3)k − (4m+1)k (by lemma
3).Thus we got the first part of the theorem. An analogous proof goes to the second
part of the theorem.
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