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The term ”chi-square” refers both to a statistical distribution and
to a hypothesis testing procedure that produces a statistic that is
approximately distributed as the chi-square distribution. In this
entry the term is used in its second sense.

PEARSON’S CHI-SQUARE

The original chi-square test, often known as Pearson’s chi-square, dates from
papers by Karl Pearson in the earlier 1900s. The test serves both as a ”goodness-
of-fit” test, where the data are categorized along one dimension, and as a test for
the more common ”contingency table”, in which categorization is across two or
more dimensions. Voinov and Nikulin, this volume, discuss the controversy over
the correct form for the goodness of fit test. This entry will focus on the lack of
agreement about tests on contingency tables.

In 2000 the Vermont State legislature approved a bill authorizing civil unions.
The vote can be broken down by gender to produce the following table, with the
expected frequencies given in parentheses. The expected frequencies are computed
as Ri × Cj/N, where Ri and Cj represent row and column marginal totals and N
is the grand total.

Vote

Yes No Total

Women
35
(28.83)

9
(15.17)

44

Men
60
(66.17)

41
(34.83)

101

Total 95 50 145

The standard Pearson chi-square statistic is defined as

χ2 =
∑∑ (Oij − Eij)2

Eij
=

(35− 28.83)2

28.83
+ · · · +

(41− 34.83)2

34.83
= 5.50

where i and j index the rows and columns of the table. (For the goodness-of-fit
test we simply drop the subscript j.) The resulting test statistic from the formula
on the left is approximately distributed as χ2 on (r− 1)(c− 1) degrees of freedom.
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The probability of χ2 > 5.50 on 1 df = .019, so we can reject the null hypothesis
that voting behavior is independent of gender. (Pearson originally misidentified the
degrees of freedom, Fisher corrected him, though Pearson long refused to recognize
the error, and Pearson and Fisher were enemies for the rest of their lives.)

LIKELIHOOD RATIO CHI-SQUARE

Pearson’s chi-square statistic is not the only chi-square test that we have.
The likelihood ratio chi-square builds on the likelihood of the data under the null
hypothesis relative to the maximum likelihood. It is defined as

G2 = 2
∑[

Oij log
Oij

Eij

]
= 2
[
35 ln

35
28.83

+ 9 ln
9

15.17
+ 60 ln

60
66.17

+ 41 ln
41

34.83

]
= 5.81

This result is slightly larger than the Pearson chi-square of 5.50. One advantage of
the likelihood ratio chi-square is that G2 for a large dimensional table can be neatly
decomposed into smaller components. This can not be done exactly with Pearson’s
chi-square, and G2 is the usual statistic for log-linear analyses. As sample sizes
increase the two chi-square statistics converge.

SMALL EXPECTED FREQUENCIES

Probably no one would object to the use of the Pearson or likelihood ratio chi-
square tests for our example. However, the chi-square statistic is only approximated
by the chi-square distribution, and that approximation worsens with small expected
frequencies. When we have very small expected frequencies, the possible values of
the chi-square statistic are quite discrete. For example, for a table with only 4
observations in each row and column, the only possible values of chi-square are 8,
2, and 0. It should be clear that a continuous chi-square distribution is not a good
match for a discrete distribution having only 3 values. The general rule is that the
smallest expected frequency should be at least five. However Cochran (1952), who
is generally considered the source of this rule, acknowledged that the number ”5”
seems to be chosen arbitrarily.

Yates proposed a correction to the formula for chi-square to bring it more
in line with the true probability. However, given modern computing alternatives,
Yates’ correction is much less necessary and should be replaced by more exact
methods.

For situations in which we do not satisfy Cochran’s rule about small expected
frequencies, the obvious question concerns what we should do instead. This is an
issue over which there has been considerable debate. One of the most common
alternatives is Fisher’s Exact Test (see below), but even that is controversial for
many designs.
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ALTERNATIVE RESEARCH DESIGNS

There are at least four different research designs that will lead to data forming
a contingency table. One design assumes that all marginal totals are fixed. Fisher’s
famous ”tea-tasting” study had four cups of tea with milk added first and four with
milk added second (row totals are fixed). The taster had to assign four cups to
each guessed order of pouring, fixing the column totals. The underlying probability
model is hypergeometric, and Fisher’s exact test (1934) is ideally suited to this
design and gives an exact probability. This test is reported by most software for
2× 2 tables, though it is not restricted to the 2× 2 case.

Alternatively we could fix only one set of marginals, as in our earlier exam-
ple. Every replication of that experiment would include 44 women and 101 men,
although the vote totals could vary. This design is exactly equivalent to comparing
the proportion of ”yes” votes for men and women, and it is based on the binomial
distribution. The square of a z-test on proportions would be exactly equal to the
resulting chi-square statistic. One alternative analysis for this design would be to
generate all possible tables with those row marginals and compute the percentage
of obtained chi-square statistics that are as extreme as the statistic obtained from
the actual data. Alternatively, some authorities recommend the use of a mid-p
value, which sums the probability of all tables less likely than the one we obtained,
plus half of the probability of the table we actually obtained.

For a different design, suppose that we had asked 145 Vermont citizens to
record their opinion on civil unions. In this case neither the Gender nor Vote totals
would be fixed, only the total sample size. The underlying probability model would
be multinomial. Pearson’s chi-square test would be appropriate, but a more exact
test would be obtained by taking all possible tables (or, more likely, a very large
number of randomly generated tables) with 145 observations and calculating chi-
square for each. Again the probability value would be the proportion of tables with
more extreme outcomes than the actual table. And, again, we could compute a
mid-p probability instead.

Finally, suppose that we went into college classrooms and asked the students
to vote. In this case not even the total sample size is fixed. The underlying
probability model here is Poisson.

Computer scripts written in R are available for each model with a fixed total
sample size at
http://www.uvm.edu/~dhowell/StatPages/chi-square-alternatives.html.

SUMMARY

Based on a large number of studies of the analysis of contingency tables,
the current recommendation would be to continue to use the standard Pearson
chi-square test whenever the expected cell frequencies are sufficiently large. There
seems to be no problem defining large as ”at least 5.” With small expected frequen-
cies Fisher’s Exact Test seems to perform well regardless of the sampling plan, but
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randomization tests adapted for the actual research design, as described above, will
give a somewhat more exact solution. Recently Campbell (2007) carried out a very
large sampling study on 2×2 tables comparing different chi-square statistics under
different sample sizes and different underlying designs. He found that across all
sampling designs, a statistic suggested by Karl Pearson’s son Egon Pearson worked
best in most situations. The statistic is defined as χ2 N

N − 1
. (For the justification

for that adjustment see Campbell’s paper.) Campbell found that as long as the
smallest expected frequency was at least one, the adjusted chi-square held the Type
I error rate at very nearly α. When the smallest expected frequency fell below 1,
Fisher’s Exact Test did best.
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