All of thermodynamics is based upon three statements of fact, or
laws. None of the three can be “proved” ... yet no exception to any of them
has ever been observed. The order of the laws is fixed by tradition, and
reference to any of them by name conjures up specific ideas and
limitations. The laws are:

The first law of thermodynamics...”Energy is conserved.”

Specifically, this means the total energy of the universe is a
constant, i.e., energy cannot be created nor can it be destroyed. It can,
however, be manipulated. For example, we can put heat into an engine and
cause it to do work. Heat and work, in fact, are the two most common
ways to interpret energy.

Early in the studies of this field, it was found that not all of the
heat (“random” energy) could be converted to work (“directed” energy). IF
we think of the engine as being “the system” and heat (Q) and work (W) as
appearing and disappearing in the rest of the universe (“the
surroundings”), then the difference between the two quantities must be
surely be somewhere, that is, it must be inside the engine.

] _ . We would say
that we have increased the internal energy of the system, U (or in some
textbooks, E). The equation that represents this fact is

AU = IQL, - Wiy,

where the “bars” about each quantity represent absolute magnitudes.

Because the discipline was brought to maturity during the industrial
revolution, there is particular interest in engines (or “systems”) that do
work by the expansion and compression of pistons, what is commonly
called pressure-volume work, or PV-work. In these systems, an applied
pressure leads to an increase in volume of the fluid (usually air) within
the piston, moving the piston forward and driving the various components
attached to the piston head into motion.




- State functions versus Path functions:

State functions: the internal energy is an example of what is called a
“state function.” It has a magnitude dependent only upon the state
parameters, and not upon the particular order in which a process is
carried out. Specifically, the internal energy of the fluid within a piston
is composed of its kinetic energy (the energy of motion) and the potential
energy (the energy of attraction):

U=KE + PE

Let us say that we have pure carbon monoxide as our fluid, not a
mixture of nitrogen and oxygen, which we refer to as “air.” It will make
it a little easier for us to speak of the specific properties of a fluid.
Within the piston, the individual molecules are translating, rotating, and
vibrating. Any change of a state function, say the temperature, can alter
the speed of the molecule (translation), the period of revolution
(rotation), and the frequency of movement within the molecule of the
individual atoms with respect to one another (vibration),

KE = KEirans + KEfor + KEyip

Physics has provided an equation for each one of these motions of
nitrogen, i.e.,

KEirans = 172 m V2
KEot = 12 | w?

KEVib 12 k x2

where, m = mass of the molecule
I = moment of inertia of the molecule
= vibrational force constant of the molecule

k

v = linear velocity of translation of the molecule

w = angular velocity of the rotation of the molecule
X

= amount of linear displacement of the atoms about center of the bond length between them

The mass, moment of intertia, and force constant of such a molecule
is unique to that molecule and can be pulled out of a table, but v, ©, and x
can vary with a change in a state paramenter, such as the temperature. |If
we increase the temperature, while holding the pressure and volume
constant, the linear velocity, the angular velocity, and the amount of
displacement of the atoms within the molecule with respect to one
another will increase as well, and the kinetic energy will go up.




Similar equations exist for the potential energy. The atoms will be
attracted to the earth (where Newton’s law of gravitation applies) and to
one another. The change in distance from the center of the earth is so
small, relatively, for each molecule that we normally ignore the change in
internal energy due to Newton’s law, but such is not the case for the
attraction between the molecules.

Because oxygen and carbon have
different electronegativities, the electrons forming the bond between
them spend more time around oxygen than around carbon. Up close and
personal, there appears to be a slight excess of “negative” charge on
oxygen and a subsequent “positive” charge on carbon. This separation
leads to what is called the permanent dipole moment of carbon monoxide,
once again specific for the molecule and available in tables. The energy of
attraction (PE) between molecules is a variation on Coulomb’s law of
attraction between charged ions, which is applicable to solids, solutions,
and plasmas.

Suffice to say that this energy of attraction is directly
proportional to the dipole moment squared and inversely porportional to
the distance squared between the two molecules. Thus the higher the
dipole moment and the shorter the distance between the molecules, the
stronger the attraction and the higher the potential energy.

This is why
real gases appear to be “ideal” in a large container, for the potential
energy drops off sharply with distance and the kinetic energy dominates.
If further, the molecule has little or no internal structure (rotation and
vibration almost disappear), then translation alone controls the kinetic
energy.

Since an “ideal” gas is a point mass and has no interactions
(mimicked by an inert gas like neon), its total internal energy, U, is simply

U= KE + PE = KEay = 12m V2




Path functions: unlike the internal energy, both the heat and the work
appearing and disappearing in the surroundings do depend upon how the
process is carried out. As far as a “system” is concerned, neither heat
nor work even exist until a process is carried out. They are part of the
surroundings, and unlike the internal energy, they do not impact the
system’s world until a process occurs. For that reason, we do not speak of
a “change” in heat or a “change” in work, but simply describe them as
specific amounts. A system possesses an internal energy; it does not
possess “heat” or “work.”

Heat and work belong to the surroundings.

The system may, however, receive heat or have work done on it and give
off heat or do work.

The amount of heat, then, must have a definition, and
that definition is controlled by two things, namely, a difference in
temperature and the ability of some object to absorb the heat that is
passed. If two objects possess the same temperature, then heat cannot
be exchanged between them. The greater the difference between the two
objects, the larger the amount of heat that can be exchanged...if indeed the
colder object is capable of accepting heat. A metal has a high ability to
accept heat; asbestos has a low ability to accept heat. We call this
ability to accept heat the heat capacity (C) of the object, and the
pertinent definition is

Q = CAT.

If the system gives off this heat, energy is lost from the system and we
assign a “negative” value to the magnitude. We say the process is
exothermic, i.e., “heat out.” If the system accepts heat, energy is
gained, and we assign a “positive” value to the magnitude. Such a process
is endothermic, i.e., “heat in.”

Note that we must consciously assign a
positive or negative sign to this quantity.




In the case of a pure material,
at a given pressure, temperature, and volume, the heat capacity depends
only upon the amount of material present. We represent this by,

Q = m Gy AT,

where m = mass of material
Csp = specific heat of the material.

Chemists like to think of moles of material rather than masses of
material, so it is convenient for us to express the heat capacity to reflect
this. We will pull off a simple math stunt by multipling by “one” in the
form of (MM/MM), where MM is the molecular mass (or molecular weight)
of the material.

C = mC, = (M/MM) (MMxCg) = nC

where C is called the molar heat capacity. Again, this is a specific table
value at a given T, P, and V.

Note that we continue to refer to amount of material, temperature,
pressure, and volume. In fact, for the systems we will study, these are
the four parameters that will always define the “state” of a system. They
are the “state variables:” any function that depends only upon them is
called a “state function” and any equation that depends only upon them
is called an “equation of state.”

] Probably the most obvious example of
an equation of state is the ideal gas equation,

PV = nRT.




Similarly, work must have a definition, and again we turn to physics,
W = force x change in distance. = f Ad

We (the surroundings) can exert as much force against a wall as we want,
but if the wall (the system) does not move, no work has been done on the
system. As with heat, we must be able to tell whether the system does
work or has work done on it.

Unlike work, we will build this into the
definition. If the system does work, energy is lost and W must be
negative. If work is done on the system, energy is gained and W must be
positive. This is easily kept track of by simply placing a “negative” sign
in front of the definition for W,

W = -fAd.

If Ad is positive, then W is automatically negative and the system does
work.

With this in mind, we will use the more common form of the first law
found in textbooks,

AU = Q + W = CAT - fAd.

The heat, Q, must still be assigned a positive or negative value, but W will
take care of itself.

PV-work: As we stated at the onset, the early thermodynamicists were
particularly interested in the work done by and on a piston. Typically, a
constant external pressure is exerted on the piston head, and a heated
fluid causes the piston head to move forward. By definition, the external
pressure on the piston head is given by the force exerted spread across the
area of the piston head, that is,

Pext = f/A, or f = PextXA-




If we place this back into the equation,

W = - (Pt X A) X Ad.
We call this change in distance for a piston head the “stroke.” The fluid
(the system) will push against the piston head, increasing the “stroke”
and doing work. Again we will re-group the terms in the equation, to yield

W = - P x (A X Ad).

Obviously, the term (A x Ad) represents a change in volume for the fluid,
and we can recast the equation as

Weystem = - Pext AV, and the first law becomes
AU = Ufina = Uinitial = Q - Pext AV.

Ufinal - Uinitial = Q = Pext (Vﬁnal - Vinitial)-




The Enthalpy: this early work on pistons revealed a surprising resuilt.
To show this, we will rearrange the first law to solve for the heat, Q,

Q = AU + Pgyi AV = Usinal = Uinitial + Pext (Vsinal = Vinitia)
Q = Ufinai = Uinitial + Pext Viinal = PextVinitial
Q= (Ufinal + Pext Vfinal) - (Uinitial + l:‘ext Vinitial)

Since the external pressure is constant (an isobaric process) and the
same for both the initial and final states, we could write,

Q= (Ufinal + Pﬁnal Vfinal) - (Uinitial + Pinitial Vinitial)'

Notice that everything on the right-hand-side is either a state function (U)
or a combination of state variables (Pand V). This is characteristic of an
“equation of state”, and whatever it describes is a “state function.”

The thermodynamicists named this term in parenthesis the enthalpy
(from the Greek work, enthalpe, “to heat”) and gave it the symbol, H.

H=U~+ PV,
such that at constant pressure,

Q = Hgpa - Hinitiat = AH = nCp AT

Thus, by restricting the path (only at constant pressure), they had changed
a “path” function into a “state” function.

More surprising, as they studied other systems, this same quantity
was found to be a state function for them as well.




With this in mind, they
considered the possibility of holding the volume constant (an isochoric
process),

Q = AU + f Ad.

Now it does not matter whether the force applied is constant or variable,
there is no change in the distance if there is no change in volume. The
second term on the right-hand-side is zero, and we obtain

QV= AU = nEVAT

We have restricted the path (only at constant volume) and again changed a
“path” function into a “state” function.

Calorimitry: these same thermodynamicists immediately applied these
ideas to the heat given off by the combustion of various fuels, particularly
the hydrocarbons. The hydrocarbon was introduced into a piston with
excess pure oxygen, so that carbon dioxide and water were the only
products. The piston was immersed in water and combustion initiated by
a spark. The heat given off passed into the water in a thermally-insulated
container (so that there was no heat leak into the larger surroundings) and
the temperature increase of the water measured. Since specific heat
capacities were based upon water, amounts of heat released into a known
mass of water by the combustion could be measured.

Later, they learned
to calibrate these containers, known as calorimeters, to include the
heat absorbed by the piston, the walls of the container, the thermometer,
and any stirrers necessary to insure even distribution of the heat. Here,
they simply referred to the total heat capacity of that particular
calorimeter, C_,, and needed only to measure the temperature change.

Qabsorbed = Ccal AT ca




If the piston was allowed to expand or contract against a constant
external pressure, then

AHeomb = = Qabsorbed ) = ~ Ceal ATcal

If instead, the piston was not allowed to expand (constant volume), the
heat evolved is the change in the internal energy, ’

AUcomp = - Qabsorbed v T ° Ceal ATcal

This latter type of calorimeter (AV = 0) is called a “bomb” calorimeter.
Obviously, nothing keeps us from studing other reactions of special
interest, and tables were put together for heats of atomization, heats of
neutralization, heats of formation (the formation of a compound from its
elements), heats of vaporization, etc.

The first law has given us two state functions, U and H, and shown
how they are related to two path functions, Q and W. During the study, it
was found that even if a process were carried through a cycle (where the
final state is the same as the initial state) so that AU is equal to zero,
and

Q = - W’
caution must be taken in interpreting this result.

Though it is true that directed energy (W) can completely be
degraded to chaotic energy (Q), the reverse is not true. In a cycle only a
fraction of the heat put into a system can be taken out as work. The
remainder is simply wasted. If this were not so, these cycles could be
endlessly repeated and a perpetual motion machine could be constructed.
Though not predicted by the first law, the development of the first law
did lead to the assertion

“a perpetual motion machine is an impossibility.”




Cy, Cp, and the internal structure of a molecule: If we study the
rather straight-forward case of a gas molecule absorbing heat, we can
quickly zero in on how a molecule might use the energy.

We will begin with C,. It was early found that monatomic gases
(such as the inert gases, mercury, and metallic vapors) had a CV value of
3/2 R, where R is the gas constant, and they held on to this value as the
temperature rose.

At high temperatures in a constant volume container,
only the kinetic energy is significant, but each atom is free to move in
three dimensions.

To these studies, we have added two other observations:

(a) a monatomic gas trapped on a surface (where it can move in
only two dimensions), has a Cy value of R.

(b) a uni-directional gas (electrons in a wire, ion beams), has a CV
of 2R

For many linear gaseous molecules, Cy at low temperatures was
close to 52 R, and for non-linear molecules, 3 R. As the temperature rose,
however, these values continued to rise, and

for diatomic gases, the value of CV caps out at 72R at high T.




The interpretation of these results is following:

(a) for a any gas, there is a contribution to Ev(trans) of 1/2 R for
every direction in which the molecule is allowed to translate.

(b) for a linear molecule, there is a contribution to EV of 1/2 R for
every axis around which it can rotate about its center of
gravity, but it cannot store rotational energy along the axis
through the bond length. Cy(o) = 2 (12) R = R.

(c) for a non-linear molecule, three axes of rotation about the
center of gravity are possible, and Cy(o) = 3 (12)R = 32R.

(d) diatomic molecules have only a single vibration, and if at
high temperature they cap out at 7/2 R, then EV(Vib) must equal
to a full R for every vibration fully obtained. This value is
reached when all diatomics in the container are vibrating.

The degrees of freedom: the total number of ways a molecule can
store kinetic energy is known as “the degrees of freedom.” These ways of
course are translation, rotation, and vibration. As the temperature rises,
first translation is activated, then rotation, and finally vibration. Physics
tells us that the number of degrees of freedom should be 3 N, where N is
the number of atoms in the molecule. Let us apply this to a diatomic
molecule, where N = 2.

3 N = 6 = # of translations + # of rotations + # of vibrations.
# translations = 3, for it can move freely in the x, y, and z, directions

# rotations = 2, for it cannot store rotational energy along the axis
through the bond.

As a result,

# vibrations = 3 N - # translations - #rotations =6 -3 -2 = 1.




For a non-linear triatomic molecule,
# translations = 3

# rotations = 3, for now rotational energy can be stored along all
three rotational axes,

and
# vibrations = 3 N - # translations - #rotations = 9-3-3 =3

Thus, for a non-linear triatomic molecule, Ev(max), with all vibrations
fully activated at high temperature, would be:

tV(max) = CV(trans) + CV(rot) + CV(vib)

Cymag = 3(12R) + 3(12R) + 3(R) = 6R

B Finally, it was observed for many gases that the difference between
Cp and C,, was roughly equal to R

and for an ideal gas this was exactly so.




Special case of an ideal gas: because an ideal gas is such a unique
entity (point mass and no attractions), it should not surprise us that it
might have also unique thermodynamic properties. In fact, it does,
specifically:

AU = nCyAT
and

AH = nGpAT.

Thus, for an ideal gas, if the temperature does not change (an isothermal
process), then neither does AU nor AH.

Moreover, if we go to the defining equation for the enthalpy,
H=U4+PV

consider a change,
AH = AU + A(PV)

and substitute what we now know about ideal gases,
nGpAT = nCyAT + A(NRT)

ACopT = nCpT + mRAT.
Cancelling common terms on both sides,

-ép - EV = R, just what was asserted above.




Hess’s Laws: In 1840 a Russian scientist, G. H. Hess, proposed a way to
take advantage of the various tables of enthalpy changes which had been
compiled. His proposals were based on the fact that the enthalpy is a
“state function,” and thus does not depend on “how” a process is carried
out. His proposals were three-fold, namely,

(a)

(b)

if one reverses the direction of a reaction, then one is doing nothing but changing
what constitutes the initial and the final states. The magnitude of the enthalpy
change should be the same, and only the sign associated with it would be reversed.

Consider the combustion of graphite to yield carbon dioxide
C (graph) + O, (gas) -+ CO, (gas) AH; = -393.5 kJ/mole C

If we choose instead to determine the reverse of this reaction,
we need only change the sign,

CO, (gas) —» C (graph) + O, (gas) AH, = +393.5 kJ/mole C

Note that this is a per mole of C quantity, so that if we use twice that amount of
carbon, we should release twice the heat.

2 C(graph) + 2 0; (gas) —= 2 CO, (gas) AHz = 2 (- 393.5 kJ)




(c) Suppose you wish to know AH for the reaction,

C (graph) + 120, (gas) —» CO (gas).
This is hard to do in a calorimeter, for you are almost certain to get a mixture of

COandCOy, so let us look at the combustion of carbon monoxide, for which the
tables give:

CO(g) + 120, (gas) —= CO, (gas) AH, = -238.0 ki/mole CO.

Look what happens if we combine the reaction of AH; with the
reverse of AHg,

C (graph) + O, (gas) —» ,Q(fz (gas) AH; = -393.5 ki/mole C
£d, (gas) —> CO(g) + 120, (gas)  AHy = +283.0 ki/mole CO.

C (graph) + 1220, (gas) —» CO(gas) AH., =7

Carbon dioxide “cancels out” and half of the oxygen on the
left-hand-side.

Hess stated: for a chemical equation that can be written as the sum of two or
more steps, the enthalpy change for the overall equation equals the sum of the
enthalpy changes for theindividualsteps.

AHixpn = AHy + AHy = -393.5kJ + 283.0kJ = - 110.5 ki/mole C




Heats of combustion suffer from always containing oxygen, and it cannot
always cancel out. For that reason, it is more common to use heats of
formation in a Hess’s law treatment. A Hess’s law treatment of a series
of heat of formation reactions can yield something like the following:

SiCl, (lig) + 2 H,0 (liq) —> 3 CaSO, (s) + 2 HgPOy (lig)
AHrxn = [ 3 AHgcaso,) +2 AHg(ugpo,)] = [3 AHg(sicly) +2 AHg(1,0)}

Had we expressed AH,,, in terms of the absolute molar enthalpies (H) of
the reactants and products, then

AHxn = Hfinal = Hinitial = 2 Hproducts - ZHreactants
AHrgn = [ 3Fcaso,) +2 Hengpog ] - [3 Agsiciy + 2 Hoo)k
A comparison the last equation with the first equation, suggests that

Hogiecue = AHg(molecule),
and that is exactly what our clever thermodynamicists have maneuvered !
Return to our reaction,
C (graph) + 120, (gas) == CO (gas) Aﬁf(co)
Using absolute enthalpies,
AT'-1f(CO) = Z Hproducts - ZHreactants = ﬁ(D - FlC - 1/2F|02
The thermodynamicists arbitrarily assign the absolute enthalpy of every

element in its most stable form at 25 °C and 1 atm of pressure, as having
a value of zero, so under these conditions our relationship becomes

A-l:if(CO) = Z Hproducts - ZHeactants = Ho - (0) - 12(0)

and at standard conditions, 25 °C and 1 atm of pressure,

——

This assignment to the elements does not hold at any other temperatures
of pressures, but we have ways of dealing with that.




Reversible versus Irreversible Processes: An important point to
make again and again is that a state function is independent of how the
process is carried out, so the early thermodynamicists quickly homed in
on what would result from a process that could take as long as we wished
as opposed to one that takes place in real time.

All real processes take place in finite amount time and the change
disturbs the system in such a way that it cannot be re-created by simply
stepping back to a previous state. We describe these system as
irreversible. This does not mean that we cannot back-track; it simply
recognizes that we should not expect all the molecules in a system to
return to their original positions. Natural processes are not like a movie
reel in which we can simply return to a previous frame and find nothing

unchanged.

The mathematical opposite to this is called a reversible process,
for in this case we make the individual steps in the process infinitesmally
small, so that a reversal would freeze-frame all previous steps.
Obviously this is an impossibility, and it would require an infinitely long
amount of time to move from the initial state to the final state. What,
then, is-to be gained by investigating such approaches? As it turns out,
quite a lot, including some new state functions. '




Reversible work: Let us begin by considering the expansion of an ideal
gas. The ideal gas represents a unique case of point masses (no internal
structure) combined with no interactions between the molecules (no
potential energy other than the force of gravity). To illustrate our point,
we will place the process, pictorially, on a Boyles Law PV-plot at
constant temperature.

Let us begin by placing the gas in a container with a piston,
surmounted by a block with a mass, m, atop it. Further, we will let the
mass of the block correspond to the same mass of the piston head. These
masses correspond to a weight (a force), equal to 2 m x g, where g is the
force of gravity. The constant pressure -above the gas is now

Pext = f/A = weight/ Apiston head <= (2mxg)/ Apiston head

For convenience, let the internal pressure of the gas, P;, be twice the
external pressure (thus, Pg,: = P1/2), so that we must introduce a stop at
the top of the piston.

Since we wish to visually display our process, we will represent the
external pressure by

Pext = weight/Apsionnead = (2 M X 9) / Agistonhead = P1/2,
and use the graph to record the change. Let the initial state variables for

the ideal gas be P,, V4, T4, and n;. Now we remove the stop. If the number
of moles and the temperature are held constant, the gas will expand until

the internal pressure, P, = Pg = P{/2, and Boyles Law states that




Using our definition for work, remembering that we are expanding against
a constant external pressure

W1 =" Pext AV = - Pext (Vz - V‘l)-
Substituting the relevant quantities,
W1 =" I:)ext (V2 - V1) = = (P1/2) (2 V1 - V1);

W,

- (Py/2) (Vq) = - P,Vq/2 .

This is a natural process occuring in real time, thus it represents what we
call an irreversible process, and the work is irreversible work.

On our graph, this is represented by the area of the first rectangle.
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Now we remove the mass on the top of the piston head, and let the piston
expand freely. The external pressure has been reduced to one-fourth of
the original internal pressure, and the piston expands until the final
volume is' 4 V,. Again we put the quantities into the equation, yielding

W, = - (P/4) (4V,) = - P4V,
The total work done by the gas is simply the sum of the two works,

Wtot = W"l + W2 = - (P1V1/2 + P1V1)

Wtot = = 3/2 (P1V1)'




Now let us envision this process as occurring with many small
weights on the top of the piston head (so that P, is much closer to the
internal pressure), and each of them will be removed sequentially. We
will expand from the original V; to 4 V,, but notice that a much greater
area is swept out, and much more work is done.

Pressure

Vi W 4V,
Volume

Multi-step processes-of this type are represented by
n
Wiee = -2 P AV,
i=1

where P; = external pressure for each step
AV = change in volume for each step
n = number of steps in the process.




Now envision what would happen if the internal pressure is only
infinitesimally larger than the external pressure

Pint = Pext + dP,
or Pgt = Ping - dP,
and that the volume changes are infinitesimally small

AV = dV.

If this is put back into our equation for Wy,

n
Wiot = = 2 (Piny - dP); (dV)

i=1

then in the limit that dV - O, we obtain what we learned in calculus is
the definition of an integral, that is,
V2
Wit = - fvl Pint dv .
for an ideal gas, Pi,; = (nRT/V), and
\ |
Wioe = —:[7 (WRT/V) dV
Because, this is an isothermal process, the number of moles of gas does
not change, and R is a constant, all of these terms may be brought outside
the integral sign, and we integrate (dV/V) over the range Vi,itial t© Vfinal-

The result for this reversible work is,




The reversible work thus represents all the work under the
isotherm (constant T) from P, V1 to P,, V,, and enables us to predict the

maximum amount of work that can be done by the gas under these
expansion conditions.

If we wish to compress the gas back to the initial conditions, then
the area under the curve also represents the minimum amount of work
that need be done on the gas to compress it.

An ideal gas does the greatest amount of work possible for
any kind of gas, primarily because we waste none of the energy puiling
the molecules apart from one another. More importantly, if we have a gas
law for a real gas (such as the van der Waal equation), we can find its
maximum work by simply carrying out an integration of its P;,,dV such as

that above.

The Second Law of Thermodynamics: It follows that if work can be
calculated for a reversible process, then Q,,, should be available from the
first law, that is, -

Qrev = AU - Wiey.
An even easier case is that for a cycle, where one eventually returns to

the initial state, and all of the state functions are equal to zero. AU =0,
and

Qrev = = Wiey.




The significance of the reversible heat was first recognized by Sadi
Carnot, a French scientist, in 1824. Carnot envisioned the reversible
expansion and contraction of an ideal gas by a four-step process:

(a) anisothermal expansion at a high T from Py, V1 to Pp, Vo, -

(b) an adiabatic expansion (Q = O) to a lower T from P, V2 to P3, V3

(c) an isothermal compression at the lower T from P3, V3 to P4, V4

(d) an adiabatic compression (Q = O) from the lower T to the higher T from P4, V4 to
P1, Vg

An adiabatic process (Q = O) occurs when the system is thermally-
wrapped so that heat can neither be put into the system or escape from
the system. Since this is a cyclic process, AU=0.

Obviously, in steps (b) and (d), heat does not exist. He could, however,
calculate Q,,, in steps (a) and (c), and he obtained an interesting result,

namely,

[Qrev(a) / Ta] + [QreV(C) / TC] = O-

When a van der Waal gas is sent through the same cycle, the same result is
realized. This led Carnot to suggest it would be true of any gas, and that
if this quantity always sums to zero in a cyclic process, then it must
represent a state function. The function is given the symbol, S, and
labeled the entropy.

Thus, for an isothermal process,

AS = Qe /T .




What happens, however, when the temperature varies? In that case, we
consider very small changes and remember our definition for work, i.e.,

dS = 8Qe,/T.

where we are using  to represent that Q is not a state function under all
conditions.

If, for example, the process is carried out at constant pressure,
8Qey = N EP dT, and
dS = (nCp dT)/T = nCp (dT/T).

If the temperature change is so small that Ep stays essentially constant,
AS = nEp In (T¢/T;)

If the change in temperature is significant, one can always use empirical
equations such as

Co=a+bT+cT2+dT3+ ..

where “a, b, ¢, and d” are table-values listed for most gases at a given
pressure. The actual pressure is not critically important for the majority
of the gases, so one frequently goes to the tables for P = 1 atm (or 1 bar).

A secondary benefit of Carnot’s work was the ability to calculate
the efficiency of the cycle and show that it was less than 1.0, that is, not
all of the heat could be converted to work. No perpetual motion in that
machine !




Entropy and Spontaniety: Because entropy is defined in terms of
reversible heat, a disorderly or chaotic form of energy, entropy came to
thought of in terms of disorder. The higher the entropy, the higher should
be the disorder. Thus, if we looked at a pure material, we would expect
that

Sgas > Siiquia > Ssolid"

The key architect for the specific statement of the first and second laws
was the 19th-c German physicist, Rudolf Clausius, who stated “The energy
of the universe is a constant; the entropy tends to a maximum,” although
the German physicist Hermann von Helmholtz independently proposed the
first law and William Thomson, Lord Kelvin, a British physicist, was
instrumental in the full realization of the second law.

Specifically, Clausius gives the second law of thermodynamics as:

“In all natural, or spontaneous, processes, change leads to an
increase in disorder (entropy) for the universe.”

Thus, although a natural process might lead to a decrease in entropy for
the system, it must be compensated by an increase in entropy for the
surroundings:

ASyniverse = ASsystem + ASsurrounding >0.

Although this may be an intellectually satisfying statement, it
leaves much to be desired in practice. We may be able to calculate the
entropy change for a system, but how are we do the same for the entropy
of the surroundings (the rest of the universe)? We cannot.




Clausius, therefore, tried to consider all the things that were happening in
some of the common systems being studied. Prominent among these were
the combustion experiments, all of which gave off heat at constant
pressure and all of which could be identified with AH. These were
obviously spontaneous processes, and it appeared that the system was
trying to lower its energy. (The entropy may or may not be increased.)

When he considered the condensation of a gas or the freezing of a liquid,
he saw a decrease in entropy, but also an absorption of heat from the more
chaotic form of the substance. The system has lowered both its entropy
and its energy.

At constant pressure and temperature, he suggested that a state
function existed that would incorporate both a need to decrease energy
and to increase entropy. If we could find it, then we would need only to
concentrate on the system, and let the surroundings take care of itself.
He proposed that the pertinent quantity was

AG = AH - TAS.

In the best of all possible worlds, the change would lead to a decrease in
the energy and an increase in entropy, such that

AG = (-) - T(+) = negative value

In the worst of cases, the energy would go up and the entropy would go
down, or

AG = (+) - T(-) = positive value.
What if the pressure remained constant (a common constraint on the
system), but the temperature changed? Then, he would look at a
refinement of equation, namely,

AG = AH - A(TS), or

G=H- TS
This quantity is known as the Gibbs free energy, named for the American

scientist, J. Willard Gibbs, who was one of the most important theoretical
thermodynamicists of the late 19th- and early 20th-century.




Clausius proposed that, at constant pressure, if

AGgystem < O (that is, negative), then the process is spontaneous
AGgystem > O (that is, positive), then the process is non-spontaneous
AGgystem = O then the process is at equilibrium

Thus, we only have to consider the system is making a prediction.

Can the same thing be said at constant volume? Yes, it we recognize that
the pertinent energy term is U.

We define a quantity known as the Helmholtz free energy, A,
A=U-TS,

and the conditions at constant temperature are the same as for the
Gibbs free energy, namely,

AAgystem < O (that is, negative), then the process is spontaneous
AAgystem > O (that is, positive), then the process is non-spontaneous
AAgystem = O then the process is at equilibrium.

The Helmholtz free energy is also sometimes called the “maximum
work function,” for it represents the

maximum W, ., of all kinds that can be done by the system.

Similarly, the Gibbs free energy is also a reversible work, but it
excludes PV-work. Thus, the Gibbs free energy represents the

maximum W, ., over and above PV-work that can be done by the system.

Thus, three of our state functions (U, H, and S) can be related to special
forms of Q, and the other two (G and A) can be related to forms of the
reversible work.




Third law of thermodynamics: the final law of thermodynamics also
speaks to the entropy. In 1913, Max Planck, a German physicist who is
probably better known for laying the foundations of quantum mechanics,
proposed that

“the entropy of a pure, perfectly crystalline solid is zero at the absolute
zero of temperature.”

The immediate consequence of the third law is that the absolute entropy
of a substance can be calculated for the first time. Since we can
determine a change in entropy for a substance using our earlier equations,
such as when the molar heat capacity does not change significantly with
temperature,

—

AS

Cp In (T/Ty),

then AS §T - §(T=°K) = -éT -0 = §T'

Obviously over wide ranges, we would need to introduce equations such as

-y

Cp=a+bT +cT?+dT3 +
but that is simple enough to do.

Phase changes involve a significant increase or decrease in entropy,
and we must include this as well in determining ST Since, by its very

nature, AH represents reversible heat at constant pressure, we need only
add to the above determinations the sum of all the phase changes divided
by the temperature of the phase change.

ASiot, phase change = Z (AH/Ty).
For a gas at room temperature, we would add

AStot, phase change = AHfusion/ Tfusion + AHvaporization/ Tvaporization

Tables of absolute entropies have been compiled for most substances,
especially at P = | atm (or | bar in the modern system) and T = 298.15 K.




