
Chapter II

Complex
Differentiation

Having introduced the complex number system, we proceed to the develop-
ment of the theory of functions of a complex variable, beginning with the
notion of derivative. Although the definition of the derivative of a complex-
valued function of a complex variable is formally the same as that of the
derivative of a real-valued function of a real variable, the concept holds
surprises, as we shall see.

Generally, we shall let z denote a variable point in the complex plane;
its real and imaginary parts will be denoted by x and y, respectively.

II.1. Definition of the Derivative

Let the complex-valued function f be defined in an open subset G of C.
Then f is said to be differentiable (in the complex sense) at the point z0 of

G if the difference quotient
f(z) − f(z0)

z − z0
has a finite limit as z approaches

z0. That limit is then called the derivative of f at z0 and denoted by f ′(z0):

f ′(z0) = lim
z→z0

f(z) − f(z0)
z − z0

.

What does the last equality mean? In ε–δ language, it is the statement that
for every positive number ε there is a positive number δ such that∣∣∣∣f(z) − f(z0)

z − z0
− f ′(z0)

∣∣∣∣ < ε

whenever 0 < |z − z0| < δ.
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14 II. Complex Differentiation

As in calculus, the “d-notation” is also used for the derivative: if f is
differentiable at z0, then f ′(z0) is according to convenience denoted alterna-

tively by
df(z0)

dz
.

NB. According to our definition, f ′(z0) cannot be defined unless z0 belongs
to an open set in which f is defined.

II.2. Restatement in Terms of Linear Approximation

Let the complex-valued function f be defined in an open subset of C con-
taining the point z0. Then f is differentiable in the complex sense at z0

if and only if there is a complex number c such that the function R(z) =

f(z) − f(z0) − c(z − z0) satisfies lim
z→z0

R(z)
z − z0

= 0, in which case f ′(z0) = c.

The statement is obvious in view of the equality
R(z)
z − z0

=
f(z) − f(z0)

z − z0
− c.

The statement says that f is differentiable at z0, with f ′(z0) = c, if and only
if f is well approximated near z0 by the linear function f(z0) + c(z − z0), in
the sense that the remainder R(z) in the approximation is small compared
to the distance from z0.

II.3. Immediate Consequences

The following properties of complex differentiation are proved from the basic
definition in exactly the same way as the corresponding properties in the
theory of functions of a real variable.

(i) If f is differentiable at z0 then f is continuous at z0.
(ii) If f and g are differentiable at z0, then f + g and fg also are, and

(f + g)′(z0) = f ′(z0) + g′(z0) (sum rule);

(fg)′(z0) = f ′(z0)g(z0) + f(z0)g′(z0) (product rule).
If in addition g(z0) �= 0, then f/g is differentiable at z0, and(

f

g

)′
(z0) =

f ′(z0)g(z0) − f(z0)g′(z0)
g(z0)

2 (quotient rule).

(iii) If f is differentiable at z0 and g is differentiable at f(z0), then the
composite function g ◦ f is differentiable at z0 and

(g ◦ f)′(z0) = g′(f(z0))f ′(z0) (chain rule).

The proofs are left to the reader.

Exercise II.3.1. Prove statements (i)–(iii) in detail.
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II.4. Polynomials and Rational Functions

From the definition of derivative it is immediate that a constant function is
differentiable everywhere, with derivative 0, and that the identity function
(the function f(z) = z) is differentiable everywhere, with derivative 1. Just
as in elementary calculus one can show from the last statement, by repeated
applications of the product rule, that, for any positive integer n, the function
f(z) = zn is differentiable everywhere, with derivative nzn−1. This, in
conjunction with the sum and product rules, implies that every polynomial
is everywhere differentiable: If f(z) = cnzn+cn−1z

n−1+ · · ·+c1z+c0, where
c0, . . . , cn are complex constants, then f ′(z) = ncnzn−1+ (n−1)cn−1z

n−2 +
· · · + c1.

A function of the form f/g, where f and g are polynomials, is called
a rational function. Such a function is defined wherever its denominator,
g, does not vanish, hence everywhere except on a finite set. The quotient
rule and the differentiability of polynomials imply that a rational function
is differentiable at every point where it is defined and that its derivative is
a rational function.

II.5. Comparison Between Differentiability in the Real and
Complex Senses

Recall that a real-valued function u defined in an open subset G of R2 is said
to be differentiable (in the real sense) at the point (x0, y0) of G if there are
real numbers a and b such that the function R(x, y) = u(x, y) − u(x0, y0) −
a(x − x0) − b(y − y0) satisfies

lim
(x,y)→(x0,y0)

R(x, y)√
(x − x0)2 + (y − y0)2

= 0.

In that case u has first partial derivatives at (x0, y0) given by

∂u(x0, y0)
∂x

= a,
∂u(x0, y0)

∂y
= b.

The reader will find this notion discussed in any multivariable calculus book.
To facilitate a comparison with complex differentiation, we restate the

preceding definition in complex notation: the real-valued function u in the
open subset G of C is by definition differentiable at the point z0 = x0 + iy0

of G if there are real numbers a and b such that the function R(z) = u(z)−
u(z0) − a(x − x0) − b(y − y0) satisfies

lim
z→z0

R(z)
z − z0

= 0.
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Now suppose that f is a complex-valued function defined in the open
subset G of C, and let u and v denote its real and imaginary parts: f = u+iv.
Given a point z0 = x0 + iy0 of G and a complex number c = a + ib, we can
write

R(z) = f(z) − f(z0) − c(z − z0) = [u(z) − u(z0) − a(x − x0) + b(y − y0) ]

+ i [v(z) − v(z0) − b(x − x0) − a(y − y0) ]

= R1(z) + iR2(z).

Clearly, lim
z→z0

R(z)
z − z0

= 0 if and only if lim
z→z0

R1(z)
z − z0

= 0 and lim
z→z0

R2(z)
z − z0

= 0.

Referring to II.2, we can draw the following conclusion:

The function f is differentiable (in the complex sense) at z0 if and only if
u and v are differentiable (in the real sense) at z0 and their first partial

derivatives satisfy the relations
∂u(z0)

∂x
=

∂v(z0)
∂y

,
∂u(z0)

∂y
= −∂v(z0)

∂x
. In

that case,

f ′(z0) =
∂u(z0)

∂x
+ i

∂v(z0)
∂x

=
∂v(z0)

∂y
− i

∂u(z0)
∂y

.

II.6. Cauchy-Riemann Equations

The two partial differential equations

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x

are called the Cauchy-Riemann equations for the pair of functions u, v. As
seen above, the equations are satisfied by the real and imaginary parts of a
complex-valued function at each point where that function is differentiable.

Exercise II.6.1. At which points are the following functions f differen-
tiable?

(a) f(z) = x, (b) f(z) = z, (c) f(z) = z2.

Exercise II.6.2. Prove that the function f(z) =
√

|xy| is not differentiable
at the origin, even though it satisfies the Cauchy-Riemann equations there.

Exercise* II.6.3. Prove that the Cauchy-Riemann equations in polar co-
ordinates are

r
∂u

∂r
=

∂v

∂θ
,

∂u

∂θ
= −r

∂v

∂r
.
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II.7. Sufficient Condition for Differentiability

A theorem from the theory of functions of a real variable states that if a
real-valued function of several variables has first partial derivatives, then it is
differentiable at every point where those partial derivatives are continuous.
(This can be found in any multivariable calculus book. For the convenience
of readers who have not seen a proof, one is given in Appendix 1.) In
combination with the necessary and sufficient condition from II.5, this gives
the following useful sufficient condition for complex differentiability: Let
the complex-valued function f = u + iv be defined in the open subset G of
C, and assume that u and v have first partial derivatives in G. Then f is
differentiable at each point where those partial derivatives are continuous
and satisfy the Cauchy-Riemann equations.

II.8. Holomorphic Functions

A complex-valued function that is defined in an open subset G of C and
differentiable at every point of G is said to be holomorphic (or analytic)
in G. The simplest examples are polynomials, which are holomorphic in
C, and rational functions, which are holomorphic in the regions where they
are defined. Later we shall see that the elementary functions of calculus—
the exponential function, the logarithm function, trigonometric and inverse
trigonometric functions, and power functions—all have complex versions
that are holomorphic functions.

By II.5 we know that the real and imaginary parts of a holomorphic
function have partial derivatives of first order obeying the Cauchy-Riemann
equations. In the other direction, by II.7, if the real and imaginary parts of
a complex-valued function have continuous first partial derivatives obeying
the Cauchy-Riemann equations, then the function is holomorphic.

The asymmetry in the two preceding statements—the inclusion of a con-
tinuity condition in the second but not in the first—relates to an interesting
and subtle theoretical point. The derivative of a holomorphic function, as
will be shown later (in Section VII.8), is also holomorphic, so that in fact a
holomorphic function is differentiable to all orders, and its real and imagi-
nary parts have continuous partial derivatives to all orders. We shall only
be able to prove this, however, after developing a fair amount of machinery.
Meanwhile, we shall have to skirt around it occasionally.

Although, as we have seen above, some of the basic properties of real
and complex differentiability are formally identical, the repeated differen-
tiability of holomorphic functions points to a glaring dissimilarity. There
are well-known examples of continuous real-valued functions on R that are
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nowhere differentiable. An indefinite integral of such a function is differen-
tiable everywhere while its derivative is differentiable nowhere. By taking
an n-fold indefinite integral, one can produce a function that is differen-
tiable to order n yet whose n-th derivative is nowhere differentiable. Such
“pathology” does not occur in the realm of complex differentiation.

From the basic rules of differentiation noted in Section II.3 one sees
that if f and g are holomorphic functions defined in the same open set G,
then f + g and fg are also holomorphic in G, and f/g is holomorphic in
G\g−1(0). If f is holomorphic in G and g is holomorphic in an open set
containing f(G), then the composite function g ◦ f is holomorphic in G.

Exercise* II.8.1. Let the function f be holomorphic in the open disk D.
Prove that each of the following conditions forces f to be constant: (a)
f ′ = 0 throughout D; (b) f is real-valued in D; (c) |f | is constant in D; (d)
arg f is constant in D.

Exercise* II.8.2. Let the function f be holomorphic in the open set
G. Prove that the function g(z) = f(z) is holomorphic in the set G∗ =
{z : z ∈ G}.

II.9. Complex Partial Differential Operators

The partial differential operators ∂
∂x and ∂

∂y are applied to a complex-valued
function f = u + iv in the natural way:

∂f

∂x
=

∂u

∂x
+ i

∂v

∂x
,

∂f

∂y
=

∂u

∂y
+ i

∂v

∂y
.

We define the complex partial differential operators ∂
∂z and ∂

∂z by

∂

∂z
=

1
2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z
=

1
2

(
∂

∂x
+ i

∂

∂y

)
.

Thus,
∂

∂x
=

∂

∂z
+

∂

∂z
,

∂

∂y
= i

(
∂

∂z
− ∂

∂z

)
.

Intuitively one can think of a holomorphic function as a complex-valued
function in an open subset of C that depends only on z, i.e., is independent
of z. We can make this notion precise as follows. Suppose the function
f = u + iv is defined and differentiable in an open set. One then has

∂f

∂z
=

1
2

(
∂u

∂x
+

∂v

∂y

)
+

i

2

(
∂v

∂x
− ∂u

∂y

)
,

∂f

∂z
=

1
2

(
∂u

∂x
− ∂v

∂y

)
+

i

2

(
∂v

∂x
+

∂u

∂y

)
.
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The Cauchy-Riemann equations thus can be written ∂f
∂z = 0. As this is

the condition for f to be holomorphic, it provides a precise meaning for the
statement: “A holomorphic function is one that is independent of z .” If f
is holomorphic, then (not surprisingly) f ′ = ∂f

∂z , as the following calculation
shows:

f ′ =
∂f

∂x
=

∂f

∂z
+

∂f

∂z
=

∂f

∂z
.

II.10. Picturing a Holomorphic Function

One can visualize a real-valued function of a real variable by means of its
graph, which is a curve in R2. A complex-valued function of a complex
variable also has a graph, but its graph is a two-dimensional object in the
four-dimensional space C×C, something ordinary mortals cannot easily vi-
sualize. A more sensible approach, if one wants to obtain a geometric picture
of a holomorphic function, is to think of the function as a map from the com-
plex plane to itself, and to try to understand how the map deforms the plane;
for example, how does it transform lines and circles?

The simplest case is that of a linear function, a function f of the form
f(z) = az + b, where a and b are complex numbers, and a �= 0 (to exclude
the trivial case of a constant function). The map z �→ az + b can be written
as the composite of three easily understood transformations:

z �→ |a|z �→ az �→ az + b.

The first transformation in the chain is a scaling with respect to the origin
by the factor |a|, a so-called homothetic map about the origin. The second
transformation is multiplication by the number a/|a|, which is just rotation
about the origin by the angle arg a. The last transformation is translation
by the vector b. We see in particular that the linear function f(z) = az + b
maps straight lines onto straight lines and preserves the angles between
intersecting lines.

Linear functions are very special, but remember that a holomorphic
function is a function that is well approximated locally by linear functions.
If the function f is holomorphic in a neighborhood of the point z0, one
would expect it to behave near z0 approximately like the linear function
z �→ f ′(z0)(z − z0) + f(z0). If f ′(z0) = 0 this will tell us little, but if
f ′(z0) �= 0 it should say something about the “infinitesimal” deformation
produced by f near z0. As we shall see, this is indeed the case: if f ′(z0) �= 0,
the holomorphic function f preserves the angles between curves intersecting
at z0. To make this precise we need some preliminaries about curves in the
complex plane.
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II.11. Curves in C

By a curve in C we shall mean a continuous function γ that maps an interval
I of R into C. Thus, curves for us will always be parametrized curves.
However, we shall often speak of curves as if they were subsets of C. For
example, we shall say that the curve γ is contained in a given region of C if
the range of γ is contained in that region.

Here are a few simple examples.

1. γ(t) = (1 − t)z1 + tz2 (−∞ < t < ∞).
Here, z1 and z2 are distinct points of C. This curve is a parametrization of
the straight line determined by z1 and z2, the direction of the parametriza-
tion being from z1 to z2.

2. γ(t) = cos t + i sin t (0 ≤ t ≤ 2π).
This is a parametrization of the unit circle, the circle being traversed once
in the counterclockwise direction as t moves from the initial to the terminal
point of the parameter interval [0, 2π].

3. γ(t) = cos t − i sin t (−2π ≤ t ≤ 2π).
This also is a parametrization of the unit circle, but this time the circle is
traversed twice in the clockwise direction.

4. In this example, γ(t) is defined piecewise:

γ(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t, 0 ≤ t ≤ 1,

1 + (t − 1)i, 1 ≤ t ≤ 2,

i + 3 − t, 2 ≤ t ≤ 3,

(4 − t)i, 3 ≤ t ≤ 4.

This is a parametrization of the square with vertices 0, 1, 1 + i, i. The
square is traversed once in the counterclockwise direction.

The curve γ : I −→ C is said to be differentiable at the point t0 of I if
its real and imaginary parts are differentiable at t0, or, what is equivalent,

if the difference quotient
γ(t) − γ(t0)

t − t0
approaches a finite limit as t tends to

t0. That limit is then denoted by γ′(t0). The curve γ is called differentiable
if it is differentiable at each of its points; it is said to be of class C1 if it is
differentiable and its derivative, γ′, is continuous.

The curve γ is said to be regular at the point t0 if it is differentiable at t0
and γ′(t0) �= 0. If γ is of class C1 and regular at each point of its interval of
definition, we call it a regular curve. The curves in the first three examples
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above are regular. The one in the fourth example is regular except at the
points 1, 2, 3 of the parameter interval [0, 4].

A curve γ has a well-defined direction at each point t0 where it is regular,
namely, the direction determined by the derivative γ′(t0), referred to as the
tangent direction. We can describe that direction, for example, by specifying

the argument of γ′(t0), or by specifying the unit tangent vector,
γ′(t0)
|γ′(t0)|

.

Suppose γ1 and γ2 are two curves in C, and suppose they have a point
of intersection, say γ1(t1) = γ2(t2). Suppose further that γj is regular at tj,
j = 1, 2. Then by the angle between γ1 and γ2 we shall mean the angle
arg γ′

2(t2) − arg γ′
1(t1) (= arg γ′

2(t2)γ
′
1(t1)). In geometric terms, this is the

angle through which one must rotate the unit tangent vector to γ1 at t1 to
make it coincide with the unit tangent vector to γ2 at t2. Note that the
angle depends on the order in which we take γ1 and γ2; reversal of the order
leaves the magnitude of the angle the same but changes its sign. (To be
completely precise, perhaps we should speak of the “angle between γ1 and
γ2 corresponding to the parameter values t1 and t2” because the two curves
might intersect for other pairs of parameter values. This degree of precision
would not be worth the awkwardness of expression it would entail.)

Suppose that f is a holomorphic function in an open set G and that γ is
a curve in G. Then we can apply f to γ to obtain the curve f ◦ γ. Suppose
γ is differentiable at t0, and let z0 = γ(t0). Then the standard argument
justifying the chain rule applies to show that f ◦ γ is differentiable at t0 and
that (f ◦ γ)′(t0) = f ′(z0)γ′(t0). (Details are in Appendix 2.) Thus, if γ is
regular at t0 and if f ′(z0) �= 0, then f ◦ γ is regular at t0, and one obtains
the direction of f ◦ γ at t0 from that of γ at t0 by adding arg f ′(z0).

II.12. Conformality

Let f be a holomorphic function defined in the open subset G of C, and let
z0 be a point of G such that f ′(z0) �= 0. Let γ1 and γ2 be curves such that
γ1(t1) = γ2(t2) = z0, and such that γj is regular at tj, j = 1, 2. Then the
angle between f ◦ γ1 and f ◦ γ2 equals the angle between γ1 and γ2.

This statement follows immediately from the discussion preceding it,
from which one sees that

arg (f ◦ γj)′(tj) = arg f ′(z0) + arg γ′
j(tj), j = 1, 2.

The function f(z) = z2 shows what can happen if the hypothesis f ′(z0) �=
0 is dropped. This function, whose derivative vanishes at the origin, trans-
forms two lines through the origin making an angle α into two lines making
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an angle 2α. On the other hand, as we shall see in a later chapter, the deriv-
ative of a nonconstant holomorphic function can vanish only on an isolated
set of points, so the angle-preservation property given by the theorem above
is the rule rather than the exception.

A map from the plane to the plane is called conformal at the point z0 if it
preserves the angles between pairs of regular curves intersecting at z0. Thus,
we can restate II.11 by saying that a holomorphic function is conformal at
each point where its derivative does not vanish.

II.13. Conformal Implies Holomorphic

We shall now show that conformal maps are necessarily holomorphic. We
begin with the simplest case, that of a linear transformation of the plane.
Linear here means linear as a transformation of the real vector space R2 to
itself. If f is such a map then ∂f

∂x and ∂f
∂y are constants, and f is uniquely

determined by those constants plus the condition f(0) = 0. Letting a = ∂f
∂z

and b = ∂f
∂z (also constants), we see that f(z) = az + bz. Suppose this

map preserves the angles between pairs of directed lines intersecting at the
origin. We shall then prove that b = 0. We may assume that a + b �=
0 (since otherwise the transformation would send the whole real axis to
the origin) and, that done, that a �= 0 (since otherwise the map would be
anticonformal—it would reverse the angles between pairs of directed lines).
Let λ be a complex number of absolute value 1. Our map sends the real line
to the directed line through the origin determined by a+ b, and it sends the
directed line through the origin determined by λ to the one determined by
aλ + bλ. Our assumption about angle preservation thus implies that

arg (aλ + bλ) − arg (a + b) = arg λ.

Since the left side in this equality equals

arg λ + arg
(

a +
bλ

λ

)
− arg (a + b),

the equality reduces to

arg
(

a +
bλ

λ

)
= arg (a + b) .

Now, if b �= 0 then, as λ traverses the unit circle, the point a +
bλ

λ
(twice)

traverses the circle with center a and radius |b|, in violation of the preceding
equality, which
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says that a +
bλ

λ
lies on the ray through the origin determined by a+ b. We

can conclude that b = 0; in other words, our map is given by z �→ az, a
holomorphic function, as desired.

The preceding result will serve as a lemma for its generalization to C1

maps. We consider a complex-valued function f = u + iv defined on an
open subset G of C. We assume that u and v have continuous first partial
derivatives. Then, if γ is a differentiable curve in G, the curve f ◦ γ is also
differentiable. In fact, suppose z0 is a point on γ, say γ(t0) = z0. Let

a =
∂f(z0)

∂z
, b =

∂f(z0)
∂z

.

An application of the chain rule, the details of which are in Appendix 2,
then shows that

(f ◦ γ)′(t0) = aγ′(t0) + bγ′(t0).

Hence, if f preserves the angles between pairs of regular curves intersecting
at z0, then the linear map z �→ az + bz preserves the angles between pairs
of directed lines through the origin. By what is established above, that
means b = 0 and a �= 0. The equality b = 0 just says that the functions
u and v satisfy the Cauchy-Riemann equations at z0, which, as noted in
Section II.7, implies that f is differentiable (in the complex sense) at z0.
Moreover, f ′(z0) = ∂f(z0)

∂z = a.
The following theorem has been proved: Let f be a complex-valued func-

tion, defined in an open subset G of C, whose real and imaginary parts have
continuous first partial derivatives. If f preserves the angles between regular
curves intersecting in G, then f is holomorphic, and f ′ is never 0.

II.14. Harmonic Functions

The complex-valued function f , defined in an open subset of C, is said to
be harmonic if it is of class C2 and satisfies Laplace’s equation:

∂2f

∂x2
+

∂2f

∂y2
= 0.

This equation and its higher-dimensional versions play central roles in many
branches of mathematics and physics. Of course, the complex-valued func-
tion f is harmonic if and only if its real and imaginary parts are.
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II.15. Holomorphic Implies Harmonic

A holomorphic function is harmonic, provided it is of class C2.
As noted in Section II.8, we shall prove later that a holomorphic function

is of class Ck for all k, at which point we can drop the proviso in the preceding
statement. To establish the proposition, let the function f = u + iv be
holomorphic and of class C2. By the Cauchy-Riemann equations, we have

∂2u

∂x2
=

∂

∂x

(∂v

∂y

)
=

∂

∂y

(∂v

∂x

)
= −∂2u

∂y2
,

which proves that u is harmonic. Similar reasoning proves the same result
for v, and thus f is harmonic.

II.16. Harmonic Conjugates

The reasoning in the preceding section shows that a pair of real-valued C2

functions u and v, defined in the same open subset of C, will be harmonic
if they satisfy the Cauchy-Riemann equations:

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

In this situation one says that v is a harmonic conjugate of u. Phrased
differently, if u and v are real valued and of class C2, then v is a harmonic
conjugate of u if and only if u + iv is holomorphic.

Note that harmonic conjugates are not unique: if v is a harmonic con-
jugate of u then so are the functions that differ from v by constants. That
is essentially the extent of nonuniqueness, as we shall see later (and, in a
special case, in Exercise II.16.4 below). A natural question is whether every
harmonic function has a harmonic conjugate. We shall eventually develop
enough machinery to deal with this question.

Friendly Advice. When beginning the study of complex analysis and faced
with a problem in the subject, the initial response of many students is to
reduce the problem to one in real variables, a subject they have previously
studied. Such a reduction can sometimes be helpful, but at other times it
can make things overly complicated. (Some of the exercises below illustrate
this point.) Try to get into the habit of “thinking complex.”

Exercise II.16.1. For which values of the real constants a, b, c, d is the
function u(x, y) = ax3 +bx2y+cxy2 +dy3 harmonic? Determine a harmonic
conjugate of u in the cases where it is harmonic.

Exercise* II.16.2. Prove that Laplace’s equation can be written in polar
coordinates as

r2 ∂2u

∂r2
+ r

∂u

∂r
+

∂2u

∂θ2
= 0 .
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Exercise II.16.3. Find all real-valued functions h, defined and of class
C2 on the positive real line, such that the function u(x, y) = h(x2 + y2) is
harmonic.

Exercise II.16.4. Prove that, if u is a real-valued harmonic function in
an open disk D, then any two harmonic conjugates of u in D differ by a
constant.

Exercise II.16.5. Suppose that u is a real-valued harmonic function in an
open disk D, and suppose that u2 is also harmonic. Prove that u is constant.

Exercise II.16.6. Prove that if the harmonic function v is a harmonic
conjugate of the harmonic function u, then the functions uv and u2 − v2 are
both harmonic.

Exercise II.16.7. Prove (assuming equality of second-order mixed partial
derivatives) that

∂2

∂z∂z
=

1
4

( ∂2

∂x2
+

∂2

∂y2

)
.

Thus, Laplace’s equation can be written as
∂2f

∂z∂z
= 0.

Exercise II.16.8. Prove that if u is a real-valued harmonic function then

the function
∂u

∂z
is holomorphic.




