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Abstract—In this paper, we address the spectrum portfolio
optimization (SPO) question in the context of secondary spectrum
markets, where bandwidth (spectrum access rights) can be
bought in the form of primary and secondary contracts. While
a primary contract on a channel provides guaranteed access to
the channel bandwidth (possibly at a higher per-unit price), the
bandwidth available to use from a secondary contract (possibly
at a discounted price) is typically uncertain/stochastic.The key
problem for the buyer (service provider) in this market is to
determine the amount of primary and secondary contract units
needed to satisfy uncertain user demand.

We initially consider a single-region problem in which the
spectrum contracts are valid only in the single-region in which
the buyer wishes to provide service. We formulate the problem
as one of minimizing the cost of the spectrum portfolio subject
to constraints on bandwidth shortage. Two different forms of
bandwidth shortage constraints are considered, namely, the
demand satisfaction rate constraint, and the demand satisfaction
probability constraint. While the SPO problem under demand
satisfaction rate constraint is shown to be convex for all density
functions, the SPO problem under demand satisfaction probabil-
ity constraint is not convex in general. We derive some sufficient
conditions for convexity for this case. The SPO problems can
therefore be solved efficiently using standard convex optimization
techniques. Later, we extend the problem formulation and the
convexity results to the multiple-region setting, where the buyer’s
portfolio is intended to serve a set of disjoint geographical
locations, each having its own customer demand.

Finally, we perform a thorough simulation-based study of
the single-region and the multiple-region problems for different
choices of the problem parameters, and provide key insightsre-
garding the portfolio composition and demonstrate the convexity
of the efficient frontier. We provide several insights about the
scaling behavior of the unit prices of the secondary contracts, as
the stochastic characterization of the bandwidth available from
secondary contracts change.

I. I NTRODUCTION AND BACKGROUND

The number of users of the wireless spectrum, as well as
the demand for bandwidth per user, has been growing at an
enormous pace in recent years. Since spectrum is limited, its
effective management is vitally important to meet this growing
demand. The spectrum available for public use can be broadly
categorized into the unlicensed and licensed zones. In the
unlicensed part of the spectrum, any wireless device is allowed
to transmit. To use the licensed part, however, license mustbe
obtained from appropriate government authority – the Federal
Communications Commission (FCC) in the United States, for
example - for the exclusive right to transmit in a certain block
of the spectrum over the license time period, typically for

a fee. While spectrum management in licensed bands has
mostly been controlled by responsible government bodies, the
need for bringing market based reform in spectrum trading is
being increasingly recognized [1], [2], [3]. In order to achieve
spectrum-usage efficiency, spectrum markets should allow
dynamic trading of spectral resources and derived contracts of
different risk-return characteristics. Providers can then choose
to buy/sell one or more of these spectrum contracts depending
on the level of service they wish to provide to their customers.

We consider a spectrum market in which a wireless service
provider (buyer) can purchase spectrum access rights from
another provider (seller) in the form of two types of spectrum
contracts:primary contractandsecondary contract. Typically,
the buyer will be a smaller or local provider, buying access
rights over its operational area from a larger regional or
national provider which acts as the seller, although the frame-
work and results that we present in this paper does not make
any such assumption. Primary contract offers unrestricted
access rights on a channel – a specific channel or one of a
set of channels “owned” by the seller. On the other hand,
secondary contract offers restricted access rights on a channel
or a set of channels – it provides access to the “leftover”
bandwidths on the channel(s) that the primary members on
the channel(s) do not need at that specific time. At their
core, primary and secondary contracts differ in the risk-return
tradeoff. A primary contract represents a risk-free contract in
terms of its bandwidth return characteristics, while the sec-
ondary contract is inherently risky in terms of the bandwidth
it can provide. Primary contracts would generally be more
expensive (in terms of cost per unit bandwidth provided/used),
since they provide full access rights. Secondary contracts
would typically be cheaper due to their riskiness. These two
contracts represent two fundamental forms of spectrum access
contracts – analogous to bonds and stocks in terms of the
risk characteristics. In financial markets, it is well knownthat
bonds and stocks help investors achieve their expected risk-
return tradeoff on investment. Similarly, we envisage thatthe
wireless service providers can efficiently tradeoff the level of
service they wish to provide against their cost by using these
two types of contracts.

A key challenge for a provider in this market is to determine
a spectrum portfolio of primary and secondary contracts that
can provide the desired level of service to its users at a
low cost. We formulate and study thisSpectrum Portfolio
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Optimization (SPO)problem from the perspective of a buyer.
In standard financial portfolio optimization, the objective is to
maximize the expected portfolio return while satisfying some
constraint on the variance of return. However, in our case,
the constraint can be specified meaningfully in two ways –
either in terms of the expected bandwidth shortage, or in
terms of the probability of bandwidth shortage. We refer to
these constraints as thedemand satisfaction rate constraintand
the demand satisfaction probability constraint, respectively.
We study the SPO problem under the above two constraints
separately.

The specific technical contributions of this paper are as
follows. Firstly, we show that the SPO problem under demand
satisfaction rate constraint is convex under any assumptions
on the user demand and the bandwidth return distributions.
Secondly, we show that the SPO problem under demand
satisfaction probability constraint is not convex in general
and also derive sufficient conditions on the density functions
for convexity. The motivation behind showing convexity of
the optimization problems is that convex problems can be
solved efficiently using standard techniques such as gradient
descent and Newton’s methods, whereas there are no general
techniques for solving non-convex problems efficiently. We
outline how the optimal portfolios can be computed in these
cases. We also show that the efficient frontier of both the
SPO problems is convex. In the next step, we extend the SPO
problem formulation and the convexity results to a multiple-
region scenario, where the buyer’s portfolio is intended to
serve a set of disjoint geographical locations, each having
its own user demand, using available primary and secondary
contracts that provide access rights only over subsets of all
locations of interest. Finally, we perform a detailed simulation-
based study of the single-region and the multiple-region SPO
problems and provide several insights about the portfolio
composition and the price characteristics of the secondary
contracts.

Economics of spectrum allocation and auction mechanisms
have been discussed widely in the literature [4], [5], [6], [7].
Spectrum sharing games and/or pricing issues have been con-
sidered in [8], [9], [10], [11]. Discussions and recommenda-
tions for transition to spectrum markets and secondary markets
for spectrum trading have emerged [12], [13], [14]. In [14],the
authors consider a spectrum secondary market analogous to the
stock market for dynamically trading their channel holdings.
The proposed auction-based market mechanism is shown to
improve user performance and spectrum utilization. However,
a clear design of the contract types and trade off analysis using
portfolio theory has been not been considered before.

Portfolio optimization problem has been studied extensively
in finance since the development of the mean-variance opti-
mization framework in [15]. Several attempts have been made
to improve the model and the risk measure [16], [17], [18],
[19]. In [19], the authors propose a new measure of risk,
namely, the expected shortfall and show that the problem of
minimizing expected shortfall subject to a linear equalitycon-
straint is convex. The expected shortfall function considered

in [19] measures the shortfall of return with respect to theα-
quantile of the return distribution. But the demand satisfaction
rate constraint that we consider measures the shortfall of
the bandwidth return relative to a stochastic quantity and is
therefore different from the shortfall function in [19]. However,
we are still able to make use of some of their analysis
techniques to our problem. Probabilistic constraints havenot
been studied much, until recently in [20] and [21]. In [20],
the authors study probabilistically constrained linear programs
and present conditions for convexity of the constraint. While
we apply some their results in our context, we also provide
additional conditions for convexity on the SPO problem.

The novelty of our contribution stems from the following
aspects. Though the notion of primary and secondary users
and their spectrum access rights have been extensively dis-
cussed recently, our modeling of these access rights as bond-
like riskless and stock-like risky contracts, and the rigorous
formulation of the spectrum portfolio optimization problem
are novel. Convexity of various versions of the portfolio
optimization question have been studied in the finance and
optimization literature; however, very limited results exist
on the specific demand satisfaction constraints that appear
meaningful in the spectrum access context. We provide several
interesting results for the SPO problem with such constraints
in this paper. The formulation and analysis of the multi-region
SPO problem, and the insights obtained from our numerical
studies, also constitute novel contributions of this work.

The rest of the paper is organized as follows. In Section
II, we formally define the SPO problems under demand
satisfaction rate and probability constraints. In Sections III
and IV, we study the convexity properties of the two SPO
problems. In Section V, we study the multiple-region SPO
problem. Finally, in Section VI, we present the results of our
simulation study.

II. SPECTRUMPORTFOLIO OPTIMIZATION PROBLEM

FORMULATION

In this section, we formally define the spectrum portfolio
optimization (SPO) problem for a single region. The formu-
lation and discussion of the multi-region SPO problem is
deferred to Section V. Although not necessary for the mathe-
matical formulation or subsequent analytical treatment ofthe
SPO problem, it is easy to motivate the development of the
framework by considering a (secondary) spectrum market in
which N “higher level” spectrum providers are selling access
contracts in the form of primary and secondary contracts to
other “lower level” providers. These seller spectrum providers
will typically be large providers (like VerizonWireless, AT&T,
and Sprint in the US for example) who have directly leased
spectrum from the governing body (like FCC), and might
want to offer their excess bandwidth in the form of primary
and secondary contracts. The buyers of the contracts can be
smaller, possibly local, wireless spectrum service providers
who are trying to obtain bandwidth at the cheapest price to
serve their user (customer) demand. We assume that primary
and secondary contracts can be obtained in multiple units.
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Without loss of generality, we can assume that each unit
of primary contract provides exclusive access to1 unit of
bandwidth in some channel that the seller provider operateson.
On the other hand, each unit of secondary contract provides
exclusive access to bandwidth that is a random variable vary-
ing between0 and1 unit. While this assumption is for the ease
of exposition, it can be easily generalized. A simple way to
view this setting would be to consider a seller provider having
C units of free bandwidth, offeringC units of primary andC
units of secondary contracts. If at any time slot, the primary
members in totality useα < C units of bandwidth, each unit
of secondary contract has access to0 < (C −α)/C < 1 units
of bandwidth. A buyer holdingx units of secondary contracts
with this seller provider will then have access tox(C −α)/C
units of bandwidth in that time slot.

Note that we are associating contracts – primary or sec-
ondary – with the seller providers, not specific channels. All
primary contracts (no matter which seller provider provides
it) can be considered equivalent, since they offer the same
bandwidth return (one unit, guaranteed). This also argues for
the fact that they must be priced the same; without loss of
generality, we assume that the cost of one unit of any primary
contract is unity. Secondary contracts offered by different
seller providers will differ from one another, depending onthe
access pattern of the primary members of the seller provider,
and their price per unit with also differ. However, since each
unit of secondary contract offers an average return of less than
one unit bandwidth, and have some risk associated with the
return, the price per unit for each secondary contract must be
less than unity (the price of an unit of primary contract).

With this abstraction, the SPO problem can be viewed
in the context of a market where a single type of primary
contract, andN different types of secondary contracts, are
being offered.1 Each unit of primary contract sold in the
secondary spectrum market offers guaranteed access to1 unit
of bandwidth at a cost of1. The secondary contract offered
by the provideri can be described by the pair(pi, Bi), where,
pi is the unit price of the secondary contracts offered by the
ith seller provider andBi is the random variable (varying
between0 and 1) characterizing the bandwidth return from
one unit of secondary contract of theith provider. From the
above discussion,pi < 1, ∀i.

In the following, we assume that each seller provider has
a large pool of available bandwidth, and so any amount of
primary or secondary contract units can be bought from the
providers. This is for ease of exposition, and can be easily
generalized by incorporating into the SPO problem additional
upper bounds on the number of primary and secondary con-
tract units available from a seller provider.

Now we are ready to formally define the SPO prob-
lem from the perspective of a single buyer provider. The
buyer’s objective is to create a spectrum portfolio consisting
of primary and secondary contract units from theN seller

1Note that the basic portfolio optimization question in financial markets,
while considering multiple risky (stock) assets, assumes only a single risk-free
(bond) asset, for similar reasons.

providers in order to provide service to its customer base.
Let xi, 1 ≤ i ≤ N denote the amount of secondary contract
units purchased fromith seller provider. Since the primary
contracts offered by all theN providers are identical, we
denote the total amount of primary contract units bought
by x0. We assume a relaxation thatx0, x1, x2, ..., xN are
non-negative real numbers, not necessarily integers. Let the
vector x = (x0, x1, x2, ..., xN ), denote the buyer’s spectrum
portfolio. The buyer wishes to satisfy its customers’ demand
for bandwidth using the spectrum portfolio,x. The customer
demand is often unknown in advance. We model it as a random
variableQ.

The bandwidth return or the actual units of bandwidth
available from a spectrum portfoliox, is uncertain, due to
presence of the secondary contracts. The bandwidth return of
the portfoliox, denoted byB(x), is defined as

B(x) = x0 +

N∑
i=1

xi × Bi. (1)

Since the bandwidth return and the demand are stochastic,
it is impossible or highly expensive to construct a portfolio
that always offers enough bandwidth to satisfy the customer
demand. But, it is desirable to construct portfolios with low
levels of bandwidth shortage. Let us denote the bandwidth
shortage of a portfolio byS(x)+. S(x)+ is defined as,

S(x)+ = max(Q − B(x), 0) (2)

Note that the shortage,S(x)+, is also a stochastic quantity.
The spectrum portfolio optimization (SPO) problem for the

buyer is to find the least costly portfolio with low levels of
bandwidth shortage. The SPO objective is

minimize C(x) = x0 +

N∑
i=1

xi × pi (3)

The constraint on bandwidth shortage can be specified either
in terms of expected shortage or probability of shortage.
Therefore, we consider two versions of constraints for the SPO
problem – the Demand Satisfaction Rate (DSR) constraint,
and the Demand Satisfaction Probability (DSP) constraint,as
expressed below:

DSR Constraint: E[S(x)+] < δ; (4)

DSP Constraint: Pr(S(x)+ > 0) < ǫ. (5)

HereC(x) = x0 +
∑N

i=1 xi × pi is the cost of the spectrum
portfolio x. The DSR constraint ensures that the expected
amount of bandwidth shortage is below certain acceptable
level δ. On the other hand, the DSP constraint bounds the
probability of shortage to a low valueǫ. We devote the
following sections to the study of the SPO problem under
these two types of constraints.

III. SPO UNDER DEMAND SATISFACTION RATE (DSR)
CONSTRAINT

In this section, we study the properties of the SPO problem
under demand satisfaction rate constraint, and provide the
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expressions for certain useful quantities that can be utilized
to compute the optimal portfolio solution efficiently.

A. Convexity Analysis

The objective function of the SPO problem (Equation 3)
is linear and therefore convex. The demand satisfaction rate
function (i.e.E[S(x)+]), however, is non-linear inx. We show
below thatE[S(x)+] is also convex inx. This implies that the
feasibility set represented by the DSR constraint (Equation 4)
is also convex, and therefore the SPO problem under DSR
constraint is a convex optimization question.

Theorem 1:E[S(x)+] is convex inx.
Proof: We show that the Hessian of the function

E[S(x)+] is positive semi-definite. We obtain the gradient and
Hessian ofE[S(x)+] as follows.

Let g(x) = E[S(x)+] = E[S(x)×I(S(x) > 0)], whereI(·)
is an indicator function andS(x) = Q− (x0 +

∑N
i=1 xi×Bi).

Also let random vectorB = [B1 B2 ... BN ]. We first obtain
∂g(x)
∂xi

, for i = 1 to N . Giveni, defineu = Q−x0−
∑

j 6=i xj×
Bj andv = Bi. Note thatS(x) = u − xiv. Now,

g(x) =

∫ ∞

−∞

∫ ∞

xiv

(u − xiv)fU,V (u, v)dudv

∂g(x)

∂xi

=
∂

∂xi

∫ ∞

−∞

∫ ∞

xiv

(u − xiv)fU,V (u, v)dudv

=

∫ ∞

−∞

∫ ∞

xiv

(−v)fU,V (u, v)dudv

= −E[Bi × I(S(x) > 0)] (6)

We apply Leibniz Integral rule in the second step above to
obtain the derivative of the integral.∂g(x)

∂x0
can be obtained

similarly by definingu = Q −
∑

j xj × Bj .

∂g(x)

∂x0
=

∂

∂x0

∫ ∞

u=x0

(u − x0)fU (u)du

=

∫ ∞

u=x0

(−1)fU (u)du

= −E[I(S(x) > 0)]

We next obtain the Hessian of the shortfall constraint, i.e.
∇2g(x), using a similar approach. First, we find∂

2g(x)
∂xk∂xi

, where
k 6= i and k, i ≥ 1. Defineu = Q − x0 −

∑
j 6=i,k xj × Bj ,

v = Bk, w = Bi, which have a joint densityfU,V,W (., ., .).
Now, S(x) = u − xkv − xiw and

∂g(x)

∂xi

= −

∫
R3

wI(S(x) > 0)fU,V,W (u, v, w)dudvdw

∂2g(x)
∂xk∂xi

is given by,

= −
∂

∂xk

∫ ∞

−∞

w

∫ ∞

−∞

∫ ∞

xkv+xiw

fU,V,Wdudvdw

= −

∫ ∞

−∞

w

∫ ∞

−∞

(−v)fU,V,W (xkv + xiw, v, w)dvdw

= −

∫
bi(−bk)fB,S(x)(b, 0)db

= fS(x)(0)E[BiBk|S(x) = 0]

∂2g(x)
∂x2

0

can be obtained by definingu = Q −
∑

j 6=k xj × Bj ,
v = 1, w = Bk, for somek.

∂2g(x)

∂x2
0

= −
∂

∂x0

∫ ∞

−∞

∫ ∞

x0+xkw

fU,W (u, w)dudw

= −

∫ ∞

−∞

(−1)fU,W (x0 + xkw, w)dw

=

∫
fB,S(x)(b, 0)db

= fS(x)(0)

∫
fB|S(x)(b|0)db = fS(x)(0)

fB is the joint density function of the bandwidth return vector

B. Similarly, ∂2g(x)
∂x0∂xk

= fS(x)(0)E[Bk|S(x) = 0]. Thus, the
Hessian of the constraint can be written as

∇2g(x) = fS(x)(0) × E[AA
T
|S(x) = 0] (7)

whereA = [1 B1 B2 ... BN ]T .

SincefS(x)(0) ≥ 0 andE[AA
T
|S(x) = 0] is positive semi-

definite,∇2E[S(x)+] is also positive semi-definite. Therefore,
E[S(x)+] is convex.

B. Computational Methods

Convex optimization problems can be solved efficiently
using techniques such as Newton’s method and gradient
descent if the gradients of the objective function and the
constraints are available. Therefore, we briefly discuss how the
gradients of the SPO problem under the DSR constraint can be
computed. The gradients of the objective function (linear)can
be computed trivially; the constraint gradient can be computed
numerically as outlined below. We know,

∂E[S(x)+]

∂x0
= −E[I[S(x) > 0]],

∂E[S(x)+]

∂xk

= −E[Bk × I[S(x) > 0]]. (8)

E[Bi × I[S(x) > 0]] =

∫
b

∫
q

bi × I[S(x) > 0]× fB,Q(.)dbdq.

Once the joint density function ofB and Q, fB,Q(.), is
known, theN + 1-dimensional integration can be computed
numerically by approximating the integral using a summation.
For our simulations, we assume thatBis are independent of
each other and also independent ofQ, therefore,fB,Q(.) =∏N

i=1 fBi
× fQ. We consider the truncated gaussian density

function (for both theBis andQ) defined below:

fY (y) =
1

σY

×
φ(y−µY

σY
)

Φ( b−µY

σY
) − Φ(a−µY

σY
)
, a ≤ y ≤ b, (9)

whereφ andΦ are the standard normal density and distribution
functions.
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IV. SPOUNDER DEMAND SATISFACTION PROBABILITY

(DSP)CONSTRAINT

Next, we study the convexity properties of the SPO problem
under the demand satisfaction probability constraint. We first
show that the DSP constraint is non-convex, without any
assumptions on the distribution of the demandQ and the
bandwidth return variableBis. Later, we present the conditions
under which the constraint and therefore the SPO problem
becomes convex.

A. Convexity Analysis

1) Non-convexity of SPO:We present an example where
the feasible set of the SPO problem under the DSP constraint
(Equation 5) is non-convex. Consider a simple case, when
there are two secondary contracts, i.eN = 2. Let theB1 and
B2 be uniformly distributed between0 and 1. Let Q have
a triangular density function given by,fQ(q) = 2 × q, 0 ≤
q ≤ 1. Note thatPr(S(x)+ > 0) = Pr(B(x) < Q), where
S(x) = Q−B(x) andB(x) = x0 +

∑N
i=1 xi ×Bi. Consider

the portfolio vectorsx1 = (0, 1, 0), x2 = (0, 0, 1). We have

Pr(S(x1)
+ > 0) = Pr(B1 < Q) =

2

3
= Pr(S(x2)

+ > 0).

Chooseǫ = 0.67, and denote the feasibility set by,

X0.67 = {x : Pr(S(x)+ > 0) < 0.67}. (10)

We see thatx1, x2 ∈ X0.67. However, consider the convex
combination,x3 = 1

2 × x1 + 1
2 × x2 = (0, 1/2, 1/2). It can be

shown that

Pr(S(x3)
+ > 0) = Pr(

1

2
×B1+

1

2
×B2 < Q) =

17

24
> 0.67.

i.e. x3 /∈ X0.67. So, the feasibility set is not convex in general.
2) Conditions for convexity:For a given ǫ, denote the

feasibility set (from (5)) by

Xǫ = {x : Pr(S(x)+ > 0) < ǫ} (11)

Theorem 2:Xǫ is convex if the random vectorB =
[B1 B2 ...BN ]T and the demandQ have log-concave and
symmetric density functions and0 ≤ ǫ ≤ 0.5.

We invoke the results from [20] to show this. From [20],
we know that{x : Pr(xT a < b) ≥ 1 − ǫ} is convex, if
the density function of the random vectora and the random
variableb is log-concave and symmetric. This result readily
applies to our case, by rewriting the constraint (Equation 5)
asPr(−B(x) < −Q) ≥ 1 − ǫ.

In addition, we derive another condition for convexity,
which only requires a non-increasing assumption on the prob-
ability density function ofQ, and none on theBis.

Theorem 3:Xǫ is convex iff
′

Q ≤ 0 everywhere.
Proof:

Pr(S(x)+ > 0) = Pr(Q > B(x))

=

∫
b

fB(b)P (Q > x0 +

N∑
i=1

xi × bi)db

=

∫
b

fB(b)(1 − FQ(x0 +

N∑
i=1

xi × bi))db.

HereFQ is the distribution function of the demandQ. Since
fB(b) ≥ 0 and independent ofx, we see thatPr(S(x)+ > 0)

is convex whenFQ(x0 +
∑N

i=1 xi × bi) is concave inx for
all b. The second order derivatives ofFQ(x0 +

∑N
i=1 xi × bi)

are given by,

∂2FQ(.)

∂x2
0

= f
′

Q,
∂2FQ

∂x2
i

= f
′

Q × b2
i ,

∂2FQ

∂xixj

= f
′

Q × bi × bj .

For anyz ∈ RN+1, zT∇2FQ(.)z = f
′

Q(.)× (z0 +
∑N

i=1 zi ×
bi)

2. Therefore,Pr(S(x)+ > 0) and henceXǫ is convex, if
f

′

Q(.) ≤ 0. That is, the density function of the demand is
non-increasing everywhere.

In the proof above,Q andB are assumed to be independent
of each other. If not, the sufficient condition for convexityis,
f

′

Q|B
(.|b) ≤ 0 everywhere,∀b.

Theorem 2 covers important distributions such as the gaus-
sian and the uniform density function (bothB and Q must
follow some symmetric, log-concave distribution, although
they need not be the same distribution). Theorem 3 covers
exponential and other asymmetric decreasing density functions
for Q that are not included in Theorem 2 (the distribution of
B can be arbitrary).

Remark 1: Let N = 1. If Q is deterministic, then the
DSP constraint reduces to a linear constraint. In this case,
the optimal portfolio consists of entirely primary or entirely
secondary contracts. The optimal portfolio is(Q, 0), if ǫ <
FB1

(p1) and (0, Q

F
−1

B1
(ǫ)

), if ǫ >= FB1
(p1), whereFB1

is the

cumulative distribution function ofB1.
Remark 2: It can be shown that the efficient frontier (curve

showing optimal spectrum portfolio cost vsǫ, δ) for the SPO
problem under DSP as well as DSR constraint is convex. The
proof of this can be found in the technical report [22].

B. Computational Methods

We obtain the gradient of the DSP constraint in order to
solve the SPO problem efficiently. From (8), we find that

∂E[S(x)+]

∂x0
= −E[I[S(x) > 0]] = −Pr(S(x)+ > 0) (12)

Therefore, the gradient of the DSP constraint is readily ob-
tained from the second derivatives of the DSR constraint (7).

∂Pr(S(x)+ > 0)

∂x0
= −fS(x)(0)

∂Pr(S(x)+ > 0)

∂xk

= −fS(x)(0) × E[Bk|S(x) = 0]

= −

∫
w × fU,W (x0 + xkw, w)dw,

where U = Q −
∑

i6=k xi × Bi and W = Bk. Under
independence assumptions,fU,W = fU × fW andfU can be
written in terms of the density functions ofBi (i ≥ 1, i 6= k)
and Q, as fU = {

⊙
i6=k,xi 6=0

1
|xi|

fBi
(−bi

xi
)} ∗ fQ(q), where,

fBi
is the density function ofBi and

⊙
denotes repeated

convolution.
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V. SPOOVER MULTIPLE REGIONS

The spectrum contracts typically come with clauses that re-
stricts the use of the spectrum to certain geographical regions.
This could be due to licensing or coverage limitations of the
seller provider. For example, a seller provider may only have
the license to use a part of the spectrum in certain regions (say
certain counties or states in the United States), and not others.
Alternatively, the base stations of the seller provider mayonly
cover certain sub-areas of the overall area of interest to the
buyer, which can span multiple regions. This adds additional
complexity to the SPO problem, since the spectrum portfolio
should satisfy the buyer provider’s requirements for each of
these regions. In this section, we formulate the SPO problem
over multiple regions and show that the results for the single
region problem extend to multi-region case as well.

Let us assume that the buyer of spectrum contracts operate
over a set ofK disjoint geographical regions. The buyer’s
objective is to construct a portfolio of spectrum contractsin
order to satisfy the user demand in each of theK regions.
Denote the set of regions byR, i.e, R = {1, 2, .., K}. Let
there beM primary andN secondary contracts in the market.
Let zi, pj denote the unit price ofith primary contract and
jth secondary contract, respectively. LetRp

i ⊂ R, 1 ≤ i ≤ M
denote the set of regions in which theith primary contract is
valid. Similarly, let Rs

j ⊂ R, 1 ≤ j ≤ N denote the set of
regions in which thejth secondary contract is valid. The user
demand for each region is uncertain, denoted by the random
variableQk, 1 ≤ k ≤ K.

The multi-region SPO problem under DSR constraint can
be stated as follows:

Minimize C(x) =
M∑
i=1

yi × zi +
N∑

j=1

xj × pj , (13)

s.t. E[{Qk −
∑

i∈Cp

k
yi −

∑
j∈Cs

k
xj × Bjk}

+] < δk ∀k, (14)

E[
∑K

k=1{Qk −
∑

i∈Cp

k
yi −

∑
j∈Cs

k
xj × Bjk}

+] < δ. (15)

Here {y1, ..., yM , x1, ..., xN} denotes the spectrum portfolio.
Cp

k andCs
k denote the set of primary and secondary contracts

that are valid in thekth region (1 ≤ k ≤ K), respectively.Cp
k

and Cs
k can be obtained fromRp

i , 1 ≤ i ≤ M andRs
i , 1 ≤

j ≤ N . Note thatCp
k ⊂ {1, 2, .., M} and Cs

k ⊂ {1, 2, .., N}.
The random variableBjk represents the bandwidth return
of the jth secondary contract in thekth region. For the
multiple region problem, there are totallyK + 1 inequality
constraints; one DSR constraint for each of theK regions and
one overall DSR constraint for all the regions. The LHS of
the (K + 1)th constraint is simply the summation of the LHS
of the first K constraints. However, note that

∑K
k=1 δk > δ,

else the last constraint would be redundant; typically, the
buyer provider may want haveδk > δ/K, for eachk. The
motivation of both types of constraints (per-region as well
as overall) is as follows. While the buyer provider would
be interested in the ensuring a certain DSR over its overall
customer base, it may also want to ensure a certain DSR

(possibly a smaller normalized DSR than the overall DSR) is
ensured in each of its regions of operation, to limit excessive
customer dissatisfaction in each individual region.

The SPO problem under DSP constraint can be defined
similarly as above, but by replacing the expectation constraints
with the corresponding probability constraints, andδk and δ
by ǫk andǫ, respectively.

For both the SPO problems, we see that thekth constraint
(1 ≤ k ≤ K) is similar to the constraint for the single region
problem ((4) and (5)) except for the presence or absence of
few variables inside the two summations. First, consider the
SPO problem under DSR constraint (13-(15)). Let thekth rate
constraint be denoted bygk. gk involves only some of they

′

is
andx

′

js. It can be rewritten as,

E[{Qk −
∑

1≤i≤M

yi × I(i ∈ Cp
k ) −

∑
1≤j≤N

xj × B
′

j}
+] < δk,

(16)
whereB

′

j = Bjk, if j ∈ Cs
k, elseB

′

j = 0. I(i ∈ Cp
k ) is the

indicator function for the setCp
k . Now, the proof technique

for the single-region problem can be readily extended to show
that gk is convex iny

′

is, x
′

js. The final constraint (gK+1) is
also convex, since it is the sum of several convex functions.
Therefore, the feasible set for this problem is convex, since
the intersection of several convex sets is convex. Similarly, the
feasible set for the multiple-region SPO problem under DSP
constraint is also convex, if the density functions of all the
random parameters involved are log-concave and symmetric.

Since the problems are convex, the constraint gradients can
be used to solve the optimization problems efficiently. The
gradient of thekth DSR constraint is given by,

∂gk

∂yi

= −E[I(Sk > 0)], i ∈ Cp
k ; 0, otherwise,

whereSk = Qk −
∑

i∈Cp

k
yi −

∑
j∈Cs

k
xj × Bjk.

∂gk

∂xj

= −E[Bjk × I(Sk > 0)], j ∈ Cs
k; 0, otherwise.

Similarly, the gradient ofkth demand satisfaction proba-
bility constraint (denoted byhk) can be computed using the
results for the single region problem, as given below:

∂hk

∂yi

= −fSk
(0), i ∈ Cp

k ; 0, otherwise,

wherefSk
is the density function ofSk.

∂hk

∂xj

= −fSk
(0) × E[Bjk|Sk = 0], j ∈ Cs

k; 0, otherwise.

For both the problems, the gradient of the(K+1)th constraint
is the summation of the gradients of the firstK constraints.
The gradients can be evaluated numerically as explained in
the previous sections.
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VI. SIMULATION -BASED EVALUATION

We solve the SPO problems using Matlab to study the
characteristics of the spectrum portfolio. Our goal is examine
how the parameters of the problem, namely, the price of the
secondary contracts, the bandwidth return distributions,and
the constraints (ǫ, δ) influence the portfolio composition. The
results for the single-region SPO problems are presented in
sections VI-A and VI-B, while the results for the multiple-
region problem are presented in section VI-C.

A. Single Primary and Single Secondary contract

We first consider the simplest case of there being a single
secondary contract seller in the market. The bandwidth return
B1 and the demandQ are assumed to have truncated normal
distributions (Refer to (9)).B1 has a mean of0.5, while the
demandQ has a mean of1.5. The distribution ofQ is restricted
to the interval[0, 3]. We obtain optimal portfolio when the key
parameters of the problem (ǫ, δ, p1) are changed.
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Fig. 1. Number of primary (xE
0

, xP
0

) and secondary (xE
1

,xP
1

) contract units
in the optimal portfolio for the SPO problem under DSR and DSPconstraint.

Figure 1 shows the spectrum portfolio composition for
different choices of the DSR constraint (δ) and DSP constraint
(ǫ), respectively. The unit price of the secondary contract,
p1 = 0.25. In the figure,xE = {xE

0 , xE
1 } andxP = {xP

0 , xP
1 }

denote the portfolios for SPO problems with DSR and DSP
constraints, respectively. As expected, whenδ = ǫ = 0, we
observe that the portfolio consists of primary contract units
only. This is due to the fact that the secondary contracts due
to their stochastic returns introduce bandwidth shortage (or
demand violation) even if they are bought in large quantities.
Moreover, the number of primary contract units in both the
cases is equal to the maximum possible demand (i.e3). As
the constraint (ǫ, δ) is relaxed, we find that the number of
primary contract units reduces sharply until it becomes zero.
On the other hand the number of secondary contract units
(xE

1 , xP
1 ) increases initially, but starts decreasing as soon as

the number of primary contract units becomes zero. This can
be explained as follows: As the constraint (ǫ, δ) is increased
from zero, it becomes unnecessary to meet the demand with
probability one. Therefore, total cost of the portfolio canbe
reduced, by reducing the number of primary contract units,
while adding the requisite amount of secondary contract units
to keep the demand violation below the desired value. This

happens until the number of primary contract units becomes
zero. Beyond this point, the only way to reduce the cost is to
reduce the number of secondary contract units, which can be
reduced asǫ, δ increases.
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Fig. 2. Number of primary and secondary contract units in theportfolio
for the SPO problem under DSR constraint.{xT

0
, xT

1
}, {xG

0
, xG

1
} denote the

spectrum portfolio for empirical and gaussian fitted distributions, respectively.

Next, we study the sensitivity of the portfolio composition
to changes in the distribution of the demand (Q) and the
bandwidth return (B1). We obtain the empirical distribution of
the total daily traffic of a Verizon Wi-Fi HotSpot network from
[23] (Refer to Figure12 of [23]) and consider this distribution
for the user demandQ. From this, we compute the distribution
of B1 asfB1

(b) = fQ(β(1− b)), 0 ≤ b ≤ 1, since bandwidth
availability is related negatively to the user demand (the
scaling factorβ is used for normalization). The results for SPO
problem under DSR constraint are shown in Figure 2, where,
{xT

0 , xT
1 } represents the spectrum portfolio whenQ and B1

have the empirical distributions discussed above. We also
solve the SPO problem withQ andB1 modeled as gaussian
distributions that approximate the above empirical distributions
(See{xG

0 , xG
1 }). Some small differences notwithstanding, we

see that the general trend in the optimal portfolio composition
for the empirical and fitted gaussian distributions is the same.
Additionally, we ran simulations with uniform distribution and
observed similar results. Therefore, in the following we only
present the results for gaussian distributions.
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Fig. 3. Optimal spectrum portfolio composition for different choices of the
unit price of secondary contract.

Figure 3 shows the effect of unit price of the secondary
contract on the portfolio. The simulation parameters for this
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figure are same as the ones chosen for Figure 1. But, we now
fix ǫ and δ at 0.1, and increase the price of the secondary
contractp1. As p1 is increased from0 to 1, the spectrum port-
folio composition gradually changes from those with entirely
secondary contract units to those with entirely primary contract
units. The transition in this case happens whenp1 = 0.5. For
prices between0.1 and0.5, the portfolio has a mix of primary
as well as secondary contract units. Since the mean bandwidth
return of the secondary contract is0.5, we find that buying
secondary contract units make sense only when their price is
roughly half the price of the primary contract (i.e.1 × 0.5).
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Fig. 4. Efficient Frontier (convex): Optimal portfolio costvs demand
satisfaction constraint (ǫ,δ). CostE and CostP denote the cost under the
DSR and DSP constraints, respectively.

Figure 4 shows the minimum cost that can be achieved for
the SPO problems as the constraint (ǫ, δ) is increased. The cost
decreases as expected. Moreover, this curve, popularly known
as the Efficient Frontier in the context of financial portfolio
optimization, is observed to be convex. A formal proof of
convexity of the efficient frontier is presented in [22].

B. Single Primary and Two Secondary contracts

We next consider two types of secondary contracts and
study how the price and bandwidth return characteristics of
a contract affects the choice of the secondary contract. Dueto
space limitations, we only present results on the SPO problem
under the DSR constraint. As before, the demand has normal
distribution between0 and3. The price of the single primary
contract is1. The bandwidth returns of the two secondaries,
B1 and B2, have normal distribution between0 and 1, but
with different mean and variance.

We obtain the optimal portfoliox = {x0, x1, x2} as the ratio
of the unit prices of the two secondaries, i.e.p1

p2
, is increased.

The results are shown in Figures 5 and 6. For the results shown
in Figure 5,B1 andB2 have same mean (of0.5) but different
variances. Figure 5 showsx1−x2 as p1

p2
is increased from0.5

to 2. Each of the three curves corresponds to a fixed choice
of the variance (σ1, σ2) of the bandwidth returns. Consider
the curve corresponding to the variance choiceσ1 = 0.2σ2.
We find thatx1 − x2 > 0, until p1

p2
≤ 1.4. This implies that

the contribution of the first secondary contract units to the
overall portfolio is higher than that of the second contract
even if the unit price of the first contract is higher than the
unit price of the second contract. This is clearly due to the fact

that B1 has lesser variance thanB2. However, if p1

p2
> 1.4,

the second contract units are more, since it is much lesser
priced. On the other hand, whenσ1 = 2σ2, the first secondary
contract is preferred over second contract, only if it costslesser
than the second contract. These results suggest that secondary
contracts that have lower variance of bandwidth return can
be priced higher than those with higher variances, provided
they have the same mean bandwidth return. Moreover, it
was observed that the portfolio consisted of non-zero units
of both the secondary contracts for price ratios shown, i.e.
x1 6= 0, x2 6= 0, for 0.5 ≤ p1

p2
≤ 2. This suggests that it is

cost efficient to buy a mix of secondary contract units from
multiple sellers, instead of just one, provided their prices are
not very different.x1 or x2 became zero only whenp1

p2
is

either too high or too low, respectively.
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Fig. 5. Relative contribution of the two secondary contractunits as the ratio
of the unit prices of the two secondary contracts is increased. Each curve
corresponds to a fixed choice of the variance ofB1 andB2.
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Fig. 6. Relative contribution of the two secondaries. Each curve corresponds
to a fixed choice of the mean ofB1 andB2.

Figure 6 showsx1−x2 vs p1

p2
, for different choices of means

of B1 andB2, keeping the variance fixed at0.1. Whenµ1 =
0.8 and µ2 = 0.2, we find thatx1 − x2 > 0 as long as
p1

p2
≤ 1.75. That is, the secondary contract with4 times higher

mean bandwidth return is preferred even at75% higher price.
We also observe that the secondary contract with lesser mean
is preferred only if it has lower price (For the curve withµ1 =
0.2, µ2 = 0.8, x1−x2 > 0 only for p1

p2
≤ 0.6). Figures 5 and 6

suggest that the mean as well as the variance of the bandwidth
return of a secondary contract play equally important rolesin
determining the unit price of the secondary contract.
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Fig. 7. Figure showing the effect of the ratio of unit price ofthe K + 1th

secondary contract to that of the first secondary contract, for different K.

C. Multiple Region

For the multiple-region problem, we consider the following
simulation setup. There are totallyK regions,K + 1 primary
contracts, andK + 1 secondary contracts. Theith primary
and secondary contract, where1 ≤ i ≤ K, is valid in theith

region only. In other words, the firstK primary and secondary
contracts are single-region contracts each valid in one of theK
regions. However, theK+1th primary and secondary contract
is valid over all theK regions. We examine the composition
of secondary contract units in the optimal portfolio, when the
price of theK-region secondary contract, i.e.pK+1, changes.

The price of all the primary contracts, i.e.z1, z2..., zK+1,
is set to a large value such that the portfolio consists of
only secondary contract units. The firstK secondary contracts
are identical in terms of their bandwidth return distributions
and unit prices. The prices of all the single-region secondary
contracts,p1, p2.., pK , are set to1. The bandwidth return
variables (Bi, 1 ≤ i ≤ K + 1) follow truncated normal
distribution with mean0.5 and variance0.25. Due to space
limitations, we only consider the multiple-region SPO problem
under DSR constraints. The constraintδi is set to0.1 for all
theK regions, whileδ is set toK×0.1. We increase the price
of the (K + 1)th secondary contract, i.e.pK+1, from 0.5 and
observe the portfolio composition.

Figure 7 shows the simulation results forK = 2, 3, 4. It
was observed that the total number of primary contract unitsis
zero as expected, i.e.y1 = y2 = .. = yK+1 = 0. Moreover, all
the single-region secondary contracts contributed equal units
to the portfolio, i.e.x1 = x2 = .. = xK . Therefore, we plot
xK+1−x1 as a function of the ratiopK+1

p1
for K = 2, 3, 4. For

eachK, when the price ratiopK+1

p1
< K, we find the portfolio

consists of higher quantity of(K + 1)th secondary contract
units compared to the single-region secondary contract, i.e.
xK+1 − x1 > 0. However, whenpK+1

p1
≥ K, the single-

region secondary contracts are preferred over theK-region
contract (xK+1 − x1 < 0, if pK+1

p1
≥ K). Therefore, we find

that the provider (seller) ofK-region secondary contract can
scale up its price upto a factor ofK and still enjoy preference
over the single-region contracts offered by smaller providers.
This happens due to the fact that the provider can either buy
one unit of theK-region secondary contract or one unit from

each of theK single-region secondary contracts to provide
the same service over theK regions at the same cost. The
portfolio shifts completely in favor of single-region contracts
only when the price,pK+1, is too high. For the above choice
of parameters,xK+1 became zero whenpK+1

p1
> 12, 18, and

24, respectively, forK = 2, 3, and4. That is, when the price of
K-region secondary contract is roughly6K times (or higher)
the price of the single-region secondary contract, the portfolio
no longer consists ofK-region secondary contract units.
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