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Abstract—In this paper, we address the spectrum portfolio
optimization (SPO) question in the context of secondary sptrum

markets, where bandwidth (spectrum access rights) can be

bought in the form of primary and secondary contracts. While
a primary contract on a channel provides guaranteed accesot
the channel bandwidth (possibly at a higher per-unit price) the
bandwidth available to use from a secondary contract (posbiy
at a discounted price) is typically uncertain/stochasticThe key
problem for the buyer (service provider) in this market is to
determine the amount of primary and secondary contract unis
needed to satisfy uncertain user demand.

We initially consider a single-region problem in which the
spectrum contracts are valid only in the single-region in wich
the buyer wishes to provide service. We formulate the proble
as one of minimizing the cost of the spectrum portfolio subjet
to constraints on bandwidth shortage. Two different forms d
bandwidth shortage constraints are considered, namely, #
demand satisfaction rate constraint, and the demand satiattion
probability constraint. While the SPO problem under demand
satisfaction rate constraint is shown to be convex for all desity
functions, the SPO problem under demand satisfaction probiail-
ity constraint is not convex in general. We derive some suffient
conditions for convexity for this case. The SPO problems can
therefore be solved efficiently using standard convex optimation
techniques. Later, we extend the problem formulation and tle
convexity results to the multiple-region setting, where tle buyer’s
portfolio is intended to serve a set of disjoint geographich
locations, each having its own customer demand.

Finally, we perform a thorough simulation-based study of
the single-region and the multiple-region problems for diferent
choices of the problem parameters, and provide key insightge-
garding the portfolio composition and demonstrate the conexity
of the efficient frontier. We provide several insights aboutthe
scaling behavior of the unit prices of the secondary contras, as
the stochastic characterization of the bandwidth availabé from
secondary contracts change.

I. INTRODUCTION AND BACKGROUND
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a fee. While spectrum management in licensed bands has
mostly been controlled by responsible government bodhes, t
need for bringing market based reform in spectrum trading is
being increasingly recognized [1], [2], [3]. In order to &sle
spectrum-usage efficiency, spectrum markets should allow
dynamic trading of spectral resources and derived comstifct
different risk-return characteristics. Providers camtbhoose
to buy/sell one or more of these spectrum contracts depgndin
on the level of service they wish to provide to their custasner
We consider a spectrum market in which a wireless service
provider (buyer) can purchase spectrum access rights from
another provider (seller) in the form of two types of speatru
contractsprimary contractandsecondary contracfTypically,
the buyer will be a smaller or local provider, buying access
rights over its operational area from a larger regional or
national provider which acts as the seller, although thené&a
work and results that we present in this paper does not make
any such assumption. Primary contract offers unrestricted
access rights on a channel — a specific channel or one of a
set of channels “owned” by the seller. On the other hand,
secondary contract offers restricted access rights on anetha
or a set of channels — it provides access to the “leftover”
bandwidths on the channel(s) that the primary members on
the channel(s) do not need at that specific time. At their
core, primary and secondary contracts differ in the rigksre
tradeoff. A primary contract represents a risk-free carttia
terms of its bandwidth return characteristics, while the-se
ondary contract is inherently risky in terms of the bandtidt
it can provide. Primary contracts would generally be more
expensive (in terms of cost per unit bandwidth providedijse
since they provide full access rights. Secondary contracts
would typically be cheaper due to their riskiness. These two

The number of users of the wireless spectrum, as well esntracts represent two fundamental forms of spectrumsacce
the demand for bandwidth per user, has been growing at @ntracts — analogous to bonds and stocks in terms of the
enormous pace in recent years. Since spectrum is limited, risk characteristics. In financial markets, it is well knotiat

effective management is vitally important to meet this grayv

bonds and stocks help investors achieve their expected risk

demand. The spectrum available for public use can be broadiyurn tradeoff on investment. Similarly, we envisage that
categorized into the unlicensed and licensed zones. In thigeless service providers can efficiently tradeoff theelesf

unlicensed part of the spectrum, any wireless device isvalib

service they wish to provide against their cost by usingehes

to transmit. To use the licensed part, however, license misttwo types of contracts.

obtained from appropriate government authority — the Rader A key challenge for a provider in this market is to determine
Communications Commission (FCC) in the United States, farspectrum portfolio of primary and secondary contracts tha
example - for the exclusive right to transmit in a certaindilo can provide the desired level of service to its users at a
of the spectrum over the license time period, typically fdow cost. We formulate and study thiSpectrum Portfolio



Optimization (SPOproblem from the perspective of a buyerin [19] measures the shortfall of return with respect to dhe

In standard financial portfolio optimization, the objeetig to quantile of the return distribution. But the demand satitifen
maximize the expected portfolio return while satisfyingr&go rate constraint that we consider measures the shortfall of
constraint on the variance of return. However, in our casile bandwidth return relative to a stochastic quantity and i
the constraint can be specified meaningfully in two ways therefore different from the shortfall function in [19]. Wever,
either in terms of the expected bandwidth shortage, or we are still able to make use of some of their analysis
terms of the probability of bandwidth shortage. We refer t®chniques to our problem. Probabilistic constraints haste
these constraints as tdemand satisfaction rate constragmd been studied much, until recently in [20] and [21]. In [20],
the demand satisfaction probability constrajmespectively. the authors study probabilistically constrained lineargpams
We study the SPO problem under the above two constraiatsd present conditions for convexity of the constraint. M/hi
separately. we apply some their results in our context, we also provide

The specific technical contributions of this paper are aslditional conditions for convexity on the SPO problem.
follows. Firstly, we show that the SPO problem under demandThe novelty of our contribution stems from the following
satisfaction rate constraint is convex under any assumpti@spects. Though the notion of primary and secondary users
on the user demand and the bandwidth return distributiorsd their spectrum access rights have been extensively dis-
Secondly, we show that the SPO problem under demacwalssed recently, our modeling of these access rights as bond
satisfaction probability constraint is not convex in geerlike riskless and stock-like risky contracts, and the r@mor
and also derive sufficient conditions on the density fumdio formulation of the spectrum portfolio optimization proivle
for convexity. The motivation behind showing convexity ofre novel. Convexity of various versions of the portfolio
the optimization problems is that convex problems can lmptimization question have been studied in the finance and
solved efficiently using standard techniques such as gmadieptimization literature; however, very limited resultsisx
descent and Newton’s methods, whereas there are no genenathe specific demand satisfaction constraints that appear
technigues for solving non-convex problems efficiently. Wimeaningful in the spectrum access context. We provide akver
outline how the optimal portfolios can be computed in thespteresting results for the SPO problem with such condisain
cases. We also show that the efficient frontier of both the this paper. The formulation and analysis of the multiiveg
SPO problems is convex. In the next step, we extend the SBBO problem, and the insights obtained from our numerical
problem formulation and the convexity results to a multiplestudies, also constitute novel contributions of this work.
region scenario, where the buyer’s portfolio is intended to The rest of the paper is organized as follows. In Section
serve a set of disjoint geographical locations, each havitlg we formally define the SPO problems under demand
its own user demand, using available primary and secondaatisfaction rate and probability constraints. In Sedtidk
contracts that provide access rights only over subsetslof ahd IV, we study the convexity properties of the two SPO
locations of interest. Finally, we perform a detailed siatidn- problems. In Section V, we study the multiple-region SPO
based study of the single-region and the multiple-regio® SFroblem. Finally, in Section VI, we present the results of ou
problems and provide several insights about the portfolgimulation study.
composition and the price characteristics of the secondary
contracts.

Economics of spectrum allocation and auction mechanisms
have been discussed widely in the literature [4], [5], [6].[ In this section, we formally define the spectrum portfolio
Spectrum sharing games and/or pricing issues have been amgptimization (SPO) problem for a single region. The formu-
sidered in [8], [9], [10], [11]. Discussions and recommenddation and discussion of the multi-region SPO problem is
tions for transition to spectrum markets and secondary etarkdeferred to Section V. Although not necessary for the mathe-
for spectrum trading have emerged [12], [13], [14]. In [1thk matical formulation or subsequent analytical treatmenthef
authors consider a spectrum secondary market analogdus toSPO problem, it is easy to motivate the development of the
stock market for dynamically trading their channel holding framework by considering a (secondary) spectrum market in
The proposed auction-based market mechanism is shownmuaich NV “higher level” spectrum providers are selling access
improve user performance and spectrum utilization. Howeveontracts in the form of primary and secondary contracts to
a clear design of the contract types and trade off analysig usother “lower level” providers. These seller spectrum pdevs
portfolio theory has been not been considered before. will typically be large providers (like VerizonWirelessTAT,

Portfolio optimization problem has been studied extergiveand Sprint in the US for example) who have directly leased
in finance since the development of the mean-variance oppectrum from the governing body (like FCC), and might
mization framework in [15]. Several attempts have been madent to offer their excess bandwidth in the form of primary
to improve the model and the risk measure [16], [17], [18hnd secondary contracts. The buyers of the contracts can be
[19]. In [19], the authors propose a new measure of riskmaller, possibly local, wireless spectrum service presdd
namely, the expected shortfall and show that the problemwho are trying to obtain bandwidth at the cheapest price to
minimizing expected shortfall subject to a linear equatin- serve their user (customer) demand. We assume that primary
straint is convex. The expected shortfall function con®de and secondary contracts can be obtained in multiple units.

Il. SPECTRUMPORTFOLIO OPTIMIZATION PROBLEM
FORMULATION



Without loss of generality, we can assume that each upitoviders in order to provide service to its customer base.
of primary contract provides exclusive accessltanit of Letxz;,1 < i < N denote the amount of secondary contract
bandwidth in some channel that the seller provider opemates units purchased fronit” seller provider. Since the primary
On the other hand, each unit of secondary contract providamntracts offered by all theV providers are identical, we
exclusive access to bandwidth that is a random variable-vadenote the total amount of primary contract units bought
ing betweerd and1 unit. While this assumption is for the easéby xy. We assume a relaxation that,z1,zo,...,zy are

of exposition, it can be easily generalized. A simple way toon-negative real numbers, not necessarily integers. het t
view this setting would be to consider a seller provider hgvi vectorz = (zg, z1, z9, ...,z ), denote the buyer's spectrum
C units of free bandwidth, offering’ units of primary and”  portfolio. The buyer wishes to satisfy its customers’ dechan
units of secondary contracts. If at any time slot, the primafor bandwidth using the spectrum portfolis, The customer
members in totality use. < C' units of bandwidth, each unit demand is often unknown in advance. We model it as a random
of secondary contract has acces9ta (C' —«)/C < 1 units variable(.

of bandwidth. A buyer holding: units of secondary contracts The bandwidth return or the actual units of bandwidth
with this seller provider will then have accessat@C — «)/C  available from a spectrum portfoli@, is uncertain, due to

units of bandwidth in that time slot. presence of the secondary contracts. The bandwidth refurn o
Note that we are associating contracts — primary or sete portfolioz, denoted byB(7), is defined as

ondary — with the seller providers, not specific channels. Al N

primary contracts (no matter which seller provider progide B(T) = 20 + le x B;. (1)

it) can be considered equivalent, since they offer the same Py

bandwidth return (one unit, guaranteed). This also argaes t’S

the fact that they must be priced the same; without loss 'is impossible or highly expensive to construct a portoli

genterallty, we z_:\tssusm c thzt the costt oftoneﬁunlt(;)fbanyd%r‘lamewat always offers enough bandwidth to satisfy the customer
contract 1s unily. Secondary: contracts ofiered by AIerefy , nqg, But, it is desirable to construct portfolios witkwlo

seller providers will differ_from one another, dependingtba. levels of bandwidth shortage. Let us denote the bandwidth
access pattern of the primary members of the seller prqv'daﬁortage of a portfolio by§(z)*. S(z)* is defined as

and their price per unit with also differ. However, since leac
unit of secondary contract offers an average return of less t S(x)*t = max(Q — B(%),0) (2)
one unit bandwidth, and have some risk associated with the

) : oOte that the shortages(z)™, is also a stochastic quantity.
return, the price per unit for each secondary contract mest b . e

. . ) : The spectrum portfolio optimization (SPO) problem for the
less than unity (the price of an unit of primary contract).

With this abstraction, the SPO problem can be viewegd;1 )rllzzlvli?jtthosfrlnr(])?t;gz I?I_i‘zt ggglyogc;gic\)lléoi;/vnh low levels of

in the context of a market where a single type of primary
contract, andN different types of secondary contracts, are o N
being offered: Each unit of primary contract sold in the minimize C () = zo +in X Di )
secondary spectrum market offers guaranteed accelssing =1
of bandwidth at a cost of. The secondary contract offeredThe constraint on bandwidth shortage can be specified either
by the provideri can be described by the pdjs;, B;), where, in terms of expected shortage or probability of shortage.
p; is the unit price of the secondary contracts offered by thigherefore, we consider two versions of constraints for tR®S
it" seller provider andB; is the random variable (varying problem — the Demand Satisfaction Rate (DSR) constraint,
between0 and 1) characterizing the bandwidth return fromand the Demand Satisfaction Probability (DSP) constraisit,
one unit of secondary contract of tli& provider. From the expressed below:
above d|scu55|_0rpi < 1,¥i. . DSR Constraint: E[S(z)"] < 0 (4)

In the following, we assume that each seller provider has _
a large pool of available bandwidth, and so any amount of DSP Constraint: Pr(S@)* >0) < e ®)
primary or secondary contract units can be bought from “FLF'ereC(f) — 2o+ Zz{\il x; X p; is the cost of the spectrum
providers. This is for ease of exposition, and can be easfytfolio 7. The DSR constraint ensures that the expected
generalized by incorporating into the SPO problem add#iony yount of bandwidth shortage is below certain acceptable
upper bounds on the number of primary and secondary cqBye| 5. On the other hand, the DSP constraint bounds the
tract units available from a seller provider. probability of shortage to a low value. We devote the

Now we are ready to formally define the SPO proby)ioywing sections to the study of the SPO problem under
lem from the perspective of a single buyer provider. Thgace two types of constraints.

buyer’s objective is to create a spectrum portfolio comgjst

of primary and secondary contract units from theseller ~ !ll. SPOUNDER DEMAND SATISFACTION RATE (DSR)
CONSTRAINT

%nce the bandwidth return and the demand are stochastic,

INote that the basic portfolio optimization question in fioiah markets, . . .
while considering multiple risky (stock) assets, assunmég a single risk-free In this section, we StUdy the properties of the SPO prObIem

(bond) asset, for similar reasons. under demand satisfaction rate constraint, and provide the



expressions for certain useful quantities that can bezatli
to compute the optimal portfolio solution efficiently.

A. Convexity Analysis

The objective function of the SPO problem (Equation 3)
is linear and therefore convex. The demand satisfactiom rat

function (i.e.E[S(Z)"]), however, is non-linear im. We show
below thatE[S(z)™] is also convex irx. This implies that the
feasibility set represented by the DSR constraint (Equatip

is also convex, and therefore the SPO problem under DSR

constraint is a convex optimization question.
Theorem 1:E[S(z)™] is convex inz.

9
8"(2 can be obtained by defining=Q — -, z; x Bj,

v = 1 w = By, for somek.

3170 / /mo+mkw fu.w (u, w)dudw
_/ (—=1) fo,w (zo + zpw, w)dw

9%g(T)
3:0(2)

() (8,0)db

Proof: We show that the Hessian of the function
E[S(z)*] is positive semi-definite. We obtain the gradient anéﬁ is the joint den3|ty function of the bandwidth return vector

Hessian ofE[S(Z)™] as follows.
Letg(z) = E[S(z)"] = E[S(z )><I(S
is an indicator function and(z) = (Io+z 12 X By).
AIso let random vectoB = [B; Bg ... Bn]. We f|rst obtain
35’1 fori = 1to N. Giveni, defineu = Q—xzo—3_,; 7 X

andv = B;. Note thatS(z) = u — z;v. Now,

/ /M u— z;v) fu,v (u, v)dudv

8:%/ /m u — z;v) fu,v (u, v)dudv

/ /x ) fu.v (u, v)dudv

Bi x I(5(z) > 0)]

l,wherel( )

Jg9()

(6)

We apply Leibniz Integral rule in the second step above

obtain the derivative of the integraig%(? can be obtained

similarly by definingu = Q — >, z; x B;.
dg() _ 0 [%
dry  Oxg /u—mo (= o) fu (u)du

| Gt
_E[I(5(T) > 0)]

We next obtain
V2¢(Z), using a similar approach. First, we fl|§’elM where
k # i andk,i > 1. Defineu = Q — z¢ — Zﬁél_’kxj x Bj,
v = By, w = B;, which have a joint densityy v.w(.,.,.).
Now, S(T) = u — zxv — z;w and

99(x) = _/ wl(S(T) > 0) fu,v.w (u, v, w)dudvdw
ox; R3 i
gjgg? is given by,

/ / / fU v, Wdudvdw
8Ik Tpv+x;w

- - / <bk>fBS \(5,0)db
= fs@(0)E[B;B|S(T) = 0]

V) fuv.w (xpv + zw, v, w)dvdw

%9(@ _

B. Similarly, groper = Js@(0)E[By|S(Z) = 0]. Thus, the
Hessian of the constralnt can be written as
_ ——T
V29(T) = fs@)(0) x E[AA" |S(T) = 0] (7)
whereA = [1 By B, ... Bx|%.

Since fs)(0) > 0 andE[AA" |S(z) = 0] is positive semi-
definite, V2 E[S(7) "] is also positive semi-definite. Therefore,
E[S(z)"] is convex. [

B. Computational Methods

Convex optimization problems can be solved efficiently
using techniques such as Newton’s method and gradient
descent if the gradients of the objective function and the
Ponstramts are available. Therefore, we briefly discussthe
grad|ents of the SPO problem under the DSR constraint can be
computed. The gradients of the objective function (linear)
be computed trivially; the constraint gradient can be cotegu
numerically as outlined below. We know,

%@W — —E[I[S@) > 0]},

Zo

%@)*] = —E[ByxI[S@) >0].  (8)
Tk

the Hessian of the shortfall constraint, i.e.

E[B; x I[S T) > 0] X f5 ¢ (-)dbdg.

) > 0] //bx[

Once the joint density function oB and Q, fE_’Q(.), is
known, the N + 1-dimensional integration can be computed
numerically by approximating the integral using a sumnmatio
For our simulations, we assume th@ts are independent of
each other and also independent(®f therefore,fEQ(.) =

Hf\;l fB; x fo. We consider the truncated gaussian density
function (for both theB;s andQ) defined below:

fr(y) = —x

oy

,a<y<b,

9)
= a (
O(=Er) — e(E)
where¢ and® are the standard normal density and distribution
functions.



IV. SPOUNDER DEMAND SATISFACTION PROBABILITY Here Fy, is the distribution function of the demar@. Since

(DSP)CONSTRAINT fg(b) > 0and mdependent aof, we see thaPr(S(z)* > 0)

Next, we study the convexity properties of the SPO problei Convex wheni (o + S_1L; z; x b;) is concave i for

under the demand satisfaction probability constraint. Wt fi all b. The second order derivatives 85 (xo + >, x; x b;)
show that the DSP constraint is non-convex, without ar@ye given by,

assumptions on the distribution of the demagdand the 92 Fy(.) 2F 2F

bandwidth return variabl®;s. Later, we present the conditions Q2 Z = fos 8—2Q fQ x b2, 8—Q = fQ X b X bj.

under which the constraint and therefore the SPO problem ¢*0 Li Til

becomes convex. For anyz € RN*1, ZTV2Fo()Z = fo(.) x (20 + Y1ty 21 %

A. Convexity Analysis ) Therefore,Pr(S(E)+ > 0) and henceX, is convex, if
1) Non-convexity of SPOWe present an example wherefo(-) < 0. That is, the density function of the demand is

the feasible set of the SPO problem under the DSP constrdiff’-increasing everywhere. .

(Equation 5) is non-convex. Consider a simple case, whenln the proof aboveq andB are assumed to be independent

there are two secondary contracts, Ne= 2. Let the B; and of each other. If not, the sufficient condition for convexiy

B, be uniformly distributed betweefi and 1. Let Q have Q‘B( [b) < 0 everywhereyb.

a triangular density function given by (q) = 2 x ¢,0 < Theorem 2 covers important distributions_such as the gaus-

q < 1. Note thatPr(S(z)* > 0) = Pr(B(Z) < Q), where sian and the uniform density function (bof® and @ must

S(Z) = Q — B(Z) and B(T) = xo + Zfil z; X B;. Consider follow some symmetric, log-concave distribution, althbug

the portfolio vectorsz; = (0,1,0), T = (0,0,1). We have they need not be the same distribution). Theorem 3 covers
9 exponential and other asymmetric decreasing density ifumet

Pr(S(@1)*t >0)=Pr(B; <Q) = 3= Pr(S(@2)T >0). for Q that are not included in Theorem 2 (the distribution of

B can be arbitrary).

Remark 1: Let N = 1. If @ is deterministic, then the
Xoor = {T: Pr(S(@T)* > 0) < 0.67}. (10) DSP constraint reduces to a linear constraint. In this case,
the optimal portfolio consists of entirely primary or eety
secondary contracts The optimal portfolio (€, 0), if € <
Fg,(p1) and (0 ), if e >= Fp,(p1), whereFp, is the

Choosec = 0.67, and denote the feasibility set by,

We see thatfl,:cg € Xo. 67 However, consider the convex

combinationzs =  x 71 + 3 x T2 = (0,1/2,1/2). It can be

shown that Py 1(
1 1 7 cumulative dlstrlbut|0n function oB;.

Pr(S(ms)" > 0) = Pr(gxBitgxBy <Q) =57 >067. Remark 2: It can be shown that the efficient frontier (curve

Fhowmg optimal spectrum portfolio cost ¥sé) for the SPO

problem under DSP as well as DSR constraint is convex. The

proof of this can be found in the technical report [22].

i.e.Ts ¢ Xp.e7. SO, the feasibility set is not convex in genera
2) Conditions for convexity:For a givene, denote the
feasibility set (from (5)) by

X, ={z:Pr(S@* >0) <e} (11) B. Computational Methods

Theorem 2:X, is convex if the random vectoB = We obtain the gradient of the DSP constraint in order to
[B1 By ...By]T and the demand) have log-concave and solve the SPO problem efficiently. From (8), we find that
symmetric density functions arl< ¢ < 0.5. OE[S(@)*]

We invoke the results from [20] to show this. From [20], ———~~ -
we know that{z : Pr(z7a < b) > 1 — ¢} is convex, if 0o
the density function of the random vecterand the random Therefore, the gradient of the DSP constraint is readily ob-
variableb is log-concave and symmetric. This result readilyained from the second derivatives of the DSR constraint (7)
applies to our case, by rewriting the constraint (Equatipn 5 _
asPr(-B(T) < —-Q)>1-ce. oPr(S@* > 0) = —fs@(0)

In addition, we derive another condition for convexity, dxo

i i i i i APr(S(z)*t > 0)

Wh_l(_:h only requires a non-increasing assumption on the-prob! = —fs(0) x E[B|S@) = 0]
ability density function of), and none on the;s. Oz,
Theorem 3: X, is convex iff(:? < 0 everywhere.
Proof:

=)+ _
Pr(s@™>0) = r(@> B(7)) where U = Q — Z#kxi x B; and W = B;. Under
_ independence assumption$; w = fu x fw and fy can be

a /fB P(@ > o + sz xbi) written in terms of the density functions @&; (i > 1,7 # k)

and @, as fu = {O; x4 20 |ml|fB( b)} * fq(q), where,

- /f_(g)(l — Fo(xo +in x b;))db. B is the density function of3; and @ denotes repeated
50 : convolution.

= —E[I[S() > 0] = —Pr(S(@)* > 0) (12)

—/w x fuw(xo + zrw, w)dw,



V. SPOOVER MULTIPLE REGIONS (possibly a smaller normalized DSR than the overall DSR) is

The spectrum contracts typically come with clauses that l%r)sured In _each_ of |t§ regions of _opgr_atlon, to,l'm't EXeeEss
stricts the use of the spectrum to certain geographicabnegi customer dissatisfaction in each |nd|V|duaI_reg|on. .
This could be due to licensing or coverage limitations of the The SPO problem under DSP constraint can be defined
seller provider. For example, a seller provider may onlyehawiMilarly as above, but by replacing the expectation cainsts
the license to use a part of the spectrum in certain regiays (Vith the corresponding probability constraints, andand ¢
certain counties or states in the United States), and nerath by €» ande, respectively.
Alternatively, the base stations of the seller provider roafy ~ For both the SPO problems, we see that ke constraint
cover certain sub-areas of the overall area of interesteo tl < k < K) is similar to the constraint for the single region
buyer, which can span multiple regions. This adds additior@foblem ((4) and (5)) except for the presence or absence of
complexity to the SPO problem, since the spectrum portfolfew variables inside the two summations. First, consider th
should satisfy the buyer provider's requirements for eath §PO problem under DSR constraint (13-(15)). LetHerate
these regions. In this section, we formulate the SPO problé@nstraint be denoted by.. gi involves only some of thg;s
over multiple regions and show that the results for the singgndx;s. It can be rewritten as,
region problem extend to multi-region case as well.

Let us assume that the buyer of spectrum contracts operaf¢{Q;, — Z yi x I(i € C}) — Z xj X B;}*] < Ok,

over a set of K disjoint geographical regions. The buyer’s 1<i<M 1<j<N
objective is to construct a portfolio of spectrum contraats ) . , ' _ (16)
order to satisfy the user demand in each of fkieregions. Where B; = By, if j € Cj, else B; = 0. I(i € C}) is the

Denote the set of regions bR, i.e, R = {1,2,..,K}. Let indicator function for the se€. Now, the proof technique
there beM primary andN secondary contracts in the marketfor the single-region problem can be readily extended tavsho
Let z;, p; denote the unit price of'” primary contract and that g is convex iny;s,z;s. The final constraintg( 1) is

4 secondary contract, respectively. [Rf c R,1 <i < M also convex, since it is the sum of several convex functions.
denote the set of regions in which tfi#& primary contract is Therefore, the feasible set for this problem is convex,esinc
valid. Similarly, letR? € R,1 < j < N denote the set of the intersection of several convex sets is convex. Singjléte
regions in which thej’* secondary contract is valid. The usefeasible set for the multiple-region SPO problem under DSP
demand for each region is uncertain, denoted by the rand§fnstraint is also conve, if the density functions of ak th

variableQy, 1 < k < K. random parameters involved are log-concave and symmetric.
The multi-region SPO problem under DSR constraint can Since the problems are convex, the constraint gradients can
be stated as follows: be used to solve the optimization problems efficiently. The
M N gradient of thek!” DSR constraint is given by,
Minimize C() =Y yixz+ > a;xp;,  (13) 5
i=1 j=1 Ik —E[I(Sk > 0)], i € C}; 0, otherwise

yi

st E[{Qkr — Yicer ¥i — Xjecy ©i X Bir} 1 <0k V. (14)pyneres, — Qu — Yicer Vi — X jec: @ X Bjk.
k . k

K
B hma{Qr = Xicer ¥i = Xjecy @i X Bir}T] < 4. (15) )
9k . s, i
Here {y1,...,yrr, 71, ...,y } denotes the spectrum portfolio. 3, = —E[Bji x I(Sk, > 0)], j € Ci; 0, otherwise

C; andC; denote the set of primary and secondary contracts

id i th i i P
that are valid in thet™" region (L < k < K), respectivelyCy Similarly, the gradient ofi** demand satisfaction proba-

S H P . s
andCj can be obtained fromk;,1 < i < M andR},1 < bility constraint (denoted by:;,) can be computed using the

. p s
j < N. Note that_Ck C {1,2,.., M} andC} C {1’2_’ s NV results for the single region problem, as given below:
The random variableB;, represents the bandwidth return

of the j* secondary contract in thé'" region. For the Ohy, o _
multiple region problem, there are totally + 1 inequality T —fs,(0), i € Cf; 0, otherwise
constraints; one DSR constraint for each of figegions and ’

one overall DSR constraint for all the regions. The LHS afhere fs, is the density function oS;.

the (K + 1)*" constraint is simply the summation of the LHS

of the first K constraints. However, note that,_, &, > 9, Ohy,
else the last constraint would be redundant; typically, th@x;
buyer provider may want hav&, > §/K, for eachk. The
motivation of both types of constraints (per-region as wefor both the problems, the gradient of € +1)" constraint

as overall) is as follows. While the buyer provider woulds the summation of the gradients of the fidst constraints.

be interested in the ensuring a certain DSR over its overale gradients can be evaluated numerically as explained in
customer base, it may also want to ensure a certain D8R previous sections.

= —f5,.(0) x E[Bjx|Sx =0], j € C;; 0, otherwise



V1. SIMULATION -BASED EVALUATION happens until the number of primary contract units becomes

We solve the SPO problems using Matlab to study tH&ro: Beyond this point, the only way to reduf:e the_cost is to
characteristics of the spectrum portfolio. Our goal is eimm reéduce the number of secondary contract units, which can be
how the parameters of the problem, namely, the price of tFeduced ag, d increases.
secondary contracts, the bandwidth return distributicms
the constraintse( §) influence the portfolio composition. The
results for the single-region SPO problems are presented
sections VI-A and VI-B, while the results for the multiple- i %
region problem are presented in section VI-C. 3 1

ast
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A. Single Primary and Single Secondary contract

We first consider the simplest case of there being a sing
secondary contract seller in the market. The bandwidthrmetu ——x
B, and the demand) are assumed to have truncated norma
distributions (Refer to (9))B; has a mean of.5, while the
demandy has a mean aof.5. The distribution ofQ) is restricted % oos o1 o5 0z 0% 03 o 0a ods . 05
to the interval0, 3]. We obtain optimal portfolio when the key Fig. 2. Number of primary and secondary contract units in ghetfolio

parameters of the problena, (5, p1) are changed. for the SPO problem under DSR constraifitd , 27}, {=§, z{'} denote the
spectrum portfolio for empirical and gaussian fitted disttions, respectively.

Next, we study the sensitivity of the portfolio composition
to changes in the distribution of the demand)(and the
bandwidth return B,). We obtain the empirical distribution of
the total daily traffic of a Verizon Wi-Fi HotSpot network fro
ar 1 [23] (Refer to Figurel2 of [23]) and consider this distribution
for the user deman@. From this, we compute the distribution
I of By as fg, (b) = fo(8(1 —b)), 0 <b <1, since bandwidth
2r 1 availability is related negatively to the user demand (the
scaling factors is used for normalization). The results for SPO
problem under DSR constraint are shown in Figure 2, where,
5 oo o1 ois oz o3 os " a% " 04 Tod% T 05 {28, 2T} represents the spectrum portfolio whénand B,

' have the empirical distributions discussed above. We also

solve the SPO problem wity and B; modeled as gaussian

. , L distributions that approximate the above empirical distibns
Figure 1 shows the spectrum portfolio composition fO(

diff hoi fth . q - (See{x§,z{'}). Some small differences notwithstanding, we
fterent ¢ oices o the DSR c_onstraniib @nd DSP constraint see that the general trend in the optimal portfolio compasit
(¢), respectively. The unit price of the secondary contra

%r the empirical and fitted gaussian distributions is thmesa
p1 = 0.25. In the figurez¥? = {zf 2P} andz? = {af’, 21"} P g

: i Additionally, we ran simulations with uniform distributicand
denote the portfolios for SPO problems with DSR and DSSbhserved similar results. Therefore, in the following wdyon

constraints, respectively. As expected, Wher: ¢ = 0, W , oqant the results for gaussian distributions.
observe that the portfolio consists of primary contracttsini
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Fig. 1. Number of primarya(g, m{f) and secondarym({f,xf) contract units
in the optimal portfolio for the SPO problem under DSR and E8Rstraint.

only. This is due to the fact that the secondary contracts dt . S
to their stochastic returns introduce bandwidth shortame ( LI |
demand violation) even if they are bought in large quargtitie ) —
Moreover, the number of primary contract units in both the or m—
cases is equal to the maximum possible demand3fji.eAs _ el

the constraintd, ) is relaxed, we find that the number of £

primary contract units reduces sharply until it becomeszer ~ ¢

On the other hand the number of secondary contract uni
(«¥, 2T increases initially, but starts decreasing as soon ¢
the number of primary contract units becomes zero. This ce 2r
be explained as follows: As the constraiat §) is increased
from zero, it becomes unnecessary to meet the demand w
probability one. Therefore, total cost of the portfolio da® Fig. 3. Optimal spectrum portfolio composition for diffetechoices of the
reduced, by reducing the number of primary contract unitgit price of secondary contract.

while adding the requisite amount of secondary contradsuni Figure 3 shows the effect of unit price of the secondary
to keep the demand violation below the desired value. Thisntract on the portfolio. The simulation parameters fas th

- - - -

0.6 0.7 0.8 0.9




figure are same as the ones chosen for Figure 1. But, we nibat B; has lesser variance thaB,. However, if gl > 1.4,

fix e andd at 0.1, and increase the price of the secondahe second contract units are more, since it is much lesser
contractp;. As p; is increased frond to 1, the spectrum port- priced. On the other hand, when = 20, the first secondary
folio composition gradually changes from those with emyjire contract is preferred over second contract, only if it ctestser
secondary contract units to those with entirely primarytcot  than the second contract. These results suggest that segond
units. The transition in this case happens when= 0.5. For contracts that have lower variance of bandwidth return can
prices betweef.1 and0.5, the portfolio has a mix of primary be priced higher than those with higher variances, provided
as well as secondary contract units. Since the mean bartdwititey have the same mean bandwidth return. Moreover, it
return of the secondary contract (s>, we find that buying was observed that the portfolio consisted of non-zero units
secondary contract units make sense only when their priceofsboth the secondary contracts for price ratios shown, i.e.
roughly half the price of the primary contract (iex 0.5).  x; # 0,22 # 0, for 0.5 < % < 2. This suggests that it is
L cost efficient to buy a mix of secondary contract units from
multiple sellers, instead of just one, provided their sicee

not very different.z; or o became zero only whe% is
either too high or too low, respectively.

3.5

—e—0,=020,

ar —<—o0,=0,

Optimal Cost

—4&—0,=20,

Fig. 4. Efficient Frontier (convex): Optimal portfolio costs demand
satisfaction constraintef§). Cost® and Cost” denote the cost under the

b

DSR and DSP constraints, respectively. ol !
Figure 4 shows the minimum cost that can be achieved fc 05 06 o7 o8 o8 1 12z 14 1s 18 20
the SPO problems as the constrainty is increased. The cost P/ P

; ig. 5. Relative contribution of the two secondary contrawits as the ratio
decreases as expected Moreover, this curve, popularkylknd;f the unit prices of the two secondary contracts is increag&@ch curve
as the Efficient Frontier in the context of financial portfoli corresnonds to a fixed choice of the varianceBof and Bo.
optimization, is observed to be convex. A formal proof of

convexity of the efficient frontier is presented in [22].

7

—e— 1, =0.8,1,=02 | |
—%— 1, =054,=05

B. Single Primary and Two Secondary contracts °r 1 =02.1,=08 [

We next consider two types of secondary contracts ar
study how the price and bandwidth return characteristics ¢
a contract affects the choice of the secondary contract.tbue ..
space limitations, we only present results on the SPO pmoble
under the DSR constraint. As before, the demand has norn
distribution betweer) and3. The price of the single primary
contract is1. The bandwidth returns of the two secondaries
B; and By, have normal distribution betwedhand 1, but . - . . - ? =
with different mean and variance. Py /P,

We obtain the optimal portfoli@ = {x(, z1, 22} as the ratio Fig. 6. Relative contribution of the two secondaries. Eagive corresponds
of the unit prices of the two secondaries, i, is increased. to a fixed choice of the mean d#; and B».

The results are shown in Figures 5 and 6. For the results showrrigure 6 shows:; —x2 VS gl for different choices of means

in Figure 5,B; and B, have same mean (6f5) but different of B; and B,, keeping the variance fixed atl. Whenu; =
variances. Figure 5 shows — zo asp1 is increased frond.5 0.8 and us = 0.2, we find thatx; — 252 > 0 as long as

to 2. Each of the three curves corresponds to a fixed choiBe < 1.75. That is, the secondary contract withimes higher

of the variance 4, 02) of the bandwidth returns. Considermean bandwidth return is preferred evervaf higher price.

the curve corresponding to the variance chaige= 0.205. We also observe that the secondary contract with lesser mean
We find thatx; — xo > 0, until gl < 1.4. This implies that is preferred only if it has lower price (For the curve wjih =

the contribution of the first secondary contract units to tHe2, us = 0.8, 1 —x2 > 0 only for ’” < 0.6). Figures 5 and 6
overall portfolio is higher than that of the second contrasuggest that the mean as well as "the variance of the bandwidth
even if the unit price of the first contract is higher than theeturn of a secondary contract play equally important rates
unit price of the second contract. This is clearly due to #w f determining the unit price of the secondary contract.




each of theK single-region secondary contracts to provide
the same service over thE regions at the same cost. The
portfolio shifts completely in favor of single-region coatts
only when the pricepx 1, is too high. For the above choice
of parametersg 1 became zero Wheﬁﬂ > 12,18, and
24, respectively, for = 2,3, and4. That s, ‘when the price of
K-region secondary contract is roughily’ times (or higher)
the price of the single-region secondary contract, thefplayt

no longer consists aof{-region secondary contract units.

05 1 P )r s 12 [1
pK+1 / pl

Fig. 7. Figure showing the effect of the ratio of unit pricetbé K + 1"
secondary contract to that of the first secondary contractdifferent K.

(2]

C. Multiple Region

For the multiple-region problem, we consider the following
simulation setup. There are totally regions,K + 1 primary
contracts, and + 1 secondary contracts. Th&" primary
and secondary contract, where< i < K, is valid in thei*"
region only. In other words, the firgt primary and secondary
contracts are single-region contracts each valid in onbenkt
regions. However, thé& +1t" primary and secondary contract
is valid over all theK regions. We examine the compositionm
of secondary contract units in the optimal portfolio, whia t
price of theK-region secondary contract, iex 1, changes.

The price of all the primary contracts, i.ey, z5..., 2K 11,
is set to a large value such that the portfolio consists
only secondary contract units. The fi#stsecondary contracts
are identical in terms of their bandwidth return distrilbut
and unit prices. The prices of all the single-region secqnda{
contracts,pq, p».., pi, are set tol. The bandwidth return
variables B;, 1 < i < K + 1) follow truncated normal [11]
distribution with mean0.5 and variance).25. Due to space
limitations, we only consider the multiple-region SPO devb [12]
under DSR constraints. The constramtis set t00.1 for all [13]
the K regions, whiled is set toK x 0.1. We increase the price
of the (K + 1)'* secondary contract, i.@x 1, from 0.5 and [14]
observe the portfolio composition.

Figure 7 shows the simulation results fa&f = 2,3,4. It
was observed that the total number of primary contract imits
zero as expected, i.¢; = y» = .. = yx+1 = 0. Moreover, all [17]
the single-region secondary contracts contributed eqois u
to the portfolio, i.e.xz; = x5 = .. = zx. Therefore, we plot [18]
Tx+1—x1 as a function of the ratréﬂ for K = 2,3, 4. For 19
eachK, when the price ratré’¢ < K we find the portfolio [l
consists of higher quantity o(fK + 1)** secondary contract
units compared to the single-region secondary contragt,
zx+1 — x1 > 0. However, whenf"K+1 > K, the srngle-
region secondary contracts are preferred over Aheegion [21]
contract 1 — a1 <0, if ’”;“ > K). Therefore, we find 22
that the provider (seller) of-region secondary contract can
scale up its price upto a factor &f and still enjoy preference
over the single-region contracts offered by smaller prersd
This happens due to the fact that the provider can either buy
one unit of theK -region secondary contract or one unit from

(3]

4]

(5]

(6]

(8]

[15]
[16]

] C.M. Lagoa, X. Li,

23] David P. Blinn, Tristan Henderson, and David Kotz.

REFERENCES

Gerald R. Faulhaber and David Farber. Spectrum managemeperty
rights, markets, and the commorlecommunications Policy Research

Conference Proceeding2003. o
Evan Kwerel and John Williams. A proposal for a rapid s#ion to

market allocation of spectrum, opp working paper no. 38ffice of
Plans and Policy, Federal Communications CommissRG02.

G. R. Faulhaber. The question of spectrum: Technologgnagement,
and regime changelournal on Telecommunications & High Technology
Law, 4:123, 2005.

J.M. Peha. Approaches to spectrum sharin@EE Communications
Magazine pages 10-12, 2005.

Zhu Ji and K.J.R. Liu. Collusion-resistant dynamic gpem allocation
for wireless networks via pricing. I[FEEE DySPAN 2007pages 187—
190, 2007.

C.E. Caicedo and M.B.H. Weiss. The viability of spectrimading
markets. INIEEE DySPAN 20102010.

Shamik Sengupta, Mainak Chatterjee, and Samrat Gangély eco-
nomic framework for spectrum allocation and service pgciwith
competitive wireless service providers. IBEE DySPAN 20072007.
A. Al Daoud, M. Alanyali, and D. Starobinski. Secondaryigng of
spectrum in cellular cdma networks. IEEE DySPAN 2007pages
535-542, 2007.

] A. Sahasrabudhe and K. Kar. Bandwidth allocation ganretetbudget

and access constraints. Pnoceedings of the 42nd Annual Conference on
Information Sciences and Systems (CJ$8inceton, NJ, March 2008.
R. Etkin, A. Parekh, and D. Tse. Spectrum sharing forcenised bands.
IEEE Journal on Selected Areas in Communicatjo5(3):517-528,
Apr 2007.

T. Wysocki and A. Jamalipour. Pricing of cognitive radfights to
maintain the risk-reward of primary user spectrum investimé IEEE
DySPAN 20102010.

T.M. Valletti. Spectrum trading.Telecommunications Policy25:655—
670, 2001.
Jon Peha. Relieving spectrum scarcity through reaétisecondary

markets.ISART 2003 Conference, Presentation Slid&803.

Hong Xu, Jin Jin, and Baochun Li. A secondary market foectrum.
In IEEE Infocom 20102010.

H. Markowitz. Portfolio SelectionThe Journal of FinanceMarch 1952.
V.S. Bawa. Safety-First, Stochastic Dominance, andir@g Portfolio
Choice. The Journal of Financial and Quantitative Analysikine 1978.
P. Bonami and M.A. Lejeune. An Exact Solution Approach Port-
folio Optimization Problems Under Stochastic and Integen€iraints.
Operations Researchlune 2009.

A.D. Roy. Safety First and the Holding of Asset&conometrica July
1952.

D. Bertsimas, G.J. Lauprete, and A. Samarov. Shoriall a risk
measure: properties, optimization and applicatioBsevier Journal of
Economics Dynamics and Contr@004.

and M. Sznaier. Probabilistically @sirained
Linear Programs and Risk-Adjusted Controller Desi@AM Journal
of Optimization April 2005.

A. Nemirovski and A. Shapiro. Convex Approximations ofiance
constrained programsSIAM Journal of Optimization2006.

P.K. Muthuswamyet al. Portfolio optimization in secondary spectrum
markets, technical report, www.ecse.rpi.edigdushik/spo-techrep.pdf.

2010.

A of a
wi-fi hotspot network. Ininternational Workshop on Wireless Traffic
Measurements and Modeling005.



