A COMBINATORIAL APPROACH TO FIBONOMIAL COEFFICIENTS

Arthur T. Benjamin and Sean S. Plott
Dept. of Mathematics, Harvey Mudd College, Claremont, CA 91711
benjamin@hmc.edu

Abstract

A combinatorial argument is used to explain the integrality of Fibonomial coefficients and their generalizations. The numerator of the Fibonomial coefficient counts tilings of staggered lengths, which can be decomposed into a sum of integers, such that each integer is a multiple of the denominator of the Fibonomial coefficient. By colorizing this argument, we can extend this result from Fibonacci numbers to arbitrary Lucas sequences.

1. Introduction

The Fibonomial Coefficient $\binom{n}{k}_{F}$ is defined, for $0<k \leq n$, by replacing each integer appearing in the numerator and denominator of $\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{k(k-1) \cdots 1}$ with its respective Fibonacci number. That is,

$$
\binom{n}{k}_{F}=\frac{F_{n} F_{n-1} \cdots F_{n-k+1}}{F_{k} F_{k-1} \cdots F_{1}}
$$

For example, $\binom{7}{3}_{F}=\frac{F_{7} F_{6} F_{5}}{F_{3} F_{2} F_{1}}=\frac{13 \cdot \cdot \cdot \cdot 5}{2 \cdot 1 \cdot 1}=260$.
It is, at first, surprising that this quantity will always take on integer values. This can be shown by an induction argument by replacing F_{n} in the numerator with $F_{k} F_{n-k+1}+F_{k-1} F_{n-k}$, resulting in

$$
\binom{n}{k}_{F}=F_{n-k+1}\binom{n-1}{k-1}_{F}+F_{k-1}\binom{n-1}{k}_{F}
$$

By similar reasoning, this integrality property holds for any Lucas sequence defined by $U_{0}=0, U_{1}=a$ and for $n \geq 2, U_{n}=a U_{n-1}+b U_{n-2}$, and we define

$$
\binom{n}{k}_{U}=\frac{U_{n} U_{n-1} \cdots U_{n-k+1}}{U_{k} U_{k-1} \cdots U_{1}} .
$$

In this note, we combinatorially explain the integrality of $\binom{n}{k}_{F}$ and $\binom{n}{k}_{U}$ by a tiling interpretation, answering a question proposed in Benjamin and Quinn's book, Proofs That Really Count [1].

2. Staggered Tilings

It is well known that for $n \geq 0, f_{n}=F_{n+1}$ counts tilings of a $1 \times n$ board with squares and dominoes [1]. For example, $f_{4}=5$ counts the five tilings of length four, where s denotes a square tile and d denotes and domino tile: $s s s s, s s d, s d s, d s s, d d$. Hence, for $\binom{n}{k}_{F}=\frac{f_{n-1} f_{n-2} \cdots f_{n-k}}{f_{k-1} f_{k-2} \cdots f_{0}}$, the numerator counts the ways to simultaneously tile boards of length $n-1, n-2, \ldots, n-k$. The challenge is to find disjoint "subtilings" of lengths $k-1, k-2 \ldots, 0$ that can be described in a precise way. Suppose $T_{1}, T_{2}, \ldots, T_{k}$ are tilings with respective lengths $n-1, n-2, \ldots, n-k$. We begin by looking for a tiling of length $k-1$.

If T_{1} is "breakable" at cell $k-1$, which can happen $f_{k-1} f_{n-k}$ ways, then we have found a tiling of length $k-1$. We would then look for a tiling of length $k-2$, starting with tiling T_{2}.

Otherwise, T_{1} is breakable at cell $k-2$, followed by a domino (which happens $f_{k-2} f_{n-k-1}$ ways. Here, we "throw away" cells 1 through k, and consider the remaining cells to be a new tiling, which we call T_{k+1}. (Note that T_{k+1} has length $n-k-1$, which is one less than the length of T_{k}.) We would then continue our search for a tiling of length $k-1$ in T_{2}, then T_{3}, and so on, creating T_{k+2}, T_{k+3}, and so on as we go, until we eventually find a tiling $T_{x_{1}}$ that is breakable at cell $k-1$. (We are guaranteed that $x_{1} \leq n-k+1$ since T_{n-k+1} has length $k-1$.) At this point, we disregard everything in $T_{x_{1}}$ and look for a tiling of length $k-2$, beginning with tiling $T_{x_{1}+1}$.

Following this procedure, we have, for $1 \leq x_{1}<x_{2}<\cdots<x_{k-1} \leq n$, the number of tilings $T_{1}, T_{2}, \ldots, T_{k}$ that lead to finding a tiling of length $k-i$ at the beginning of tiling $T_{x_{i}}$ is

$$
f_{k-2}^{x_{1}-1} f_{k-1} f_{n-x_{1}-(k-1)} f_{k-3}^{x_{2}-x_{1}-1} f_{k-2} f_{n-x_{2}-(k-2)} \cdots f_{0}^{x_{k-1}-x_{k-2}-1} f_{1} f_{n-x_{k-1}-1}
$$

Consequently, if we define $x_{0}=0$, then $F_{n} F_{n-1} \cdots F_{n-k+1}$

$$
\begin{aligned}
& =f_{n-1} f_{n-2} \cdots f_{n-k} \\
& =f_{k-1} f_{k-2} f_{k-3} \cdots f_{1} \sum_{1 \leq x_{1}<x_{2}<\cdots<x_{k-1} \leq n-1} \prod_{i=1}^{k-1}\left(f_{k-1-i}\right)^{x_{i}-x_{i-1}-1} f_{n-x_{i}-(k-i)} \\
& =F_{k} F_{k-1} F_{k-2} \cdots F_{2} F_{1} \sum_{1 \leq x_{1}<x_{2}<\cdots<x_{k-1} \leq n-1} \sum_{i=1}^{k-1}\left(F_{k-i}\right)^{x_{i}-x_{i-1}-1} F_{n-x_{i}-(k-i)+1} .
\end{aligned}
$$

That is,

$$
\binom{n}{k}_{F}=\sum_{1 \leq x_{1}<x_{2}<\cdots<x_{k-1} \leq n-1} \sum_{i=1} \cdots F_{k-i}^{x_{i}-x_{i-1}-1} F_{n-x_{i}-(k-i)+1} .
$$

This theorem has a natural Lucas sequence generalization. For positive integers a, b, it is shown in [1] that $u_{n}=U_{n+1}$ counts colored tilings of length n, where
there are a colors of squares and b colors of dominoes. (More generally, if a and b are any complex numbers, u_{n} counts the total weight of length n tilings, where squares and dominoes have respective weights a and b, and the weight of a tiling is the product of the weights of its tiles.) By virtually the same argument as before, we have

$$
\binom{n}{k}_{U}=\sum_{1 \leq x_{1}<x_{2}<\cdots<x_{k-1} \leq n-1} \prod_{i=1} \cdots b^{k-1} b^{x_{k-1}-(k-1)} U_{k-i}^{x_{i}-x_{i-1}-1} U_{n-x_{i}-(k-i)+1} .
$$

The presence of the $b^{x_{k-1}-(k-1)}$ term accounts for the $x_{k-1}-(k-1)$ dominoes that caused $x_{k-1}-(k-1)$ tilings to be unbreakable at their desired spot.

As an immediate corollary, we note that the right hand side of this identity is a multiple of b, unless $x_{i}=i$ for $i=1,2 \ldots, k-1$. It follows that

$$
\begin{gathered}
\binom{n}{k}_{U} \equiv U_{n-k+1}^{k-1} \quad(\bmod b) . \\
\text { REFERENCES }
\end{gathered}
$$

[1] A. T. Benjamin and J. J. Quinn, Proofs That Really Count: The Art of Combinatorial Proof, Washington DC: Mathematical Association of America, 2003.

AMS Subject Classification Numbers: 05A19, 11B39.

