
Effects of Floating-Point non-Associativity on Numerical

Computations on Massively Multithreaded Systems∗

Oreste Villa1, Daniel Chavarŕıa-Miranda1, Vidhya Gurumoorthi2, Andrés Márquez1, and
Sriram Krishnamoorthy1

1High-Performance Computing
Pacific Northwest National Laboratory

{oreste.villa, daniel.chavarria, andres.marquez, sriram}@pnl.gov
2Applied Computer Science

Pacific Northwest National Laboratory
vidhya.gurumoorthi@pnl.gov

Abstract

Floating-point operations, as defined in the IEEE-
754 standard, are not associative. The ordering
of large numbers of operations (such as summa-
tions) that deal with operands of substantially dif-
ferent magnitudes can significantly affect the final
result. On massively multi-threaded systems, the
non-deterministic nature of how machine floating-
point operations are interleaved, combined with the
fact that intermediate values have to be rounded or
truncated to fit in the available precision leads to
non-deterministic numerical error propagation. We
have investigated on a Cray XMT system the effect
of non-deterministic error propagation by observing
the convergence rate of a conjugate gradient calcula-
tion used as part of a Power State Estimation (PSE)
application. As a possible mitigation strategy, we
have explored quadruple precision accumulation, as
well as a deterministic parallel tree scheme. The tree
based approach has consistently outperformed the
quadruple precision approach due to an improved
convergence rate. As a consequence, we motivate
the need for compile time mechanisms that enable
enforcement of parallel deterministic operations on
the Cray XMT.

∗This work was funded by the Center for Adaptive Super-
computing Software - MultiThreaded Architectures (CASS-
MT) at the U.S. Department of Energy’s Pacific Northwest
National Laboratory. Pacific Northwest National Laboratory
is operated by Battelle Memorial Institute under Contract
DE-ACO6-76RL01830.

1 Introduction

Most scientific applications use floating point arith-
metic for their numerical calculations. Floating
point arithmetic is known to be non-associative since
the limited precision of the representation requires
intermediate values be rounded. The IEEE-754 [1]
standard is the de facto industry standard floating
point representation used by almost all applications
and platforms. This standard provides uniform se-
mantics for operations across a wide range of imple-
mentations. The standard defines correct behavior
for all operations, as well as any necessary rounding.
IEEE floating point numbers have a finite precision
mantissa and a finite range exponent, a property
that requires rounding in the intermediate stages of
arithmetic calculations, as for instance during long
accumulations. This limited precision representa-
tion makes floating point arithmetic non associative.
While techniques exist for maintaining acceptable
precision in the middle of long sequences of floating
point calculations [10], [12], they almost always re-
quire algorithmic changes to the given computation.
As a result, the limited-precision and non associativ-
ity of IEEE floating point is generally accepted as a
reasonable tradeoff to permit fast hardware imple-
mentation of floating-point arithmetic. More gen-
erally when rounding errors need to be minimized,
one of the “brute force” approaches is to modify the
precision at which the application is executed, for
instance changing it precision from single to double
and from double to quadruple. This approach is an

1

attempt to reduce the magnitude of the problem’s
manifestation, rather than fully eliminate it. As a
consequence, portable floating point computations
must always be performed strictly in the order spec-
ified by the sequential evaluation. This makes im-
possible to parallelize most floating point operations
without strictly respecting the IEEE standard.

This problem is particularly evident in systems
when many different concurrent threads accumu-
late partial sums using shared variables. In systems
where the thread “ordering” changes dynamically
(at system level), for different executions of the same
accumulation, different results will be produced. In
calculations such as those in iterative solvers, as
the results are propagated trough various iterations,
the final result can differ in significant digits ac-
cross different executions. This is specially true if
the problem is numerically ill-conditioned. Conver-
gence problems can arise and total execution time
can change due to a potential increase in the number
of iterations. Debug procedures based on the vali-
dation of intermediate results became impossible as
the results change over multiple runs.

Several applications rely on the Conjugate Gra-
dient (CG) method which is an algorithm for the
numerical solution of particular systems of linear
equations, namely those whose matrix is symmet-
ric and positive-definite. The conjugate gradient
method is an iterative method, so it can be applied
to sparse systems which are too large to be handled
by direct methods such as Cholesky decomposition.
These systems arise regularly when numerically solv-
ing partial differential equations such as in power
grid analysis applications i.e. Power State Estima-
tion (PSE). Sparse Matrix-Vector Multiply (SpMV)
is the dominant computation kernel in CG. In SpMV
a dot product is computed between the rows of a
matix A and a vector x which effectively requires to
sum the products of the nonzero matrix values with
their corresponding vector entries in x. For sparse
matrices, the number of non-zero entries per row can
be unbalanced, with some rows requiring sums of
only a few products, and exceptional rows requiring
much larger sums. In addition to the SpMV calcu-
lation, a typical CG iteration requires a few global
dot products with length equal to the size of the
vectors. For large numerical calculations, if these
summations must be serialized, they can become a
major performance bottleneck in the task, limiting
the benefits of parallelism.

This paper investigates the effect of the problem of

non deterministic accumulation on the convergence
of a conjugate gradient calculation used as part of a
power grid analysis application, i.e. Power State Es-
timation (PSE) on the Cray XMT system. We have
investigated the common and not always determin-
istic solution of increasing precision of the operands
form double to quadruple precision, as well as a
custom library-based tree scheme that performs ac-
cumulations deterministically maintaining the same
precision. In the analyzed power grid application for
the selected platform, the tree based approach per-
formed faster and with absolute determinism respect
to the quadruple precision approach.

The paper is organized as follows: Section 2
presents background material on the details of the
floating point accumulation problem, the PSE ap-
plication and the Cray XMT system. Section 3
presents the design of the PSE application on the
Cray XMT. Section 4 discusses our experimental re-
sults, presents the deterministic mutlithreaded ac-
cumulation tree scheme and compares it to different
levels of precision (namely double and quadruple) in
terms of accuracy, determinism, and performance.
Finally, Section 5 presents our conclusions.

2 Background

2.1 Non-Associativity of Floating-
Point Accumulation

The non-associativity of floating point accumulation
is originated by the limited precision and range of
the IEEE floating-point representation. Figure 1
shows an example where the associativity problem
arises. The example considers an hypothetical nu-
merical representation with a precision of 32 “dig-
its”, showing two very large numbers added to a very
small number – the large numbers are conceived to
be at the extremes of the representation range. This
example is only hypothetical and it does not reflect
the true details of the IEEE representation. Under
the assumption that the operands are added accord-
ing to the left order in Figure 1, the first two num-
bers cancel each other out, reducing the dynamic
range, such that the small number (0.01) is added
to zero with the result “0.01”. If the operands are
added following the reverse order (Figure 1 on the
right), the addition of the large negative number to
the small number gives as a result the large negative
number itself because the dynamic range is not re-
duced by the first operation. The final summation

2

+

+

1032 -1032 0.01

+

1032 -1032 0.01

+

= 0.01 = 0

Figure 1: Non-Associativity of Floating-Point Accumulation.

result is hence “0”. As the example shows, the two
different associations yield different results. Under
the assumption that the above accumulation is per-
formed in parallel using three concurrent threads the
result is non-determinate due to non-deterministic
error propagation. Intuitively, as the amount of op-
erations and threads grows, the number of thread
interleave permutations grows with the consequence
of multiple result outcomes.

2.2 Power State Estimation

The static Power State Estimation (PSE) prob-
lem [2] can be defined as follows: given power grid
topological information, under-determined teleme-
tered line power flows as well as parameter data,
compute an estimate of the system state, rep-
resented by bus voltages. The most commonly
used method for computing state estimation is the
Weighted Least-Squares (WLS) method [11]. The
WLS method tries to minimize the sum of the
weighted squares of the components of the residual
vector r, r = z − h(x), where x is the approximated
system state, z is a vector of measured quantities
and h is a vector function. WLS can then be ex-
pressed as:

minimize J =
m∑

i=1

wir
2
i = rT Wr (1)

where wi is the weight for the residual ri, W is a
diagonal matrix, m is the number of measurements.

In general, this is a non-linear problem, which is
solved by the Newton-Raphson iterative procedure;
every iteration requires solving a large set of sparse
linear equations. The matrix form of the problem

will be sparse, since it is derived from the topolog-
ical information for the power grid: it depends on
the number of buses (power grid nodes) and their in-
terconnections. The number of nonzero elements in
each row of the matrix varies greatly - unlike sparse
matrices derived in the solutions of partial differen-
tial equations - and is badly conditioned [11]. The
problem can be solved using sparse direct solvers,
such as those based on LU factorization, or using
iterative solvers such as those based on Conjugate
Gradient (CG).

PSE is a critical element of the software used by
grid control centers. To be useful for effective deci-
sion support by the grid operators, given the dy-
namic nature of grid and the constantly updated
telemetry data, the PSE problem needs to be solved
in less than ten seconds. For large grid configura-
tions this requirement presents a challenge to the
current commercial PSE codes which currently are
unable to exploit parallel processor technology effec-
tively.

2.3 Cray XMT

The Cray XMT is the commercial name for the
shared-memory multithreaded machine developed
by Cray under the code name “Eldorado” [7, 6]. The
system is composed of dual-socket Opteron AMD
service nodes and custom-designed multithreaded
compute nodes with Threadstorm processors. The
entire system is connected using the Cray Seastar-
2.2 high speed interconnect. Figure 2 gives a high
level view of the system. The Threadstorm proces-
sors are represented as gray boxes (running MTX,
a BSD variant), while the colored boxes represent
the AMD Opteron service nodes (running a standard

3

Threadstorm
MTX (BSD)

AMD Opteron
Linux

Compute Service & IO

Service Partition
• Linux OS
• Specialized Linux nodes

Login PEs
IO Server PEs
Network Server PEs
FS Metadata Server PEs
Database Server PEs

Compute Partition
 Threadstorm MTX (BSD)

RAID Controllers

Network

PCIX
10 GigE

Fiber Channel
PCIX

Figure 2: Cray XMT overall system architecture.

Linux OS). The XMT system can scale up to 8,192
Threadstorm processors and 128 TB of shared mem-
ory. Each Threadstorm processor is able to schedule
128 fine-grained hardware threads to avoid memory-
access generated pipeline stalls on a cycle-by-cycle
basis. At runtime, a software thread is mapped to
a hardware stream comprised of a program counter,
a status word, a target register and 32 general pur-
pose registers. Each Threadstorm processor has a
VLIW (Very Long Instruction Word) pipeline con-
taining operations for the Memory functional unit,
the Arithmetic unit and the Control unit1.

Each Threadstorm is associated with a memory
system that can accommodate up to 8GB of 128-
bit wide DDR memory. Each memory controller
is complemented with a 128KB, 4-way associative
data buffer to reduce access latencies (this is the
only data buffer present in the entire memory hi-
erarchy). Memory is structured with full-empty-
, pointer forwarding- and trap- bits to support
fine grained thread synchronization with little over-
head. The memory is hashed at a granularity of
64 bytes (see Figure 4) and fully accessible through

1The Arithmetic unit is capable of performing a floating-
point multiply-add per cycle. In conjunction with the control
unit doubling as arithmetic unit, a Threadstorm is capable
of achieving 1.5 GFlops at a clock rate of 500MHz. A 64KB,
4-way associative instruction cache helps in exploiting code
locality.

load/store operations to any Threadstorm proces-
sor connected to the Seastar-2.2 network, which is
configured in a 3D toroidal topology. While mem-
ory is completely shared among Threadstorm pro-
cessors, it is decoupled from the main memory in
the AMD Opteron service nodes. Communication
between Threadstorm nodes and Opteron nodes is
performed through a Lightweight Communication
Library (LUC). On the Opteron side, LUC is im-
plemented using Portals [5] whereas on the Thread-
storm side it uses a Fast I/O API that is layered
over the Seastar-2 native protocol. Continuous ran-
dom accesses to memory by the Threadstorm proces-
sor will top memory bandwidth at around 100M re-
quests per second. Up to 500M memory requests per
second are delivered by the associated data buffers.
(Figure 3).

The Seastar-2 is a full system-on-chip design that
integrates six high speed serial links, a 3-D router,
with network interface functionality. The network
interconnect includes an embedded PowerPC pro-
cessor, in a single chip. In the Seastar-2 net-
work interface, there are two DMA engines, one for
sending and the other for receiving, that interact
with a router that supports a 3-D torus intercon-
nect and the HyperTransport (HT) cave that pro-
vides an interface to the Cray Threadstorm proces-
sor and the memory. The embedded processor is

4

CPU ASIC

140M memory ops

500M memory ops

1.5 GFlops

500M memory ops

100M memory ops

90M→30M memory ops (1→ 4K processors)

16 GB DDR DRAM

Sustained memory rates are for
random single word accesses
over entire address space.

Threadstorm
Processor

Figure 3: Threadstorm node with theoretical speeds.

provided to program the DMA engines and assist
with other network-level processing needs, in par-
ticular supporting the Portals message-passing layer
and load/store operations.

The software environment on the Cray XMT in-
cludes a custom, multithreaded operating system
for the Threadstorm compute nodes (MTX), a par-
allelizing C/C++ cross-compiler targeting Thread-
storm, a standard Linux 64-bit environment execut-
ing on the service and I/O nodes, as well as the nec-
essary libraries to provide communication and inter-
action between the two parts of the XMT system.
The parallelizing C/C++ compiler generates multi-
threaded code that is mapped to the threaded capa-
bilities of the processors automatically. Parallelism
discovery happens fully or semi- automatically by
the addition of pragmas (directives) to the C/C++
source code.

2.3.1 XMT Compiler & Programming
Model

The Cray XMT C/C++ programming environment
focuses on detecting and taking advantage of loop-
based data parallelism. Loop iterations are then
mapped using different scheduling policies to threads
on the processors. Data partitioning and access are
not a problem at all, given the XMT’s support for

global shared memory access.
The basic execution model for applications on the

XMT is based on fork-join parallelism. The exe-
cution of a program starts on a single thread and
continues in the same manner until the first parallel
region is encountered. At that point, the application
will ask the runtime system to spawn some number
of threads (depending on the resource requirements
of the parallel region and also on how many proces-
sors is the application running on). Multiple parallel
loops may reside inside the same parallel region, the
compiler will have introduced synchronization points
between parallel loops to preserve data dependen-
cies.

This basic model of execution assumes that iter-
ations of loops that have been parallelized are in-
dependent of each other, or that proper synchro-
nization between them has been introduced by the
programmer. There are certain cases in which de-
pendencies that could prevent parallel loop execu-
tion are automatically handled by the compiler and
runtime system. The two main cases are linear re-
currences and reductions. Linear recurrences appear
when the value to be computed in a particular iter-
ation depends on values computed in previous iter-
ation, in such a way that the dependence are simple
and only cross a small number of constant iterations:
e.g.

5

Threadstorm 1

Virtual Memory (16 GByte x N)

Hardware Shuffling
64 Byte Granularity

Physical Memory (8 GByte x N)

...

128 Threads

Memory Modules

Threadstorm 2

...

128 Threads

Threadstorm 3

...

128 Threads

Threadstorm N

...

128 Threads...

Figure 4: Cray XMT Threadstorm memory subsystem.

for (i = 0; i < n; i++)
x[i] = x[i - 1] + m;

This paper focuses on reductions. Reductions ap-
pear when iterations in a loop try to write their re-
sults to a single shared value. A typical example is
a sum reduction:

s = 0.0;
for (i = 0; i < n; i++)
s += x[i];

It is important to note that in most cases the
number of iterations in a parallel loop (n) will be
(much) larger than the number of threads execut-
ing the loop. If this is the case, then each thread
can compute its portion of the reduction sequentially
into a private location (partial sums in the example),
and then these partial results can be combined to
produce the final result (global final sum in the ex-
ample). The following pseudo-code illustrates how
this can be done:

s = 0.0;

for (tid = 0; tid < num_threads; tid++) {
ls = 0.0;

for (<iterations from i loop assigned
to thread tid>)

ls += x[i];

<combine ls with global s>
}

The XMT compiler automatically generates the
parallel pseudo-code presented above for reduction
loops written in the original form.

This paper focuses on the combination of local by-
thread results onto global results for floating-point
reductions.

3 Power State Estimation on
the Cray XMT

We ported a Fortran-based sequential WLS power
system state estimator to the Cray XMT. This code
uses a conjugate gradient (CG) sparse solver at its
core, offering much better scalability than direct
solvers based on LU or Cholesky factorization [11].
The application executes the following steps:

1. read input files describing the topological char-
acteristics of the power grid to be analyzed, as
well as a set of telemetry measurements to be
used to compute the static state of the grid;

2. from the topological grid data, construct sparse
matrix forms for the gain matrix and the H ma-
trix (linear representation of the h vector func-
tion);

6

3. using the Newton-Raphson iterative method,
update the values of the gain and H matrices,
compute the right-hand-side, and call the CG
solver;

4. check for convergence of the Newton-Raphson
iterations;

5. finally, once the solution converges (it may
not!), a complete state estimation for the input
grid is ready.

Many of the steps involved in the WLS compu-
tation were parallelized either automatically by the
XMT compiler, or by introducing directives to guide
the parallelization. The input step [1.] is sequential,
but it is executed only once for a given grid configu-
ration and therefore is not on the critical path. On
the other hand, the remaining steps need to be exe-
cuted whenever a new set of telemetry data becomes
available. The initial steps [2.] that construct the
sparse matrix structures for the gain and H matri-
ces have been parallelized, but they do not belong
to the critical path of the program (95% of the com-
putation time is spent in the Newton-Raphson WLS
iterative solver). The critical steps inside the iter-
ative loop [3. and 4.], have been fully parallelized
with special attention paid to the CG solver. The
CG solver computes the solution to a linear equation
Ax = b. x and b are dense vectors of unknowns and
right-handside values, respectively. The matrix A is
represented using the sparse compressed row form,
where a 1D array is used to represent the non-zero
elements of A; a row array indicates where each row
begins and ends: i.e. rowi indicates where the i-th
row begins, rowi+1−1 indicates where it ends; and a
col array which indicates for a particular non-zero
element what column does it belong to in its row.
The matrix A is N ×N .

The solver then iteratively computes a solution
to the system of equations. The main operation in
the iterative computation is a sparse matrix-vector
product. All the other steps are vector operations:
addition/subtraction and dot products. The par-
allelization of the vector operations was straightfor-
ward. In all cases the compiler was able to parallelize
the loops without the use of any XMT compiler di-
rectives. The sparse matrix-vector product required
some directives in order to improve performance, but
the compiler was able to recognize the loop nest as
parallel without any guidance.

Figure 5 shows the C code used to compute a
sparse matrix-vector product for the CG solver. n

int i, j;
double t;

#pragma mta block dynamic schedule
#pragma mta use 100 streams
for (i = 0; i < n; i++) {
t = 0.0;

#pragma mta loop serial
for (j = irow[i]; j < irow[i + 1]; j++)
t += a[j] * x[icol[j]];

r[i] = t;
}

Figure 5: Sparse matrix-vector product

corresponds to the number of rows in the matrix, the
array a contains the non-zero elements of the matrix,
the array irow contains the entries in a where rows
start and end, the array icol contains the column
position for each element in a, and x and r corre-
spond to dense vectors used as the factor and the
result vector respectively. We used a compiler di-
rective (#pragma mta loop serial) to indicate to
the compiler that the inner loop iterating over the
non-zero elements in a row should be run sequen-
tially, while the outer loop should be parallel. Our
preliminary experiments indicated that the perfor-
mance of the code was better in this manner than
with the alternative in which the compiler fused the
two loops (i and j) into a single, flat parallel loop.

4 Experimental Results

In this Section we present our evaluation of the non-
deterministic problem of parallel multithreaded CG
calculation on the Cray XMT for the PSE applica-
tion. We first show the magnitude of the problem in
a double precision based code, we then investigate
the solution of increasing the accumulators’ preci-
sion form double to quadruple. We then present
a custom tree-based parallel reduction scheme that
performs reductions deterministically.

We tightened our PSE code to use statically sched-
uled parallel loops on the XMT using the compiler
directive (#pragma mta block schedule), so that
all the effects of dynamically scheduling loop itera-
tions onto threads are suppressed. This guarantees
deterministic assignment of iterations to threads.
We performed this modification on each accumula-

7

WLS iteration Run 1 Run 2 Run 3 Diff 2 vs. 1 Diff 3 vs. 1
1 1.64E+09 1.64E+09 1.64E+09 0.00% 0.00%
2 1.88E+09 1.88E+09 1.88E+09 0.00% 0.00%
3 3.29E+07 3.29E+07 3.29E+07 0.00% 0.00%
4 4.01E+05 4.01E+05 4.01E+05 0.02% 0.01%
5 1.50E+02 1.29E+02 1.24E+02 14.25% 17.63%
6 5.92E+00 5.13E+00 7.37E+00 13.30% 24.64%
7 5.22E-01 4.46E-01 4.59E-01 14.52% 12.06%

Table 1: Variability in double precision for the Euclidean norm at the end of each WLS iteration for different
runs with the same number of threads and same input set.

WLS iteration Run 1 Run 2 Run 3 Diff 2 vs. 1 Diff 3 vs. 1
1 1.64E+09 1.64E+09 1.64E+09 0.0000% 0.0000%
2 1.88E+09 1.88E+09 1.88E+09 0.0000% 0.0000%
3 3.29E+07 3.29E+07 3.29E+07 0.0000% 0.0000%
4 4.01E+05 4.01E+05 4.01E+05 0.0000% 0.0000%
5 1.43E+02 1.43E+02 1.43E+02 0.0000% 0.0000%
6 6.14E+00 6.14E+00 6.14E+00 0.0000% 0.0000%
7 5.73E-01 5.73E-01 5.73E-01 0.0000% 0.0001%

Table 2: Variability in quadruple precision for the Euclidean norm at the end of each WLS iteration for
different runs with the same number of threads and same input set.

tion or reduction loop in the code. This unfortu-
nately does not guarantee determinate results since
the XMT compiler automatically recognizes the re-
ductions and generates code that performs accumu-
lations using atomically updated shared variables.
In this case, the order in which different threads per-
form the atomic updates is influenced by run-time
and OS thread scheduling policies. To quantitatively
measure the phenomenon, we focused our attention
on the computation of the Euclidean norm of the
residual vector, used as convergence criterion for the
CG loop. This a single highly observable scalar value
that can be recorded before and after every iteration
of the external WLS loop:

||v|| =

√√√√ n∑
i=1

v2
i (2)

Table 1 shows the value of the Euclidean norm
computed in double precision, for 3 different runs
of the same code using the same number of proces-
sors, threads and input sets. The table presents the
value of the Euclidean norm for different WLS iter-
ations. The results were obtained on a 16 processor
Cray XMT using 100 streams per processor for each
parallel region. The PSE execution completed after
seven iterations of the WLS loop. Table 1 shows the

difference (in percentage) of the second and third
runs with respect to the first one (used as an ar-
bitrary baseline). We can see that different runs
produce different results. We also notice that as the
number of WLS iterations increases, the variability
in the Euclidean norm increases in magnitude, al-
though not proportionally and not uniformly. This
is due to the propagation of different accumulation
errors at different levels, from the linear solver to the
external WLS loop.

A common technique used to reduce the effects
of non-deterministic error propagation is to increase
the precision of the representation. We modified our
code to use quadruple-precision (128 bit) accumula-
tors. This sapproach ubstantially reduced the vari-
ability of the norm value. Table 2 shows the same
execution described above, using quadruple preci-
sion accumulation variables. The very small vari-
ability is limited to the last WLS iteration. We can
say that, in general, quadruple precision does not
solve the problem of non-deterministic error prop-
agation but substantially reduces it. However, the
tradeoff of quadruple-precision on a 64-bit architec-
ture, is that it is has to be emulated (via combina-
tion of two double-precision variables), therefore the
performance of the solution is compromised. As a
reference, an accumulation of 28,000 elements (on

8

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A7]

 S= A[0]+A[1]+A[2]+A[3] +A[4]+A[5]+A[6]+A[7]

A[0]+A[1]

A[0]+A[1]+A[2]+A[3]

A[2]+A[3] A[4]+A[5]

A[4]+A[5]+A[6]+A[7]

A[6]+A[7]

Sequential by one
Thread (ex. K=2)

Lo
g K

 (N
)

Figure 6: Tree reduction on the XMT.

16 XMT processors with 100 threads each) requires
0.519 milliseconds in double precision and 1.190 mil-
liseconds in quadruple precision.

In general, provided that the iterative method
converges, more than striving for an absolutely cor-
rect value (which in principle can be obtained only
with infinite precision) it is more appealing to have
determinate and repeatable executions. An ap-
proach to achieve this, is to utilize an alternative
deterministic accumulation algorithm. We designed
a software-based parallel-prefix accumulation that
allows us to compute the result over N inputs in
O(logk(N)) steps. This tree-based accumulation
has been integrated in a library, and it is callable
as follows:

acc = acc_tree(array, size_array, K);

Several styles of parallel prefix are found in prac-
tice (e.g. Brent-Kung [4], Sklansky [9], Ben-Asher
[3], Nachiket [8]). The exact number of floating-
point operations required depends on the style of
prefix used, but is usually more than the simple,
serial sum. Parallel-prefix allows to tradeoff extra
computation for lower latency generation of results.
Figure 6 shows a schematic of the reduction tree
we implemented on the Cray XMT. The reduction is

performed in different levels with a granularity equal
to K. In each level, a single thread accumulates se-
quentially K different elements. Since the “shape”
of the reduction tree depends only on K, for a fixed
value of K, the reduction is deterministic but poten-
tially less accurate than quadruple precision. The
execution time is comparable to the default double
precision accumulation performed by the compiler
and our experiments show that it requires 0.635 mil-
liseconds to accumulate 28,000 elements. Accuracy
varies with degree K and not with processor and
thread count, and it is comparable to the accuracy
achieved by the compiler based double precision re-
duction.

An interesting property of the tree-based reduc-
tion is that as the degree K changes the performance
and the accuracy of the solution varies. Figure 7 on
the left shows the performance of the tree reduction
for different values of K and for different processor
counts. The number of requested threads for each
processor is always 100. The accumulated input ar-
ray is composed of 28,000 uniformly distributed ran-
dom elements whit total sum of 2.69E18. We can
see that there is a range for K (from 32 to 256) that
guarantees a lower execution time. With larger val-
ues of K the number of sequential sums that each

9

Figure 7: Performance and accuracy respect to quadruple precision of the tree solution for different values
of K.

thread has to perform is too high so that the per-
formance is limited by the sequential accumulations,
while for small values of K the overhead of creating
threads to accumulate just a few values, negatively
impacts the performance.

Figure 7 on the right shows the relative accuracy
of the tree based solution as the degree K varies for
the accumulation of the same random input array.
The accuracy is evaluated versus a quadruple preci-
sion execution which we assume (even if not fully de-
terministic) to be the most precise since the amount
of rounding and truncation errors is minimized im-
plicitly.

The tree based approach is a “left-leaning” tree
where threads with lower rank do more work. The
algorithm is not load-balanced but allows a “right-
leaning” correction tree to be used to increase accu-
racy as presented in [8]. We plan to explore this
possibility as future work.

5 Conclusions

We have investigated the effects of the problem of
non-deterministic accumulation on the convergence
of a conjugate gradient calculation used as part of
a power grid analysis application (Power State Esti-
mation (PSE)) on the Cray XMT system. We have
investigated a library-based solution which performs
the accumulation using a parallel, tree-based pre-
fix scheme. Our library-based tree solution exhibits

some overhead with respect to the XMT compiler-
based solution, since it introduces a function call.
Having a function call for each accumulation can in-
hibit powerful compiler transformations such as loop
fusion, software pipelining, unroll-and-jam and oth-
ers which have been shown to significantly improve
performance. Moreover, in many cases, an accumu-
lation is performed in a parallel loop that also exe-
cutes other operations. Therefore, we motivate the
need to integrate a precise accumulation algorithm
at compiler level potentially using a new pragma
(i.e. #pragma mta precise reduction). The new
pragma could indicate where the programmer in-
tends to have reductions executed with absolute de-
terministic behavior. The run-time and the com-
piler could then choose the right degree K based on
thread and processor counts.

References

[1] IEEE Standard for Floating-Point Arithmetic.
Technical report, 2008.

[2] A. Abur and A. Exposito. Power System
State Estimation: Theory and Implementation.
Marcel-Dekker, 2004.

[3] Y. Ben-Asher and G. Haber. Parallel solu-
tions of simple indexed recurrence equations.
IEEE Trans. Parallel Distrib. Syst., 12(1):22–
37, 2001.

10

[4] R. Brent and H. Kung. A regular layout for
parallel adders. Computers, IEEE Transactions
on, C-31(3):260–264, March 1982.

[5] R. Brightwell, B. Lawry, A. B. MacCabe, and
R. Riesen. Portals 3.0: Protocol building blocks
for low overhead communication. In IPDPS ’02:
Proceedings of the 16th International Parallel
and Distributed Processing Symposium, page
268, Washington, DC, USA, 2002. IEEE Com-
puter Society.

[6] D. Chavarŕıa-Miranda, A. Marquez,
J. Nieplocha, K. Maschhoff, and C. Scher-
rer. Early Experience with Out-of-Core
Applications on the Cray XMT. In Proceedings
of the 22nd IEEE International Parallel and
Distributed Processing Symposium, pages 1–8,
April 2008.

[7] J. Feo, D. Harper, S. Kahan, and P. Konecny.
ELDORADO. In CF ’05: Proceedings of the
2nd conference on Computing frontiers, pages
28–34, New York, NY, USA, 2005. ACM.

[8] N. Kapre and A. DeHon. Optimistic paralleliza-
tion of floating-point accumulation. Computer

Arithmetic, IEEE Symposium on, 0:205–216,
2007.

[9] J. F. Kruy. A fast conditional sum adder us-
ing carry bypass logic. In AFIPS ’65 (Fall, part
I): Proceedings of the November 30–December
1, 1965, fall joint computer conference, part
I, pages 695–703, New York, NY, USA, 1965.
ACM.

[10] H. Leuprecht and W. Oberaigner. Parallel al-
gorithms for the rounding exact summation of
floating point numbers. Computing, vol. 28,,
1982.

[11] J. Nieplocha, A. Marquez, V. Tipparaju,
D. Chavarŕıa-Miranda, R. Guttromson, and
H. Huang. Towards efficient power system state
estimators on shared memory computers. In
Proceedings of the 2006 IEEE Power Engineer-
ing Society General Meeting, 2006.

[12] K. Ozaki, T. Ogita, S. M. Rump, and S. Oishi.
Fast and robust algorithm for geometric pred-
icates using floating-point arithmetic. Trans.
JSIAM, 4(4):2006.

11

