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This work presents a basic framework for constructing a 3D
analytical MRI phantom in the Fourier domain. In the image
domain the phantom is modeled after the work of Kak and
Roberts on a 3D version of the famous Shepp-Logan head
phantom. This phantom consists of several ellipsoids of differ-
ent sizes, orientations, locations, and signal intensities (or gray
levels). It will be shown that the k-space signal derived from the
phantom can be analytically expressed. As a consequence, it
enables one to bypass the need for interpolation in the Fourier
domain when testing image-reconstruction algorithms. More
importantly, the proposed framework can serve as a bench-
mark for contrasting and comparing different image-recon-
struction techniques in 3D MRI with a non-Cartesian k-space
trajectory. The proposed framework can also be adapted for 3D
MRI simulation studies in which the MRI parameters of interest
may be introduced to the signal intensity from the
ellipsoid. Magn Reson Med 58:430–436, 2007. Published 2007
Wiley-Liss, Inc.†
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A distinctive feature of magnetic resonance imaging (MRI)
as compared to other tomographic imaging modalities,
such as X-ray computed tomography (CT), single photon
emission computed tomography (SPECT), and positron
emission tomography (PET), is the data-acquisition space.
In MRI it is known as “k-space” and is a conjugate to the
image space. There is inherent flexibility in encoding k-
space, and many acquisition schemes have been proposed.

Interest in 3D MRI abounds due to the increase in signal-
to-noise ratios (SNRs) provided by volume excitation, and
the potential for isotropic voxel dimensions. In addition,
there is a growing interest in 3D non-Cartesian k-space
trajectories, which have an advantage in various applica-
tions, as can be gleaned from past and recent studies
(1–15). However, to analyze the effectiveness of various 3D
encoding schemes in simulation studies, a common and
flexible analytical phantom in the Fourier domain is
needed.

A simulated head section, which consists of several
overlaying ellipses, was first proposed and used by Shepp
and Logan (16) to compare techniques for reconstructing
an image from projections through the image. In another
important paper by Shepp (17), a 3D version of the Shepp-

Logan head phantom containing 17 ellipsoids annotated
with relevant anatomical structures (e.g., nose, eyes, blood
clots, ventricles, tumors, and many others) was proposed
and used to investigate a numerical quadrature algorithm
for MR image reconstruction from a set of parallel plane
measurements. Later, a simplified version of this 3D head
phantom was used by Kak and Roberts (18) and Kak and
Slaney (19) to test cone beam reconstruction algorithms. In
such studies, the advantage of using ellipses or ellipsoids
is that the projection through these objects can be analyt-
ically expressed. In MRI simulation studies, the interest is
on the k-space signal derived from these objects. In the 2D
case the Fourier transform (FT) of an ellipse can be ana-
lytically expressed, as found in the work of Kak and
Slaney (19) and Van de Walle et al. (20).

In this paper a common and flexible 3D analytical phan-
tom in the Fourier domain is proposed. In the image do-
main the phantom is modeled after the one described in
Refs. 18 and 19. It is shown that the 3D k-space signal
derived from this phantom, which consists of several el-
lipsoids, can be analytically expressed. Specifically, the
FT of an ellipsoid under a general nonsingular affine trans-
formation is derived. The FT of an ellipsoid under a rigid
transformation is then deduced. The specifics of the 3D
phantom are outlined and the 3D phantom is used for
testing purposes and illustrations. In the section on nu-
merical testing, the numerical stability of the proposed
framework is discussed. We conclude this paper by briefly
discussing some potential applications.

MATERIALS AND METHODS

Basic Example of the FT of an Ellipsoid

In this subsection we discuss a simple problem whose
solution will be the building block for our 3D phantom.
Specifically, we are interested in the FT of an ellipsoid that
is centered at the origin of the coordinate system and
whose principal directions are aligned parallel to the co-
ordinate axes (Fig. 1a).

Let the 3D FT of a function g( x, y, z) be

G�kx, ky, kz� � �
��

�� �
��

�� �
��

��

� g�x, y, z�e�i2��kxx�kyy�kzz�dxdydz, [1]

and let g( x, y, z) be defined as follows:

g�x, y, z� � � � �x/a�2 � �y/b�2 � �z/c�2 � 1
0 �x/a�2 � �y/b�2 � �z/c�2 � 1 . [2]

It is shown in Appendix A that the FT of g( x, y, z) defined
in Eq. [2] can be expressed as
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G�kx, ky, kz� � �abc�sin�2�K� � 2�K cos�2�K�

2�2K3 �, [3]

where K � ((akx)2 � (bky)2 � (ckz)2)1/ 2.
Before moving on to the general setting, it is instructive

to reflect on two limiting cases. First, if all axes of the
ellipsoid are of the same length, r, then it reduces to the FT
of a sphere. Second, at the center of k-space, G(0, 0, 0) is
proportional to the volume of the ellipsoid. That is,

G�0, 0, 0� � limK30 �abc�sin�2�K� � 2�K cos�2�K�

2�2K3 �, [4]

� limK30 �abc�
8
3

�3K3 �
16
15

�5K5 � · · ·

2�2K3 � � �
4
3

�abc. [5]

In Eq. [5] the denominator inside the bracket was ex-
panded in terms of Taylor series about K � 0. In the case
of a sphere, G(0, 0, 0) � � 4

3
�r3, which is a product of �

and the volume of a sphere of radius r. It should be noted
here that the formula for the FT of a sphere can be found in
a previous work by Bracewell (21).

FT of an Ellipsoid Under a Constant Nonsingular Affine
Transformation

The general case is no more difficult than the example
discussed above. However, the key concept in this subsec-
tion is that of a coordinate transformation. That is, the
function g is now a function of a new set of variables ( px,
py, pz), and these new variables are themselves functions
of the original coordinates.

Let the 3D FT of a function g( px, py, pz) be

G�kx, ky, kz� � �
��

�� �
��

�� �
��

��

� g�px, py, pz�e�i2��kxx�kyy�kzz� dxdydz, [6]

where px, py, and pz are functions of x, y and z. Specifi-
cally, we have the following expressions:

g�px, py, pz� � � � �px/a�2 � �py/b�2 � �pz/c�2 � 1
0 �px/a�2 � �py/b�2 � �pz/c�2 � 1 ,

[7]

FIG. 2. a: An x-y plane cross section of the 3D version of the Shepp-Logan head phantom at z � –0.25. b: An x-z plane cross section of
the 3D version of the Shepp-Logan head phantom at y � 0.125. c: A 3D rendering of the 3D version of the Shepp-Logan head phantom.
The top portion of the skull is removed to show the smaller ellipsoids.

FIG. 1. a: An ellipsoid with its center located at the origin of the coordinate system and with its principal directions (a, b, c) aligned parallel
to the coordinate axes (x, y, z). The effects of the rotation matrix defined as a series of counterclockwise rotations (about z by an angle 	
� �/4, then about y by an angle 
 � �/6, and finally about z by an angle � � �/4) are shown in b, c, and d, respectively. The effect of the
displacement vector (�x � �0.25, �y � 0.55, �z � 0.55) on the rotated ellipsoid is shown in e.
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and

� px

py

pz

	 � A�1�� x
y
z
	 � � �x

�y

�z

		, [8]

where A is a constant nonsingular 3  3 matrix, and � �
[�x, �y, �z]T is a constant translation or displacement vec-
tor. The vector or matrix transposition is denoted by a
superscript T. Rewriting x, y, and z in terms of px, py, and
pz, Eq. [8] is transformed to the following expression:

r � Ap � �, [9]

where r � [x, y, z]T, and p � [px, py, pz]T.
Another means of expressing the integral in Eq. [6] is to

state the region of integration, which is written as

G�kx, ky, kz� � � ���
R

e�i2��kxx�kyy�kzz�dxdydz, [10]

where R is the ellipsoidal region defined by ( px/a)2 �
( py/b)2 � ( pz/c)2 � 1.

Performing a change of variables from ( x, y, z) to ( px,
py, pz), the integral above takes the following form:

G�kx, ky, kz� � � ���
R

e�i2�kT�r
det�A�
dpxdpydpz, [11]

where k � [kx, ky, kz]T, and 
det(A)
 denotes the absolute
value of the determinant of A. Substituting Eq. [9] into Eq.
[11], this yields

G�kx, ky, kz� � � ���
R

e�i2�kT�Ap���
det�A�
dpxdpydpz,

� �
det�A�
e�i2�kT� ���
R

e�i2��ATk�Tp

� dpxdpydpz. [12]

By defining k̃ � ATk, Eq. [12] reduces to

G�kx, ky, kz� � �
det�A�
e�i2�kT� ���
R

e�i2�k̃Tpdpxdpydpz.

[13]

Note that the integral in Eq. [13] is exactly the FT of an
ellipsoid under the condition discussed in previous sub-
section if we replace the vector k in Eq. [3] by the vector k̃
in Eq. [13]. Therefore, the FT of an ellipsoid under the
affine transformation discussed here is

G�kx, ky, kz�

� �abc
det�A�
e�i2�kT��sin�2�K� � 2�K cos�2�K�

2�2K3 � [14]

where K � ((ak̃x)2 � (bk̃y)2 � (ck̃z)2)1/ 2 and k̃ � ATk.

FT of an Ellipsoid Under a Rigid-Body Transformation

In this case the general nonsingular 3  3 matrix A is
replaced by a proper rotation matrix, R, (Fig. 1b–e). This
substitution yields the following properties: det(R) � 1, r
� Rp � �, and p � RT (r � �). Based on these properties,
the expression of G(kx, ky, kz) under a rigid-body trans-
formation can further be simplified to:

G�kx, ky, kz� � �abce�i2�kT��sin�2�K� � 2�K cos�2�K�

2�2K3 �,

[15]

where K � ((ak̃x)2 � (bk̃y)2 � (ck̃z)2)1/ 2 and k̃ � RTk.

3D Phantom

The 3D version of the Shepp-Logan head phantom used in
Refs. 18 and 19 was adapted for testing purposes. The
specification of this head phantom can also be found in
Ref. 19. For convenience, we provide here a slightly mod-
ified version of the 3D head phantom of Refs. 18 and 19.
Before going into the specifics of the phantom, it should be
noted that the convention used in defining the rotation in
terms of the Euler angles is R � Rz(�)Ry(
)Rz(	), where
Rz(�), Ry(
), and Rz(	) are defined in Appendix B.

Table 1 shows the exact specification for the head phan-
tom of Refs. 18 and 19 except for the last column, where
the signal intensities are slightly changed for better visual
perception since our interest is in numerical testing and
not in simulating tissue properties (16,17). Figure 2a
shows a horizontal cross section of the head phantom at
z � –0.25, whereas Fig. 2b shows a vertical cross section of
the head phantom at y � 0.125. Figure 2c is a 3D rendering
of the head phantom after a virtual hemicraniectomy pro-
cedure.

Numerical Test

The goal of the numerical testing was to show that an
image of the 3D head phantom can be reconstructed from
the k-space signals calculated by the expression in Eq.
[15]. As an example, the expression in Eq. [15] was eval-
uated numerically for a finite number of Cartesian points
(128128128) and for all the ellipsoids associated with
the 3D head phantom as described in Table 1. The incre-
ment in k-space is 0.5 and is the same for each k-space
dimension; in other words, each dimension of the k-space
is sampled, inclusive of the two end points, from � 31.5 to
32 with a step size of 0.5. A slice from the image of the 3D
head phantom reconstructed from the k-space is shown in
Fig. 3a. This figure is the Fourier-reconstructed image of
Fig. 2a. Figure 3b is a plot of both the Fourier-recon-
structed intensity profile (solid line) and the true intensity
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profile (dashed line) along the horizontal line depicted in
Fig. 3a.

Based on our numerical test, the expression

sin�2�K� � 2�K cos�2�K�

2�2K3 ,

which is common to all three equations (Eqs. [4], [14], and
[15]), is not numerically stable around K � 0. This issue
can be resolved by using the Taylor expansion: the first
three nonzero terms in the Taylor series are used to com-
pute the k-space signal instead of the expression above if K
is less than some small numerical value (say, 0.002). The
three-term expression is given by:

4
3

� �
8

15
�3K2 �

8
105

�5K4.

DISCUSSION

Here we outline the main findings of this work. As a tool
for MRI simulation and phantom studies, the proposed
framework has several desirable features, namely, that the
FT of an ellipsoid under a nonsingular affine transforma-
tion can be analytically expressed, and that the proposed
framework can serve as a benchmark for comparing differ-

ent image-reconstruction techniques in 3D MRI with a
non-Cartesian k-space trajectory. This framework will be
most convenient and helpful to researchers whose interest
is in 3D MRI with a non-Cartesian k-space trajectory be-
cause the expression for the k-space signal is analytically
expressed and can be evaluated in any coordinate system
by a suitable coordinate transformation. In other words,
this framework enables one to bypass k-space interpola-
tion. As a consequence, this framework provides a means
of teasing apart two of the key factors affecting the quality
of a reconstructed image (i.e., the k-space interpolation
and the image-reconstruction method (17)) so that a more
objective comparison of different k-space encoding
schemes can be achieved. Further, this framework can be
used to test 3D k-space resampling and gridding tech-
niques (20,24–27).

Another important aspect of this framework is that it can
be used as a platform for testing algorithms that deal with
motion correction, distortion correction, and image regis-
tration in 3D MRI. Suppose there are many tiny, noninter-
secting ellipsoids located throughout the whole imaging
volume such that each ellipsoid is affected by a local affine
transformation. In this example, we can infer that local
distortion modeled by an affine transformation in an image
space will affect the k-space globally. In light of this ex-
ample, it may be said that the proposed framework may be

FIG. 3. a: Fourier-reconstructed
image at z � –0.25 (see Fig. 2a for
the true values). b: Plot of the re-
constructed intensity profile (solid
line) and the true values (dashed
line) along a horizontal line de-
picted in a.

Table 1
Specification for the 3-D Head Phantom*

Ellipsoid
Coordinates of the
center or (�x, �y, �z)

Axis lengths (a,b,c)
Euler angle �

(radian)
Gray

level �

a (0,0,0) (0.69,0.92,0.9) 0 2.0
b (0,0,0) (0.6624,0.874,0.88) 0 –0.8
c (–0.22,0,–0.25) (0.41,0.16,0.21) 3�/5 –0.2
d (0.22,0,–0.25) (0.31,0.11,0.22) 2�/5 –0.2
e (0,0.35,–0.25) (0.21,0.25,0.5) 0 0.2
f (0,0.1,–0.25) (0.046,0.046,0.046) 0 0.2
g (–0.08,–0.65,–0.25) (0.046,0.023,0.02) 0 0.1
h (0.06,–0.65,–0.25) (0.046,0.023,0.02) �/2 0.1
i (0.06,–0.105,0.625) (0.056,0.04,0.1) �/2 0.2
j (0,0.1,0.625) (0.056,0.056,0.1) 0 –0.2

*These parameters are exactly the same (except for the last column) as used by Kak and Roberts (18) and Kak and Slaney (19). The
parameters are reinterpreted in terms of the convention used in this paper. For example, the coordinates of the center of an ellipsoid would
be the translation vector, � � [�x, �y, �z]T and the angle is reinterpreted as one of the Euler angles. In this 3-D phantom, the other two Euler
angles, 
 and 	, are set to zero.
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useful for understanding and testing methods in image
registration, distortion correction, and motion correction.

As mentioned above, a distinctive feature of MRI com-
pared to other imaging modalities is the fact that data are
acquired directly in the Fourier domain. However, the
expansive utility of MRI is due to the multitude of its
contrast mechanisms. The present framework can also al-
low for realistic 3D simulation studies since the image-
space signal intensity within each ellipsoid can be mod-
eled as a function of MRI parameters such as the proton
density, longitudinal relaxation time (T1), transverse re-
laxation time (T2), diffusion coefficient, diffusion anisot-
ropy, and diffusion tensor (28–30). In addition to model-
ing the signal intensity of the ellipsoid, one can also model
the principal axes of the ellipsoid so that these axes will be
functions of time. For example, an ellipsoid can be pro-
grammed to mimic a series of cardiac contractions. Fi-
nally, this framework will also be useful for functional
MRI (fMRI) simulation studies, and particularly for studies
comparing the relative merits of various methods of fMRI
analysis.

The analytical expression for the 2D FT of an ellipse
under planar rotation and translation can be found in Refs.
19 and 20. Based on the approach presented here, it is easy
to see that this result can be extended to a more general
transformation, namely, the 2D affine transformation. For
completeness, the expression of the FT of an ellipse under
a general nonsingular affine transformation is provided in
Appendix C together with a brief discussion on the numer-
ical stability of the relevant expression (numerical stability
was not discussed in Refs. 19 and 20). The notations used
in Appendix C are similar to those presented in Materials
and Methods.

CONCLUSIONS

This paper provides a basic framework for constructing a
3D analytical MRI phantom in the Fourier domain that can
be used to compare different non-Cartesian encoding
schemes and reconstruction methods. Most importantly,
the k-space signal for the 3D phantom can be evaluated
analytically and sampled according to any chosen k-space
trajectory or encoding scheme. It can also be adapted to
simulate tissue with realistic relaxation and diffusion
properties.
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APPENDIX A

In this appendix we derive the FT of an ellipsoid under the
simplest condition discussed in the “Basic Example of the
FT of an Ellipsoid” section above.

From Eqs. [1] and [2] we have

G�kx, ky, kz� � �
��

�� �
��

�� �
��

��

� g�x, y, z�e�i2��kxx�kyy�kzz�dxdydz [A1]

g�x, y, z� � � � �x/a�2 � �y/b�2 � �z/c�2 � 1
0 �x/a�2 � �y/b�2 � �z/c�2 � 1 [A2]

Then, Eq. [A1] can be rewritten as

G�kx, ky, kz� � � ���
R1

e�i2��kxx�kyy�kzz�dxdydz [A3]

where R1 is the ellipsoidal region defined by ( x/a)2 �
( y/b)2 � ( z/c)2 � 1.

By a change of variables,

x � a�, y � b�, and z � c�, [A4]

The integral can be expressed in the new coordinate sys-
tem (�, �, �) as follows:

G�k̃x, k̃y, k̃z� � �abc ���
R2

e�i2��k̃x��k̃y��k̃z��d�d�d� [A5]

where R2 is the spherical region defined by �2 � �2 � �2 �
1 and k̃x � akx, k̃y � bky, and k̃z � ckz. Further simpli-
fication can be achieved by another change of variables
from (�, �, �) to the spherical coordinates, (r, 
1, �1):

� � r sin�
1�cos��1�, � � r sin�
1�sin��1�, and � � r cos�
1�.

[A6]

By defining k̃ � [k̃x, k̃y, k̃z]T � [k̃ sin(
2)cos(�2), k̃
sin(
2)sin(�2), k̃ cos(
2)]T and r � [r sin(
1)cos(�1), r
sin(
1)sin(�1), r cos(
1)]T, the integral in Eq. [A5] can be
reduced to

G�k̃� � �abc �
0

2� �
0

� �
0

1

e�i2�k̃T�rsin�
1�r2drd
1d�1 [A7]

� �abc �
0

2� �
0

� �
0

1

e�i2�k̃r cos���sin�
1�r2drd
1d�1 [A8]

where cos(�) � cos(
1)cos(
2) � sin(
1)sin(
2)cos(�1 � �2)
(22).

A useful integral representation of elementary spherical
wave functions is given by (23):

jn�2�k̃r�Pn�cos�
2��

�
��i�n

4� �
0

2� �
0

2�

e�i2�k̃r cos���Pn�cos�
1��sin�
1�d
1d�1 [A9]

where jn is the spherical Bessel function of order n and Pn

is the Legendre polynomial of order n.
Using the above relation for the case n � 0, Eq. [A9]

reduces to
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j0�2�k̃r� �
1

4� �
0

2� �
0

�

e�i2�k̃r cos���sin�
1�d
1d�1. [A10]

It is obvious then that Eq. [A8] can be simplified to:

G�k̃� � 4��abc �
0

1

j0�2�k̃r�r2dr [A11]

Since j0( x) � sin( x)/x, Eq. [A11] can further be reduced to

G�k̃� �
4��abc

2�k̃ �
0

1

sin�2�k̃r�rdr, [A12]

�
2�abc

k̃ �sin�2�k̃� � 2�k̃ cos�2�k̃�

�2�k̃�2 	, [A13]

� �abc�sin�2�k̃� � 2�k̃ cos�2�k̃�

2�2k̃3 	. [A14]

As a reminder, we define K � k̃ in the main text, and k̃ �
(k̃x

2 � k̃y
2 � k̃z

2)1/ 2 � ((akx)2 � (bky)2 � (ckz)2)1/ 2 as
defined in this appendix. Therefore, the final expression is

G�kx, ky, kz� � �abc�sin�2�K� � 2�K cos�2�K�

2�2K3 	 [A15]

where K � ((akx)2 � (bky)2 � (ckz)2)1/ 2.

APPENDIX B

The rotation matrices Rx(�), Ry(�) and Rz(�) represent
rotations through angle � around the x-, y-, and z-axes,
respectively, and are defined as follows:

Rx��� � � 1 0 0
0 cos��� �sin���
0 sin��� cos���

	,

Ry��� � � cos��� 0 sin���
0 1 0

�sin��� 0 cos���
	, and

Rz��� � � cos��� �sin��� 0
sin��� cos��� 0

0 0 1
	.

APPENDIX C

In this appendix we do not derive the FT of an ellipse
under an affine transformation, but provide the expression
using the notations presented in the text.

Suppose the 2D FT of g( x, y) is G(kx, ky) � ���
�� ���

�� g( x,
y)e�i2�(kxx�kyy)dxd y. The FT of an ellipse under a 2D affine
transformation is given by

G�kx, ky� � �
��

�� �
��

��

g�px, py�e�i2��kxx�kyy�dxdy, [C1]

where px, and py are functions of x, and y, and g( px, py)
is defined by:

g�px, py� � � � �px/a�2 � �py/b�2 � 1
0 �px/a�2 � �py/b�2 � 1 ,

and

� px

py
	 � A�1�� x

y 	 � � �x

�y
		,

where A is a 2  2 nonsingular matrix. The final result of
Eq. [C1] is

G�kx, ky� � ��ab
det�A�
e�2�ikT���J1�2�K�

�K 	 [C2]

where J1 is a Bessel function of the first kind of first order,

K � ((ak̃x)2 � (bk̃y)2)1/ 2 and � k̃x

k̃y
	 � AT� kx

ky
	. Equation

[C2] is not numerically stable around K � 0, but this issue
can be resolved using a three-term Taylor series of
( J1(2�K)/�K) when K � 0.001, which is given by

� J1�2�K�

�K 	 � 1 �
��K�2

2
�

��K�4

12
. [C3]
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