
Decomposition and Causality in Partial-Order Planning

R. Michael Youngy and Martha E. Pollack�;y and Johanna D. Moore�;y;x

yIntelligent Systems Program
�Department of Computer Science

xLearning Research and Development Center

University of Pittsburgh, Pittsburgh, PA 15260

myoung+@pitt.edu, pollack@cs.pitt.edu, jmoore@cs.pitt.edu

Abstract

We describe DPOCL, a partial-order causal
link planner that includes action decomposition.
DPOCL builds directly on the SNLP algorithm
[10], and hence is clear and simple, and can
readily be integrated with other SNLP exten-
sions. In addition, DPOCL is speci�cally de-
signed to handle partially speci�ed action de-
compositions. Plan generation in DPOCL ex-
ploits the planner's ability to �ll in the missing
pieces of a partially speci�ed subplan in a way
that uses the existing context of the larger plan
being constructed.

1 Introduction

Research in AI plan generation was heavily inuenced
by the development of simple algorithms for partial-order
causal link (POCL) planning, notably TWEAK [4] and
SNLP [10].1 These algorithms, and the systems based on
them (notably UCPOP [11]), have been widely accepted
as capturing the key insights of a host of earlier planners,
in a framework that is more amenable to rigorous analy-
sis. However, one aspect of previous work on planning that
was not adequately captured in these algorithms is action
decomposition. In planners that support action decomposi-
tion, such as NOAH [15], SIPE [17], and NONLIN/O-Plan
[16; 5], one speci�es how high-level, abstract actions can
be decomposed into more primitive actions. The process of
generating a plan then involves not only establishing causal
connections between actions at the same level of abstrac-
tion, but also establishing decompositions of the high-level
actions in the plan into more primitive ones. Planning
with action decomposition is one species of hierarchical
planning; the main alternative is precondition hiding [14;
19; 9].

Hierarchical planning has several advantages. First,
it can potentially lead to a signi�cant reduction in the
amount of search needed [18; 9; 2]. Second, it can make the
task of encoding domain knowledge much easier, because
the operator writer can re-use operators describing sub-
actions that are common to many actions [6; 17]. Third,

1Young and Moore receive support from the O�ce of Naval
Research (N00014-91-J-1694). Pollack receives support from
the Air Force O�ce of Scienti�c Research (F49620-92-J-0422),
from the Rome Laboratory of the Air Force Material Com-
mand and the Advanced Research Projects Agency (F30602-93-
C-0038), and from an NSF Young Investigator's Award (IRI-
9258392).

hierarchical planning facilitates the interleaving of plan-
ning and execution, by making it possible to fully expand
only some portions of a plan|including those that need to
be executed immediately, while deferring the expansion of
other portions [3]. Although the �rst of these three advan-
tages may accrue to either form of hierarchical planning,
the latter two are most fully realized when the levels of the
planning hierarchy are speci�ed via action decomposition.

Previous e�orts to formalize action decomposition have
used NONLIN-based algorithms [18; 8]. More recently,
Barrett and Weld [2] add action decomposition to the
UCPOP algorithm, itself an extension of SNLP. They do
this with a bottom-up strategy, generating partial plans at
the primitive level, and then using the action hierarchy to
�lter out completions that cannot be \parsed" into higher-
level plans. They argue that this approach allows for the
inclusion of actions with universally quanti�ed e�ects, and
also present preliminary experimental results that suggest
that it may signi�cantly reduce the search-space size. How-
ever, by abandoning top-down decomposition, they give up
the third, key advantage of hierarchical planning: their ap-
proach cannot support interleaved planning and execution,
in which the decomposition of the some higher-level actions
is deferred.

In this paper, we show how to incorporate action de-
composition directly into the SNLP algorithm. The re-
sulting algorithm,which we call DPOCL (Decompositional
Partial-Order Causal-Link planner) is clear and simple,
and can readily be integrated with other SNLP extensions.
In addition, DPOCL is speci�cally designed to handle par-
tially speci�ed action decompositions. Plan generation in
DPOCL exploits the planner's ability to �ll in the missing
pieces of a partially speci�ed subplan in a way that uses
the existing context of the larger plan being constructed.

In the next section, we discuss some issues that must
be addressed in an account of action decomposition. The
third section provides some preliminary de�nitions that
we use in the DPOCL algorithm, which is stated in the
fourth section. The �fth section briey sketches the formal
properties of DPOCL and the �nal section summarizes the
work.

2 Action Decomposition

Plan generation involves (at least) two di�erent kinds of
reasoning. First, it sometimes involves deciding what ac-
tions to use to achieve certain e�ects (or goals). For exam-
ple, if you want to achieve the goal of being at the airport,
you might decide to perform the action of taking a taxi
there. Second, it sometimes involves deciding what ac-
tion(s) to perform as a way of performing some higher-level

Mimesis
Proceedings of the Second International Conference on Artificial Intelligence and Planning Systems, pages 188-193, Chicago, IL, 1994

action.2 For example, if you want to perform the action of
taking a taxi to the airport, you might �rst call the taxi
company to reserve a taxi, then open your front door so
you'll hear it pull up, and so on. Nonhierarchical planners,
like SNLP, perform only the �rst kind of reasoning; others,
like NONLIN, perform largely the second kind. NONLIN
begins with a single, very high-level description of a task to
be performed, and iteratively expands|or decomposes|
that task. At each iteration, harmful interactions may be
introduced; these must be resolved before the next level of
expansion.

One important type of interaction involves actions in
one subplan whose e�ects are achieved by actions in other
subplans. Suppose that you have two top-level goals: vis-
iting a friend in Santa Fe, and bringing him a gift. You
may decompose the action of visiting the friend into a set
of actions including taking a taxi to the airport, ying to
Santa Fe, and taking a taxi to your friend's house. There
are alternative possible decompositions for getting a gift:
one involves making a gift, and another involves buying a
gift. Suppose you settle on the second, i.e., you decompose
the top-level task of getting a gift into subtasks of going
to a store and buying a gift. During the process of ex-
pansion, you may observe that the step of going to a store
exists to achieve the condition of being at a store, which
is a precondition of buying the gift|and that the condi-
tion of being at a store was achieved by another step in
your plan, namely, the step of taking a taxi to the airport.
(At least this is true if you live in Pittsburgh, which has
a number of good stores at its airport.) What you might
well want to do in these circumstances is to use the single
act of going to the airport to establish both the precondi-
tion of boarding the plane and the precondition of buying
the gift.3

The idea behind this example is not new. NONLIN,
for instance, includes a process called goal phantomiza-
tion, which does basically what we have just described: it
allows a step already in a plan to be used to achieve ef-
fects elsewhere in the plan. In our view, the idea behind
phantomization is key to the appropriate performance of
planners that perform action decomposition. To produce
e�cient plans, these systems must be able to reason about
the context of the larger plan in which any particular de-
composition is being inserted. If a planner has the ca-
pability to do this, then not only can it choose not to
include unneeded steps that may be part of some action-
decomposition speci�cation, but it can also �ll in pieces of
subplans that are only partially speci�ed. For instance, we
might imagine that the \get gift" operator is written with
multiple e�ects: the agent performing it has a gift and the
gift is wrapped. It might also have several alternative de-
compositions. In one, the agent makes the gift and then
wraps it; in another, all that is speci�ed is that the agent
goes to a store and buys a gift there. The higher-level
action will not be complete until the condition of having
the gift is wrapped has been achieved, and consequently,
somewhere in the decomposition this condition must be

2Many papers discuss the foundations of this relation be-
tween \high-level" and lower-level actions, [1; 12; 7].

3In fact, you may want the fact that you can overload your
action in this way to inuence your choice of decomposition
[13].

established. However, the operator writer may choose not
to specify the means by which this condition is brought
about, believing that it should instead be determined by
what else is occuring in the larger plan. NONLIN'S use of
unsupervised conditions is related to the idea of partiality
in action decomposition speci�cations. However, the two
notions are not identical, because the achievement of unsu-
pervised conditions is constrained to be outside the scope
of the current plan.

Other approaches to formalizing action decomposition
have tended to make overly strong assumptions about the
completeness of decomposition speci�cations. For exam-
ple, Yang requires that decomposition speci�cations be
nearly complete \miniature plan[s] free of any conicts."
[18, p. 14]. The requirement of near completeness en-
tails, amongst other things, that every e�ect of the par-
ent action be asserted by some step in the decomposi-
tion speci�cation, and that, moreover, there is no possi-
bly subsequent action in the decomposition speci�cation
that clobbers that e�ect. Kambamphati and Hendler have
similarly strong requirements [8]. What we show in the
rest of this paper is that such near completeness in action-
decomposition speci�cation is not necessary. Action de-
composition speci�cations can be suggestions, sometimes
partial, about how to perform a higher-level action. We
also show that this can be achieved within the clean frame-
work of the SNLP algorithm.

3 De�nitions

We begin with some de�nitions that are needed to give the
DPOCL algorithm. A planning system forms plans using
information about the actions that can be performed. In
DPOCL, the representation of each action is separated into
two parts: the action schema and a possibly empty set of
decomposition schemata.

De�nition 1 (Action Schema) An action schema is a
tuple � A; V; P;E;B � where A is an action type, V is the
list of free variables, P is the set of preconditions for the
action, E is the set of e�ects for the action and B is the
set of binding constraints on the variables in V .

In this paper, we restrict the preconditions and e�ects
of an action to be sets of literals. Binding constraints may
include requirements of codesignation or noncodesignation
of pairs of variables in V , as is standard in POCL algo-
rithms. During plan generation, DPOCL (again, like all
POCL algorithms) manipulates steps, which are uniquely
named instances of action schemata.

Every action also has a set of decomposition schemata|
the \speci�cations" of alternative decompositions to which
we referred above|although this set may sometimes be
empty. We assume that there is a distinguished subset
of action types that are identi�ed as being primitive, i.e.
are directly executable by the planning agent. Primitive
actions types have empty sets of decomposition schemata.
Any action type that is not primitive is composite. Steps
in a plan are primitive or composite according to whether
their action type is.

Decomposition schemata specify how composite actions
can be decomposed into more primitive actions. A decom-
position is really a partial plan involving more-primitive

actions for achieving a composite action. The partiality is
critical: because a decomposition schema may only sketch
an expansion of a particular composite action, DPOCL
can �ll in the remaining details of the expansion during
planning in a way that exploits the larger context of the
plan in which the composite action is being used. In this
sense, a decomposition schema represents an abstraction
of many decomposition instances in a manner similar to
the abstraction of many actions by an action schema.

Each decomposition schema represents a single-layer ex-
pansion of a composite step: decomposition schemata re-
semble the non-hierarchical partial plans of other POCL
planners. Of course, any of the actions within the schema
may themselves be composite, and thus subject to further
decomposition.

De�nition 2 (Decomposition Schema) A decomposi-
tion schema is a tuple � A; S;B;O; L � where A is an
action type, S is a set of pseudo-steps, B is a set of bind-
ing constraints on the free variables in S and A, O de�nes
a partial order on the elements of S, and L is a set of
causal links between the members in S.

Because decomposition schemata specify partial single-
level plans, they include several elements that are standard
in POCL planners. In particular, causal links are tuples
relating a step s, one of its e�ects e, and another step,
t that has a precondition e0 that can unify with e. The
interpretation of the causal link � s; e; e0; t � is that s is
intended to achieve the relevant precondition (e0) of t.

One di�erence between a standard POCL plan and a de-
composition schema involves the elements of S. In a POCL
plan, these are steps, i.e., they denote particular instances
of certain action types, each of which is uniquely named.
The unique names are needed because a plan may include
more than one instance of the same action type; the step
names make it possible to distinguish between, and refer
to, each instance, for example in binding constraints. A
similar requirement exists for decomposition schemata: the
same action type may occur more than once in a decompo-
sition schema, and so individual names must be assigned
to each occurrence. In addition, the same decomposition
schema may be used more than once in a plan. Thus the
names given to the steps in a decomposition schema can
only be temporary; hence, we refer to them as pseudo-
steps. During plan generation, each pseudo-step will either
be associated with another step already in the plan, and
given that step's name, or else it will be instantiated as a
new step, and given a unique name.

3.1 Constraints on Decomposition
Schemata

Even though they can be partial, decomposition schemata
cannot be arbitrary plans; rather, there are certain con-
straints that hold between a composite action type and
any valid decomposition schema for it. Most systems that
have used action decomposition, e.g., NOAH, SIPE, and
NONLIN have not been explicit or uniform about these
constraints. As we mentioned above, Yang [18] presents
a set of constraints that he suggests \capture the formal
aspects of action or goal expansions in [these systems]" (p.
14). Whether or not he is right about his constraints cap-
turing the practice in earlier systems, we believe that those

constraints are too strong to capture a natural interpreta-
tion of action decomposition. For example, he requires
that every e�ect of the parent action be asserted by some
step in the decomposition schema, and requires that no
decomposition schema include potential threats.

Although we want to allow partiality in the decomposi-
tion schema, we do not want superuous planning to oc-
cur at a higher level of planning. We therefore include
a requirement, similar to one of Yang's, that each pre-
condition of the parent action in a decomposition schema
should be needed by some step in the subplan, which itself
contributes, through a chain of causal links, to the estab-
lishment of one of the parent action's e�ects. Intuitively,
the preconditions of an action at a particular level of ab-
straction must contribute to the establishment of its e�ects
no matter which way the action is ultimately performed,
i.e., regardless of which decomposition is selected during
planning.

To represent the use of the preconditions of the par-
ent action in the decomposition, we employ the standard
POCL technique of having a null initial step si in the
decomposition schema, whose e�ects are those conditions
true in the \initial state" of the subplan, that is, precisely
the set of preconditions of the parent action. Analogous
to our use of a null initial step, we also include a null �nal
step sf in decomposition schemata, which, as in all POCL
formalisms, has as its preconditions the intended e�ects
(goals) of the plan. Speci�cally, we require that each �nal
step in a subplan include as preconditions the e�ects of
the parent action. In addition, for each of si's e�ects, we
require that there be a path of causal links beginning at
si, passing through other steps in the decomposition, and
ending with a precondition of the �nal step sf .

Furthermore, we allow the decomposition schema to
specify which conditions in a subplan must be established
by the same step that establishes those conditions for the
parent. Intuitively, a causal link from one of si's e�ects to
a step s with precondition c indicates that c is established
for s by the same step that established c as a precondi-
tion of the subplan's parent. At the time the parent step
is expanded there may be many steps already in the plan
that assert e�ects that can unify with c. When the decom-
position schema does not include a causal link to c, the
planner may create a link to c from any of these steps|or
may insert a new step to establish c.

Decomposition schemata may include causal links that
specify how some or all of the preconditions of their steps
are to be established. When the schema includes a causal
link between two steps, then the �rst step will be used
in the plan to establish the indicated precondition of the
second step. Sometimes, however, the schema will include
preconditions without incoming causal links; in this case
the planner is free, during plan expansion, to use any step
in the plan to establish the condition in question. In ad-
dition, the schema may include steps without any outgo-
ing causal links. Such steps are included as suggestions
of actions that may be selected, during plan expansion,
to achieve some condition of the subplan. If these steps
are not selected, they are termed \unused", and must be
pruned from the �nal plan.

We can now state the constraints on decomposition
schemata. Each decomposition schema: (1) contains a a

dummy initial step si whose e�ects are the preconditions
of the parent step; (2) contains a dummy �nal step sf
whose preconditions are the e�ects of the parent step; (3)
has ordering constraints ensuring that si precedes all other
steps in the subplan, and that sf follows all other steps in
the subplan; and (4) each e�ect of si, has a path of causal
links that terminates in a precondition of sf .4

3.2 Planning with Decompositions

The process of decomposition is one of creating a subplan
from a valid decomposition schema. Each step named in
the decomposition schema is added to the plan, either by
choosing an existing step of the same action type as the
step named in the schema or by instantiating a new step
from the library of action operators. Ordering and binding
constraints for each step are added and causal links created
between steps where speci�ed by the decomposition.

During plan generation, the planner needs to keep track
of the decompositional decisions that it makes. Whereas a
causal link is used to record the fact that the purpose of
some step s is to establish the preconditions of some other
step (or the goal), a decomposition link is used to record
the fact that the purpose of some step s is to be part of a
more-primitive realization of some other step.

De�nition 3 (Decomposition Link) A decomposition
link is a tuple � s; si; sf � where s is a composite step, si
is the initial step of some decomposition of s and sf is the
�nal step of that decomposition.

We can now de�ne a DPOCL plan:

De�nition 4 (Plan) A plan is a tuple
� S;B;O;LC;LD �, where S is a set of steps, B is a set
of binding constraints on free variables in S, O is a set of
ordering constraints on steps in S, LC is a set of causal
links between steps in S, and LD is a set of decomposition
links among steps in S.

The sets S, B, and LC are de�ned in the standard way;
LD has been speci�ed just above. Given the more gen-
eral representation of plans in DPOCL, we need to extend
the standard POCL step-ordering relation so that we can
compare steps at di�erent levels of the plan hierarchy. In
DPOCL, ordering constraints capture temporal precedence
by representing direct ordering constraints as well as order-
ing arising from one step belonging to the decomposition
of another, i.e., ordering constraints inherited from parent
steps. Details are found in the longer version of this paper.

Finally, we also need to modify the termination condi-
tions of non-hierarchical POCL planners. DPOCL halts
once a complete plan has been constructed, i.e., once the
partial plan under construction has all of its outstanding
goals established by causal links, there are no threats to
any of these causal links, and all the composite steps have
been expanded to the level of primitive actions.

When DPOCL halts, there may be remaining unused
steps in the plan. This can occur when a decomposition
schema that was selected during plan expansion includes
steps that have no outgoing causal links in the schema.

4There are also certain restrictions on the binding con-
straints that exists in the parent action and those in the de-
composition; these are detailed in the longer version of this
paper.

Such steps are included in the schema as suggestions for
use by the planner, but it is free to ignore them during
the remainder of the planning process. Speci�cally, a step
in a plan is used only if it contributes in some way to the
establishment of the preconditions of the �nal step of the
plan. Formally, we have:

De�nition 5 (Used Step) A step s is used in a plan
P =� S;B;O;LC;LD �, precisely when one of the fol-
lowing conditions hold:

� s is the top-level initial or goal state of P .

� There is a causal link � s; e; e0; t �2 LD such that t
is a used step.

� s is the initial or �nal step in a subplan, that is, there
exists some decomposition link � sparent; s; sf �2

LD or � sparent; si; s �2 LD.

Unless a step is incorporated into the plan, it plays no
subsequent role in the planning process or in determining
when the process can terminate successfully. Plan com-
pleteness is thus de�ned relative only to used steps.

De�nition 6 (Plan Completeness) A plan is complete
if and only if

1. All Steps Are Established. For every step s 2 S,
if s is used, then for every precondition p of s, there
is a causal link � s0; q; p; s �2 LC.

2. All Threats Are Resolved. For any used steps
s and t and link � s; q; p; t �2 LC there is no used
step Sthreat that possibly comes between s and t and
has e�ect :e, where e can unify with the most-general
uni�er of p and q.

3. All Composite Steps are Expanded. For every
step s 2 S, if s is used, then either s is associated
with a primitive action or there is a decompositional
link � s; si; sf � in LD.

4 The Algorithm

We can now provide the DPOCL algorithm, shown in
Figure 1. Standard POCL planners iterate through a loop
in which they �rst check for a completed plan, then per-
form plan re�nement by adding causal links for open con-
ditions, and �nally resolve threats to existing causal links
created by recent plan modi�cations. DPOCL di�ers from
this approach by providing an additional option for the
plan re�nement phase: the planner may either do causal
planning or may do decompositional planning. Either of
these options is followed by a threat resolution phase. The
algorithm terminates when there are no open conditions
and when all abstract steps have been decomposed into
primitive actions.

In its general form, the decision about whether to per-
form causal or decompositional planning at each itera-
tion is left open: the two forms of plan re�nement can
be fully interleaved. Traditional hierarchical planning has
�rst done complete causal planning at a single layer of
the hierarchy, and only then done decomposition. Control
rules that enforce this ordering could be added to DPOCL.
However, we believe that in general it is advantageous to
allow for interleaving of causal and decompositional plan-
ning, especially in situations in which planning and execu-
tion must be interleaved.

DPOCL(� S;B;O;LC;LD �;�;�)

On the initial call to DPOCL, there are only two steps in S
|the dummy initial and �nal steps|and a single ordering con-
straint between them in O. B = LC = LD = fg. � is the set of
decomposition schemata and � is the set of action schemata.

I. Termination If O or B is inconsistent, fail. Otherwise, if
� S;B;O;LC ;LD � is complete, prune unused steps from S
and return the result.

II. Plan Re�nement Nondeterministically do one of the fol-
lowing:

� Causal Planning

{ Goal Selection Select a goal, that is, a used
step Sneed with precondition p and no causal link
� t; q; p; Sneed �2 LC .

{ Operator Selection Let Sadd be a step that adds
an e�ect e which can be uni�ed with p (to create
Sadd, nondeterministically either choose a step Sold
already in S or instantiate an operator from �).
If no such step exists, backtrack. Otherwise, let
S 0 = S [fSaddg, O0 = O [fSadd < Sneedg, B0 =
B[the set of variable bindings needed to make e
unify with p, including the bindings of Sadd itself,
L0C = LC[� Sadd; e; p; Sneed �, and L

0

D = LD.

� Decompositional Planning

{ Action Selection Nondeterministically select a
used, unexpanded composite step Sparent from S.

{ Decomposition Selection
Nondeterministically select a decomposition schema
D =� TD; SD ;BD; OD; LCD � from � that has a
type TD matching the action type associated with
Sparent. Replace each step name occurring in SD
with actual step names, either instantiated from �
or already existing in S, such that each new step
name is of the same action type as the step name it
replaces.
Replace each reference in BD;OD and LCD to the
old steps from SD with the corresponding new step
names. Then let S 0 = S [SD, O

0 = O [OD,
B0 = B [BD, L

0

C = LC [LCD , and L
0

D = LD [f�
Sparent; Sparenti ; Sparentf �g.

III. Threat Resolution A step Sthreat threatens a causal link
� Sj ; e; p; Sk � when it occurs between Sj and Sk and it as-
serts :e0, where e0 can unify with the most general uni�er of
e and p. For every used step Sthreat that might threaten a
causal link � Sj; e; p; Sk �2 LC , nondeterministically do one
of the following: Promotion If Sk possibly precedes Sthreat,
let O0 = O [fSk < Sthreatg. Demotion If Sthreat possibly
precedes Sj , let O0 = O [fSthreat < Sjg. Separation Let
O0 = O [fSj < Sthreat; Sthreat < Skg and let B0 = B[the set
of variable prohibitions needed to ensure that e0 won't unify
with the most general uni�er of e and p.

IV. Recursive Invocation Call
DPOCL(� S 0;B0;O0;L0C ;L

0

D �;�;�)

Figure 1: The DPOCL Algorithm

5 Formal Properties

In the longer version of this paper we show that DPOCL
both is sound and satis�es a restricted form of complete-
ness. The proof of soundness is similar in structure to that
given for the UCPOP algorithm [11]. Like that proof, we
de�ne a loop invariant, which we prove holds at various
points in the planning process. This has the soundness
of DPOCL as a consequence. The UCPOP loop invariant
states that if the current subgoals can be achieved by the
current plan, then the plan is a solution, i.e., there exists
an executable extension of that plan. In Penberthy and
Weld's proof, the invariant is shown to hold for causal-link
introduction. Our proof shows that similar invariants hold
when either causal or decompositional links are introduced,
i.e, performing action decomposition preserves soundness.

In addition, we prove that DPOCL is primitive com-
plete. That is, for every solution S to a planning problem
� where S contains only primitive steps, DPOCL is guar-
anteed to produce a plan whose primitive steps are S.

6 Summary

Action decomposition is generally accepted as essential to
plan generation. Although many previous planning sys-
tems have employed action decomposition, the develop-
ment of algorithms like SNLP make it possible for the �rst
time to give a careful statement of the decomposition pro-
cess. The algorithm we present in this paper, DPOCL, is
a sound and primitive complete algorithm for the creation
of plans with decompositional as well as causal structure.
By incorporating decompositional planning directly into
a POCL framework we have been able to specify a pre-
cise relationship between abstract steps and the subplans
that achieve them. Furthermore, the constraints we place
on the speci�cation of decomposition schemata in DPOCL
are less restrictive than previous formal models. By taking
advantage of the context of the larger plan under construc-
tion during composite step expansion, DPOCL can gener-
ate plans that may be more e�cient than those produced
by planners that require more constrained speci�cations of
decomposition schemata.

References

[1] James F. Allen. Towards a general theory of action
and time. Arti�cial Intelligence, 23(2):123{154, 1984.

[2] Anthony Barrett and Daniel Weld. Schema parsing:
Heirarchical planning for expressive languages. Un-
published manuscript., 1994.

[3] Michael E. Bratman, David J. Israel, and Martha E.
Pollack. Plans and resource-bounded practical rea-
soning. Computational Intelligence, 4:349{355, 1988.

[4] David Chapman. Planning for conjunctive goals. Ar-
ti�cial Intelligence, 32(3):333{378, 1987.

[5] Ken Currie and Austin Tate. O-plan: The open plan-
ning architecture. Arti�cial Intelligence, 52:49{86,
1991.

[6] Jerry R. Hobbs. Granularity. In Proceedings of the
Ninth International Joint Conference on Arti�cial In-
telligence, pages 432{435, 1985.

[7] David Israel, John Perry, and Syun Tutiya. Actions
and movement. In Proceedings of the Twelfth Inter-
national Joint Conference on Arti�cial Intelligence,
pages 1060{1065, Sydney, Australia, 1991.

[8] Subbarao Kambhampati and James Hendler. A val-
idation structure based theory of plan modi�cation
and reuse. Arti�cial Intelligence, 55(2):193{158, 1992.

[9] Craig A. Knoblock. Automatically generating ab-
stractions for planning. Arti�cial Intelligence, 1994.
In press.

[10] David McAllester and D. Rosenblitt. Systematic non-
linear planning. In Proceedings of the Ninth National
Conference on Arti�cial Intelligence, pages 634{639,
Anaheim, CA, 1991.

[11] J. Penberthy and D. Weld. UCPOP: A sound, com-
plete, partial order planner for ADL. In Proceedings
of the Third International Conference on Knowledge
Representation and Reasoning, pages 103{114, Cam-
bridge, MA, 1992.

[12] Martha E. Pollack. Inferring domain plans in
question-answering. Technical Report 403, Arti�cial
Intelligence Center, SRI International, Menlo Park,
CA, 1986. Also appears as a University of Pennsylva-
nia PhD thesis.

[13] Martha E. Pollack. Overloading intentions for e�cient
practical reasoning. Noûs, 25(4):513{536, 1991.

[14] Earl D. Sacerdoti. Planning in a hierarchy of abstrac-
tion spaces. Arti�cial Intelligence, 5(2):115{135, 1974.

[15] Earl D. Sacerdoti. A Structure for Plans and Behav-
ior. American Elsevier, New York, 1977.

[16] Austin Tate. Generating project networks. In Proceed-
ings of IJCAI-77, pages 888{893, Cambridge, MA,
1977.

[17] David E. Wilkins. Practical Planning: Extending the
Classical AI Paradigm. Morgan Kaufmann, San Ma-
teo, CA, 1988.

[18] Qiang Yang. Formalizing planning knowledge for a hi-
erarchical planner. Computational Intelligence, 6:12{
24, 1990.

[19] Qiang Yang and Josh D. Tenenberg. ABTWEAK: Ab-
stracting a nonlinear, least commitment planner. In
Proceedings of the Eighth National Conference on Ar-
ti�cial Intelligence, pages 204{209, Boston, MA, 1990.

