Finding Collisions for Reduced Luffa-256 v2

Bart Preneel ${ }^{2}$, Hirotaka Yoshida ${ }^{12}$, and Dai Watanabe ${ }^{1}$
${ }^{1}$ Systems Development Laboratory, Hitachi, Ltd., 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa-ken, 244-0817 Japan
${ }^{2}$ Department of Electrical Engineering ESAT/SCD-COSIC, Katholieke Universiteit Leuven
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium

Abstract

Luffa is a family of cryptographic hash functions that has been selected as a second round SHA-3 candidate. This paper presents the first collision finding analysis of Luffa-256 v2 which is the 256 -bit hash function in the Luffa family. We show that collisions for 4 out of 8 steps of Luffa can be found with complexity 2^{90} using sophisticated message modification techniques. Furthermore, we present a security analysis which shows how difficult it is to apply the same approach to Luffa-256 v2 reduced to 5 steps: the resulting attack would require a complexity of 2^{224}. This analysis can be seen as an indication that the full 8 steps of the Luffa-256 v2 hash function has a large security margin against differential collision search with message modification technique.

Keywords: Hash functions, differential cryptanalysis, collision attack, message modification

1 Introduction

A cryptographic hash function is an algorithm that takes input strings of arbitrary (typically very large) length and maps these to short fixed length output strings. A secure cryptographic hash function has to satisfy the following requirements:

- preimage resistance: it is computationally infeasible to find any input which hashes to any pre-specified output.
- second preimage resistance: it is computationally infeasible to find any second input which has the same output as any specified input.
- collision resistance: it is computationally infeasible to find a collision, i.e. two distinct inputs that hash to the same result.

For an ideal hash function with an n-bit output, finding a preimage or a second preimage requires about 2^{n} operations and the fastest way to find a collision is the birthday attack which needs approximately $2^{n / 2}$ operations.

Recent cryptanalytic results focus on the collision resistance of hash functions. Collision attacks [15] have been shown for many commonly used hash functions, such as MD5 [13] and SHA-1 [11]. In response, NIST launched the SHA-3 competition [12] which aims to find an alternative hash function to the SHA-2 family. NIST received more than 60 candidate hash functions and it currently focuses on the 14 second round candidates. Therefore, the cryptanalysis of these hash function designs is of great interest.

Luffa is a family of cryptographic hash functions that has been selected as a second round SHA-3 candidate. The hash function Luffa adopts the structure of a sponge function and a wide-pipe strategy. Furthermore, the design of Luffa shows a distinct feature that the internal round function consists of parallel applications of permutations. The four proposed variants of Luffa compute a 224 -bit, 256 -bit, 384 -bit, and 512 -bit hash value respectively.

In the previous results on Luffa, the building blocks have been extensively analyzed: the designers of Luffa-256 v2 found a differential path for the internal permutation of Luffa with a probability of $2^{-224}[5]$. Aumasson and Meier [1] constructed an algebraic zero-sum distinguisher for the same component with a complexity of 2^{82}. Watanabe et. al constructed a higher order

Fig. 1. The Luffa construction
distinguisher for 7 -steps out of 8 steps of the compression function of Luffa v1, requiring 2^{216} one-block messages. Khovratovich et. al [9] found a semi-free start collision for the 7 -steps of the compression function of Luffa-256 v2 with a complexity of 2^{104}, which can be extended to an 8 -step distinguisher with the same complexity [9].

This article analyses the collision resistance of reduced-round versions of Luffa which is the 256 -bit hash function in the Luffa family. To the best of our knowledge, this is the first analysis of this type, where the attacker is more restricted than in the previous analysis because the initial vector is fixed in ours. We show how collision attacks, using sophisticated message modification techniques, can be mounted on reduced variants of Luffa-256 v2. We show an attack on Luffa-256 v2 reduced to from 8 to 4 steps with a complexity of 2^{90}. Furthermore, we analyze how difficult it would be to apply the same approach to Luffa-256 v2 reduced to 5 steps, which can be seen as an indication that the full 8 steps of the Luffa-256 v2 hash function has a high security margin against differential collision search using message modification.

The outline of this paper is as follows. In Sect. 2, we give a short description of the hash function Luffa-256 v2 with a focus on the relevant parts for our attacks. In Sect. 3, the results of the collision attacks on 4 -step variant of Luffa-256 v2 are presented. Section 4 analyzes the resistance against collision attacks of a 5 -step variant of Luffa- 256 v2. Section 5 concludes the paper.

2 Specification of Luffa-256 v2

In this section, we introduce a part of the specification of Luffa which is needed to describe the attack. The reader is referred to [6] for the details of the specification.

2.1 Chaining

The chaining of Luffa is a variant of a sponge function [2,3], that processes 256 message bits in each iteration. The message is padded with $10 \ldots 0$ to ensure that the padded message has a length divisible by 256 . Figure 1 shows the basic chaining structure.

Round Function. The round function is a composition of a message injection function MI and w permutations Q_{j} of 256 bits input (see Fig. 1). Let the input of the i-th round be
$\left(H_{0}^{(i-1)}, \ldots, H_{w-1}^{(i-1)}\right)$, then the output of the i-th round is given by

$$
\begin{aligned}
H_{j}^{(i)} & =Q_{j}\left(X_{j}\right), \quad 0 \leq j<w \\
X_{0}\|\cdots\| X_{w-1} & =M I\left(H_{0}^{(i-1)}, \ldots, H_{w-1}^{(i-1)}, M^{(i)}\right)
\end{aligned}
$$

where $H_{j}^{(0)}=V_{j}$.
In the specification of Luffa, the input length of the sub-permutation Q_{j} is fixed to $n_{b}=256$ bits, and the number of the sub-permutations w is 3,4 and 5 for the hash lengths 256,384 and 512 bits respectively.

The message injection functions can be represented by a matrix over the ring $\operatorname{GF}\left(2^{8}\right)^{32}$. The map from an 8 -word value $\left(a_{0}, \ldots, a_{7}\right)$ to an element of the ring is defined by $\left(\sum_{0 \leq k<8} a_{k, l} x^{k}\right)_{0 \leq l<32}$. Note that the least significant word a_{7} is the coefficient of the heading term x^{7} in the polynomial representation.

2.2 Non-Linear Permutation

The permutation Q_{j} is defined as the composition of an input tweak and iterations of a step function Step. The number of iterations of a step function is 8 and the tweak is applied only once per a permutation.

At the beginning of the step function process, the 256 bits data are stored in 832 -bit registers denoted by $a_{k}^{(r)}$ for $0 \leq k<8$. The data before applying the permutation Q_{j} is denoted by b_{k} and the data after the tweak is denoted by $a_{k}^{(0)}$. The step function consists of the following three functions: SubCrumb, MixWord, AddConstant. The pseudocode for Q_{j} is given by

```
Permute(a[8], j){ //Permutation Q_j
    Tweak(a);
    for (r = 0; r < 8; r++){
        SubCrumb(a[0],a[1], [2],a[3]);
        SubCrumb(a[5], [6] ,a[7] ,a [4]);
        for (k = 0; k < 4; k++)
            MixWord(a[k],a[k+4]);
            AddConstant(a, j, r);
    }
}
```

Each function is described below in turn and the tweaks are described in Section 2.2. We omit the description of AddConstant because it is not needed in this paper.

Substitution. SubCrumb substitutes the bits of $a_{0}, a_{1}, a_{2}, a_{3}$ (or $a_{4}, a_{5}, a_{6}, a_{7}$) by a 4 -bit S-box S defined by

$$
S[16]=\{13,14,0,1,5,10,7,6,11,3,9,12,15,8,2,4\} .
$$

Let the output of SubCrumb be $x_{0}, x_{1}, x_{2}, x_{3}$ (or $x_{4}, x_{5}, x_{6}, x_{7}$). Then the substitution by SubCrumb is given by

$$
\begin{array}{ll}
x_{3, l}\left\|x_{2, l}\right\| x_{1, l} \| x_{0, l}=S\left[a_{3, l}\left\|a_{2, l}\right\| a_{1, l} \| a_{0, l}\right], & 0 \leq l<32, \\
x_{4, l}\left\|x_{7, l}\right\| x_{6, l} \| x_{5, l}=S\left[a_{4, l}\left\|a_{7, l}\right\| a_{6, l} \| a_{5, l}\right], & 0 \leq l<32 .
\end{array}
$$

Fig. 2. The step function

Linear Diffusion. MixWord is a linear permutation of two words. Let the output words be y_{k} and y_{k+4} where $0 \leq k<4$. Then MixWord is given by the following equations:

$$
\begin{aligned}
y_{k+4} & =x_{k+4} \oplus x_{k}, \\
y_{k} & =x_{k} \lll \sigma_{1}, \\
y_{k} & =y_{k} \oplus y_{k+4}, \\
y_{k+4} & =y_{k+4} \lll \sigma_{2}, \\
y_{k+4} & =y_{k+4} \oplus y_{k}, \\
y_{k} & =y_{k} \lll \sigma_{3}, \\
y_{k} & =y_{k} \oplus y_{k+4}, \\
y_{k+4} & =y_{k+4} \lll \sigma_{4} .
\end{aligned}
$$

The parameters σ_{i} are given by $\sigma_{1}=2, \sigma_{2}=14, \sigma_{3}=10, \sigma_{4}=1$.
Tweaks. For each permutation Q_{j}, the least significant four words of a 256 -bit input are rotated by j bits to the left in 32 -bit registers. Let the j-th block, k-th word input be $b_{j, k}$ and the tweaked word (namely the input to the first step function) be $a_{j, k}^{(0)}$, then the tweak is defined by

$$
\begin{aligned}
& a_{j, k, l}^{(0)}=b_{j, k, l}, \quad 0 \leq k<4 \\
& a_{j, k, l}^{(0)}=b_{j, k,(l-j \bmod 32)}, \quad 4 \leq k<8
\end{aligned}
$$

3 The Collision Attack on 4-step Luffa-256 v2

We present a collision attack on 4 -step Luffa-256 v2 using three message blocks. Our attack constructs a differential path [4] producing a collision and then applies message modification [15] in order to reduce the complexity. The overview of our strategy to carry out this technique is that we give the degrees of freedom of message bundles to the active S-boxes through steps in a way that we apply to the modification as independently as possible, which can be performed by developing an algorithm for assigning degrees of freedom in an appropriate way and by considering the order in which message bundles or a group of them are used.

3.1 Preliminary

In order to simplify the description of our attack, we will view the 256 -bit message block as 328 -bit bundles and consider their positions $t(0 \leq t<32)$, to which we will refer as message
bundle and message bundle position respectively. Each of these bundles is obtained in a bit-slice manner as adopted in Luffa-256 v2: one bit of a bundle is taken from one 32 -bit word of in the message block.

For the same reason, we will view the 256 -bit internal state of the permutation Q_{j} as 644 -bit bundles, each of which is taken as input to S-box, and consider their positions $u(0 \leq u<64)$, to which we will refer as S-box position. We call position u less than 32 higher and otherwise a lower position.

The higher 4-bits of a message bundle of position t only affect the input to an S-box at the higher position t at the first step in Q_{j} while the lower 4-bits only affect the S-box at the lower position $t+32$.

3.2 The Differential Path

We construct good differential paths for the round function from good truncated differential paths for the permutation Q_{j}. To search for the latter paths, we consider the linear code given by the iteration of MixWord. The reason for this is explained below. Let A be the representation matrix of MixWord and $G_{n}=I\|A\| \cdots \| A_{n}$ be the generator matrix of a code. Then good truncated paths can be directly obtained from low weight code words of the linear code G_{n}, under the assumption that the output differences of the S-boxes are the same at all positions. Now our way of constructing a good differential path can be summarized as follows:

1. Construct a good truncated differential path which is the same for permutations by constructing a low weight code for MixWord in the way that was explained in the previous section.
2. Convert it into (non-truncated) differential paths for the whole round function by choosing appropriate differences of S-boxes.

We exhaustively searched for low weight code words of G_{n} which allow us to obtain truncated differential paths with a small number of active S-boxes in the permutation Q_{i}. Furthermore, in order to bypass the effect of the Tweak function, we impose some condition on the inputs generating the low weight code words that there are only 1's in the higher 32-bit word and therefore there are only 0 's in the lower 32 -bit word.

Our experiments found many good truncated differential paths. The best one we found has 49 active S-boxes which is shown in Table 1.

Table 1. The truncated differential path for Q_{j}

Step	Weight	0	1	2	3	4	5	6
		0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123
0	07	0000000100	0100000001	0101010000	0100000000	0000000000	0000000000	0000
1	08	0100000100	0000010001	0100000101	0000000000	0000000000	0000000000	0010
2	19	0001010100	0100011100	1001000100	1100000000	0000000110	1010000000	1110
3	15	0000010000	0001010100	0101000100	0010110010	0010000000	0000000010	1010
4	(42)	0011011000	1110110001	0110011010	1111101110	1111110111	1110011110	0111

We now convert the truncated differential path to a (non-truncated) differential path for the whole round function by choosing the input differences of the S-boxes, satisfying the above assumption.

We firstly consider to determine an input difference in the message block. The active message bundle positions are the same as the active S -box positions at the first step in the path shown
in Table 1. For each of active message bundles, we use the same one-byte difference which will be determined below. Since the truncated path has active S-boxes only in higher positions, this one-byte difference in a message bundle must be the form of 0 xYO where Y is a non-zero 4 -bit value.

After the message injection function $M I$, it is necessary that the active S -box positions are the same for all of three Q_{j} s. It follows that the above one-byte difference is now limited to be $0 \times 10,0 \times 20$, or 0×30. This is because that, in the path, one message bundle position t $(0 \leq t<32)$ affects the S-boxes at two positions (t and $t+32$), a wrong choice other than these three for the one-byte difference in a message bundle at position g would cause an undesirable situation where positions g and $g+32$ are active in some Q_{j} while position g is active but $g+32$ is passive in the other Q_{j} 's.

Next we determine the (non-truncated) output differences for Q_{0}, Q_{1}, and Q_{2} per bundle, which is consistent to the truncated path in Table 1. Depending on the bundle position, the above output difference of Q_{j} must be a form of 0 xYZ or 0 xYO or 0 xOZ where both of the Y and Z are non-zero values.

Considering this and the linear condition of producing a collision after $M I$ in the third round function, we can determine the (non-truncated) output differences for Q_{0}, Q_{1}, and Q_{2} per bundle: $(0 x 40,0 x 10,0 x b 0)$ or ($0 x 04,0 x 01,0 x 0 b$) or ($0 x 44,0 x 11,0 x b b$).

It follows that the output differences of S-boxes at the fourth step for Q_{0}, Q_{1}, and Q_{2} are $0 \times 4,0 \mathrm{x} 1$, and 0 xb respectively. Starting from these output differences and the above three input difference candidates, namely ($0 \times 1,0 \times 2,0 \times 4$), ($0 \times 2,0 \times 4,0 \times 8$), ($0 \times 3,0 \times 6,0 \times c$), for Q_{0}, Q_{1}, and Q_{2}, we searched for difference paths of the S -boxes that give the best value for the product of differential probabilities over Q_{j} s. This search has been performed based on the differential profile table for the S-box shown in [5]. Among the above three input differences, two of them give the the best value for the product of differential probabilities. In the end, we determine the input difference to be $(0 \times 1,0 \times 2,0 \times 4)$ because this gives a differential path where we place S-box input differences with a low probability in the steps with a low weight, namely step 0 and step 1 in the truncated differential path in Table 1. This is not the case for the other input difference ($0 x 2,0 \times 4,0 x 8$). Hence, we also determine the one-byte difference in the message bundle to be $0 x 1$ out of three candidates. Our result is shown in Table 2 that lists the input differences of S-boxes and the products (over $Q_{j} \mathrm{~s}$) of differential probabilities of S-boxes at the same position.

Table 2. The differences and the product of differential probabilities for S-boxes at each position.

Step	Q_{0}	Q_{1}	Q_{2}	Product of the probabilities
0	0×1	0×2	0×4	2^{-7}
1	0×6	0×2	0×4	2^{-7}
2	0×4	0×2	0×4	2^{-6}
3	0×4	0×1	0×4	2^{-6}
	0×4	0×1	$0 \times b$	

In the way explained the above, we have constructed a differential path with the desired property that the active S-box positions $u(0 \leq u<64)$ at each step in each permutations Q_{j} are exactly the same in all of three $Q_{j} \mathrm{~s}$.

3.3 The Message Modification Technique

The main technical difficulty in our collision attacks lies in applying the message modification technique which has been used as a key tool to find differential collisions in hash functions.

For a given differential path, this technique allows to find a set of messages that give a higher differential probability than one would expect from randomly chosen messages. More specifically, one bit condition on an input typically increases the differential probability by a factor of two on average.

However, there is a potential problem in the practical application of this technique: it could be difficult to satisfy many bit-conditions because some of them are likely to conflict with the others. Therefore, an important task for the attacker is to ensure that the message bundles are used without encountering any contradiction over which values are set for them.

We will show that one can apply the message modification technique to 4 -step Luffa-256 v2 without having the problem. Roughly speaking, this can be achieved by developing a tool for assigning degrees of freedom in the message to the inputs of the active S-boxes, each of which generally depends on plural message bundles, except for one in the first step where it depends on a single message bundle.

3.4 Choosing Good Internal States with the First Message Block.

For each message bundle position g, the product of the differential probabilities for each permutation Q_{j} could vary from 2^{-6} to 2^{-18} as there are three permutations where the differential probability for S-box lies between 2^{-2} and 2^{-3}. For the first step, we could face the difficulty of lack of degrees of freedom: we may have to satisfy an 18 -bit condition, where we have only 8 bits of degrees of freedom in the message bundle.

However, we will solve it by randomly choosing the first message block $M^{(0)}$ to find a good internal state $H^{(1)}$. We mean by good internal state that there exists a second message block satisfying conditions imposed by the active S-boxes in the first step. We confirmed by experiment that the probability to have one byte of a good internal state in each permutation is 2^{-2}. Since there are 7 active S-boxes in each permutation in the first step, the complexity required for obtaining a good internal state $H^{(1)}$ is 2^{14}.

3.5 The Second Message Block of the Differential Path

Assuming that $H^{(1)}$ is a good internal state, we now use the second message block $M^{(1)}$ in order to find right values for the differential path.

Firstly, we deal with the first step of $L u f f a-256 \mathrm{v} 2$. As for a message bundle of position t, the input difference is 0×10. From this input difference it follows that the S-box differential paths at position t in the first step are $0 \mathrm{x} 1 \rightarrow 0 \mathrm{x} 6,0 \mathrm{x} 2 \rightarrow 0 \mathrm{x} 2$, and $0 \mathrm{x} 4 \rightarrow 0 \mathrm{x} 4$, for the permutations Q_{0}, Q_{1}, Q_{2} respectively. Note that we have no difference in the lower S-boxes. We confirmed by experiment that the probability for a message bundle being right for this path is 2^{-5}. After applying the basic message modification to 7 active S-boxes, the remaining degrees of freedom in the second message block is 221 bits out of 256 bits. A detailed description of the remaining degrees of freedom at each message bundle position is shown in Table 3.

Table 3. The degrees of freedom remaining after the first step.

Message bundle position	0	10	20	30
Degrees of freedom	88888883388	8388888883	8383838888	83

For the second and the third steps of Luffa-256 v2, we apply the message modification technique to check whether there exist right values for the differential path. Our approach is to verify that one can give the attacker enough degrees of freedom in the message bundles, that
would allow him to fulfill the conditions on the input to each active S-boxes by adjusting the second message block $M^{(1)}$. Our careful choice of message bundles ensures that this modification for the third step can be performed independently of the modification for the second step. The approach for this can be explained in the following way: the second step modification uses 12 message bundles and it determines 10 of these bundles which will be fixed during the third-step modification while the message bundles at positions 9 and 13 will not be fixed. From our way of using the degrees of freedom and consideration of the effect of the MixWord linear layer, we can verify that the inputs of active S-boxes at the third step can be modified only by using the message bundles at positions 9 and 13, and message bundles on which the inputs of active S-boxes at the second step do not depend. Hence, at the third step, we do not use any of the 10 message bundles which have been fixed at the second step. On the other hand, for the message bundles at positions 9 and 13, we store values for them which give the right values to the active S-boxes the second step and then at the third step we choose the right values from them, which results in increasing the complexity of the third step complexity by a small factor of 2^{5}. This is how we apply the message modification between steps and how we apply it within one step will be later on explained in discussions on the complexity of the message modification.

The verification was performed by means of an experiment for which an algorithm is given in 1.

```
Algorithm 1 An algorithm of verifying that one can give the attacker enough degrees of freedom
in the message bundles
    for \(i\) from 0 to 63 do
        if S-box is active at position \(i\) then
            for \(j\) from 0 to 6 do
            for \(k\) from 0 to 63 do
                if S-box of ord \(\mathrm{d}_{\mathrm{f}}[\mathrm{i}]\) depends on message bundle of ord \(\mathrm{d}_{1}[\mathrm{k}]\) then
                    if \(\operatorname{ord}_{1}[k]>0\) then
                        \(\operatorname{ord}_{1}[\mathrm{k}]-=1 ; / *\) use degrees of freedom */
                            break;
                    end if
                end if
            end for
            end for
        end if
    end for
```

In the algorithm, $\operatorname{ord}_{\mathrm{f}}$ is an array storing the order in which degrees of freedom are assigned for active S-boxes; ord_{1} is an array storing the order in which message bundles are used. Before the algorithm is carries out, sorting procedures are performed with ord f_{f} and ord ${ }_{1}$ such that the algorithm assigns the degrees of message freedom to the more restricted active S-boxes with higher priorities. In the algorithm, the reason why j varies from 0 to 6 is that the product of probabilities for active S-boxes for Q_{j} at the second step is 2^{-7} in Table 2.

Table 4 indicates the correspondence between the active S-box positions and the message bundle positions for the second and the third step.

In the second and the third step, the products of the differential probabilities for the S-boxes in the same (S-box) position over Q_{j} are 2^{-7} and 2^{-6} respectively. After applying the message modification to 8 active S-boxes and 19 active S-boxes, the degrees of freedom in the second message block is 165 bits (out of 256 bits) remaining after the second step and 51 bits remaining after the third step. A detailed description of the remaining degrees of freedom in each message bundle position is shown in Table 5. The complexity required for this procedure is negligible, which will be explained in the next sub-section. Roughly speaking, the reason for this is that

Table 4. The correspondence between the conditions for the active S-box positions and the message bundle positions for the second and the third step.

Step 1	S-box pos.	27	7	62	21	29	1	15	19		
	Message bundle pos.	$7,19,21$	$1,19,31$	15	1,15	9,23	25,27	9,27	11,13		
Step 2	S-box pos.	27	62	3	30	5	17	52	20	7	11
	Message bundle pos.	2	2,13	9,24	$3,24,26$	26	29	29,30	3,30	10	10,12
	S-box pos.	47	31	15	16	23	61	48	50	60	
	Message bundle pos.	5,12	3,5	28	0,28	0,4	4	6	8	14	

it follows from the correspondence of the active S-boxes and the message bundles that one can find the right values in the same method as one can solving systems of linear equations using the substitution method.

Table 5. The degrees of freedom remaining after the second and the third steps.

Message bundle position	0	10	20	30
After step 1	8088888081	8084808880	8080808088	80
After step 2	0000052020	0000208880	8080000000	00

As for the fourth step, the product of differential probabilities for S-boxes in the same (Sbox) position over Q_{j} is 2^{-6}. Since there are 15 active S-boxes, too few degrees of freedom are remaining to apply message modification. Therefore, we randomly choose the first message block $M^{(1)}$ to repeat the whole attempt $2^{90-51}=2^{39}$ times. After this procedure, we find a right input satisfying all the conditions for the 15 active S-boxes. As a result, we expect to find a collision for 4 -step Luffa-256 v2 with a total complexity of $2^{90} \fallingdotseq 2^{39}\left(2^{14}+2^{51}\right)$.

On the Complexity of the Message Modification. In the previous paragraph, we showed how we assign the degrees of message freedom to the active S-boxes. We here discuss the complexity of the message modification. At the first step, it is clear how to apply the technique. The complexity of the message modification is only 7×2^{8} because there are 7 active S-box positions and we can independently modify values for each message bundles.

However, we face more difficult situations at the second and the third steps due to the effect of the MixWord which ensures that the input to an S-box at the second step depends on multiple message bundles and that one message bundle may affect multiple active S-boxes. Hence, the potential problem is that even if a condition on the input of an active S-box is fulfilled by means of a modification of some message bundle, this fulfillment can be afterwards destroyed by means of a following modification of another message bundle which again affects the input of this active S-box. Therefore, an appropriate order in which message modification is applied has to be determined to reduce the complexity.

Here we investigate the case of the third step as the second step could be dealt in the same way. From all message bundles to be modified and all the active S-boxes, we consider a group whose element has a form of a pair of (p and $\left(q_{1}, q_{2}, \ldots\right)$) where p is a message bundle position and q_{i} s are the each active S-box positions influenced by its modification. We can construct seven groups where, for each element, at least one active S-box position is appeared in another element. For example, 30 of $(3,(20,30,31))$ is appeared in $(24,(3,30))$ as well.

In this way, we can apply message modification group per group. Here we take as an example the largest group shown in Table 7 because the corresponding complexity is dominant in the message modification.

Table 6. A Group of relations between message bundle positions and active S-box positions

message bundle position	3	5	9	10	12	24	26	29	30
active S-box position	$20,30,31$	31,47	31	7,11	11,47	3,30	5,30	17,52	20,52

Now our way of applying message modification to this group can be summarized in Table 7 that indicates how and in which order the message bundles are used for the corresponding the active S-boxes at the third step, which means that the attacker firstly chooses values for message bundles at positions $3,9,10,12,29,30$ and store the values giving a right input to the S -box at position 52 and next the attacker chooses values for message bundles at positions 0 and 2 and store the values giving a right input to the S-box at position 17 and so on. the dominant complexity corresponds to the first procedure in message modification of this group, which is $2^{8 \times 5+1}=2^{41}$ derived from the degrees of freedom described in Table 5. Putting things together, we estimate that the time complexity for the message modification at the third step is 2^{41}, which is not dominant in computing the total complexity because this complexity of 2^{41} is significantly less than the complexity of 2^{51} corresponding to the use of the second message block.

Table 7. Message modification to the largest group, indicating how and in which order the message bundles are used for the corresponding the active S-box at the third step.

order	1	2	3	4	5
message bundle position	$3,9,10,12,29,30$	0,2	4,8	6,26	$5,14,24$
active S-box position	52	17	20	5	$3,7,11,30,31,47$

4 Security Analysis of 5-step Luffa-256 v2

We present a security analysis which shows how difficult it is to apply the same approach to Luffa- 256 v2 reduced to 5 steps, which can be seen as an indication that the full 8 steps of the Luffa-256 v2 hash function has a large security margin against differential collision search with message modification [15].

4.1 The Differential Path

As we performed for 4 -steps of Luffa-256 v2 in section 3, our experiments found many good truncated differential paths. The best one we found has 76 active S-boxes which is shown in Table 8.

Table 8. The truncated differential path for Q_{j}

Step	Weight	0	1	2	3	4	5	6
		0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123
0	10	0000010001	1010000011	0001000100	1100000000	0000000000	0000000000	0000
1	24	0011101001	0110010100	1000000100	1000110011	0001100001	1010001000	1010
2	12	0011100000	0000010100	0001000000	0001010000	0000010000	0001010000	0001
3	16	1101100000	0000000001	1100001000	0010110010	0000000000	1101000000	0001
4	14	0000000101	1010101000	1010000010	1000000000	0001000000	0001000100	0100
5	(34)	1110010111	0110101011	1110001010	1101001110	1000011001	0011000111	0001

We now convert the truncated differential path to a (non-truncated) differential path for the whole round function by choosing the S-box input differences in Table 9.

Table 9. The S-box input differences in Q_{j} and the product of differential probabilities for the S-boxes in Q_{j}.

Step	Q_{0}	Q_{1}	Q_{2}	Product of probability
0	0x1	0x2	0x4	2^{-7}
1	0x8	0x2	0x4	2^{-6}
2	0x2	0x2	0x4	2^{-6}
3	0x2	0x2	0x4	2^{-6}
4	Oxd	Oxd	0x4	2^{-7}
	0x4	0x1	0xb	

4.2 The First Message Block to Choose Good Internal States.

We randomly choose a first message block $M^{(0)}$ to find a good internal state $H^{(1)}$. We confirmed by experiment that the probability to have one byte of a good internal state in each permutation is 2^{-2}. Since there are 10 active S-boxes in each permutation in the first step, the complexity required for obtaining a good internal state $H^{(1)}$ is 2^{20}.

4.3 The Second Message Block of the Differential Path

Assuming that $H^{(1)}$ is a good internal state, we now use the second message block $M^{(1)}$ in order to find right values for the differential path.

We confirmed by experiment that the probability for a message bundle being right for this path is 2^{-5}. After applying the message modification to 10 active S-boxes with a probability 2^{-2}, the degrees of freedom remaining in the second message block is 206 bits out of 256 bits. Both in the second and the third steps, the products of differential probabilities for S-boxes in the same (S-box) position over Q_{j} are 2^{-6}. After applying the message modification to 24 active S-boxes and 8 active S-boxes out of 12 , the degrees of freedom in the second message block are 62 bits and 14 bits out of 256 bits remaining after the second and the third steps respectively. A detailed description of the degrees of freedom remaining after each step at each message bundle position is shown in Table 10.

Table 10. The degrees of freedom remaining after each step.

| | 0 | 1 | 2 | 3 |
| :---: | :--- | :--- | :--- | :--- | :--- |
| Message bundle position | 0123456789 | 0123456789 | 0123456789 | 01 |
| After step 0 | 8888838883 | 3838888833 | 8883888388 | 33 |
| After step 1 | 0040800580 | 0003802600 | 0080008020 | 00 |
| After step 2 | 0000300020 | 0000100000 | 0000008000 | 00 |

As for the second and the third step of Luffa-256 v2, the conditions on the input to each of 24 active S-boxes for each permutation can be fulfilled by adjusting the second message block $M^{(1)}$. Table 11 indicates the correspondence between the active S-box positions and the message bundle positions for the second and the third step.

The complexity required for this procedure is negligible if we assume that we could perform as we did in 3.5, which is optimistic for the attacker.

Table 11. The correspondence of the active S-boxes to the message bundles

Step 1	S-box position	15	11	6	4	20	49	30	35	39	12
	Message bundle position	9,27	5,23	18,30	16	0,12	0,2	10,24	20	$2,20,24$	6
	S-box position	43	56	27	9	38	50	52	60	62	44
	Message bundle position	6,24	7,19	21	1,21	1,31	1,3	3,13	11	$11,13,25$	25
	S-box position	2	17	3	34						
	Message bundle position	28	29	15,29	15,17						
Step 2	S-box position	45	35	17	23	4	15	55	2		
	Message bundle position	2,7	$7,16,17$	14,17	14	$13,22,28$	22	4,22	8		

In order to fulfill conditions for the remaining 8 active S-boxes at the third step, and the ones at the forth and fifth steps, we randomly choose the first message block $M^{(1)}$ to repeat the whole attempt $2^{204=((12-8) \times 6)+(16 \times 6)+(14 \times 7)-14)}$ times. Therefore, this approach would take a high total complexity of $2^{224} \fallingdotseq 2^{204}\left(2^{20}+2^{14}\right)$ even if the optimistic assumption on the complexity of message modification is satisfied.

5 Conclusion

We show that collisions for 4 out of 8 steps of Luffa can be found with complexity 2^{90} using sophisticated message modification techniques. Furthermore, we present a security analysis which shows how difficult it would be to apply the same approach to Luffa-256 v2 reduced to 5 steps. For the future work, it would be interesting to construct a differential path constructed from differential paths for the internal permutations Q_{i} s that are different from one Q_{i} to another. It would be worthwhile to search for differential paths that are most suitable for message modification, even though its differential probability is not necessarily the highest one. However, we speculate that it could be very difficult to carry out these two approaches. Based on our results and speculation, we conclude that Luffa-256 v2 has a substantial security margin against differential collision search with message modification.

References

1. J.P. Aumasson and W. Meier, "Zero-sum distinguishers for reduced Keccak- f and for the core functions of Luffa and Hamsi," 2009. Available at http://www.131002.net/data/papers/AM09.pdf.
2. G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, "Sponge Functions," Ecrypt Hash Workshop 2007.
3. G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, "On the Indifferentiability of the Sponge Construction," Advances in Cryptology, Eurocrypt 2008, pp. 181-197, 2008.
4. E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryption Standard, Springer, 1993.
5. C. De Cannière, H. Sato, D. Watanabe, "Hash Function Luffa: Supporting Document," Submission to NIST SHA-3 Competition, 2008. Available at http://www.sdl.hitachi.co.jp/crypto/luffa/.
6. C. De Cannière, H. Sato, D. Watanabe, "Hash Function Luffa: Specification," Submission to NIST SHA-3 Competition, 2008. Available at http://www.sdl.hitachi.co.jp/crypto/luffa/.
7. I. B. Damgård, "A design principle for hash functions," Advances in Cryptology - CRYPTO '89, LNCS, vol. 435, pp. 416-427, 1990.
8. M. Knezevic and I. Verbauwhede, "Hardware evaluation of the Luffa hash family," ftp://ftp.esat. kuleuven.ac.be/cosic/knudsen/trunc.ps.Z.
9. D. Khovratovich, M. N. Plasencia, A. Roeck, M. Schlaeffer, "Cryptanalysis of Luffa v2 components," Selected Areas in Cryptography, SAC2010, August 2010.
10. R. C. Merkle, "One way hash functions and DES," CRYPTO'89, LNCS, vol. 435, pp. 428-446, 1990.
11. National Institute of Standards and Technology, "Secure hash standard," Federal Information Processing Standards Publication 180-2, August 2002. http://csrc.nist.gov/publications/fips/fips180-2/ fips180-2.pdf.
12. National Institute of Standards and Technology, "Announcing request for candidate algorithm nominations for a new cryptographic hash algorithm (SHA-3) family," http://csrc.nist.gov/groups/ST/hash/documents/, November 2007.
13. R. Rivest, "The MD5 message-digest algorithm," Request for Comments, no. 1321, April 1992. ftp://ftp. rfc-editor.org/in-notes/rfc1321.txt.
14. D. Watanabe, Y. Hatano, T. Yamada and T. Kaneko, "Higher Order Differential Attack on Step-Reduced Variants of Luffa v1," Fast Software Encryption, FSE'2010, Lecture Notes in Computer Science, LNCS 6147, Springer-Verlag, pp. 270-285, 2010.
15. X. Wang, Y. L. Yin, and H. Yu, "Finding collisions in the full SHA-1," Advances in Cryptology - CRYPTO 2005, LNCS, vol. 3621, pp. 17-36, 2005.
