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Abstract
Current trends in micro-turbomachinery stress the need for adequate rotordynamic models. These models
should allow accurate prediction of critical speeds, imbalance response and stable operation range of micro-
turbomachinery rotor-bearing systems. This paper gives an overview of the total rotordynamic modelling
process of a micro-turbine rotor supported on aerostatic bearings. A both accurate and efficient modelling
technique is outlined to obtain static and dynamic air bearing properties. These bearing coefficients serve
as input for a rotordynamic model yielding damped natural frequencies, unbalance response and stability
limits. Experimental verification confirms a good agreement with the predicted critical speeds.

Nomenclature

Ao annular curtain area at gap entrance [m2]
c journal bearing nominal radial clearance [µm]
cij bearing damping coefficient [N s/µm or Nm s/rad]
Cd entrance flow coefficient of discharge
f external force acting on rotor [N]
h thrust bearing nominal clearance [µm]
H normalised film height
It rotor transverse moment of inertia [gmm2]
Ip rotor polar moment of inertia [gmm2]
kij bearing stiffness coefficient [N/µm or Nm/rad]
L journal bearing length [mm]
Lb distance between journal bearing centres [mm]
Lp distance between measurement planes [mm]
Ltot total rotor length [mm]
m rotor mass [g]
ṁ mass flow [g/s]
ṁo gap entrance flow [g/s]
pa atmospherical pressure [Pa]
po gap entrance pressure [Pa]
ps supply pressure [Pa]
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pt extrapolated pressure at gas entrance [Pa]
P normalised film pressure
Pf bearing viscous losses [W]
r journal bearing radius [mm]
< gas constant [J/kg K]
ri thrust bearing inner radius [mm]
ro thrust bearing outer radius [mm]
T external torque acting on rotor [Nm]
Ts gas temperature at stagnation [K]
V relative sliding velocity [m/s]
W bearing load carrying capacity [N]
ød rotor disc diameter [mm]
øfh feedhole diameter [µm]
øs rotor shaft diameter [mm]
γ thrust bearing tilt angle [rad]
ε journal bearing eccentricity ratio e/c
κ ratio of specific heats
µ gas viscosity [kg/m s]
ν perturbation frequency [Hz]
ω rotor speed [Hz]
ωcyl cylindrical critical speed [Hz]
ωcon conical critical speed [Hz]

1 Introduction

Recently, a growing interest in micro-turbomachinery applications is noticeable. Miniaturisation in a lot of
research domains has led to a demand for small-scale systems running at high operational speeds. In most
of the cases air bearings offer low frictional losses, high reliability, long bearing life and high operational
temperatures. The cost of all these benefits lies in the sometimes complicated design and optimisation
process encountered when using air bearings.

Currently, extensive research is done to develop fuel based micro power generating units based on a gas-
turbine cycle. These units are intended to serve as autonomous and portable power supplies with a higher
energy density than the best performing batteries. Projects are running at MIT [1], Tohoku University, Tokyo
University, ETH Zurich and Katholieke Universiteit Leuven [2].

The research of this paper is situated within the PowerMEMS-project of the Katholieke Universiteit Leuven.
The project goal is the development of a micro-gasturbine with an output power ranging from 100 W to
1 kW, while the overall size should not exceed 1 dm3. The target rotational speed is set to 500,000 rpm with
a compressor and turbine diameter of 20 mm.
Aerodynamic foil bearings are the most promising choice for meeting the stringent bearing requirements.
For prototyping purposes, rigid aerostatic and hybrid bearings will be used. The test-setup described in this
paper is a first simplified prototype to validate bearing modelling techniques and balancing methods.

The first section of this paper describes the test-setup components and instrumentation. The rotordynamic
modelling process is divided into two steps. First, an extensive overview is given on air bearing modelling
techniques. After this, the dynamic behaviour of the rotor-bearing system is examined. Finally, experiments
are performed to validate the predicted critical speeds and stability limits.

Other recent rotordynamic studies of rotors supported on air bearings are done by San Andres in [3, 4].
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2 Description of micro-turbine test-setup

2.1 General overview

Figure 1 gives an exploded view of the micro-turbine test-setup. The setup was mainly designed to perform
balancing experiments on a miniature high-speed rotor.
The rotating part of the setup consists of a shaft with two shrink-fitted rotor discs. These discs are actually
dummy representatives of the future turbine and compressor part. The rotor is supported by a split aerostatic
bearing. The bearing parts fit into a housing which provides air supply connection and sensor interface. Two
covers close the total unit while guaranteeing proper alignment of the split bearing parts.
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Figure 1: Exploded view of the test-setup.

Accurate fitting and alignment of the two bearing halves proved to be one of the most critical issues of the
setup. An alternative of this split bearing approach would be to make one of the rotor discs dismountable.
This however does not guarantee the rotor having repetitive imbalance conditions.
The current setup can be disassembled by removing the left outer and inner cover parts, allowing the core
unit to be shifted out. The actual alignment of the bearing halves is done by a tight tolerance fit into the
inner cylinder of the housing. A wave spring followed by an inner cover part pushes the two halves against
a reference cover. This method should allow easy and repetitive mounting of the setup with alignment
tolerances within a fraction of the air bearing clearances.

Figure 2 shows a detail view of the core unit consisting of rotor and split bearing parts. In the centre of the
rotor shaft, between both rotor discs, a simple Pelton impulse turbine is machined to drive the rotor with
pressurised air. A stationary nozzle as well as an exhaust hole are incorporated into each split bearing half.
A non-destructive technique of applying small test masses is used for balancing purposes. One or more
balancing foils can be mounted on each rotor disc with thicknesses between 40 µm to 200 µm, yielding a
mass-eccentricity value of 1.56× 10−5 gm to 7.82× 10−5 gm respectively. The foils have a tight tolerance
fit on the ø10 mm rotor disc part. Three M1.6 screws fix the foils to the rotor disc with indexing steps of
30◦. This technique allows reversible application of virtually any static or dynamic imbalance by choosing
the right combination of foil thickness and mutual orientation.

Table 1 summarises the most important rotor parameters.
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Figure 2: Detail view of the rotor and bearing assembly.

rotor parameters value
shaft diameter øs 6 mm
disc diameter ød 20 mm
total length Ltot 65 mm
total mass m 21.3 g
transverse moment of inertia It 5842 gmm2

polar moment of inertia Ip 349 gmm2

distance between journal bearing centres Lb 11 mm
distance between measurement planes Lp 18 mm
first bending mode 5.186 kHz

Table 1: Rotor parameters of the test rotor.

2.2 Instrumentation

According to theory [5], the number of balancing and measurement planes should be at least equal to the
number of critical speeds traversed. The maximum attainable speed of 102.000 rpm (1.7 kHz) lies far below
the first bending mode of the rotor (5.186 kHz). Two measurement planes are therefore sufficient for the
current test-setup and operational speed range.
Two fiber optical vibration transducers are installed to measure the distance between each rotor disc and the
stationary housing. The transducers measure the amount of light reflected by the target surface. For small
displacements (±50 µm) there exists a nearly linear relationship between the amount of reflected light and
target distance. An in-house developed electronic circuit provides an analog voltage signal that is read in by
the data acquisition system.
Phase information about the rotor vibration can only be obtained if the recorded signals are triggered to a
keyphasor signal. This reference signal tracks a fixed mark on the rotor shaft and results each revolution in a
single trigger pulse. A Mechanical Technology Incorporated KD310 optical sensor is used for recording this
mark.

Figure 3 summarises the signal path and measurement conventions. The vibrational data of both rotor discs
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and the keyphasor signal are sent to an oscilloscope and an National Instruments PXI-6123 data acquisition
system. The data is read into the computer and a MATLAB program performs the actual analysis. The
trigger signal acts as a reference to make all measured signals perfectly periodical. On this periodical data a
frequency analysis is carried out to provide rotor speed and complex vibrational spectra of both rotor discs.
Both steady-state and transient measurements can be performed.
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Figure 3: Overview of the measurement conventions and signal processing. O represents the bearing geo-
metrical centre, C the rotor geometrical centre and M the rotor mass centre. At rotor speed ω the imbalance
force U results in the imbalance response V with phase angle θ.

2.3 Air bearing geometry

As discussed in the introduction, first turbine prototypes and setups will work with non-conformable (rigid)
aerostatic bearings. The split bearing of this setup was designed for stable operation up to 300.000 rpm at 6
bar (absolute) supply pressure.
The exploded view of figure 2 reveals the journal bearing surfaces. The radius r of the plain journal bearing is
3 mm with a length L of 3 mm yielding a length-to-diameter ratio of 0.5. The bearing is fed with six inherent
restriction feedholes placed on the bearing centerline. Table 2 summarises the geometrical properties of
the journal bearings. Due to manufacturing tolerances, the actual values always differ slightly from the
original design value. The actual radial clearance is measured both with a precision internal micrometer and
a Renishaw OMP40 touch probe on a KERN MMP micro-milling machine. The feedholes are produced by
micro-EDM and are afterwards inspected with a WYKO NT3300 optical profiler.

Two aerostatic thrust bearings support the rotor axially. The inner radius ri is 4 mm and the outer radius
ro equals 10 mm. Six inherent restriction feedholes are placed at r = 7 mm. As for the journal bearings,
the actual geometrical properties are inspected after machining. Table 3 lists the design value and the actual
value of the different thrust bearing properties.
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journal bearing design value actual value
radius r 3 mm -
nominal radial clearance c 7.5 µm 11 µm
length L 3 mm 3±0.1 mm
feedhole type inherent restrictor -
feedhole arrangement 6 centrally placed feedholes -
feedhole diameter øfh 300 µm 325 µm

Table 2: Geometrical properties of the journal bearing.

Due to the large thrust bearing surface compared to the total rotor length, there exists a considerable tilt effect
of the thrust bearings in case of conical rotor vibration. This should certainly be taken into account when
calculating the critical speeds and imbalance response.

thrust bearing design value actual value
inner radius ri 4 mm 4±0.1 mm
outer radius ro 10 mm 10±0.1 mm
nominal clearance h 10 µm 15 µm
feedhole type inherent restrictor -
feedhole arrangement 6 feedholes placed at r = 7 mm -
feedhole diameter øfh 300 µm 375 µm

Table 3: Geometrical properties of the thrust bearing.

3 Air bearing modelling techniques

Bearing support characteristics form the main input for the calculation of every aspect of the rotordynamic
behaviour. Further on, an overview will be given about the applied modelling and simulation techniques
for the aerostatic bearings. The final output of these calculations are the bearing characteristics for different
operational parameters.

3.1 Governing equations

The viscous gas film flow between the stationary housing surface and rotating shaft is modelled by the
compressible Reynolds equation [6]. This equation yields the pressure distribution between two surfaces as
a function of the relative shearing velocity.

∇ · [pac
2

12µ
PH3∇P − 1

2
PHV] =

∂

∂t
(PH) (1)

wherein pressure P and height H are normalised with respect to atmospheric pressure pa and radial clea-
rance c respectively. µ stands for the gas viscosity, while V indicates the relative sliding velocity between
the bearing surfaces. Three contributions can be distinguished: a Poiseuille pressure induced flow term, a
Couette velocity induced term and a squeeze term.

For certain geometrical bearing configuration and working parameters, the above stated equation is solved
by using a finite difference calculation scheme. Essential to this process are suitable boundary conditions.
At the bearing outer surfaces, the pressure P should always remain one (p = pa). At feedholes however,
the boundary conditions are less obvious. A correct and practical usable entrance flow model is hereby
indispensable.
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3.2 Entrance flow model

The flow path from feedhole to atmospherical pressure can be divided into three different flow regions (fi-
gure 4). First the flow accelerates in the feedhole itself reaching maximum speed somewhere at the gap
entrance. This region is called the feed region. Then, the flow begins to decelerate due to viscous friction
and the diffuser effect. Fluid inertia forces gradually become less important. This second region is termed
the entrance region. Finally, viscous forces are dominant up to the exit. This last region is named the viscous
region and normally fills the greatest part of the bearing surface.

u
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pt entrance region viscous
region

viscous pressure
profile
extrapolation

actual
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profile

Figure 4: Entrance flow region.

For the first flow region, the Euler equation can be used to relate mass flow through the feedhole to pres-
sure drop (from supply pressure ps to the gap entrance pressure po). From the start of viscous flow up to
atmospherical pressure pa, one can rely on the above stated Reynolds equation. For the description of flow in
the intermediate entrance region several models and theories have been developed in the past. Most known
are the empirical orifice formulas and Vohr’s correlation formula.
However, the boundary-layer equations describing this entrance flow can be analytically solved by separating
the velocity into an amplitude and a profile function [7]. This method allows the calculation of the actual
pressure profile from gap entrance to atmospherical pressure.

It would make bearing calculation more practical if one could formulate a lumped-parameter formula to
quantify the entrance effects without having to solve the actual pressure profile for each given bearing con-
figuration. The following equation relates the mass flow to the pressure ratio pt/ps, in which pt stands for
the theoretical pressure at gap entrance if the viscous profile would be extrapolated.

ṁo = CdAo

√
2κ

κ− 1
ps√
<Ts

φe

(pt

ps

)
(2)

In this equation Ao represents the annular curtain area at gap entrance, κ is the ratio of specific heats of the
gas, < the gas constant, Ts the gas temperature at stagnation and φe represents the nozzle function.
The values of the coefficient of discharge Cd are obtained out of solution data of the actual pressure profile
for different entrance parameters. Cd is tabulated as a function of bearing geometry, gas properties and pt/ps.
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In practice, the below iteration process should be followed to determine the appropriate boundary value pt at
each feedhole.

1. Choose a starting value for pt. This value serves as a boundary condition for calculating the viscous
pressure profile over the whole bearing area.

2. The obtained pressure profile allows to determine the film flow.

3. From the lumped-parameter entrance model, the entrance flow can be calculated.

4. Both flow quantities should match. If not, adjust pt by using for instance the Newton-Raphson tech-
nique.

3.3 Bearing characteristics

A given bearing geometry in combination with its working parameters forms the input for calculating the
bearing characteristics. During steady-state operation, one is for example interested in static bearing charac-
teristics as load carrying capacity and frictional losses. More important for rotordynamic study, are dynamic
characteristics as stiffness and damping properties.

3.3.1 Static characteristics

Figure 5 shows the static pressure profile of the journal bearing with geometrical parameters as in table 2
at a rotational speed ω of 100.000 rpm and eccentricity ε of 0.025. At these working conditions, the rotor
weight is compensated by the load carrying capacity of both journal bearings. Table 4 lists the journal bearing
characteristics.
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Figure 5: Static pressure profile of the journal bearings at a rotational speed ω of 100.000 rpm and eccentricity
ε of 0.025.

For the same working conditions, the pressure profile of the thrust bearing is calculated and plotted in figure 6.
Its characteristics are given in table 5.
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journal bearing value
rotational speed ω 100.000 rpm
eccentricity ε 0.025
supply pressure ps 6 bar (absolute)
load carrying capacity W 0.094 N
viscous losses Pf 0.085 W
total mass flow ṁ 0.084 g/s

synchronous stiffness k [N/µm]
[

0.340 0.005
−0.005 0.340

]
synchronous damping c [N s/m]

[
0.721 −0.031
0.031 0.724

]
Table 4: Static and dynamic characteristics of the journal bearing.
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Figure 6: Static pressure profile of the thrust bearings at a rotational speed ω of 100.000 rpm and zero tilt
angle γ.

3.3.2 Stiffness and damping coefficients

When interested in a system’s critical speeds, imbalance response and stability limit, the dynamic bearing
properties must first be determined. For the journal bearing of figure 7 the spring and damper forces are
formulated as:

{
fx

fy

}
=

[
kxx kxy

kyx kyy

]
·
{

x
y

}
+

[
cxx cxy

cyx cyy

]
·
{

ẋ
ẏ

}
(3)

where k and c are the stiffness and damping-coefficient matrix respectively. A peculiarity about air bearings
- and hydrodynamic bearings and seals in general - is the presence of cross-coupled or indirect stiffness and
damping terms. These terms are responsible for a reaction force perpendicular to the disturbance. In this
way, kxy represents the stiffness coefficient relating displacement in the x-direction due to a force acting
in the y-direction. cxy represents the damping coefficient relating velocity in the x-direction due to a force
acting in the y-direction.
To describe the dynamical properties of a bearing one needs at least four stiffness and four damping terms.
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thrust bearing value
rotational speed ω 100.000 rpm
tilt angle γ 0 rad
supply pressure ps 6 bar (absolute)
load carrying capacity W 20.15 N
viscous losses Pf 1.87 W
total mass flow ṁ 0.132 g/s

synchronous tilt stiffness k [Nm/rad]
[

49.491 −2.129
2.128 49.491

]
synchronous tilt damping c [Nm s/rad]

[
0.324 0.039
−0.039 0.324

]
× 10−3

Table 5: Static and dynamic characteristics of the thrust bearing.

Another complication lies in the dependence of these coefficients on the eccentricity ε, rotational speed ω
and perturbation frequency ν. Assuming a more or less constant steady-state bearing eccentricity, tabulated
values of all of these coefficients for different values of rotor speed ω and perturbation frequency ν are
necessary in order to predict the rotordynamic behaviour with reasonable accuracy.
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Figure 7: Journal bearing model.

A similar situation exists for the tilt stiffness and damping properties of a thrust bearing. The x and y-
direction are replaced by two orthogonal rotational degrees of freedom α and β and forces become torques.
The spring and damper torques are given by:

{
Tα

Tβ

}
=

[
kαα kαβ

kβα kββ

]
·
{

α
β

}
+

[
cαα cαβ

cβα cββ

]
·
{

α̇

β̇

}
(4)

The most common way of calculating air bearing stiffness and damping properties, is by applying a perturba-
tion with frequency ν on the steady-state height profile. This results in a perturbed pressure profile yielding
the stiffness and damping forces by integration over the complete bearing surface [6]. These dynamic pro-
perties depend on the steady-state working condition, rotational speed ω and perturbation frequency ν. By
this method obtained coefficients are in theory only valid for infinitesimally small perturbations. In practice,
they prove to be fairly correct when the perturbation reaches up to 40 % of the bearing clearance [9].
Other methods rely on a time-marching ADI-solution (alternating direction implicit) of the Reynolds equa-
tion [8].

As an example, figure 8 shows the tilt stiffness and tilt damping coefficients of the thrust bearing of table 3
for rotational frequencies up to 10 kHz (600.000 rpm) and perturbation frequencies up to twice the running
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speed. The figure indicates that the dynamic stiffness reaches an asymptotic value at high perturbation
frequencies, while the damping tends to zero.
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Figure 8: Dynamic tilt properties of the thrust bearing of table 3 for rotational frequencies up to 10 kHz
(600.000 rpm) and perturbation frequencies up to twice the running speed.

4 Rotordynamic analysis

The rotordynamic analysis starts by writing down the equations of motion of the rotor using an inertial x, y,
z system (figure 9). The rotor is assumed to stay rigid in the speed range of interest. Four degrees of freedom
are taken into account, two translational (x and y) and two rotational (α and β). The rotation around the
nominal axis of rotation (z) as well as the translational degree of freedom in that direction are omitted. The
gyroscopic effect is included in the analysis.
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Figure 9: Dynamical model of the rotor.
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mẍ + 2cxxẋ + 2kxxx + 2cxyẏ + 2kxyy = fx (5)

mÿ + 2cyyẏ + 2kyyy + 2cyxẋ + 2kyxx = fy (6)

Itα̈− Ipωβ̇ + 2cααα̇ + 2kααα + 2cβαα̇ + 2kβαα

+
1
2
cxxL2

b α̇ +
1
2
kxxL2

bα +
1
2
cxyL

2
b β̇ +

1
2
kxyL

2
bβ = Tα (7)

Itβ̈ + Ipωα̇ + 2cβββ̇ + 2kβββ + 2cαββ̇ + 2kαββ

+
1
2
cyyL

2
b β̇ +

1
2
kyyL

2
bβ +

1
2
cyxL2

b α̇ +
1
2
kyxL2

bα = Tβ (8)

The right part of these equations stands for the external forces or couples acting on the rotor. Lb represents
the distance between the journal bearing centres.
The first two equations (equation 5 and 6) describe the cylindrical whirling motion of the rotor, while the last
two (equation 7 and 8) represent the conical whirling motion. The total system of equations can be decoupled
into two independent systems of each two degrees of freedom.

4.1 Damped natural frequencies

An eigenvalue analysis of the homogeneous systems of equations 5 to 8 reveals the damped natural fre-
quencies of the rotor-bearing system. The dependence of the bearing coefficients on both rotor speed ω
and perturbation frequency ν makes the solution process iterative. At each rotor speed ω∗, the below out-
lined calculation scheme should be followed. During the iteration, the bearing properties are obtained out of
tabulated values.

1. Calculate the eigenvalues for ω = ω∗ and ν = ν1 (initial guess). This gives a vector of eigenvalues
λ1′ = η1′ + jν1′ .

2. Seek the zero of ∆ν(ν) = ν1 − ν1′ with an appropriate solving algorithm (for instance Newton-
Raphson).

3. When after N steps ∆ν ' 0, the eigenvalue λN ′ = ηN ′ + jνN ′ describes the damped solution of the
system.

An eigenvalue consists of a real part and an imaginary part. The first part η indicates the stability of the
solution. According to the Routh-Hurwitz criterium, η < 0 suggests a stable solution of the system. At
η = 0 the system is marginally stable. This point is called the stability limit. The second imaginary part of
the eigenvalue ν represents the natural frequency of the solution.

In figure 10 the outlined process is applied to the rotor-bearing system of the test-setup for speeds up to
2.5 kHz (150.000 rpm) at a supply pressure ps of 6 bar (absolute). At each speed ω, four eigenvalues are
found representing two cylindrical modes and two conical modes, of which one is a forward whirling mode
and the other a backward whirling mode. In most cases only the forward whirling modes are excited by rotor
imbalance [5].

4.2 Forced synchronous response

Equations 5 to 8 can be reformulated to a matrix equation as follows:

mẍ + cẋ + kx = f (9)
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Figure 10: Damped natural frequencies of the test-setup for different values of the rotor speed ω. The upper
graphs show the natural frequency ν of both whirling modes, the middle graphs indicate the stability of the
solution. The lower plots show the whirl ratio (being ν/ω) of the solution.

wherein m represents the mass matrix, c the damping matrix and k the stiffness matrix of the system. The
vector f forms the external force input of the system. The transfer function H(s) which relates force input
F(s) to displacement output X(s) is obtained by applying the Laplace transform.

s2mX(s) + scX(s) + kX(s) = F(s) (10)

H(s) =
X(s)
F(s)

=
1

s2m + sc + k
(11)

The synchronous imbalance response can be predicted by evaluating equation 11 at different rotor speeds ω.
The iterative procedure explained above can be omitted due to the forced nature of the vibration, meaning
ν = ω. The force input F(s) is generally a combination of a static and dynamic imbalance condition and is
proportional to the square of the rotor speed.

5 Experimental results

This section gives an overview of validation experiments conducted on the test-setup. Before performing
actual validation experiments of critical speeds and stability limits, the rotor should be sufficiently balanced
to safely pass the first two rigid body modes. Hereafter, runup and coastdown experiments were performed
to reveal the critical speeds at different supply pressures. At low supply pressures, severe subsynchronous
whirling is observed. The results obtained out of these measurements are compared with predicted values.

5.1 Balancing experiments

As explained, the rotor can be considered rigid within the speed range of the experiments (maximum rotor
speed ω = 1.7 kHz or 102.000 rpm). Two plane balancing is therefore sufficient. The conventional but
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effective method using two balancing planes and influence coefficients is applied [5].
The balancing speed was set to 570 Hz (34.200 rpm) at a bearing supply pressure ps of 6 bar (absolute). At
this rotor speed the amplitude of the rotor vibrations is nearly half the journal bearing clearance (c = 11 µm).
Table 6 lists the measured synchronous rotor vibrations before balancing, after applying the trial masses on
rotor disc A and B and finally after mounting the calculated correction masses. With the stated correction
masses the attainment of supercritical speeds up to 102.000 rpm was possible. In most experiments, the
available power of the drive turbine prevented reaching even higher rotational speeds.

speed ω balancing response response
[Hz] mass disc A disc B

before balancing 586 - 4.1 µm∠17.1◦ 4.1 µm∠152.4◦

trial mass on disc A 569 5.87× 10−5 gm∠-135◦ 8.1 µm∠-93.3◦ 4.2 µm∠166.3◦

trial mass on disc B 569 5.87× 10−5 gm∠-45◦ 5.0 µm∠8.1◦ 0.7 µm∠-162.3◦

with correction masses 587 A 3.13× 10−5 gm∠165◦ 2.0 µm∠-27.5◦ 0.9 µm∠-94.7◦
B 3.13× 10−5 gm∠-15◦

+ 4.70× 10−5 gm∠-45◦

1100 3.4 µm∠-85.0◦ 1.6 µm∠165.0◦

Table 6: Overview of the results obtained after different balancing steps. The measured response at ω =
1100 Hz (66,000 rpm) indicates the residual rotor imbalance at supercritical speed.

5.2 Runup/coastdown measurements

At different bearing supply pressures the rotor is accelerated to top speed. Then, the supply to the drive
turbine is closed, allowing the rotor to slow down. During this coastdown process, the rotor passes through
a conical and cylindrical critical speed resulting in increased synchronous rotor vibrations.

Figure 11 shows a waterfall plot of the measured rotor response during a coastdown at a bearing supply
pressure ps of 6 bar (absolute). Figure 12 displays the synchronous component (1X) of this coastdown
measurement.
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Figure 11: Waterfall plot of the measured rotor response during a coastdown at a bearing supply pressure ps

of 6 bar (absolute). The plot shows the synchronous response (1X) and higher order harmonics (2X, 3X and
4X).
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Figure 12: Synchronous rotor response during a coastdown at a bearing supply pressure ps of 6 bar (absolute).

5.3 Comparison with predictions

5.3.1 Critical speeds

Coastdown measurement were used to identify the cylindrical and conical critical speed at different bearing
supply pressures. In order to determine the critical speed of each mode more accurately, the vibration trans-
ducer information (zA and zB) is separated into zcyl = (zA+zB)/2 which reveals the presence of cylindrical
rotor motion and zcon = (zA − zB)/2 which reveals the occurrence of conical motion. In this way a clear
identification is possible, even in the case of closely-spaced critical speeds.

Table 7 lists the experimentally identified and predicted critical speeds for bearing supply pressures ps from
2 bar up to 8 bar (absolute). The relative difference is also provided. Figure 7 shows the same information in
a graph.

supply pressure experiment predicted difference
ps [bar] [Hz] [Hz] [%]

cylindrical crit. speed ωcyl

2 255 305 19.6
3 410 510 24.4
4 600 690 15
5 730 820 12.3
6 820 900 9.8
7 910 960 5.5
8 990 1007 1.7

conical crit. speed ωcon

2 265 305 15
3 425 450 5.9
4 545 570 4.5
5 635 645 1.6
6 710 700 1.4
7 765 740 3.3
8 820 770 6.1

Table 7: Overview of the experimentally identified and predicted critical speeds.
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Figure 13: Graphical representation of the experimentally identified and predicted critical speeds.

5.3.2 Stability limit

At low bearing supply pressures and high rotational speeds, severe subsynchronous whirling is observed
(figure 14). This whirling is a self-excited phenomenon and is destructive in nature. The point at which the
self-excited vibration sets in, is called the stability limit of the rotor-bearing system.
Of all types of air bearings, plain aerodynamic bearings are most prone to subsynchronous whirling which is
termed half speed whirling because the whirling occurs at nearly half the rotational speed. Other air bearing
types also suffer from this whirling, although at higher rotational speeds. The frequency of the whirling
motion is generally not at half the rotational speed, but at a fraction of it (fractional speed whirling). The
occurrence of subsynchronous whirling is strongly related to the presence of cross-coupled bearing stiffness
and damping coefficients [10].
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Figure 14: Subsynchronous whirling observed at a bearing pressure ps of 3 bar (absolute). The rotational
speed at which the phenomenon sets in, is 1330 Hz (79800 rpm).

Calculation of the damped natural frequencies allows to predict the stability limit of a given rotor-bearing
system. Similar results as shown in figure 10 for a bearing pressure ps of 3 bar (absolute) yield an estimated
stability limit of only 800 Hz. This mismatch can be due to unmodelled external damping between the
bearing housing and ground plate.
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6 Conclusion and discussion

The total rotordynamic modelling process for a micro-turbine rotor supported on air bearings is outlined. A
good agreement is obtained between the predicted critical speeds and the ones identified out of coastdown
measurements. This can be seen as a validation of every single step of the rotordynamic modelling effort.
Still existing differences between experiments and predictions are possibly due to uncertainties on bearing
and rotor properties, roundness and alignment imperfections of the split bearing design and the limited
validity of the obtained dynamic bearing properties.
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