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Fiducial inference; a review

In this chapter, a brief review about broad lines of the historical development
of the �ducial inference will be given. The concept of �ducial probability was
introduced by Fisher [37] in his paper `Inverse Probability'. The idea behind
�ducial inference, is the following. Suppose that there is no prior information
available about the true value t of the unknown parameter. Given the observa-
tion x, one wants to assign epistemic probabilities to subsets of �, indicating
the belief that the true value of the parameter is contained in this subset. If
no particular subset is of special interest, then this boils down to specifying a
probability distribution Q(x) on �, provided that these epistemic probabilities
are assigned coherently to all subsets. The `classical' method of deriving such
distributional inferences Q(x) is by applying Bayes's Theorem. The drawback of
this method, however, is that it requires the speci�cation of a prior distribution.
Fisher regarded the speci�cation of prior probabilities as being in conict with
the assumption that no prior information is available. His �ducial argument
provides an alternative method to generate distributional inferences, which can
be applied without specifying a prior. Fisher himself derived a number of �du-
cial inferences for various problems, without being su�ciently clear about the
underlying principles; Buehler [18] wrote:

`Fisher never gave an acceptable general de�nition of �ducial prob-
ability. For the case of one observation x and one parameter �, with
cumulative sampling distribution F�(x) monotone decreasing in �,
Fisher de�ned the �ducial density for � to be

gx(�) = �dF�(x)=d�:'
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(A slight notational modi�cation has been made.) The key question is of course:
what is the rationale behind this formula? Various authors have given their
interpretation of what they regarded as the essence of the �ducial argument.
Using these interpretations, they formalized and extended what can in essence
be thought of as �ducial inference. In this chapter, these interpretations will be
reviewed and presented in terms of so called structured or functional models.
This approach encompasses most of the results known about �ducial inference.
In Chapter 5, a di�erent approach towards �ducial inference is adopted. This
approach builds on the theory developed in Chapter 3.

4.1 Introduction

In the previous two chapters the attention was restricted to making inference
about the truth or falsity of statistical hypotheses. This problem could be
regarded as a problem of estimating the true value of some indicator function,
i.e., I�H(t). The true value of I�H(t) can only take on two possible values, namely
f0; 1g. Now, recall from Section 3.1, that there is an equivalent representation of
an estimator � : X 7! [0; 1] of I�H(t), i.e., the procedure Q : X 7! f0; 1g�, where
f0; 1g� denotes the space of all probability measures on f0; 1g. This procedure
was de�ned by

Q(x) = (1� �(x))�0 + �(x)�1 2 f0; 1g�:
In other words, an estimator � can also be regarded as a map Q from the
outcome space to the space of probability distributions on the theoretically
possible values that the unknown of interest can attain.

In this chapter the more general problem of making inference about t 2 �,
or a real{valued function thereof  (t) 2 	, will be considered. It is assumed
that the same regularity conditions as in Sections 3.1 and 3.4 hold. The idea
of making inference in the form of a probability distribution on the space of
theoretically possible values of the unknown of interest, can also be used in this
context; take for example instead of the indicator function I�H : � 7! f0; 1g
the function  : � 7! 	 � R, and let Q = Q(x) in this case be a probability
distribution with values in 	. Such procedure Q : X 7! 	�, where 	� denotes
the space of all probability measures on 	, for making such distributional in-
ferences can be speci�ed in many di�erent but equivalent ways, e.g. for each x
one could prescribe how to construct the density function gx, or alternatively,
how to construct the distribution function Gx of Q(x).

To start with, consider the following canonical situation, which was consid-
ered by Fisher. Suppose that one is given the outcome x of a random variable
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X, with values in X � R, and with probability distribution function F which is
known to be a member some family F = fF� : � 2 �g. It is assumed that this
family is such that it has the following properties:

(i) F�(x) is a continuous function of (x; �),
(ii) � � R is convex, i.e., � = (�; ��), and
(iii) F�(x) is nondecreasing in x and nonincreasing in �,
(iv) the densities f�(x) = F 0

�(x) exist and F has monotone likelihood
ratio.

Notice that the likelihood ratio assumption (iv) implies (iii). According to the
ideas of Fisher it is not necessary to assume (iv) to conclude that the �ducial
argument produces a valid distributional inference; condition (iii) su�ces is this
respect. However, in the next chapter it will be shown that if one wants to
establish that �ducial inference is optimal in some sense, then one needs the
Neyman{Pearson assumption (iv). The objective is to make a distributional
inference about the true value t of the unknown parameter �, which is implicitly
de�ned by F = Ft. Fisher's �ducial argument prescribes how to construct Q(x)
by specifying its density gx, i.e.,

gx(�) = �dF�(x)=d�:
Notice by looking at this prescription that the �ducial argument does not need
the input of prior distributions, loss functions, etc., to derive a distributional
inferences.

Taking gx(�) = �dF�(x)=d�, the �ducial probability of an interval (�1; �2)
can be obtained by integration, and equals F�2(x)�F�1(x). Notice that the �du-
cial density gx does not necessarily integrate to 1, i.e., in case that lim�!� F�(x)
6= 1, or lim�!�� F�(x) 6= 0. In these cases credibility mass lim�#� 1 � F�(x) is
assigned to f�g, and lim�"�� F�(x) is assigned to f��g. This provides that the
distribution function Gx of the �ducial inference is given by

Gx(�) =

8>>><>>>:
0 if � < �;

lim�#�(1� F�(x)) if � = �;

1� F�(x) if � < � < ��;

1 if � � ��:

As it could well be possible that the �ducial argument assigns credibility mass to
a singleton, the representation of the �ducial inference in terms of the distribu-
tion function Gx is preferred to the representation in terms of the density gx. To
illustrate the usage of the �ducial argument, and to get a better understanding
of what it does geometrically, consider the following example.
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Figure 4.1: The geometrical interpretation of the �ducial argument.

The geometrical interpretation of the �ducial argument. Let X� be a
random variable with density

f�(x) =

(
1
2� if 0 � x � �;

1
2(1��) if � < x � 1:

The family F = fF� : � 2 �g is stochastically increasing, and hence applying
the �ducial argument provides a valid distributional inference. To see how the
�ducial inference is constructed, break the argument into the following steps.
First, draw in the (x; �) plane the lines corresponding to �xed quantiles. In
Figure 4.1 this is done for the 15%, 30%, 70% and 85% quantiles. Horizontally,
one can read o�, for a �xed �, the probability of having an observation between
two points. Similarly, one can read o� vertically, for a �xed x, the credibility
of t lying between two points. In this fashion, the �ducial distribution can be
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computed, and its distribution function is given by

Gx(�) =

(
1
2 � x��

2(1��) if 0 � � < x;

1� x
2� if x � � < 1:

Notice that credibility mass 1�x
2 is assigned to f0g, and x

2 to f1g. |
Suppose that both  : � 7! 	 � R and v : X 7! V � R are continuous and
strictly increasing functions. Then reparameterization of P into eP = feP :

 2 	g, where eP = Lv(X�), and a subsequently applying the �ducial argu-

ment, provides the same �ducial inference eQ(v(x)) as �rst applying the �du-
cial argument to P, to obtain Q(x), and then taking the induced measureeQ(v(x)) = Q(x) � �1 on 	. In other words, in the canonical situation, �ducial
inferences are probabilistically coherent under monotone continuous transforma-
tions. This coherence of the inferences is not more than reasonable, because the
monotone continuous transformations leave the problem virtually unchanged;
one remains within the context described by Buehler. That, in contrast with
Bayesian inferences, �ducial inferences are not probabilistically coherent under
all transformations, will be shown in the next section.

To extend the �ducial argument beyond the limited scope of the context,
as described by Buehler, one �rst has to recognize the idea underlying �ducial
inference. In this respect, it can be helpful to look at the historical meaning of
the word `�ducial'. According to Stigler [86], the origin this word stems from
surveying and astronomy:

`The inversion of probability statements involving the binomial dis-
tribution had proved to be a di�cult step, but the same was far less
true for problems of astronomical observation. (: : :) If e represents
the error, x the observation, and � the point observed, then x = �+e
implies equally as well that � = x� e. If e is taken as randomly and
symmetrically distributed, then supposing � �xed gives a distribu-
tion for x; and conversely, taking x as given leads to a distribution
for �. (: : :) R.A. Fisher was to call this a �ducial argument, bor-
rowing a term for a �xed point from surveying and astronomy that
suggested that a distance is the same regardless of which end point
is �xed.'

(A slight notational modi�cation has been made.) This means that the �du-
cial argument uses in essence the internal structure of the problem. That is,
the �ducial argument uses explicitly the relation of how the observation x is
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constructed from a deterministic part � and a random part e. An illustrative
example is the following well{known problem.

The measurement problem. Suppose that the outcome x 2 R
k of a vector

a measurements X of a vector of physical constants t 2 R
k has to be used to

formulate an opinion about these constants. It is assumed that the measurement
device is tested in a lab, and hence that it is known that its measurement error
e = x � t can be regarded as the outcome of a random variable E with a
known distribution, say Nk(0;�) with � known. Assume in addition that the
distribution of E is the same, regardless of the value of t. This is the crucial
assumption in this model. Rewriting the measurement equation x = t + e to
t = x�e provides that, after observing x, any probability statement about x�E
implies a probability statement about t. Hence, the knowledge about t can be
expressed in terms of the distributional inference

Q(x) = L(x�E) = Nk(x;�):

Notice that in the case k = 1, the density gx corresponding to this �ducial
distribution, or structural distribution in the terminology of Fraser, satis�es,
indeed,

gx(�) = �d�((x� �)=�)=d�;

which is according to Fisher's prescription. |
Clearly, the idea of using the internal structure of the problem, represented
by the measurement equation, to transfer the knowledge about a known error
distribution and the observed outcome x to a probability distribution on �, is
not restricted to the measurement problem. The general case will be worked out
in Section 4.3. This approach to making inference is also known under the name
functional approach, which refers to the speci�cation of a functional equation,
in contrast to the distributional approach, which refers to the speci�cation of a
family of distribution functions, that is commonly adopted in statistical theory.
Before exploring this functional approach, �rst some problems concerning the
noncoherence of �ducial probability will be investigated.

4.2 Noncoherence of �ducial probability

The �ducial argument produces distributional inferences, i.e., inferences in the
form of probability distributions on 	. As such probability distributions do not
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have a direct frequency interpretation, it is natural to ask the question whether
or not these �ducial probabilities possess the same coherency properties as or-
dinary probabilities. Recall from the previous section that, if  : � 7! 	 is con-
tinuous and strictly increasing, then the �ducial distribution about  (t) can be
obtained from the �ducial distribution about t, by taking the measure induced
by this transformation. In this sense, �ducial probabilities behave like ordinary
probabilities. This, however, is not the case in general. From a mathematical
point of view this form of probabilistic coherence of the inferences is elegant, and
might seem natural. Making this requirement for a theory for making distribu-
tional inferences has, however, far going consequences. It should be noted, for
example, that by applying nonmonotonic transformations, stochastic ordering
relations can be destroyed. In such cases the inference problems change sub-
stantially, and hence the requirement of coherence under such transformations
does not make any sense. Most problems occur in higher{dimensional problems.
An extreme example of how the requirement of probabilistic coherence can lead
to absurd results, was given by Stein [85].

The Stein example. Suppose that inference has to be made about the mean
t 2 R

k of a k{dimensional spherical normal distribution, i.e., it is assumed that
LX� = Nk(�; Ik). On the basis of an observation x 2 R

k the natural distribu-
tional inference about t can be derived, and is given by Q(x) = Nk(x; Ik). This
distributional inference corresponds both to the �ducial inference if the �ducial
argument is identi�ed with the argument used in the measurement problem, and
to the posterior distribution w.r.t. a noninformative prior, i.e., Lebesgue mea-
sure on �. Moreover, it can be obtained as a UMR equivariant procedure if an
appropriate loss function is used. All together one can conclude that this infer-
ence is perfectly valid for this situation, although there could be some discussion
about using improper priors.

Now, suppose that one is not interested in t itself, but in  (t), where  :
� 7! R

+ is given by  (�) = �0�. Accepting Q(x) = Nk(x; Ik) as appropriate
inference about t, and conforming oneself to the requirement of probabilistic
coherence, provides that one has to take the induced measure Q(x) �  �1 as
distributional inference about  (t), i.e.,

eQ (x) = �02k;x0x:

All information carried in x about  (t) = t0t is contained in v = x0x. Applying
the �ducial argument to V = X 0

�X� provides Q (x) de�ned by its distribution
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functions

Gx(�) = P(�02k; > x0x):

Now, notice that eQ (x) and Q (x) are clearly distinct, or more speci�callyeQ (x; (0;  ]) < Q (x; (0;  ]), for every  2 R
+ . If k increases, then the dif-

ference between the two inferences increases. Notice that Using the theory of
the next chapter it can be shown that eQ systematically overestimates the true
value  (t). This is a consequence of the improper prior on �, which, after the
transformation  , assigns on 	 more and more prior mass towards in�nity. This
overshadows the evidence. |
The reason why probabilistic coherence of distributional inferences can lead to
absurd results is as follows. In the theory of statistical inference facts (the data)
have to be intermingled with �ctions (priors, optimality principles, etc.) in or-
der to arrive at some solution to the problem. The choice of the additional
ingredients (the �ctions) is based on the fact that they are reasonable within
the given context. Transforming the problem may change the context in such
a way that these additional ingredients become totally unreasonable within the
new context. Other inconsistencies of �ducial inferences in higher{dimensional
problems can be found in Dempster [29], or concerning the parameters of mul-
tivariate normal distribution in Geisser{Corn�eld [42].

Inconsistencies, however, do not only occur in higher{dimensional problems.
A second example of the fact that �ducial probability is di�erent from ordinary
probability can be given in the context of incorporating additional information
by restricting the parameter space. That is, suppose that additional informa-
tion becomes available in the form t 2 e� � �. If Q(x) 2 �� is regarded as a
frequency{theoretic probability distribution, then by the axioms of probability
theory it follows that given this information eQ(x) 2 e�� should be the renormal-

ized restriction of Q(x) to e�. However, applying the �ducial argument, after
obtaining this information, will provide that all credibility mass assigned by
Q(x) to the complement of e� will be concentrated on the boundary of e�. This
will be illustrated by the following example.

Incorporating additional information. Let LX� = N(�; 1), and suppose
that on the basis of x inference has to be made about the unknown mean. Ap-
plying the �ducial argument provides, of course, Q(x) = N(x; 1). Now, suppose

that additionally it is known that the mean is nonnegative, i.e., t 2 e� = [0;1).
Renormalizing the restriction of Q(x) to [0;1) provides the distributional in-
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ference eQ(x), de�ned by the distribution function

eGx(�) =
(

0 if � < 0;
�(��x)��(�x)

�(x) if � � 0:

Applying the �ducial argument w.r.t. P = fP� : � 2 [0;1)g provides the
distributional inference Q(x), de�ned by the distribution function

Gx(�) =

(
0 if � < 0;

�(� � x) if � � 0:

Notice that this �ducial distribution assigns credibility mass �(�x) to f0g. In
Section 5.6 this example will be revisited. |
To make the discussion about coherence somewhat more precise, the following
notion of inconsistency, that was introduced by Stone [89] and further developed
by Heath{Sudderth{Lane [45], [46], and [57], will be employed.

De�nition 4.1 A procedure Q : X 7! �� for making distributional inferences
is said to be strongly inconsistent if

inf
x2X

Z
�

�(x; �) Q(x; d�) > sup
�2�

Z
X

�(x; �) P�(dx);

for some bounded and measurable function � : X�� 7! R.

It can be shown that Q : X 7! �� cannot be strongly inconsistent if it can be
approximated by posterior distributions w.r.t. proper priors in the following
way. Let � be a probability measure on �, and de�ne ��(B) =

R
� P�(B) �(d�),

for all B 2 �(X), then Q can be approximated by posterior distributions w.r.t.
proper priors if

inf
�2��

Z
X

kQ(x)�Q�(x)kTV ��(dx) = 0;

where Q� is the posterior w.r.t. to the proper prior measure �. Hence, �ducial
inference will be coherent in this sense, if it coincides with a posterior distribu-
tion Q� , where in this case � cannot be proper (see Section 4.4), and Q� is in its
turn approximable by posterior distributions w.r.t. proper priors. Techniques
for showing whether or not a posterior distribution w.r.t. an improper prior is
approximable by posterior distributions w.r.t. proper priors, are usually based
on truncation of improper priors, see e.g. Stone [87]. This extends results that
Je�reys [51] obtained for Student's problem. Another possibility is to use the
invariance of the statistical model, in the case that this possible. In Section 5.6
this topic will be revisited.
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4.3 Structured models

In statistical inference it is usual to start with the assumption that LX = P is a
member of some known family of probability distributions P = fP� : � 2 �g. To
obtain from this starting point a unique method of inference one has to adopt
certain principles and add several additional ingredients. In the measurement
problem it looked as if no such inputs were needed to obtain a unique method
of inference. This was due to the extra information that was given a priori,
namely the functional or structural equation that speci�ed how the observation
was constructed of an unknown deterministic component (the parameter) and
a random component (the error) from a known distribution irrespective of the
true value t of �. Such a statistical model will be called a structured model.
Notice that given such a functional equation and the error distribution one could
uniquely determine P, whereas given some P it is impossible to extract the
functional equation. The term functional model was introduced by Bunke [19],
but the underlying ideas were already implicitly present in the work of Fraser [40]
on what he called structural inference. An extensive review of the functional
approach to �ducial inference can be found in Dawid{Stone [25], and Dawid{
Wang [26]. The ideas and terminology used in this section, are based on these
two articles.

The ideas underlying the measurement problem will now be used to formu-
late general structured models. Keeping the measurement problem in mind, one
can consider a model that states that the outcome x of the random variable X�

(the measurement) is uniquely determined as a function of � 2 � (the param-
eter) and the outcome e of the random variable E (the measurement error).
Notice that the crucial underlying assumption of such a structured model is
that the distribution of the measurement error does not depend on the value of
the unknown parameter that is to be measured. To make this more precise, E
is some random variable that assumes values in E, and its distribution P = LE
is assumed to be known. For each pair of given � 2 � and e 2 E, the outcome
x 2 X will be uniquely determined by some known function that maps ��E into
X. The notation x = �e is used to denote the functional equation and reects
the algebraic structure of the problem, i.e., e is the function e : � 7! X that
acts on the right of � and maps the parameter space into the outcome space,
and similarly � is the function � : E 7! X that acts on the left of e and maps the
measurement error space into the outcome space. Notice that in the case that
E = X = � both e and � can be regarded as transformations.

A structured model is said to be simple if for every pair x and e there exists
a � such that x = �e. It is said to be invertible if the functional equation is
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invertible, i.e., x = �e has, for all pairs e and x, a unique solution �. This
solution � will then be denoted by � = xe�1. If a simple structured model is
invertible, then given the outcome x the probability distribution P of E can be
transfered to a �ducial distribution QFiducial(x) for t by de�ning

QFiducial(x;B) = P(fe : xe�1 2 Bg) 8 B 2 �(E): (4.1)

This will be abbreviated by using the notation QFiducial(x) = L(xE�1). Notice
that the measurement problem is an example of such a simple invertible struc-
tured model, and that the �ducial distribution that was, indeed, obtained by
the same line of reasoning.

Now, consider the case that  is not the identity but any bijection  :
� 7! 	. Then the �ducial distribution is given by QFiducial(x) = L (xE�1).
That the �ducial distribution cannot be de�ned in this fashion, if  is not a
bijection, is illustrated by the Stein example. This example indicates that it
is dangerous to treat �ducial probabilities carelessly as if they were frequency{
theoretic probabilities. In Dawid{Stone [25], it is shown how the functional
structure can be used to avoid these incoherences. For simple functional models,
marginalization does not lead to inconsistencies provided that the following
condition holds. Suppose that inference has to be made about  (t), where
 : � 7! 	, and that there exists a function v : X 7! V such that v =  e is again
a simple functional model. In this case it follows that  (xE�1) = v(x)E�1.

The question whether �ducial inference via the functional approach is, in-
deed, an extension of the �ducial argument, as given by Fisher, can be answered
by checking that the �ducial distributions obtained by the functional approach,
indeed, coincide with those derived by Fisher, in the case that both methods can
be applied. The following simple structured models will reproduce the Fisher's
original setting.

Lemma 4.1 Let X � R, � � R, and LE = U(0; 1). Assume that the functional
relation x = �e is such that �e is continuous, and strictly increasing in e, for
all � 2 �, and continuous and strictly increasing in �, for all e 2 E. De�ne
F�(x) = ��1x. Then QFiducial(x) de�ned by (4.1) has a density, given by gx(�) =
�dF�(x)=d�.
Proof. Under the conditions of the lemma, F�(x) is continuous and strictly
increasing in x, and continuous and strictly decreasing in �. The distribution
function corresponding to QFiducial(x) is given by

Gx(�) = P(fe : xe�1 � �g) = P(fe : e � F�(x)g) = 1� F�(x):
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Hence, Gx(�) is continuous and strictly increasing in �. Notice that the fact
that for every pair x and e there exists a solution to the functional equation
implies that Gx(�) ! 0 as � ! �1 and Gx(�) ! 1 as � ! 1. Hence, Gx(�)
is a continuous distribution function, and its density w.r.t. Lebesgue measure
gx(�) is given by gx(�) = dGx(�)=d� = �dF�(x)=d�, which coincides with the
�ducial density provided by Fisher. �

To go beyond the context of simple structured models without making any
essential adaptations, the following de�nitions are introduced. If there exists
a � 2 � such that the functional equation x = �e has a solution for given
x 2 X and e 2 E, then x and e are called compatible. The set of all e that are
compatible with a �xed x will be denoted by Ex = fe 2 E : 9 � 2 � s:t: x = �eg.
Similarly, one can de�ne X� as the set of all x compatible with �, and �x as
the set of all � compatible with x. To be able to derive the �ducial distribution,
it is essential that the functional equation is invertible, i.e., for all x 2 X and
e 2 Ex the solution � = xe�1 of x = �e has to be unique. Given some invertible
structured model, the �ducial `inversion' can be made as follows. By observing
x, one can logically conclude that e 2 Ex, and hence one has to condition on this
event. Notice that this is also the only information about the outcome of E that
can be obtained from observing x. Hence, de�ne, for every x 2 X, a random
variable Ex on Ex, such that LEx = Px, where Px denotes the restriction of
P to Ex. The �ducial distribution generated by the functional model is then
de�ned on �x and given by QFiducial(x) = L(x[Ex]�1), i.e.,

QFiducial(x;B) = Px(fe : xe�1 2 Bg) 8 B 2 �(Ex): (4.2)

A natural generalization of the simple structured models are the so called
partitionable structured models. Not much is changed if the assumption that
Ex = E, for all x 2 X, is replaced by the assumption that for x1; x2 2 X either
Ex1 = Ex2 , or Ex1 \ Ex2 = ;. A structured model satisfying this condition is
said to be partitionable. In the case that a functional model is partitionable,
there exist functions a de�ned on X and b de�ned on E such that a(x) = b(e)
if and only if e 2 Ex. Notice that, for such a function a, La(X�) does not
depend on �, and can be called a functional ancillary. The idea underlying
the analysis of such partitionable functional models is that, conditionally on
a(X�) = a, the situation is the same as in the simple functional model. Denote
Pa = L(Ejb(E) = a), and de�ne a random variable Ea on �x such that LEa =
Pa, then the �ducial distribution for the partitionable functional model is given
by QFiducial(x) = L(x[Ea]�1).

There are two important special cases of structured models, each highlighting
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di�erent aspects of structured models. The �rst class consists of the so called
pivotal models, see e.g. Barnard [3], the second class of the so called structural
models, see e.g. Fraser [40]. These models will be treated in more detail in the
next section.

4.4 Pivotal and structural models

Pivotal methods are commonly used in statistics. A statistical methodology
based on pivotal methods was introduced by Barnard [3], [4]. A function u
of both the parameter and the observation is said to be a pivot or pivotal
function if its distribution does not depend on the unknown parameter �, i.e.,
Lu(X�; �) = P. The idea behind pivotal inference is to introduce a random
variable U , such that LU = P, then equate u(X�; �) = U , take l.h.s. of the
equation with x �xed, i.e., u(x; �) = U for the observed x, and �nally invert
the function u in its second argument, i.e., � = u�1(x;U). The distributional
inference arising from such a pivotal argument is then, of course,

Q(x) = Lu�1(x;U):

To relate this pivotal argument to structured models, consider the following
line of thought. Consider the set of all pairs (x; �) that are compatible, i.e.,
[x2X(x;�x) = [�2�(X�; �) � X � �. Assume that, for all these pairs (x; �),
the functional equation x = �e can be solved explicitly for e, and denote this
solution by e = u(x; �). Now, notice that this function u : [x2X(x;�x) 7! E is
a pivotal function, because Lu(X�; �) = LE = P, and hence does not depend
on the unknown parameter �. In case that u can be inverted explicitly in its
second argument, the �ducial distribution is given by

QFiducial(x) = L(u�1(x;E)): (4.3)

An extension of the use of pivotal methods is given in Weerahandi [93], who con-
siders so called generalized pivotal functions which are functions of the unknown
parameter �, the random variable X�, and the observed value of the random
variable x. The problem with applying pivotal methods, if no structural equa-
tion is given, is that in higher{dimensional problems, the choice of pivots is
often nonunique. In these cases, di�erent pivotal functions will often lead to
di�erent inferences. Fraser [39], [38] investigated under which conditions the
choice of pivot is essentially unique. This resulted in the theory of the so called
structural models. These structural models are the basis for the idea behind
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functional models. Structural models were introduced by Fraser [39], and for
an extensive treatment of these structural models one can consult Fraser [40].

Suppose that G is a unitary transformation group working on the left of
X, and that P = fP� : � 2 �g is generated by this group, i.e., it is possible
to identify X with G, and � with G. To see that such an invariant model
is a functional model, notice that X = E, and that the functional equation
x = �e, which is called the structural equation in this case, corresponds to a
transformation of X by one of the elements of the group. Hence, structural
models are in some sense also pivotal models; the pivot is given by u(x; �) =
g��1x. The �ducial or in this case structural distribution is given by

QStructural(x) = L(gxgE�1(xe));

which is clearly equivariant under the working of G. In general, the analysis
of structural models proceeds as follows. First, notice that structural models
are partitionable functional models; the orbits of G form a disjunct partition of
X. By de�nition x and e are on the same orbit of G. Hence, after observing x
one has to condition on the orbit, because this is the only information that is
obtained about the outcome of E. A maximal invariant statistic v : X 7! V is a
functional ancillary in this context, and the analysis proceeds as prescribed in
the previous section for partitionable functional models.

Now, suppose that the structural model satis�es all regularity conditions
from Section 3.5 (the case that G works transitively on �). In Fraser [38] it is
shown that

QFiducial = QStructural = Q�r ;

where �r denotes the induced right Haar measure. Or in other words, for an
invariant problem where G works transitively on �, the �ducial inference coin-
cides with a posterior distribution w.r.t. the right Haar measure. An interesting
question in this respect is whether or not there can be found other situations
where the �ducial distribution coincides with a (formal) posterior distribution.
For the one{dimensional problem the answer to this question was given by Lind-
ley [59].

Theorem 4.1 Suppose that X � R and � = (�; ��) � R. Let the distribu-
tion functions F�(x) be such that dF�(x)=d� exists and lim�!�� F�(x) = 0 and
lim�!� F�(x) = 1. Then there exists a measure � such that Q�(x) = QFiducial(x)
if and only if there exist monotone transformations u : X 7! R and � : � 7! R

such that �(�) is a location parameter for u(X�), i.e., Lu(X�) = L(�(�) + U)
where U is a random variable with a �xed distribution.
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That this requirement is rather restrictive can be illustrated by considering the
case of 1{parameter exponential families. It can be shown that the only two
exponential families that satisfy the conditions of the theorem are the normal
distributions with known variance (location family), and the gamma distribu-
tions (scale family). An immediate consequence of the fact that often �ducial
inference does not coincide with Bayesian inference is that, in general, it should
not be expected that �ducial inference produces admissible procedures. Lind-
ley's result does not extend to higher dimensions: in Brillinger [15] an example
is given, where there exits a measure � such that Q� and QFiducial coincide, but
where it can be shown that there does not exist a group G which leaves the
model P invariant.

If the group G is noncompact, then �r(�) is in�nite. Hence, in the case that
the model is invariant under a noncompact transitive group G, the question
whether or not QFiducial = Q�r is approximable by posteriors w.r.t. proper
priors, and hence whether it is consistent in the sense of Heath{Sudderth{Lane,
is of interest. Provided that the sampling densities p�(x) > 0, for all x 2 X, and
� 2 �, it can be shown that Q�r is consistent if and only if G is amenable, see
Stone [88]. Moreover, it is shown in this paper that Q�r is the only equivariant
procedure that is consistent. To conclude with, all approaches will be illustrated
by the following well{known problem.

Student's problem The following problem initiated the modern theory of
exact small{sample inference. Suppose that the outcome x = (x1; : : : ; xn) of
an independent random sample X = (X1; : : : ; Xn) from N(�; �2) is observed,
where it is assumed that a priori nothing is known about the true value (�; �2)
of the unknown parameter (�1; �2) 2 R � R

+ . And suppose that distributional
inference has to be made about the unknown mean �. Use the following standard
notation:

�X = n�1
Pn

i=1Xi; S2 = (n� 1)�1
Pn

i=1(Xi � �X)2 ;

and small letters to denote the corresponding observed outcomes of these statis-
tics. Student stipulated and Fisher proved that the random variable T =p
n( �X � �)=S has a distribution which is know as Student's tn�1, at least if

n � 2, and hence is a pivotal quantity. Student used this result to think of � in
terms of the distributional inference

QStudent(x) = L(�x+ n�
1
2 sTn�1);

where Tn�1 is a random variable such that LTn�1 = tn�1, see Student [91].
This, of course, coincides with the �ducial distribution obtained by a pivotal
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argument (4.3). Je�reys [51] obtained the distributional inference QStudent(x) as
the marginal posterior distribution of � by taking the limit of posterior distribu-
tions, w.r.t. uniform priors on growing rectangles of � and log(�), for a �xed x.
Stone [88] showed that this approximation also holds in terms of the de�nition
given in Section 4.2. This is, of course, not surprising because QStudent is the
marginal posterior distribution of � w.r.t. the right Haar measure ��1 on the
location scale group works transitively on the parameter space. Moreover, the
location scale group is amenable, see e.g. Bondar{Milnes [13]. So it follows that
Student's inference is consistent in the sense of Heath{Sudderth{Lane.

Fisher was fascinated by the exactness of this result. He noted that the
�ducial limits �x�n� 1

2 stn�1(12�) are correct in the sense that the corresponding
stochastic intervals have the right coverage probability �, and he regarded this
as an example of the logical validity of an inductive method. Wallace wrote the
following about Student's inference:

`Student's work is accepted and recognized as basic by all. Setting
aside doubts on the Gaussian and independence assumptions, we
have wide acceptance for inferential statements in the form of 95%
limits (and of other levels) on the unknown mean � even if we cannot
agree on the adjective (`�ducial' or `con�dence', author's explana-
tion) modifying `limits'. The uncertainty about � is conveniently
and at least schematically represented by a t{distribution centered
at the observed mean and scaled by the estimated standard error of
the mean, with limits by the appropriate fractiles.'

Fisher knew that the distribution functions GStudent;x are such that

LGStudent;X�(�1) = U(0; 1) 8 � 2 �;

see Fisher [37], which is equivalent to the exactness on the con�dence intervals.
This pivotal relation will play an important role in the theory of �ducial inference
that will be presented in the next chapter; in Section 5.7 this problem will be
revisited. |
For Student's problem it turned out that there are di�erent ways to obtain
Student's inference as a distributional inference about �. In other words, all
di�erent methods lead to the same result. In the next example it is shown that
in higher dimensions the di�erent approaches can, and will, all lead to di�erent
results.
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Multivariate Student's problem Consider Student's problem again, with
the di�erence that Xi is now a random variable with a Nk(�;�) distribution,
where � 2 R

k is the vector of means, and � is the k�k variance{covariance ma-
trix. Assume that the number of observations is lager than the dimension of the
problem, i.e., n > k. Let �X = ( �X1; : : : ; �Xk)

0 denote the vector of sample means,
and S = fsi;jgi;j the sample variance{covariance matrix. For deriving the joint
�ducial distribution of the means, Fisher proposed to use in the bivariate case
the following approach: (i) use the sample correlation coe�cient to compute the
�ducial density for the correlation coe�cient, next (ii) invert the conditional dis-
tribution of S1 and S2 given r and �, then (iii) invert the distribution of �X1 and
�X2, given �, and �nally (iv) compute the marginal distributions of the means.
Applying this scheme for the k{variate problem, Bennet{Cornish [7] obtained
the following �ducial density for �

qFiducial;x(�) =

�
n

(n� 1)�

� 1
2k �

�
1
2(n+ k � 1)

�
�
�
1
2(n� 1)

� jSj 12
�
�
1 +

n(�x� �)0S�1(�x� �)

n� 1

�� 1
2 (n+p�1)

: (4.4)

Cornish showed that the quantity T 2 = n(�x � �)0S�1(�x � �), where � is the
variable and �x and S are �xed, is distributed like kFk;n�1. This di�ers from the
density T 2 as given by Hotelling, where �X and S are variable and � is �xed,
which is distributed like k(n�1)=(n�k)Fk;n�k. Following a Bayesian approach,
Geisser{Corn�eld [42] obtained that, using

�v(d�; d�) = j�j� 1
2vd�d�

as prior, the marginal posterior of � is given by

q�v;x(�) =

�
n

(n� 1)�

� 1
2k

� �
�
1
2(n+ k � v + 1)

�
�
�
1
2 (n� v + 1)

� jSj 12
�
1 +

n(�x� �)0S�1(�x� �)

n� 1

�� 1
2 (n+p�v+1)

;(4.5)

which reduces for v = 2 to (4.4), and for v = k+1 will have the usual Hotelling
density of T 2. The choice v = k+1 is appealing from the point of view of invari-
ance. Let G be the group with elements (A; b), where A is a k � k nonsingular
matrix, and b a k � 1 vector. The group operation is

(A1; b1)(A2; b2) = (A1A2; b1 + b2A
0
2);
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where the prime denotes transpose. Then G works on the sample space via

(S; �x) 7! (ASA0; �xA0 + b);

and it is easy to check that this is, indeed, a left action. The induced left action
of G on the parameter space is G given by

(�; �) 7! (A�A0; �A0 + b):

With these two group actions it is clear that the model is invariant. Moreover,
the group acts transitively over the parameter space. The induced invariant
Haar measure on the parameter space is

�(d�; d�) = j�j� 1
2 (k+1)d�d�:

The Bayes procedure w.r.t. to this invariant prior is given by (4.5), with v =
k + 1. Notice that it has the usual Hotelling density of T 2.

In a series of papers by Eaton{Sudderth [32], [33], and [34] the use of this
group G is criticized, because it is not amenable. Consider the subgroup H of
G, with elements (T; b), where T is a lower triangular matrix whose diagonal
elements are positive. It can be shown that H also acts transitively on the
parameter space. Notice that, for each positive de�nite �, there exists a unique
� 2 H such that

� = ��0:

Hence, it is possible to reparameterize the multivariate normal distribution in
terms of (�; �). For this parameterization, H acts on the parameter space by

(�; �) 7! (T�; �T 0 + b):

The subgroup H of G is amenable, see e.g. Bondar{Milnes [13]. The left Haar
measure induced by H on the parameter space coincides with the standard
Je�reys prior, and provides (4.5) with v = k+1 as posterior distribution. Recall
from Section 4.2, that an equivariant posterior can only be consistent in the
sense of Heath{Sudderth{Lane if the right Haar measure of an amenable group
is used as prior. Using the (�; �) parameterization of the normal distributions,
the right Haar measure of H on the parameter space is given by

�r(d�; d�) =
d�d�Qk

i=1 
k�i+1
i;i

;
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where i;i denotes the ith diagonal element of �. Let G+
T denote the group of all

lower triangular matrices with positive diagonal elements. Then the marginal
posterior distribution of �, in the case that �r is used as prior, is proportional
to the integralZ

G
+
T

j�j�n exp
�
�1

2
tr((��0)�1((n� 1)S + n(�x� �)(�x� �)0))

�
�r(�; d�):

To compute this integral, introduce the following notation. Let � be the k � k
lower triangular matrix, such that

�� 0 = (n� 1)S + n(�x� �)(�x� �)0:

Making a transformation of variables, and using a result that can be found in
Eaton{Sudderth [33], it turns out that the integral is equal to

j(n� 1)S + n(�x� �)(�x� �)0j� 1
2n

c(n)

�(�)
;

where c(n) is a constant that only depends on n, and � is the modular function
of G+

T , i.e.,

�(�) =
kY
i=1

�k�2i+1i;i :

The following step is, of course, to express the diagonal elements of � in terms
of x and �. To do so, observe that (n� 1)S + n(�x� �)(�x� �)0 = Y 0Y , where

Y =

0B@ x1;1 � �1 � � � x1;k � �k
...

...
xn;1 � �1 � � � xn;k � �k

1CA = (y1; : : : ; yk);

and yi = (x1;i��i; : : : ; xn;i��i)0. Now, notice that Y = Q� 0, where the columns
of Q are the orthonormal vectors

q1 = y1p
hy1;y1i

;

q2 = y2�hy2;q1iq1p
y2�hy2;q1iq1;y2�hy2;q1iq1

;

...

qk = yk�hyk;q1iq1�����hyk;qk�1iqk�1p
hyk�hyk;q1iq1�����hyk;qk�1iqk�1;yk�hyk;q1iq1�����hyk;qk�1iqk�1i

;
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that can be obtained by applying a Gramm{Schmidt process to the columns
of Y . Now, write Q0Y = � 0, to obtain that the diagonal elements of � can be
expressed as

�1;1 =
phy1; y1i;

�2;2 =
q

hy2;y2ihy1;y1i�hy1;y2i2
hy1;y1i ;

...

�i;i =
q

j(y1;:::;yi)0(y1;:::;yi)j
j(y1;:::;yi�1)0(y1;:::;yi�1)j ;

...

�k;k =
q

j(y1;:::;yk)0(y1;:::;yk)j
j(y1;:::;yk�1)0(y1;:::;yk�1)j :

This yields that the modular function can be expressed in terms of

�(�) =
j(y1)0(y1)j � � � j(y1; : : : ; yk�1)0(y1; : : : ; yk�1)j
j(n� 1)S + n(�x� �)(�x� �)0j� 1

2 (k�1)
:

Now use the equality

j(n� 1)Sj
j(n� 1)S + n(�x� �)(�x� �)0j =

�
1 +

n(�x� �)0S�1(�x� �)

n� 1

��1
;

to show that the marginal posterior distribution of �, in the case that �r is used
as prior distribution, is given by

q�r;x(�) =�
n

(n� 1)�

� 1
2k �

�
1
2(n+ k � 1)

�
�
�
1
2
(n� 1)

� jSj 12
�
1 +

n(�x� �)0S�1(�x� �)

n� 1

�� 1
2 (n+p�1)

�c(n; k)
kY
i=1

j(n� 1)S + n(�x� �)(�x� �)0j
(jI(i))0f(n� 1)S + n(�x� �)(�x� �)0gI(i)j ; (4.6)

where I(i) = (Ii; 0)
0, with Ii the i � i identity, and 0 a (k � i) � i zero matrix,

and c(n; k) a constant that only depends on k and n. Notice that the �rst term
of this density is equal to Fisher's �ducial density, and that the second term
introduces some kind of asymmetry in the means. It can be concluded that the
three di�erent approaches (4.4), (4.5), and (4.6) only coincide in the univariate
case, i.e. k = 1. |


