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Error Exponents for Variable-Length Block Codes
With Feedback and Cost Constraints

Barış Nakiboğlu and Robert G. Gallager, Life Fellow, IEEE

Abstract—Variable-length block-coding schemes are inves-
tigated for discrete memoryless channels with ideal feedback
under cost constraints. Upper and lower bounds are found for the
minimum achievable probability of decoding error Pe;min as a
function of constraints R;P; and � on the transmission rate, av-
erage cost, and average block length, respectively. For given R and
P , the lower and upper bounds to the exponent �(lnPe;min)=�
are asymptotically equal as � ! 1. The resulting reliability
function, lim�!1(� lnPe;min)=� , as a function of R and P , is
concave in the pair (R;P) and generalizes the linear reliability
function of Burnashev to include cost constraints. The results are
generalized to a class of discrete-time memoryless channels with
arbitrary alphabets, including additive Gaussian noise channels
with amplitude and power constraints.

Index Terms—Block codes, cost constraints, feedback, memory-
less channels, variable-length communication.

I. INTRODUCTION

THE information-theoretic effect of feedback in communi-
cation that has been studied since Shannon [15] showed

in 1956 that feedback cannot increase the capacity of a dis-
crete memoryless channel (DMC). At about the same time, Elias
[4] and Chang [14] gave examples showing that feedback could
greatly simplify error correction at rates below capacity.

This paper, as well as much of the existing literature on feed-
back communication, is restricted to block coding, i.e., coding
in which messages are transmitted sequentially and each mes-
sage is completely decoded and released to the destination be-
fore transmission of the next message begins. Non-block codes,
with overlapping messages, raise a somewhat different and com-
plimentary set of conceptual issues, as discussed in an excellent
paper by Sahai [10].

Block coding for feedback communication can be further sep-
arated into fixed-length and variable-length coding. The code-
words in a fixed-length block code all have the same length,
but, due to the feedback, the symbols in each codeword can de-
pend on previous channel outputs as well as the choice of trans-
mitted message. For variable-length block codes, the decoding
time can also depend dynamically on the previously received
symbols. We assume that the feedback is ideal, meaning that it
is noiseless, instantaneous, and of unlimited capacity. Thus, we
can assume that all information available at the receiver is also
available at the transmitter, and consequently, the transmitter
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can determine when the receiver decodes each message. The as-
sumption of ideal feedback is unrealistic, of course, but we feel
a thorough understanding of this case will play a major role in
studying the far more complex problem of nonideal feedback.

A widely used quality criterion for fixed-length block codes
of a given rate is the error exponent, , where is
the probability of decoding error and is the block length.
Dobrushin [3] showed that the sphere-packing exponent (the
well-known upper bound to the error exponent without feed-
back) is also an upper bound for fixed-length block coding
with feedback on symmetric DMCs. It has been long conjec-
tured that this is also true for nonsymmetric DMCs, but the
current best upper bound, by Haroutunian [6], is larger than the
sphere-packing bound in the nonsymmetric case.

Variable-length block coding allows the decoding to be de-
layed under unusually severe noise, thus usually providing a dra-
matic increase in error exponent. As motivated in the discussion
following Theorem 1, the error exponent for a variable-length
block code is defined as where is the expected block
length. Similarly, the rate is defined as where is the size
of the message set. Since successive messages require indepen-
dent and identically distributed message transmission times, this
rate (converted to base ) is the long-term rate at which message
bits can be transferred to the receiver.

The reliability function , for a class of coding schemes
on a given channel, is defined as the asymptotic maximum
achievable exponent, as , for codes of rate greater than
or equal to . Burnashev [1] developed upper and lower bounds
to for variable-length block codes on DMCs with ideal
feedback. For DMCs in which all outputs can be reached with
positive probability from all inputs, Burnashev’s upper and
lower bounds to are equal. The resulting function
is linear, going from a positive constant at to at .

For DMCs in which at least one output can be reached from
only a proper subset of inputs, Burnashev implicitly showed
that is asymptotically achievable for all . This
means that is the zero-error capacity of variable-length block
codes for such DMCs. Thus, the zero-error capacity for vari-
able-length block codes with feedback can be strictly larger than
that for fixed-length codes with feedback, which in turn can be
strictly larger than zero-error capacity without feedback.

The main objective of this paper is to generalize Burnashev’s
results to DMCs subject to a cost criterion. That is, a non-
negative cost is associated with each letter of the
channel input alphabet, . It is assumed1

that for at least one choice of . The energy in a

1The assumption that the minimum cost symbol has cost 0 causes no loss of
generality, since otherwise the minimum cost could be trivially subtracted from
all symbol costs.
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codeword , where is transmitted at time
, and is the decoding time, is defined to be

. As explained more fully later, a
variable-length block code is defined to satisfy an average cost
(power) constraint if . We will find the
corresponding reliability function for all . For all DMCs
whose transition probabilities are all positive, this reliability
function is a concave function of . If zero transition
probabilities exist, then zero error probability can be achieved
at all rates below the cost constrained capacity.

Our interest in cost criteria for DMCs is motivated by the
desire to separate the effect of cost constraints from that of
infinite alphabet size, thus allowing a better understanding of
channels such as additive Gaussian noise where these effects
are combined. Pinsker [9] considered fixed-length codes for the
discrete-time additive white Gaussian noise channel (AWGNC)
with feedback. He showed that the sphere-packing exponent
upper-bounds the error exponent if the energy of each code-
word has a fixed upper bound, independent of the noise sample
values. Schalkwijk [13] considered the same model but allowed
the codeword energy to depend on the noise, subject to an av-
erage energy constraint. He developed a simple algorithm for
which the error probability decays as a twofold exponential of
the block length (and thus also of the energy). This was an exten-
sion of joint work with Kailath [12] where the infinite bandwidth
limit of the problem was considered. Kramer [7] later showed
that the error probability could be made to decay -fold expo-
nentially for any for the infinite bandwidth case, and it is not
hard to slightly strengthen these results for both finite and infi-
nite bandwidth.

In the following section, we consider a class of vari-
able-length block codes for DMCs with feedback and cost
constraints. These generalize the Yamamoto and Itoh [18]
codes to allow for cost constraints. We lower-bound the achiev-
able error exponent for these codes as a function of constraints

, and on rate, average cost, and average block length,
respectively.

In Section III, we consider all possible variable-length block
codes and derive a lower bound on as a function of power con-
straint , average error probability , and message-set size .
This is then converted into an upper bound on the error exponent
over all codes of given , and . We show that as ,
this upper bound coincides with the lower bound of Section II,
thus determining the reliability function in the presence of a cost
constraint.

In Section IV, the results are generalized to a broader class
of discrete-time memoryless channels that includes AWGNCs
with both power and amplitude constraints.

II. ACHIEVABILITY: ASYMPTOTICALLY OPTIMUM CODES

A. Forward and Feedback Channel Models and Cost
Constraint

The forward channel is assumed to be a DMC of positive ca-
pacity with input alphabet and output al-
phabet . The input and output at time are
denoted by and ; the -tuples and
are denoted by and . The feedback channel is ideal in the

sense that it is discrete and noiseless with an arbitrarily large al-
phabet size (although is sufficient). The symbol

sent from the receiver at time can depend on and is re-
ceived without error at the transmitter after and before
is sent. denotes .

The forward DMC is defined by the by transition ma-
trix where, for each time , .
The channel is memoryless in the sense that

For each input letter , there is a nonnegative transmis-
sion cost and at least one is zero. The cost of
transmitting a codeword of length is the sum of the costs of
the symbols in the codeword. A cost constraint means that

. We usually refer to as a power constraint
and to as energy. With this definition of power constraint,
can be seen to upper-bound the long-term time-average cost per
symbol over a long string of independent successive message
transmissions.

B. Fixed-Length Block Codes With Error-or-Erasure Decoding

We begin with the slightly simpler problem of finding
fixed-length block codes for an error-or-erasure decoder, i.e.,
a decoder which can either decode the message or produce an
erasure symbol. The objective will be to minimize (or approxi-
mately minimize) the error probability while making the erasure
probability small but potentially much larger than the error
probability. In the following subsection, this error-and-erasure
scheme will be converted into a variable-length block-coding
scheme by retransmitting the erased messages.

Consider a code of fixed-length containing two phases of
length and , respectively. The first phase uses a power con-
straint and the second . This provides an overall power
constraint where . Define as , so
that this power constraint becomes

(1)

Phase 1 consists of a conventional block code without feed-
back, operating incrementally close to the capacity of the
channel subject to constraint

(2)

Here and throughout, is assumed to be a probability assign-
ment, i.e., for each and . The con-
ventional coding theorem for a constrained DMC with fixed
block length and no feedback is as follows:2 for any ,
there is an such that, for all large enough , codes
of block length exist with codewords,
each of energy at most and each with error probability
upper-bounded by

(3)

Using such a code in phase 1, the decoder makes a tentative deci-
sion at the end of phase 1. The transmitter (knowing the decision

2See, for example, [5, Theorem 7.3.2].
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via feedback) then sends a binary codeword for “accept” and
for “reject” in phase 2. Let be the probability that the

receiver decodes given that is sent. Similarly, is the
probability of decoding given .

If is decoded, the receiver gives its tentative decision from
phase 1 to the user and the overall probability of error sat-
isfies . If is decoded, an erasure is released and
the probability of erasure satisfies . As-
sume for now that the power constraint may be violated by an
incrementally small amount. Thus, we choose to satisfy the
constraint, and choose arbitrarily since it is rarely used. We
bound by the divergence between the output distribu-
tion conditional on and the output distribution conditional
on .

To be more explicit, define the maximum single-letter diver-
gence for the input letter as

(4)

Note that if for some channel transition, then
for each such that . We will see in Section II-E that this
leads to error-free codes at rates below capacity. In the following
subsection, we consider only channels for which for
all and .

1) Error-and-Erasure Decoding With All : Assume
that for all and and, for each ,
let be an input letter maximizing . If
contains occurrences of letter and is chosen to contain
the letter whenever contains , then the following minor
variation of Stein’s lemma results:3 for any , there is an

such that

(5)

(6)

From (5), we want to choose to maximize sub-
ject to the power constraint. Thus, for a power constraint in
phase 2, define as

(7)

The function in (7) is the maximum of a linear function
of over linear constraints. As illustrated in Fig. 1, is
piecewise linear, nondecreasing, and concave in its domain of
definition .

Choosing the phase 2 codewords and according to this
maximization, (5) becomes

(8)

The power constraint is then satisfied by . The power
in (whose probability of usage vanishes exponentially with

) can be upper-bounded by . The preceding results are
summarized in the following lemma.

3This can be derived, for example, by starting with Theorem 5 in [16] and
specializing to the case of asymptotically small s.

Fig. 1. The function D(P) for a channel satisfying P > 0 for all k 2 X

and j 2 Y . The maximum single-letter divergences D are also shown. For
convenience, the inputs are ordered in terms of cost. For any given P , D(P)
can be achieved with at most two positive � .

Lemma 1: Assume ideal feedback for a DMC with all
. Then for all , , , , , and

all sufficiently large , there is an error-and-erasure code with
messages such that, for each mes-

sage, , the probability of error , the
probability of erasure , and the expected energy
satisfy

(9)

(10)

(11)

C. Variable-Length Block Codes; All

The above error-or-erasure code can form the basis of a vari-
able-length block code with ideal feedback. As in Yamamoto
and Itoh [18], the transmitter observes each erasure via the
feedback and repeats the original message until a message, not
necessarily correct, is accepted. For simplicity, we assume that
when a message is repeated, the receiver ignores the previously
received symbols and uses the same decoding algorithm as
before. Since an error then occurs independently after each
repetition of the fixed-length codeword, the overall error prob-
ability satisfies

The duration of a block is times the number of error-or-era-
sure tries until acceptance, so . The co-
efficient goes to with increasing and thus can
be absorbed into the arbitrary term for sufficiently large .
Similarly, can be replaced with , yielding

.
In the same way, the expected energy over the entire

transmission satisfies . Finally, using
(11), the average power for each codeword is

The following lemma summarizes these results.

Lemma 2: Assume ideal feedback for a DMC with all
. Then for all , , , , and for

all sufficiently large , there is a variable-length block code of
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Fig. 2. Typical capacity functions. Parts (a) and (b) illustrate that C(0) can be either 0 or positive. Part (c) illustrates an important special case where C(x) is
linear from 0 to � > 0 where � is defined as the largest x for which C(y)=y = C(x)=x for all y 2 (0; x].

Fig. 3. Part (a) gives a graphic construction for P from R and �. Part (b) illustrates the value of � at which = C( ).

expected length , with mes-
sages such that for each message, , the
probability of error , and the expected energy
satisfy

(12)

(13)

D. Optimization of the Bound; All

Lemma 2 can be interpreted as providing a nominal rate of
transmission , a nominal power constraint

, and a nominal exponent of error probability
. We have demonstrated the existence of variable-

length block codes for which the actual average rate, power, and
exponent approach these values arbitrarily closely as becomes
large.

For any given and satisfying , we now
maximize the exponent subject to the constraints

(14)

(15)

It will be shown that there is a certain interval of values of
for which (14) and (15) have solutions, and that and are
essentially uniquely defined as a function of in that interval.
Thus, the maximization will reduce to a maximization of a func-
tion of one variable over an interval.

As can be seen from (2) and visualized in Fig. 2, the function
is nonnegative, concave, continuous, and nondecreasing

in its domain . It is strictly increasing for
where is the smallest for which , the uncon-
strained channel capacity.

For the case where , Fig. 3 illustrates how to con-
struct to satisfy (14) for a given , , and . Note that
is uniquely specified if . If , then

. Choosing for a given simply reduces ,
and thus reduces the exponent. Thus, we restrict attention in this

case to and the now unique solution for , here de-
noted , is given by

for (16)

where over is the inverse of over
. This inverse exists since is strictly increasing

over this interval. Next note from (15) that must be less than
or equal to . This constraint is illustrated in the second part of
Fig. 3. A straight line is constructed passing through the origin
and the point . For each , a horizontal line at height
intersects this line at . For the choice of in the figure, the
capacity curve lies to the left of the straight line at height ,
so , thus ensuring that .

The above straight line is linearly increasing and the capacity
curve is bounded, so they must intersect at some positive power,
rate pair, say . Define4 in terms of as

(17)

Since the capacity curve and the straight line cross at ,
we see that for (i.e., ) a straight
line at height passes through the straight line before the
capacity curve (if it passes through the capacity curve at all).
If it does pass through the capacity curve, then , so
that (15) has no solution. If it does not pass through the capacity
curve, then (14) has no solution.

If , on the other hand, is uniquely given by

(16), provided that . One can see that

is implied by , by considering the definition of
given in (17).

4The point � expressed implicitly in (17) can be expressed explicitly as

� =
P

� (R=P)

where � (�) is the inverse of the function �(x) = C(x)=x taken over the
domain x � �, where � is the largest x for which �(x) = �(0).
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Fig. 4. A typicalE(R;P) curve. The figure illustrates thatE(R;P), as a func-
tion of R for fixed P , is concave, decreasing, and bounded.

In summary, we have shown that (14) and (15) have a unique
solution for for all values in the interval

(18)

and otherwise no solutions exist.
Finally, we must show that is not empty. Since by as-

sumption , it follows that and, thus,
. Also, from (17), , which shows that is

nonempty.
The previous results assumed . For , (14) is

satisfied only by , and if one extends the previous
definition of to be in this case, then the above re-
sults apply to this case also (although shrinks to the single
point ).

Using (15), the nominal exponent then becomes

(19)

The following lemma, proven in the Appendix, shows that
is concave.

Lemma 3: The set of points such that
and is convex. The function is con-

cave over this domain.

We next maximize the exponent over

(20)

This is simply a concave maximization over an interval. The
resulting function is then also concave as a function of

, and thus also as a function of for any given . This
is illustrated in Fig. 4. It can be shown that is strictly
decreasing in from at .

One can extend the definition of to , for
any as

(21)

The following theorem results from using in
Lemma 2.

Theorem 1: Assume ideal feedback for a DMC with all
. Then for all , , , and all suffi-

ciently large integer , there is a variable-length block code of
expected length , with mes-
sages such that for each message , the
probability of error , and the expected energy
satisfy

(22)

(23)

where for each . Furthermore, the probability
that the codeword length exceeds is at most .

Theorem 1 shows that the exponent can be asymp-
totically achieved by this particular class of variable-length
block codes. The converse in the next section will show that
no variable-length block code can do better asymptotically,
i.e., that is the reliability function for constrained
variable-length block codes.

Theorem 1 also shows that these codes are almost
fixed-length block codes, deviating from fixed length only
with arbitrarily small probability. It is also possible to analyze
the queueing delay for this class of codes. Note that if the source
bits arrive equally spaced in time, then, even for a fixed-length
block code, bits are delayed waiting for the next block and
additionally delayed waiting for the block to be received and
decoded. The additional delay, for variable-length block codes,
is the queueing delay of waiting blocks while earlier blocks are
retransmitted. At any , the probability of retrans-
mission decreases exponentially (albeit with a small exponent)
with , so it is not surprising that the expected additional delay
due to retransmissions goes to with increasing . We have
shown that this indeed happens.

For and , (23) can be simplified by
absorbing the term into the of (22). This cannot
be done for since the constraint for
all reduces to the unconstrained case where only zero-cost in-
puts are used. In (23), on the other hand, we are using a reject
message of positive power with asymptotically vanishing prob-
ability, with increasing .

The requirement of ideal feedback can be relaxed to that of a
noiseless feedback link of capacity and finite delay by
using a modification of the error-and-erasure scheme first sug-
gested by Şimşek and Sahai in [11] for unconstrained channels.
For phase 1, the message is divided into equal length submes-
sages which are separately encoded at a rate close to capacity
and sent one after the other. A temporary decision about each
submessage is made at the receiver and sent reliably to the trans-
mitter with a delay equal to plus the submessage transmission
time. In phase 2, the entire message is rejected if any submes-
sage was in error and otherwise it is accepted. A single bit of
feedback is required for phase 2, and it can be shown that the
various delays become amortized over the entire message trans-
mission as .

1) Channels for Which for : In
certain cases as defined in (21) is strictly positive.
We start with a simple example of this phenomenon and then
delineate the cases where it is possible.
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Fig. 5. C(P) versus P for a BSC with a zero-cost noise symbol and resulting
value of � at R = C(P).

Example 1: BSC With Extra Free Symbol: Consider a bi-
nary-symmetric channel (BSC) in which each input symbol has
unit cost. There is an additional cost-free symbol that is com-
pletely noisy. That is, the transition probabilities and costs are
as follows:

(24)

where . Let where
is the binary entropy. As illustrated

in Fig. 5

for
for .

Assume a power constraint and choose the rate to be
at capacity . It can be seen from Fig. 5 that

. Thus, the power in phase 1 can
be chosen anywhere between and . However it is chosen, all
the available energy will be used in phase 1 and will be .
However, since the divergence of the free symbol with
either of the BSC symbols is positive. Thus, as intuition might
suggest, the maximum exponent results from maximizing the
interval available for phase 2, i.e., . Thus

This ability to transmit at channel capacity (subject to the ’s and
’s) with a positive exponent is quite surprising, but arises from

the ability to choose throughout phase 1, thus using the
BSC in that phase and transmitting at the BSC capacity. In other
words, since, is linear with for , one can transmit
the packet faster in phase 1 by using greater power without in-
creasing the overall energy required for the transmission. The
exponent is maximized by choosing , saving a fraction

of time for phase 2.
More generally, any DMC for which , as defined in Fig. 2

is greater than has the property that if , then there is a
positive exponent at . To see this, note that

. Thus, by choosing , the resulting
exponent is . It can be seen from
Fig. 2 that when , and , then , and
there is no time left for phase 2.

Fig. 6. E(R;P) for a BSC with a zero-cost noise symbol. For P < 1, the
exponent decreases linearly to a positive value at capacity.

For the example of a BSC with a free symbol, can
also be calculated for any and . It can be
seen that , and with a little thought it can be
seen that this value of , corresponding to , maximizes

. Thus, as illustrated in Fig. 6,

where

From (7), for , so

where

2) Alternative Approaches to Finding : The relia-
bility function is expressed in (20) as an optimization
over and as such involves calculating and

as subproblems. An alternative that might be more con-
venient numerically is to express directly as a concave
optimization over the input probabilities in phases 1 and 2 sub-
ject to the constraints corresponding to a given and .

Another alternative, which is more interesting conceptually,
is to investigate how the phase 1 and phase 2 powers must be
related. Consider the equivalent problem of finding the minimal
power required for a given rate and exponent . We will
derive a necessary condition for , , and
to achieve this minimum power. First consider the special case
in which is continuously differentiable for and let

be the phase 1 power amortized over both phases.
The partial derivative of with respect to for a given

is then

(25)

Geometrically, this is the horizontal axis intercept of the tangent
to at .

In the general case, can have slope discontinuities at
particular values of ; because of these discontinuities, the left
and right derivatives and the corresponding tangents and inter-
cepts becomes different from each other (see Fig. 7).

In the same way, let . Then, holding the
exponent fixed

(26)
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Fig. 7. j is the derivative corresponding to negative change in � (positive

change in P ) and j is the derivative corresponding to positive change in
� (negative change in P ).

This is the negative of the horizontal axis intercept of the tangent
to at . At points of slope discontinuity in , this must
be replaced with

(27)

(28)

Finally, the overall power constraint is , so

(29)

(30)

For and to minimize for fixed , it is neces-
sary that (i.e., that an incremental increase in
does not reduce ) and that (i.e., that an incre-
mental decrease in does not reduce ). Geometrically, what
this says is that the horizontal intercept of the tangent to
at , which in general is the interval , must
overlap with the horizontal intercept of the tangent to at

, i.e., with the interval . Note that these
intervals reduce to single points in the absence of slope discon-
tinuities in or .

It is surprising that these conditions do not involve . The
following example shows how these conditions can be used.

Example 2: Combined Four-Input Symmetric Channel, BSC,
and Free Symbol: Consider the following DMC with seven
input letters and four output letters

where , .
is piecewise linear for the same reason as in the previous

example; and are given in Fig. 8.
The above necessary conditions on and imply

(31)

Using these conditions and the set constraint, we can calculate
for any given ; the solutions for and

are given in Fig. 9.

E. Zero-Error Capacity; Channels With at Least One

The form of relies heavily on the assumption that
for all . To see why, assume for some .

We assume throughout, without loss of generality, that for each
output , for at least one input . Thus, with
and , . Suppose that the “accept” codeword
of Section II uses all ’s, the “reject” message all ’s, and that
the receiver decodes “accept” only if it receives one or more
’s. In this case, no errors can ever occur for the corresponding

variable-length block code.
Asymptotically, phase 2 can occupy a negligible portion of

the block, say of symbols. Then for any , and all
large enough block lengths , an error-and-erasure code exists
with , , and

, and expected energy . After
a little analysis the following theorem results.

Theorem 2: Assume ideal feedback for a DMC with at least
one . Then for all , all positive ,
and all sufficiently large , there is a variable-length block code
satisfying

III. THE CONVERSE: RELATING AND

We have established an upper bound on for given rate ,
power , and expected block length by developing and ana-
lyzing a particular class of variable-length block codes. Here we
develop a lower bound to which, for large enough , is valid
for all variable-length block codes. The lower bound uses the
idea of a two-phase analysis, but, as will be seen, this does not
restrict the encoding or decoding. We start by finding a lower
bound on the expected time spent in the first phase and
a related lower bound on the expected time spent in the second
phase .

The analysis is a simplification and generalization of Burna-
shev [1] and is based on the evolution at each time of the con-
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Fig. 8. Capacity and divergence functions, to different scales.

Fig. 9. Reliability function for P = 0:5 and P = 2:5; each straight-line segment is characterized by either constant P or constant P according to (31).

ditional message entropy, conditioned on the observations at the
receiver. The first phase is the interval until this conditional en-
tropy drops from to some fixed intermediate value, taken
here to be . The second phase is the remaining time interval
until the actual decoding time. Fano’s inequality is used to link
the conditional entropy at the decoding time to the error proba-
bility. In the first phase, we analyze a stochastic sequence related
to the decrease in conditional entropy at each instant , and in
the second phase, we analyze a stochastic sequence related to
the decrease in the logarithm of the conditional entropy.

Establishing this lower bound to is more involved than
the upper bound to , since the lower bound must apply to
all variable-length block codes. We start with a more precise
definition of variable-length block codes. After that we bound
the expected change of conditional entropy and its logarithm,
first in one time unit and second between two stopping times.
Then these are used to lower-bound the probability of error. The
resulting upper bound on the reliability function agrees with the
lower bound in Section II.

A. Mathematical Preliminaries and Fano’s Inequality

In a variable-length block code, the transmitter is assumed
to initially receive one of equiprobable messages from the
set . It transmits successive channel symbols
about that message, say message , until the receiver makes a
decision and releases the decoded message to the user. The time
of this decision is a random variable denoted by . We assume
throughout that , since otherwise our expo-
nential lower bound on error probability in terms of trivially
holds.

Given noiseless feedback, we can restrict our attention to en-
coding algorithms in which each input symbol is a deter-
ministic function of message and feedback.5

(32)

The entire observation of the receiver up to time , including
and any additional random choices, can be summarized by

the -field generated by these random variables. The nested
sequence of ’s is called a filtration .

At each time , depending on the realization of -field
, the receiver has an a posteriori probability for each

in . The corresponding conditional entropy of the message,
given , is a random variable , measurable in . Its
sample value for any realization , is given by

A decoding algorithm includes a decision rule about continuing
or stopping the communication, depending on the observations
up to that time, i.e., a Markov stopping time (see, for example,
[17, p. 476]) with respect to the filtration . The message is
also decoded at this stopping time. In order to define the various
random variables at all times , rather than only times
up to the stopping time, we will assume that is
equal to some given zero-cost symbol for all and all .
Thus, for all . Thus, if a variable-length block
code (henceforth simply called a code) satisfies a cost constraint

, then and for all .

5This still permits the receiver to send some random choices for codewords
to the transmitter. There is no obvious advantage to such randomization, but it
is easy to include the possibility. Random choices at the transmitter provide no
added generality since those choices (for all possible �) could be made earlier
at the receiver with no loss of performance.
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Fano’s inequality can be applied for each to upper-bound
the conditional entropy in terms of the error probability of
the decoding at . Taking the expectation6 of these inequalities
over , and using the concavity of the binary entropy

, the expected value of the entropy at the decoding
time can be upper-bounded by

(33)

This suggests that the conditional entropy is usually very small
at the decoding time, motivating a focus on how fast the loga-
rithm of the entropy changes in the second phase of the analysis
below.

B. Bounds on the Change of Conditional Entropy

For any DMC, any code, and any , define a sequence
of random variables as

(34)

where is the Lagrange multiplier for the cost constraint
in the maximization of over input probability distributions
in (2). This stochastic sequence will be used to bound the en-
tropy and energy changes in phase 1.

Lemma 4: For any DMC, any code, and any , the
sequence is a submartingale,7 i.e.,

and for all

Note that is a random variable whose sample
values are determined by the particular realized. In
that respect, inequality in Lemma 4 is between two random
variables.

This lemma applies to all codes, whether or not they have a
cost constraint equal to the in the definition of . Proofs of
Lemmas 4 to 8 are given in the Appendix .

The following two lemmas develop another submartingale
based on the log entropy.

Lemma 5: For any DMC with all , any code, and any

(35)

Another stochastic sequence, is now defined
that combines the changes in log entropy and cost.

(36)

where is the Lagrange multiplier for the cost constraint
in the maximization of over input probabilities in (7).

6The facts that jH j � lnM and jP j � 1, combined with Lebesgue’s
dominated convergence theorem, [17, p. 187], allow us to interchange the limit
and expectation here.

7See, for example, [17, Ch. VII] for a treatment of submartingales.

Lemma 6: For any DMC with all , for any code, and
for any , the sequence is a submartingale,
i.e.,

and for all

C. Measuring Time With Submartingales

The following lemmas are used to lower-bound the expected
value of certain stopping times and, consequently, the durations
of phases 1 and 2 in terms of and ,
respectively.

Lemma 7: For any DMC, any , and any code, if a
stopping time satisfies

and

then

(37)

Lemma 8: For any DMC with all , any , and
any code, if a pair of stopping times satisfies

and

then

(38)

The bounds asserted by these lemmas are tight in the sense
that when they are used with the stopping times to be specified
later, they will show that in (20) is an upper bound on
the reliability function.

D. Lower-Bounding

We now derive lower bounds on the expected decoding time
for any variable-length block code with equiprobable mes-
sages, subject to a given cost constraint and a required proba-
bility of error . The first result is simply an explicit statement
of the well-known impossibility of transmitting reliably at rates
above .

Theorem 3: For any DMC, any code with equiprob-
able messages, any , and any required error probability

and cost constraint , the expected decoding time
satisfies

(39)

Proof: From (33), . Thus,
since , (39) results from (37) with .

This result is valid both for the case where all and
the zero-error case where some . In the zero-error case,
we already know that is asymptotically achievable for

, so our remaining task is to show that is an
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upper bound as well as a lower bound to the reliability function
in the case where and all .

E. Lower Bounding for DMCs With All

The main issue in this lower bound is finding an intermediate
Markov stopping time which will divide the message trans-
mission interval into two disjoint phases8 such that the duration
of each can be lower-bounded tightly by Lemmas 7 and 8, re-
spectively. Consider the stopping time
in filtration . This does not quite work as an intermediate stop-
ping time, since a variable-length code could in principle oc-
casionally decode before the conditional entropy, drops
below . Instead, we use to define the end of the
first phase. This is also a Markov stopping time, and ,
so this is a well-defined intermediate time for all codes.

We now apply Lemma 7 to . Let be the expected
energy used by any given code in this first phase and let

. Then (37) becomes

(40)

We next find a lower bound to . By definition of ,
, but might be greater than if . Thus,

we can upper-bound by

(41)

(42)

(43)

where in (41) we upper-bounded by ,
the maximum entropy for any ensemble of elements. We
used the Markov inequality in (42) and then (33) in (43).

Since the messages are a priori equiprobable, ,
so substituting this and (43) into (40)

(44)

As shown later, the term in brackets essentially approaches as
and, thus, is approximately lower-bounded by

.
Next we find the expected time spent in phase 2.

Here we use (38) from Lemma 8, with the initial time chosen
to be and the final time chosen to be . Let
be the expected energy used by the given code in this second

phase and let . Then

(45)

8There is a nice intuitive relation between these two phases used in the con-
verse and the two phases used in the variable-length block codes of Section II-C,
since in each case the first phase deals with a large sea of messages and the
second deals essentially with a binary hypothesis. When an error-and-erasure
codeword is repeated, however, phase 1 as defined here could end during any
one of those repetitions.

We lower-bound by upper-bounding
and lower-bounding . By Jensen’s

inequality, , so from (33)

(46)

To lower-bound , we use the following lemma.

Lemma 9: For any DMC with all , any code, and any

(47)

Since , i.e., , the lemma implies
that .

Substituting this and (46) into (45)

(48)

As shown later, the numerator is essentially in
the limit of small . Now we can find a lower bound on

, for codes of rate , using the above result.

Theorem 4: Assume a DMC with all . Let ,
, and be arbitrary. Then, for all sufficiently

large , all variable-length block codes with
• expected energy
• equiprobable messages

must satisfy

(49)

We now give an intuitive justification of the theorem; a proof
is given in the Appendix. Leaving out the “negligible” terms,
(44) and (48) are

Defining for the given code and rearranging terms

(50)

In any code that allocates its time and power between the two
phases as , and , , (50) is the converse of Lemma 2.
The exponent is the result of optimizing over these
parameters for given . The proof in the Appendix treats
the neglected quantities and this optimization carefully.

IV. EXTENSION TO OTHER MEMORYLESS CHANNELS

The channel model of Sections II and III assumes finite input
and output alphabets, but, as will be seen, the analysis is more
general, and with some added assumptions, continues to hold
with minor changes such as replacing sums and ’s with in-
tegrals and ’s. A later paper by Burnashev [2], extends his
results for the DMC to a more general class of discrete-time
memoryless channels. The extension below generalizes his class
of channels and adds arbitrary finite but not necessarily bounded
cost assignments.
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A. Assumptions About the Channel Model

The channel input and output alphabets can be countable or
uncountably infinite and will be denoted by and , respec-
tively. Each element has an associated cost and, as
before, we assume that the infimum of these costs is equal to
zero.

Each input will have an associated probability mea-
sure governing the output conditional on input ; this re-
places the transition matrix for the DMC case. We will
assume that there exists a probability measure , with respect to
which all are absolutely continuous, i.e.,

Indeed, without this one can hardly begin to analyze such
a memoryless channel. For each , let be the
Radon–Nikodym derivative of with respect to

(51)

If and are each the set of real numbers and if probability
densities exist, then can be taken as the probability den-
sity of conditional on .

Our previous definitions can be extended by replacing sums
with integrals, ’s with ’s, etc.

(52)

where is the unconditional probability measure
on corresponding to the measure on . Similarly

(53)

(54)

The following assumption, which clearly includes DMCs with
all , will ensure that and are finite for all

.

Assumption 1: The discrete time memoryless channel satis-
fies the following:

• , and ,
• , ,
• .

With the above assumptions replacing the DMC assump-
tions, equivalents of Lemma 1, Lemma 2, and Theorem 1
can be proven. The essential difference is that the symbol
costs are not universally bounded by a constant like ,
as assumed earlier for the reject codeword. Consequently, the
statements and proofs must be modified slightly, but the essence
of the propositions will be the same. As an example, consider
Lemma 1.

In establishing Lemma 1 for the DMC case, the use of letter
in phase 2 for the accept codeword was matched, in the

reject codeword , by the letter that yielded the maximum
divergence with . Here the use of letter in will be
matched in by some that comes within a given of
in (53) and has a finite cost . For a cost constraint in
phase 2 here, the supremum from (54) can be approached

within by a linear combination of at most two input letters, say
and , so that

(55)

(56)

Using such a linear combination for , and using the matching
and for , we see that meets the cost con-

straint , the divergence per letter between and is at
least , and the cost per letter of is bounded by

. With these modifications, Lemma 1 fol-
lows as before.

Lemma 2 and Theorem 1 will then follow as before
by replacing by . The optimization
problem for and is then the same as before, with
the caveat that , , can all be unbounded. However,
the value can still be found in exactly the same way as in
the DMC case, using the intersection of the curve and
the straight line passing through the origin and . If this
intersect does not exist it will mean that all values of are
permissible. In short, the function can be found using
the same optimization problem and solution techniques in terms
of the functions and .

Proceeding on to the converse, it can be seen that the proofs
of Lemmas 4 to 8 all hold under Assumption 1. In verifying
these proofs, however, one must assume that all codes have fi-
nite expected energy; this is tacitly assumed in Theorem 4 since
it is assumed throughout that . Lemma 9 does not hold
in all cases, and in particular does not hold even for the am-
plitude-limited AWGNC. The following additional assumption
will hold in many cases where Lemma 9 does not hold and will
enable Theorem 4 to be proven.

Assumption 2: The discrete-time memoryless channel has an
associated function such that:

• for any coding and any

• ;
where .

Theorem 4 is proved for stationary memoryless channels sat-
isfying Assumptions 1 and 2 in the Appendix.

B. Discussion of Extended Channel Models

It is natural at this point to ask what kinds of channels sat-
isfy Assumptions 1 and 2. A partial answer comes from con-
sidering the class of channels without cost constraints consid-
ered by Burnashev in [2]. He shows that any channel satisfying
the following conditions has an error exponent given by

.

•

• ,

and
• At least one of the following is satisfied:

— The channel is an additive noise channel whose input
alphabet is a closed interval on the real line and whose
noise has a unimodal density.
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— such that

His first assumption, , implies that
the channel satisfies our Assumption 1 for all nonnegative
finite-cost assignments. He shows that the other assump-
tions imply that a function exists such that

and such that for all codes

(57)

This implies that the channel satisfies our Assumption 2 for
all nonnegative finite-cost assignments. Thus, his assumptions
imply our assumptions for all cost assignments and, conse-
quently, for all cost assignments, the corresponding
exists and is the reliability function.

We next give an example of a channel that does not satisfy the
conditions given in [2] and does not have a finite reliability func-
tion without a cost constraint, but does satisfy our conditions and
has a finite cost constrained reliability function .

Let and be the set of nonnegative integers and assume the
cost function , i.e., the cost of each input letter is equal
to the square of the value of the corresponding real number. Let
the transition probability be

where is when its argument is , and elsewhere.
This channel can be proved to satisfy Assumptions 1 and 2,

and thus its error exponent is given by . On the other
hand, it does not satisfy the necessary conditions of [2] and the
reliability function is unbounded for any rate below capacity if
there is no cost constraint.

A major reason for this investigation of cost constraints with
feedback has been to achieve a better understanding of why error
probability can be made to decrease faster than exponentially
with constraint length for the AWGNC with feedback. It is easy
to see that in (53) is infinite for all , and thus codes of
the Yamamoto and Itoh type have unbounded exponents for the
AWGNC. If an amplitude constraint is imposed at the channel
input, then it is equally easy to see that is finite for all . The
supremum in (53) becomes a maximum at , with the
sign opposite to that of . In fact, assuming unit variance noise

for

After the optimization procedure of Section II-D, an exponent
can be calculated which is rapidly increasing in

but finite for all . This exponent is an upper bound to
that in the fixed length case.

The insight to be gained by this is that the faster-than-expo-
nential decay of error probability for the classical AWGNC is
due to the ability to transmit at unbounded amplitudes when er-
rors are immanent. It is important to note that having variable
(and unbounded) block length subject to a mean is not a substi-
tute for unbounded amplitude. The variable length increases the
exponent, but cannot make it unbounded.

V. CONCLUSION

Theorems 1 and 4 specify the reliability function for the class
of variable-length block codes for DMCs with cost constraints,
all , and ideal9 feedback. The results are extended to a
more general class of discrete-time memoryless channels satis-
fying Assumptions 1 and 2 of Section IV. AWGNCs with am-
plitude and power constraints provide examples satisfying these
assumptions. Theorem 2 shows that zero error probability is
achievable at all rates up to the cost constrained capacity and
moreover is achievable by a very simple scheme if the channel
has one or more zero probability transitions.

The rate and the error exponent are specified in terms of the
expected block length. By looking at a long sequence of succes-
sive message transmissions, it is evident from the law of large
numbers that the rate corresponds to the average number of mes-
sage bits transmitted per unit time. In the same way, the cost
constraint is satisfied as an average over both time and channel
behavior. The theorems then say essentially that the probability
of error for the best variable-length block code of given

, and satisfies as .
Mathematically, these theorems are quite similar to the con-

ventional non-feedback block-coding results except for the fol-
lowing differences: first, the reliability function is known for all
rates rather than rates sufficiently close to capacity; second, the
reliability function is concave (and sometimes positive at ca-
pacity); and third, the reliability function is given in terms of
expected rather than actual block length. The first two differ-
ences have been discussed in detail in the previous sections.

In order to understand the role of the expected block length on
the exponent, look at the coding scheme used for achievability.
The expected block length is close to the fixed block length
of the underlying error-and-erasure code and it is this code that
determines . In other words, the variable-length feature
is essential for the small error probability, but is constant with
high probability.

One might think that a variable-length block code has many
system disadvantages over a fixed-length code, but this is not
really true (except for time-sensitive systems) since variable-
length protocols are almost invariably used at all higher layers.
As discussed in Section II, it can be shown that the expected
additional queuing delay introduced by those codes can be made
to approach with increasing .

APPENDIX

A. Proof of Lemma 3 (Concavity of )

For any given DMC, let be the set of triples for
which and .

(58)

First we show that is a convex set, and then we show that
is a concave function over the domain .

9Indeed, as argued previously, noiseless feedback of rate C or higher with
bounded delay is enough.
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Assume that and are arbitrary
points of . We show that is a convex set by showing that for
any , the point given by

(59)

(60)

(61)

is also in the set .
is clearly positive, and using the concavity of , we get

(62)

We must also show that . It suffices to show that
, , and . The latter two con-

ditions are obvious, so we will show only that . As
discussed in Section II-D, the condition is equivalent
to .

To show that first note that

and

which implies that

Thus

Consequently, is a convex region. We next show that
is concave over . That is, given points

and in , we will
show that

(63)
Let us start with the left-hand side of the inequality (63)

(64)

where we have used the concavity of together with (61) in
the last step.

(65)

The inequality above follows the convexity of . Using the
fact that is nondecreasing together with the inequalities
given in (64) and (65) we get the inequality (63)

B. Proof of Lemma 4

In the following proofs, we will use the following shorthand
notation:

Each of these quantities are random variables whose sample
values for any given are probabilities or conditional
probabilities of messages, channel inputs, or channel outputs.
The reader can then interpret the following arguments as holding
for each sample value and thus for the random vari-
ables themselves.

We will first prove that . Recall

(66)

Since , , and

(67)

Note that , thus

(68)

In addition for any finite-energy code10 . Conse-
quently, .

We next prove that . Following the defi-
nition of

(69)

Note that

(70)

Note in the notation above about the conditional mutual infor-
mation is different from the usual information theory conven-

10The convention for extending the encoding algorithms beyond decoding
time is assigning all of the codewords to the same zero-cost symbol.
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tion, where “ ” denotes an expectation over as
well as and , i.e., .

Thus, (66) and (69) lead to

Because of the Markov relation which
holds for all combined with the data processing inequality,
we have

(71)

Note that

(72)

where

is the mutual information between the input and output symbols
when the distribution of the input symbol is . Thus

(73)

and the stochastic sequence is a submartingale.

C. Proof of Lemma 5

First note that for all , log-sum inequality implies

(74)

Consequently

(75)

Using and defining

we get

(76)

In order to verify the inequality in (76), denote the right side
minus the left side as , and note that by substitution

The first two terms above are divergences, and thus nonneg-
ative. The third term can be rewritten as below and is shown to
be nonnegative by applying Jensen’s inequality to the function

which is convex for any .

(77)

(78)

Similarly, the fourth term can be rewritten as below and is shown
to be nonnegative by applying Jensen’s inequality to the convex
function for .

(79)

(80)

This verifies (76). The final term in (76) can be upper-bounded
by
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(81)

(82)

where uses the log sum inequality over for each and
follows from the definition of .

By a similar argument on the first term in (76)

(83)

Substituting the above two inequalities into (76)

(84)

Thus

(85)

which is equivalent to (35).

D. Proof of Lemma 6

We will first prove that . Recall from
(36) that

(86)

where is the Lagrange multiplier for the cost constraint
in the maximization of over input probabilities in (7).
Consequently

(87)

Using first Lemma 5 and then (87) we get

(88)

We next prove that . Using the definition of
and the fact that , , and

(89)

Note that since

Since for any finite energy code , proving that

, will establish .

Note that

(90)

Using the concavity of together with (85) we get

(91)

Recalling that , will prove and

thus, .

E. Proof of Lemma 7

By the definition of

(92)

Since the expected value of each term on the right side exists

(93)

where we have used along with the hypothesis of the
lemma that . Since

, the result of the lemma, i.e.,
will then hold if

(94)

holds. Doob’s theorem (see [17, p. 485]) states that a submartin-
gale satisfies (94) if it satisfies the following two conditions:

and (95)

The first condition follows from modifying (92) to bound .

(96)

To establish the second condition, let

(97)

We want to find a random variable of finite expectation that
upper-bounds for each ; the troublesome term here is

. Let (which is measurable in ) denote the
cost of the codeword corresponding to the message at time .
The following very weak bound is sufficient for our purposes:

(98)

Substituting (98) into (97)
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(99)

In we have used the fact that indicator function is zero if
; and if . Note that for

all . Since and it follows
that . Since , Lebesgue’s
dominated convergence theorem (see [17, p. 187]) shows that

.

F. Proof of Lemma 8

Lemma 6 showed that the sequence

(100)

for is a submartingale, and we will use Doob’s theorem to
prove the lemma. In particular, for two stopping times, ,
Doob’s theorem says that if, for both and

and (101)

then and exist and satisfy

(102)

For the moment, assume that the condition of (101) is satisfied.
Then substituting the definition of for and
into (102)

(103)

Inserting the assumption

(104)

This is equivalent to the result of the lemma, so we need only
establish the conditions in (101) to complete the proof. For the
first part, we can modify (100) to bound as

(105)
All but the first of these terms clearly have finite expectations, so
the first part of (101) reduces to proving that

. Since

(106)

Now using Lemma 5, we have

(107)

(108)

where the second inequality follows from the concavity of the
function .

For any random variable , we have
and . Combining these,

. Applying this to the random variable
and using the (108) we get

The last term above can be bounded as

(109)

where in we have used the fact that for all
and in we used . Thus

(110)

where . Substituting this into the expec-
tation of (106)

(111)

This is finite, verifying the first part of the condition in (101).
Finally, we must verify the second part of the condition, i.e.,

that

Let be
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Following the same set of steps as in (99)

(112)

(113)

Taking the expectation of both sides, using (110) together
with the hypotheses and , we see that

. Thus, using Lebesgue’s dominated convergence
theorem,11 together with the fact that
implies that .

G. Proof of Lemma 9

We use the shorthand notation introduced at the beginning of
subsection B in proving the upper bound on .
Let

Note that

(114)

where we have used the fact that both and are in the
convex hull of the set of transition probabilities . Using the
nonnegativity of the divergence followed by (114)

(115)

(116)

If we include in the maximization, we will get (47) which will
be valid for all values of .

H. Proof of the Converse, Theorem 4

Theorem 4 will be proved for the discrete-time memoryless
channels defined in Section IV. This includes DMCs with

for all as a special case. The discussion in Section III-D.1
is valid except for and the consequent inequality
(48). As a substitute, we will use Assumption 2 of Section IV to
show that can be lower-bounded, for each , by

(117)

Proof of (117) will be presented subsequent to the current proof.

11See, for example, Shiryaev, [17, p. 187].

Assume that the theorem is false. Then a sequence of codes,
indexed by superscript , exists such that the durations satisfy

and each code satisfies all the conditions

above but violates (49). Define . Then using (44) for
the th code and dividing both sides by , we get

The term in brackets above approaches since

and lies between and .
Thus

for sufficiently large (118)

Similarly, dividing both sides of (117) by

Let be such that . Then for sufficiently
large

(119)

From (118), where the domain of the function
is extended according to the following convention, for

the channels for which :

(120)

Consequently, from the energy constraint ,
we have

(121)

Thus, using (119) and (121) we get

(122)

Recall that the function was defined as

(123)
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where

Note that since and , is

greater than . Furthermore, if than

(124)

Thus, for sufficiently high

(125)
Observing that in equalities given in (122) and (125) leads to a
contradiction concludes our proof.

I. Proof of Inequality (117)

For any channel and code, let be the random variable
. Assumption 2 of Section IV asserts that

there is a function satisfying such that
for all and

(126)

For all sample values of such that , we see
that . It follows from this that

and thus for all

(127)

Substituting (127) into (126), we see that

(128)

holds for all such that .
Note that holds, and thus (128) also holds, for each
such that . Thus, we can insert the indicator function

as follows:

(129)

Taking the expectation over we get

(130)

Note that

(131)

For any , we next sum (130) over

(132)

Using

(133)

together with , , and
Lebesgue’s dominated convergence theorem,12 one can show
that

(134)
Consequently

(135)

Now recall the inequality (46)

(136)

Using Lemma 8, we get
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