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Abstract: The screening method proposed by Morris (1991) and recently improved by 
Campolongo et al. (2003) is very effective to screen a subset of few important input factors 
among a large number contained in a model. In this work the enhanced Morris method is first 
confronted with the variance based methods and then employed to assess the sensitivity of a 
financial model for option pricing. 
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1. INTRODUCTION 
 

A sensitivity analysis method widely used to screen factors in models of large 
dimensionality is the design proposed by Morris [1]. The Morris method deals efficiently with 
models containing hundreds of input factors without relying on strict assumptions about the 
model, such as for instance additivity or monotonicity of the model input-output relationship.  

The Morris method is simple to understand and implement, and its results are easily 
interpreted. Furthermore it is economic in the sense that it requires a number of model 
evaluations that is linear in the number of model factors. The method can be regarded as 
global as the final measure is obtained by averaging a number of local measures (the 
elementary effects), computed at different points of the input space.  

In very recent work [2] Campolongo and coworkers proposed an improved version of the 
Morris measure µ, denoted as µ*, which is more effective in ranking factors in order of 
importance. Furthermore, they extended to the Morris measure a desirable property of the 
variance based methods: the capability to treat group of factors as if they were single factors.  

Here we extend the study in [2] by testing the performance of µ and µ* by groups on an 
analytical test function recently proposed by O’Hagan [3]. Results of the enhanced Morris 
method are also compared with those obtained by making use of the variance based sensitivity 
measures. The motivation for this comparison lies in the present trend that sees the variance 
based methods as particularly apt to sensitivity analysis, because of their desirable properties 
in terms of model independence, global nature, ease of interpretation and others [4]. At the 
same time the method of Morris is considerably cheaper than the variance based methods in 
terms of model evaluation, hence the interest in this comparison.   
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Results confirm that the Morris method, in its new version µ*, is as efficient as the 
variance based techniques in identifying irrelevant factors, i.e. those factors that can be fixed 
at any given value within their range of uncertainty without significantly affecting the total 
output variance. Hence, it is recommendable as a valid alternative to the variance based when 
the problem is such that the cost of the variance based techniques is too high.  

A theoretical link between the Morris and the variance based measures is also argued for 
by expressing the measure µ* in terms of conditional variances.  

Section 4 of this work is dedicated to an application of the enhanced Morris method to a 
real test case, a financial model here used to price a European call option. Results of the 
sensitivity analysis confirm the good quality of the model and encourage to extend its use to 
more delicate problems such those of pricing exotic options. 

 

2. METHODOLOGY  

2.1. The Morris method and its improved version 
 

The experimental plan proposed by Morris is composed of individually randomized 'one-
factor-at-a-time' experiments: the impact of changing one factor at a time is evaluated in turn. 
Each input factor may assume a discrete number of values, called levels, which are chosen 
within the factor range of variation.  

The sensitivity measures proposed in the original work of Morris [1] are based on what is 
called an elementary effect. The elementary effect for the ith input is defined as follows. Let ∆  
be a predetermined multiple of 1/(p-1). For a given value of x, the elementary effect of the ith 
input factor is defined as 
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where ),...,,(x kxxx 21=  is any selected value in Ω such that the transformed point (x + 

ie ∆), where ie  is a vector of zeros but with a unit as its ith component, is still in Ω for each 
index i=1,..,k. The finite distribution of elementary effects associated with the ith input factor, 
is obtained by randomly sampling different x from Ω, and is denoted by iF . 

In Morris [1], two sensitivity measures were proposed for each factor: µ, an estimate of 
the mean of the distribution iF , and σ, an estimate of the standard deviation of iF . A high 
value of µ indicates an input factor with an important overall influence on the output. A high 
value of σ indicates a factor involved in interaction with other factors or whose effect is non-
linear. Here we consider a third sensitivity measure, µ*, which is an estimate of the mean of 
the distribution (here denoted as iG ) of the absolute values of the elementary effects  [2].  

We believe that µ* is better than µ to rank factors in order of importance. The reason is 
that if the distribution iF  contains elements of opposite sign, which occurs when the model is 
non-monotonic, when computing its mean some effects may cancel each other out. Thus a 
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factor which is important but whose effect on the output has an oscillating sign may be 
erroneously considered as negligible, thus generating a mostly undesirable Type II error.  

The performance of µ* is tested on the analytical function presented in Section 3 and 
compared with that of the variance based methods described in the following subsection.  

2.2. The variance based measures 
 

Variance based methods choose as a measure of the main effect of a factor iX  on the 

output, an estimation of quantity 
( )( )
)(YV

XYEV iX ii −X , which is known in the literature as the 

“first order effect” of iX  on Y , and denoted by iS . Reasons for this choice are detailed in 
[4]. 

Another sensitivity measured based on the variance decomposition is the total sensitivity 
index, 

iTS . The total index is defined as the sum of all effects involving the factor iX . TiS  is 

estimated by the quantity 
( )( )
)(YV

YVE iXii −−
XX .  

The total index is the appropriate measure when the problem is that of Factors Fixing [4], 
i.e. that of identifying those factors that can be fixed to any given value within their range of 
variation because they are non influent on the total output variance. A necessary and sufficient 
condition for factor iX  to be totally non- influent is that 0=TiS . In fact, if factor iX  is totally 
non- influent, then all the variance is due to i−X , and fixing this vector results in 

( ) 0=
−iX YV

i
X , as well as in ( )( ) 0=

−− iX YVE
ii

XX . The reverse is also true: if ( ) 0=
−iX YV

i
X  

at all fixed points in the space of i−X , then iX  is non- influent, so that 0≡TiS . 

Variance based techniques have several desirable properties. They are “model free”, in the 
sense of independent from assumptions about the model such as linearity, additivity and so 
on. They are global, i.e. they explore the entire interval of definition of each factor and the 
effect of each factor is taken as an average over the possible values of the other factors. They 
are usually quantitative, which is they can tell how much factor a is more important than 
factor b. They are able to treat grouped factors as if they were single factors, a property of 
synthesis that may be essential for the agility of the interpretation of the results.   

The main drawback of the variance based measures is their computational cost, as they 
require a number of model evaluation such as )( 2+× kN  where k is the number of input 
factors and N is of the order of N = 500, 5000…, [4] which in some instances may result to be 
unaffordable. Note that this number can be lowered considerably if one desires to compute 
only the first order sensitivity indices, as shown by Ratto et al. [6]. Design based strategies to 
estimate sensitivity indices at low sample size are also proposed in [3].  

In this work it is shown that the improved Morris measure represents a valid alternative to 
the variance based one when the aim of the analysis is that of screening few important factors 
among a large number, and the cost of applying variance based techniques would be 
excessive. 
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3. TESTING THE METHOD 
 

In this Section we propose to test the performance of µ* and that of the Morris strategy 
extended for groups on the analytical function recently proposed by Oakley and O’Hagan [3].  

The test function is the following: 

Mxxxaxaxax TTTT +++= )sin()cos()( 321η  

where x is a fifteen dimensional input vector while a1, a2, a3 and M are respectively three 
(1×15) row vectors and a (15×15)  matrix of parameters (Table 1). The unknown input factors 
are assumed to be independent and to follow a normal distribution N(0,1). In [3] the emphasis 
in on computing first order sensitivity measures, and the test case is designed to have three 
groups of factors, with respectively high ( 1511 xx − ), medium ( 106 xx − ) and low ( 51 xx − ) 
values of iS . 

Table 1: Parameters of the analytical function proposed by O’Hagan. 

 

The total variance of the output can be computed analytically and decomposed as the sum 
of first and second order effects: 
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where ( )•E  indicates the mean operator. All the terms of higher order are zero. 

a1 a2 a3 M
0.01 0.43 0.10 -0.02 -0.19 0.13 0.37 0.17 0.14 -0.44 -0.08 0.71 -0.44 0.50 -0.02 -0.05 0.22 0.06
0.05 0.09 0.21 0.26 0.05 0.26 0.24 -0.59 -0.08 -0.29 0.42 0.50 0.08 -0.11 0.03 -0.14 -0.03 -0.22
0.23 0.05 0.08 -0.06 0.20 0.10 -0.29 -0.14 0.22 0.15 0.29 0.23 -0.32 -0.29 -0.21 0.43 0.02 0.04
0.04 0.32 0.27 0.66 0.43 0.30 -0.16 -0.31 -0.39 0.18 0.06 0.17 0.13 -0.35 0.25 -0.02 0.36 -0.33
0.12 0.15 0.13 -0.12 0.12 0.11 0.05 -0.22 0.19 -0.07 0.02 -0.10 0.19 0.33 0.31 -0.08 -0.25 0.37
0.39 1.04 0.75 -0.28 -0.33 -0.10 -0.22 -0.14 -0.14 -0.12 0.22 -0.03 -0.52 0.02 0.04 0.36 0.31 0.05
0.39 0.99 0.86 -0.08 0.004 0.89 -0.27 -0.08 -0.04 -0.19 -0.36 -0.17 0.09 0.40 -0.06 0.14 0.21 -0.01
0.61 0.97 1.03 -0.09 0.59 0.03 -0.03 -0.24 -0.10 0.03 0.10 -0.34 0.01 -0.61 0.08 0.89 0.14 0.15
0.62 0.90 0.84 -0.13 0.53 0.13 0.05 0.58 0.37 0.11 -0.29 -0.57 0.46 -0.09 0.14 -0.39 -0.45 -0.15
0.40 0.81 0.80 0.06 -0.32 0.09 0.07 -0.57 0.53 0.24 -0.01 0.07 0.08 -0.13 0.23 0.14 -0.45 -0.56
1.07 1.84 2.21 0.66 0.35 0.14 0.52 -0.28 -0.16 -0.07 -0.20 0.07 0.23 -0.04 -0.16 0.22 0.00 -0.09
1.15 2.47 2.04 0.32 -0.03 0.13 0.13 0.05 -0.17 0.18 0.06 -0.18 -0.31 -0.25 0.03 -0.43 -0.62 -0.03
0.79 2.39 2.40 -0.29 0.03 0.03 -0.12 0.03 -0.34 -0.41 0.05 -0.27 -0.03 0.41 0.27 0.16 -0.19 0.02
1.12 2.00 2.05 -0.24 -0.44 0.01 0.25 0.07 0.25 0.17 0.01 0.25 -0.15 -0.08 0.37 -0.30 0.11 -0.76
1.20 2.26 1.98 0.04 -0.26 0.46 -0.36 -0.95 -0.17 0.003 0.05 0.23 0.38 0.46 -0.19 0.01 0.17 0.16
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Table 2 shows the rank of importance for the 15 input factors according to the revised 
Morris measure µ* and to the Sobol’ total effect index. The analytical values of the total 
effects are also reported. The total number of model evaluations needed to estimate each set 
of measures is reported in the first row. Results confirm that, with just 1024 model 
evaluations, the Morris revised measure is capable of identifying the subset of important 
factors ( 1511 xx − ). Note that when the total sensitivity indices are used, the factors end up 
partitioned in just two sets, that of the most influential factors ( 1511 xx − ), and that of the less 
influential ones (all others). Strictly speaking, none of the input factors of this test case can be 
fixed unless a rather high threshold is imposed. The least important factor’s bottom marginal 
variance is in fact as high as 2.6 %. Four factors could be fixed if the threshold were 5%, 
while ten could be fixed if the threshold were 10%.        
 

Table 2: Sensitivity analysis results for the test function in [3]. The analytical values of the 
total indices are reported together with the Sobol’ estimates. The correspondent ranks are 
compared with that obtained through the Morris experiment. 

Factor
ST(i) 

Analytics
ST(i) 

N=65563
Analytics 

Rank 
ST(i)  Rank 

N=65563

Morris 
Rank 

N=1024
X1 0.059 0.034 9 11 8
X2 0.063 0.032 8 12 9
X3 0.036 0.026 13 14 12
X4 0.055 0.035 11 10 10
X5 0.026 0.01 15 15 15
X6 0.041 0.038 12 9 13
X7 0.058 0.047 10 8 11
X8 0.082 0.067 7 7 7
X9 0.097 0.073 6 6 5
X10 0.036 0.027 14 13 14
X11 0.151 0.14 2 5 3
X12 0.148 0.172 3 2 2
X13 0.142 0.152 4 3 4
X14 0.141 0.143 5 4 6
X15 0.155 0.175 1 1 1

 

4. THE FINANCIAL PROBLEM 
 

The problem is that of pricing a European call option. Different scenarios are assumed, 
corresponding to different possible strike prices and times to maturity. The dynamic of the 
underlying stock price is modeled according to the Heston Stochastic Volatility model 
(HEST, [5]), where the stock price follows the Black-Scholes stochastic differential equation 
SDE in which the volatility behaves stochastically over time: 

tt
t dWdtqr

dt
d

σ+−= )(
S

  00 ≥S . 

The (squared) volatility follows the Cox-Ingersoll-Ross process: 
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tttt Wddtkd ~)( θσσησ +−= 22   00 ≥σ , 

where },{ 0≥= tWW t  and },
~

{
~

0≥= tWW t  are two correlated standard Brownian motions 

such that dtWddWCov tt ρ=]
~

,[ .  
Here we also consider an extension of the HEST model that introduces jumps in the asset 
price [5]. Jumps here are assumed to occur as a Poisson process and the percentage jump-
sizes are log-normally distributed. 

In the Heston Stochastic Volatility model with jumps (HESJ), the SDE of the stock price 
process is extended to yield: 

ttttJ
t ddWdtqr

dt
d

NJ
S

++−−= σλµ )(   00 ≥S , 

where },{ 0NN ≥= tt  is an independent Poisson process with intensity parameter 0>λ , i.e. 
tE t λ=][N . tJ is the percentage jump size (conditional on a jump occurring) that is assumed 

to be log-normally, identically and independently distributed over time, with unconditional 
mean Jµ . The standard deviation of )tJ1log( +  is Jσ : 











−++ 2

2

2
1logNJ1log J

J
jt σ

σ
µ ,)(~)( . 

The SDE of (squared) volatility process remains unchanged. tJ  and N are assumed to be 
independent, as well as of W and of ~ W. 
Sensitivity analysis is performed first on the HEST model and then on its extended version 
with jumps HESJ. For HEST the input variables considered in the analysis are 0σ , θη   ,  ,k  
and ρ. In the case where jumps are present JJ σµλ ,,  are added. The initial condition for the 
underlying price S0 is fixed at 100, while the interest rate r and the dividend yields q of the 
stock are respectively at 1.9% and 1.2%. The distributions chosen for the inputs are listed in 
Table 3. Both the Morris measure µ* and the total sensitivity indices 

iTS are computed for the 

input factors in 42 different scenarios, a scenario being determined by a different value of the 
option strike price and of the time to maturity. 
 
Table 3: Distributions for the inputs of the HEST and HESJ models.  

Input Distribution Minimum Maximum Input Distribution Minimum Maximum 

0σ  Uniform 0.04 0.09 ρ Uniform -1 0 

κ Uniform 0 1 λ Uniform 0 2 

η Uniform 0.04 0.09 µj Uniform -0.1 0.1 

θ Uniform 0.2 0.5 σj Uniform 0 0.2 

 
Tables 4 and 5 show the ranking of the input factors obtained according to the two 

measures for the two versions of the model, HEST and HESJ, in some of the scenarios. For 
the variance based method, which is a quantitative method (as each index represent the 
fraction of the output variance due to the effect of that factor), we also reported values of the 
indices. The total number of model executions for the total sensitivity indices is 20480. For 
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the Morris experiment four levels are considered and 60 model executions performed to 
obtain the distribution of elementary effects for each input. The variance based method has 
also been repeated doubling the sample size to verify the convergence of the obtained 
sensitivity ind ices. Results confirm that the sample size 20480 can be considered sufficient for 
the estimation of the indices. 
 

Table 4: Sensitivity analysis results of the HEST model for six selected scenarios 

 
ST(i) 

N=14336 

ST(i) 
Rank 

N=14336 

Morris 
Rank 
N=60 

ST(i) 
N=14336 

ST(i) 
Rank 

N=14336 

Morris 
Rank 
N=60 

ST(i) 
N=14336 

ST(i) 
Rank 

N=14336 

Morris 
Rank 
N=60 

 Strike = 80 Strike = 100 Strike = 120 

 Time to maturity = 1y 
σ0 0.742 1 1 0.821 1 1 0.411 2 2 

κ 0.026 4 5 0.050 4 4 0.033 5 5 

η 0.055 3 3 0.075 3 3 0.045 4 4 

θ 0.013 5 4 0.084 2 2 0.110 3 3 

ρ 0.194 2 2 0.009 5 5 0.448 1 1 

 Time to maturity = 3y 
σ0 0.493 1 1 0.348 1 1 0.201 3 2 

κ 0.158 3 3 0.273 2 2 0.231 2 3 

η 0.362 2 2 0.267 3 3 0.182 4 4 

θ 0.065 4 4 0.165 4 4 0.149 5 5 

ρ 0.042 5 5 0.049 5 5 0.324 1 1 

 

Table 5: Sensitivity analysis results of the HESJ model for six selected scenarios. 
 ST(i) 

N=2080 

ST(i) 
Rank 

N=2080 

Morris 
Rank 
N=90 

ST(i) 
N=2080 

ST(i) 
Rank 

N=2080 

Morris 
Rank 
N=90 

ST(i) 
N=2080 

ST(i) 
Rank 

N=2080 

Morris 
Rank 
N=90 

 Strike = 80 Strike = 100 Strike = 120 
 Time to maturity = 1y 
σ0 0.342 2 3 0.317 2 3 0.191 3 3 

κ 0.012 7 6 0.019 7 7 0.013 8 8 

η 0.025 6 5 0.028 6 5 0.018 7 7 

θ  0.001 8 8 0.034 4 4 0.055 5 5 

ρ 0.060 4 4 0.010 8 8 0.151 4 4 

λ 0.264 3 1 0.308 3 1 0.297 2 1 

µj 0.040 5 7 0.030 5 6 0.044 6 6 

σj 0.366 1 2 0.379 1 2 0.369 1 2 

 Time to maturity = 3y 
σ0 0.166 3 3 0.125 3 3 0.086 4 5 

κ 0.061 5 5 0.092 5 6 0.084 5 7 

η 0.120 4 4 0.097 4 4 0.076 6 6 
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θ  0.028 7 6 0.060 6 5 0.065 7 4 

ρ 0.007 8 8 0.032 7 7 0.118 3 3 

λ 0.314 2 1 0.316 2 1 0.307 2 1 

µj 0.031 6 7 0.030 8 8 0.032 8 8 

σj 0.424 1 2 0.404 1 2 0.388 1 2 

 

From both Tables it emerges that the rankings obtained with µ* and with TiS are very 
similar in each of the scenarios, and in some cases even identical (especially for the HEST 
model), confirming reliability of the results.  

The few cases where Morris inverts the ranking of two factors are those where their 
sensitivity indices values are very similar. In the worst case (in all 84 simulations we 
performed) the Morris design inverts 2 factors whose difference in the total indices represents 
nearly 18% of the total output variance. In general Morris can be considered successful in its 
goal of screening a subset of factors that can be fixed, as it never confounds groups of 
important and unimportant factors. If a factor is high ranked according to TiS  it is also high 
ranked for Morris and vice versa.  

The Morris method has the great advantage of a low computational cost. However, as a 
drawback it is not quantitative; the value of its measures can only be used to rank factors but 
cannot be interpreted as percentages of output variance. For this reason the TiS  indices are 
used for analyzing the behavior of each input factors in different scenarios for example in the 
case of absence of jumps (Fig.1). In Figure 1 each dot refers to a scenario. The dot size 
highlights the importance of the factor in that scenario. The following conclusions can be 
drawn from the Figure: 

- The three model parameters θη ,,k  are not very relevant at low times to maturity, but 
their importance increases with increasing the time horizon. 

- The initial condition 0σ  is the most important factor when the time to maturity is rather 
small and its importance decreases with time. 

- The correlation ρ is also an influential parameter, especially when the option is not at-
the-money. 

When jumps are present the same conclusions can be drawn. Moreover the overall 
influence on the model outcomes of the three parameters related to jumps is relatively high, 
confirming the importance of the jumps inclusion. In particular, results show that λ and jσ  
are very much influential at all time horizons and strike prices (they are always among the 
three most important factors). 

We also applied the Morris method to work with groups. Four groups were considered: 
the group of model parameters ( θη ,,k ) relative to modeling the stochastic volatility; the 
initial condition 0σ , the group of model parameters ( JJ σµλ ,, ) relative to jumps; and the 
correlation ρ. Results are plotted in Figure 2. In the plots the relative importance of the four 
groups is shown for all the considered scenarios. The total number of model evaluations for 
each scenario is N=50  

The group of the jumps’ parameters results to be always the most important, while the 
influence of 0σ and ρ  depends upon the scenario characteristics. As expected, the group 
( θη ,,k ) is negligible at low times to maturity, but its importance increases with time horizon. 
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Figure 1: TiS  results for the HEST model. The differences in the size of the dots represent the 
differences in the importance of the fixed input factors in all the considered scenarios. 
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Figure 2: Screening results obtained through the Morris method for the HESJ model. 50 is 
total number of model evaluations for the Morris experiments. The bars plot the Morris 
revised µ∗, which can be used to screen the negligible factors in the model. 
 

5. CONCLUSIONS 

In this work we have confirmed the capability of the sensitivity measure µ*, an improved 
version of the Morris measure introduced by Campolongo et al. [2], to distinguish between 
important and negligible model input factors at low computational cost. Also the updated 
measure has proved to be effective when factors are grouped.  

Results of sensitivity analysis on the Heston model for pricing European option has 
allowed to concluding that jumps play a major role in determining the option price, thus 
stressing the need of including them in the model formulation. Furthermore results have 
underlined that, as expectable, at low time to maturity the initial condition for volatility needs 
to be accurately determined as the resulting option price is highly affected by its value. Its 
importance decreases as the time to maturity increases. Finally, it emerged that the correlation 
between the two Brownian motions needs to be carefully defined, especially when the option 
is not at the money, while the other model parameters are less important. 
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