Effectiveness of Cross-Platform Optimizations
for a Java Just-In-Time Compiler

Kazuaki Ishizaki
IBM Research, Tokyo Research Laboratory

|E SR | PR ~MN\
(A 2 SR SR e

Goal of This Presentation

= |[dentify a set of optimizations that are cost-effective
In the Just-In-Time (JIT) compiler across multiple
platforms.

— Cost: compilation time

— Effectiveness: performance improvement

Contents
= Goal

= OQverview of IBM Java JIT Compiler
= Individual Optimizations in the JIT Compller

= Experimental Evaluations

— Classify optimizations in terms of the balance between
compilation time and performance improvement

= Summary

) 1 :
R =

Summary of IBM Java JIT Compiler

= One of the industry-leading Java JIT compilers

= Perform a number of conventional and advanced
optimizations for hot methods.

— The interpreter executes other methods.

= Support a wide range of platforms
— |A-32, Windows, Linux, and OS/2

— |A-64, Windows and Linux
— 32/64-bit PowerPC, AlX, Linux, and OS/400
— 31/64-bit S/390, OS/390 and Linux

Performance improvement for SPECjvm98

10

Speedup is relative to performance of 96/10 version

ol

'96/10 9717 '98/3 '98/10 '99/8 '99/12 '00/6 '01/11

Speedup
O L N W M O1 OO N O O

Bl IBM Developer Kit, Java Technology Edition for AIX

On POWER3 machine

Research outcome Please visit

http://www.research.ibm.com
= JIT compiler Itrl/projects/jit/pub_int.htm

— Method invocation optimization[OOPSLAQO][JVMO02]

— Exception optimization[ASPLOSO00][OOPSLAO1][PACTO2Z]

— Profiling based optimization[JGOO][PLDIO3][PACTO03]

— Float optimization[JVMO2][ICS02]

— 64bit architecture optimization[PLDIO2]

— Register allocation[PLDIO02]

— Data prefetch[PLDIO3]

— Instruction Scheduling[CGOO03]

— Compiler overview[JG99][IBMSysJournal00][OOPSLAO3]
* Runtime systems

— Fast locklOOPSLA99][OOPSLAO2][ECOOP04]

- Fast mterpreter[ASPLOSOZ]

Flow of IBM JIT Compiler

» Use three types of intermediate representations

EBC: Extended Bytecode
QUAD: Quadruple
DAG: Directed Acyclic Graph

ytecode

EBC Optimizations

Aﬂ QUAD Optimizations

DAG Optimizations

Code Generation

15

Three intermediate representations

Features Facilitated or intended
Optimizations
Extended | = Bytecode augmented with attribute Method inlining
bytecode information (type, resolusion status, ...)
(EBC) = Stack-based
= The most compact representation
Quadruple | = Tuple of opcode and zero or more Dataflow optimizations,
(QUAD) operands including escape analysis
» Register-based and partial redundancy
* Finer-grained semantics eliminations.
Directed = Data and exception dependences are | Loop optimizations and code
acyclic represented scheduling.
graph
(DAG)

<

An example of transformation

Java program Java bytecode Variable [Symbolic
i aload 4 number name
X =afl], iload 5 4 a
‘ laload 5 i
istore 6 6 X
EBC
aload 4
iload 5
iaload [null][bnd] Data
Istore 6 dependence
QUAD ”
NULLCHK LA4
LENGTH LI7 =LA4
BNDCHK LIS, LI7

IALOAD

LI6 = LA4,LI5*4+8

N o

constraint

IALOAD

I i }[s 4 -
By TR

e e

An example of code generation

HAD o] bol
Variable (Symbolic
NULLCHK LA4 number name
LENGTH LI7=LA4 4 a
BNDCHK LI5S, LI7 5 i
IALOAD LI6 = LA4,L15*4+8 6 X

: 1

Native code (IA32)

eax = LA4, edx =LI5

mov ecx, [eax] : NULLCHK, LENGTH, ecx = LI7
cmp edx, ecx : BNDCHK

jae ThrowArrayldxOutOfBndExcp : BNDCHK

mov ecx, [eax+edx*4+8] . IALOAD, ecx = LI6

[—l ' Re:
| al:‘iﬁi -

Optimizations on EBC

'

Devirtualization

y

Method Inlining

y

Null checks and Array

Bounds Checks Eliminations

;

Redundant TIC Elimination

» Replace virtual calls with non-virtual calls if
possible [Ishizaki200000psla].

= Use different budgets for small methods and
non-small methods [Suganuma2002jvm].

= Use forward dataflow analysis.

= Use type flow analysis.
— TIC: type inclusion check

Optimizations on QUAD

v

Ceac)
=

Optimizations on QUAD

AR [lala v
AT [S

Optimizations on QUAD (1/2)

;

Conventional Dataflow | = Perform copy and constant propagation, and
Optimizations dead code elimination.

v

Merge Point Elimination | " Apply tail duplication.

¢ _ = Examine whether an object escapes from a
Escape Analysis method or a thread [Whaley99oopsia].

v

Next Page

Optimizations on QUAD (2/2)

il

Null checks and Array = Eliminate and move checks using partial
Bounds Checks Optimizations | redundancy elimination (PRE)
+ [Kawahito2000asplos].
Scalar Replacement = Map instance and class variables to stack
| variables using PRE if possible.

v

Redundant TIC Elimination | = Use type flow analysis.

'

Inlining of TIC = Inline frequently executed paths of TICs

¢ [ishizaki99javagrande].

Optimizations on DAG

* = Generate the original version loop, and the
Array Bounds Checks optimized version loop without array bounds
Elimination by Loop Versioningl checks [Suganuma2000ibmjournal].

v

Scalar Replac_em_enj = Generate the original version loop, and the
by Loop Versioning optimized version loop without aliasing.

Loop Striding = Exploit instructions with incremental addressing
+ mode (IA-64 and PowerPC).
Count Down = Exploit special loop count registers (IA-64 and
Loop Gineratlon PowerPC)
Code Scheduling * Perform pre-pass code scheduling by a list

+ scheduling.

1 4
1
| &
' T - Research, 10Ky
i 0BG . SI=E s

Code Generation

A R
L4 LANE

Code Generation

Impose architecture-specific limitations.
L — e.g. two-operands format for 1A-32

_ _ predicated code for I1A-64
ArCh'teCt”I Mapping | Exploit architecture-specific features.

— e.g. hyperblock for 1A-64

Register Allocation

'

Code Emission

Assign physical registers.

Generate machine instructions with post-pass

L first-fit code scheduling.

Experimental Environments

= Virtual Machine and JIT Compiler
— IBM Developers Kit, Java Technology Edition, 1.4.0

— Invoke JIT compiler for a method after the method is
executed 1,000 times.

= Machines
— 1A-32
2-Way 2.8GHz Xeon with 1GB memory, Windows 2000
— 1A-64
2-Way 800MHz Itanium with 2GB memory, Windows .NET server
— PowerPC (PPC)
4-Way 1GHz POWER4 with 2GB memory, AIX 5.1L

! . 4 V) 2 W S

I % =19 AR
B }’\ S - \C Ed “1} 1}"' VA® eSS
G SR g Ty e Y Bl 2
i e - - B UL

Experimental Environments

= Benchmarks
— SPECjvm98 (seven programs), size =100

— SPECjbb2000 (one program), warehouse =1

|r il f ¥ R
- | 5
| 4 A7) B ed \eds
L8| RO o 7 L B~ S T

Experimental Evaluation

= Measure the effectiveness and the cost of each
optimization o on multiple platforms (IA-32, |1A-64,
and PPC).

— By disabling o.

— Effectiveness of 0 =
performance improvement (all enabled)
— performance improvement (o disabled)

— Cost of o = compilation time (all enabled)
— compilation time (o disabled)

A5 i
PUATRR ¢ [

The Effectiveness of Optimizations

By performance improvement

Generally effective

Occasionally
effective

Not effective

On all platforms,
more than

half of programs
shows more than
4% performance
improvement.

On some platform,
some program
shows more than
4% performance
improvement.

No program shows
more than

4% performance
Improvement.

Gt |

The Cost of Optimizations

By compilation time

Small On all platforms,
Increase compilation
time by no more than
8%

Large Increase compilation

time by more than 8%

By performance improvement

Which class does each optimization belong to ?

By compilation time

Generally effective | Occasionally Not effective
effective
Small | Class A Class B Class C
[[[
Large |Class D Class E Class F

Optimizations:

| PR ekl i
5
e

Method Inlining, Exception checks eliminations, Scalar replacement,
Merge point Elimination, Escape analysis, DAG optimizations ...

B

Classifying Method Inlining by the Effectiveness

IA32 IA64 PPC

70%

60%

50%

40%

30%

20%

10%

0% -
comp jess db javac mpeg mit jack job comp jess db javac mpeg mit jack jhb comp jess db javac mpeg mit jack jhb

O Method inlining of IA32 |IAG4 PPC : :
0 .
non-small methods Over 4%: 5outof8 4outof8 5outof8m Occasionally effective

@ Method inlining of o . . . G Ilv effecti
small methods Over4%: 5outof8 6Goutof8 7 outof8 = Generally erftective

! :
2 5 A
fat e ol
i S w.
o SRR v

Classify

IA32 |A64 PPC

70%

60%

50%

40% -
30% -
20% -

10%g

0% A
comp jess db javac mpeg mtt jack jbb comp jess db javac mpeg mut jack job comp jess db javac mpeg mut jack jbb

@ Method inlining of
non-small methods

@ Method inlining of
SUEURNEI

Over 8%: Yes (avg. 41%) = Large

Over 8%: No (avg. 6%) = Small

By compilation time

R =1 .
== RH =

Classifying optimizations - Results

By performance improvement

Generally effective | Occasionally Not effective
effective
Small |-Inlining of small methods |- Exception checks Low risk, high return
- Exception checks optimizations
elimination -Redundant TICs eliminatior NONE
- Scalar replacement by |- Merge points elimination
PRE
-Inlining of TICs
Large - Inlining of non-small - DAG optimizations
NONE methods

- Escape analysis

- DAG optimizations

il
(R

i

|

H

Small-Cost Optimizations

» Generally effective (Class A)
— Inlining of small methods

— Null checks and array bounds checks elimination
(with only forward dataflow analysis)

— Scalar replacement by PRE
— Inlining of TICs

= Occasionally effective (Class B)

— Null check and array bounds checks optimizations (with
full analysis and PRE)

— Redundant TICs elimination
— Merge points elimination
= Not effective (Class C) - NONE

Ll o B o

h S N ‘

Large-Cost Optimizations

» Generally effective (Class D) - NONE
= Occasionally effective (Class E)
— Inlining of non-small methods

— Escape analysis

— DAG Optimizations

Array bounds checks elimination by loop versioning and code
scheduling

* Not effective (Class F)
— DAG Optimizations

Scalar replacement, loop striding, and count down loop generation

BTG v L ’ -l 2 oy =1 s

Results of Class A Optimizations

» Relative to all optimizations enabled,
— Achieved 86% of the effectiveness
— Spent 33% of the cost

M [A-32 B 1A-64 B PPC M [A-32 B 1A-64 B PPC
100% Taller bars are better 100% Shorter bars are better
80% 80%
60% 60%
40% 40% -
20% 20% -
0% 0% -
comp jess db javac mpeg mirt jack jbb comp jess db javac mpeg mirt jack jbb

Effectiveness Cost

AR I [= Tl
[OMare ¢ .t o : .

Results of Class A and B Optimizations

» Relative to all optimizations enabled,
— Achieved 90% of the effectiveness
— Spent 34% of the cost

M [A-32 B 1A-64 B PPC M [A-32 B 1A-64 B PPC
100% Taller bars are better 100% Shorter bars are better
80% 80%
60% 60%
40% 40% -
20% 20% -
0% 0% -
comp jess db javac mpeg mirt jack jbb comp jess db javac mpeg mirt jack jbb

Effectiveness Cost

Summary

= \We identified a set of cost-effective optimizations
(Class A+B) that achieved 90% of the effectiveness
at 34% of the cost.

A Inlining of small methods

A Null checks and array bounds checks elimination (with only forward
dataflow analysis)

A Scalar replacement by PRE
A Inlining of TICs

B Null checks and array bounds checks optimizations (with full
analysis and PRE)

B Redundant TICs elimination
B Merge points elimination

= \We will utilize the results to determine a set of
optlmlzatlons ormultl -level optimizations.

TAVTIRAD IN—

m [

N
08 &

I/‘

B3¢

:I: ==
AR |

*\EEHII

R

HA%X
/_.[W‘%\‘/ﬁ 7\12

= HlF—HH

JRECEE

s /NEE

= JI| A E3A
o TR
= PTNERH
= ¥A5—H|
= HEER

= FEiEEK

