
© 2002 IBM Corporation

IBM Research, Tokyo Research Laboratory

PPL2004 | 3/12/2004 |

Effectiveness of Cross-Platform Optimizations
for a Java Just-In-Time Compiler

Kazuaki Ishizaki
IBM Research, Tokyo Research Laboratory

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation2

Goal of This Presentation
Identify a set of optimizations that are cost-effective
in the Just-In-Time (JIT) compiler across multiple
platforms.

– Cost: compilation time
– Effectiveness: performance improvement

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation3

Contents
Goal

Overview of IBM Java JIT Compiler

Individual Optimizations in the JIT Compiler

Experimental Evaluations
– Classify optimizations in terms of the balance between

compilation time and performance improvement

Summary

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation4

Summary of IBM Java JIT Compiler
One of the industry-leading Java JIT compilers

Perform a number of conventional and advanced
optimizations for hot methods.

– The interpreter executes other methods.

Support a wide range of platforms
– IA-32, Windows, Linux, and OS/2
– IA-64, Windows and Linux
– 32/64-bit PowerPC, AIX, Linux, and OS/400
– 31/64-bit S/390, OS/390 and Linux

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation5

Performance improvement for SPECjvm98

Speedup is relative to performance of 96/10 version

0
1
2
3
4
5
6
7
8
9

10

'96/10 ’97/7 '98/3 '98/10 '99/8 '99/12 '00/6 '01/11

Sp
ee

du
p

IBM Developer Kit, Java Technology Edition for AIX
On POWER3 machine

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation6

Research outcome
JIT compiler

– Method invocation optimization[OOPSLA00][JVM02]
– Exception optimization[ASPLOS00][OOPSLA01][PACT02]
– Profiling based optimization[JG00][PLDI03][PACT03]
– Float optimization[JVM02][ICS02]
– 64bit architecture optimization[PLDI02]
– Register allocation[PLDI02]
– Data prefetch[PLDI03]
– Instruction Scheduling[CGO03]
– Compiler overview[JG99][IBMSysJournal00][OOPSLA03]

Runtime systems
– Fast lock[OOPSLA99][OOPSLA02][ECOOP04]
– Fast interpreter[ASPLOS02]

Please visit
http://www.research.ibm.com
/trl/projects/jit/pub_int.htm

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation7

Flow of IBM JIT Compiler
Use three types of intermediate representations

Java
Bytecode

EBC OptimizationsEBC

QUAD

EBC: Extended Bytecode
QUAD: Quadruple
DAG: Directed Acyclic Graph

QUAD Optimizations

DAG OptimizationsDAG

QUAD

Native
Code

Code Generation

S/390

IA-32 IA-64

PowerPC

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation8

Three intermediate representations

Loop optimizations and code
scheduling.

Data and exception dependences are
represented

Directed
acyclic
graph
(DAG)

Dataflow optimizations,
including escape analysis
and partial redundancy
eliminations.

Tuple of opcode and zero or more
operands
Register-based
Finer-grained semantics

Quadruple
(QUAD)

Method inliningBytecode augmented with attribute
information (type, resolusion status, …)
Stack-based
The most compact representation

Extended
bytecode
(EBC)

Facilitated or intended
Optimizations

Features

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation9

An example of transformation
Java program

…
x = a[i];
…

aload 4
iload 5
iaload
istore 6

aload 4
iload 5
iaload [null][bnd]
istore 6

NULLCHK LA4
LENGTH LI7 = LA4
BNDCHK LI5, LI7
IALOAD LI6 = LA4,LI5*4+8

Java bytecode

EBC

QUAD

x6
i5
a4

Symbolic
name

Variable
number

DAG

NULL
CHK

BND
CHK

LENGTH

IALOAD

Order
constraint

Data
dependence

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation10

An example of code generation

NULLCHK LA4
LENGTH LI7 = LA4
BNDCHK LI5, LI7
IALOAD LI6 = LA4,LI5*4+8

QUAD

x6
i5
a4

Symbolic
name

Variable
number

… : eax = LA4, edx = LI5
mov ecx, [eax] : NULLCHK, LENGTH, ecx = LI7
cmp edx, ecx : BNDCHK
jae ThrowArrayIdxOutOfBndExcp : BNDCHK
mov ecx, [eax+edx*4+8] : IALOAD, ecx = LI6

Native code (IA32)

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation11

Optimizations on EBC
Java

Bytecode

EBC

QUAD

Optimizations on EBC

DAG

QUAD

Native
Code

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation12

Optimizations on EBC

Null checks and Array
Bounds Checks Eliminations

Redundant TIC Elimination

Use forward dataflow analysis.

Use type flow analysis.
– TIC: type inclusion check

Use different budgets for small methods and
non-small methods [Suganuma2002jvm].

Method Inlining

Replace virtual calls with non-virtual calls if
possible　[Ishizaki2000oopsla].Devirtualization

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation13

Optimizations on QUAD
Java

Bytecode

EBC

QUAD Optimizations on QUAD

DAG

QUAD

Native
Code

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation14

Optimizations on QUAD (1/2)

Perform copy and constant propagation, and
dead code elimination.

Apply tail duplication.Merge Point Elimination

Escape Analysis
Examine whether an object escapes from a
method or a thread [Whaley99oopsla].

Conventional Dataflow
Optimizations

Next Page

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation15

Optimizations on QUAD (2/2)

Null checks and Array
Bounds Checks Optimizations

Eliminate and move checks using partial
redundancy elimination (PRE)
[Kawahito2000asplos].

Inline frequently executed paths of TICs
[ishizaki99javagrande].

Scalar Replacement Map instance and class variables to stack
variables using PRE if possible.

Redundant TIC Elimination

Inlining of TIC

Use type flow analysis.

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation16

Optimizations on DAG
Java

Bytecode

EBC

QUAD

Optimizations on DAGDAG

QUAD

Native
Code

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation17

Optimizations on DAG

Scalar Replacement
by Loop Versioning

Generate the original version loop, and the
optimized version loop without array bounds
checks [Suganuma2000ibmjournal].

Loop Striding

Perform pre-pass code scheduling by a list
scheduling.

Count Down
Loop Generation

Code Scheduling

Exploit special loop count registers (IA-64 and
PowerPC).

Exploit instructions with incremental addressing
mode (IA-64 and PowerPC).

Array Bounds Checks
Elimination by Loop Versioning

Generate the original version loop, and the
optimized version loop without aliasing.

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation18

Code Generation
Java

Bytecode

EBC

QUAD

Code Generation

DAG

QUAD

Native
Code

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation19

Code Generation
Impose architecture-specific limitations.

– e.g. two-operands format for IA-32
predicated code for IA-64

Exploit architecture-specific features.
– e.g. hyperblock for IA-64

Generate machine instructions with post-pass
first-fit code scheduling.

Assign physical registers.

Architecture Mapping

Register Allocation

Code Emission

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation20

Experimental Environments
Virtual Machine and JIT Compiler

– IBM Developers Kit, Java Technology Edition, 1.4.0
– Invoke JIT compiler for a method after the method is

executed 1,000 times.
Machines

– IA-32
2-Way 2.8GHz Xeon with 1GB memory, Windows 2000

– IA-64
2-Way 800MHz Itanium with 2GB memory, Windows .NET server

– PowerPC (PPC)
4-Way 1GHz POWER4 with 2GB memory, AIX 5.1L

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation21

Experimental Environments
Benchmarks

– SPECjvm98 (seven programs), size =100
– SPECjbb2000 (one program), warehouse = 1

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation22

Experimental Evaluation
Measure the effectiveness and the cost of each
optimization o on multiple platforms (IA-32, IA-64,
and PPC).

– By disabling o.
– Effectiveness of o =

performance improvement (all enabled)
– performance improvement (o disabled)

– Cost of o = compilation time (all enabled)
– compilation time (o disabled)

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation23

The Effectiveness of Optimizations
By performance improvement

No program shows
more than
4% performance
improvement.

On some platform,
some program
shows more than
4% performance
improvement.

On all platforms,
more than
half of programs
shows more than
4% performance
improvement.

Not effectiveOccasionally
effective

Generally effective

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation24

The Cost of Optimizations
By

 c
om

pi
la

tio
n

tim
e

Increase compilation
time by more than 8%

Large

On all platforms,
increase compilation
time by no more than
8%

Small

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation25

Which class does each optimization belong to ?

???
Class FClass EClass DLarge

Class C Class BClass ASmall

Not effectiveOccasionally
effective

Generally effective

Method Inlining, Exception checks eliminations, Scalar replacement,
Merge point Elimination, Escape analysis, DAG optimizations …

Optimizations:

By performance improvement

By
 c

om
pi

la
tio

n
tim

e

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation26

Classifying Method Inlining by the Effectiveness

0%

10%

20%

30%

40%

50%

60%

70%

comp jess db javac mpeg mtrt jack jbb comp jess db javac mpeg mtrt jack jbb comp jess db javac mpeg mtrt jack jbb

Method inlining of
non-small methods
Method inlining of
small methods

IA32 IA64 PPC

5 out of 8

5 out of 8

4 out of 8

6 out of 8

5 out of 8

7 out of 8

Over 4%:

Over 4%:

IA32 IA64 PPC
Occasionally effective

Generally effective

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation27

Classifying Method Inlining by the Cost

0%

10%

20%

30%

40%

50%

60%

70%

comp jess db javac mpeg mtrt jack jbb comp jess db javac mpeg mtrt jack jbb comp jess db javac mpeg mtrt jack jbb

Method inlining of
non-small methods
Method inlining of
small methods

IA32 IA64 PPC

Yes (avg. 41%)

No (avg. 6%)

Over 8%:

Over 8%:

Large

Small

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation28

Classifying optimizations - Results

Large

Small

Not effectiveOccasionally
effective

Generally effective

- Inlining of non-small
methods

- Inlining of small methods
- Exception checks
elimination

- Inlining of TICs

- Scalar replacement by
PRE

- Exception checks
optimizations

- Redundant TICs elimination
- Merge points elimination

- Escape analysis

- DAG optimizations

- DAG optimizations

NONE

NONE

Low risk, high return

High risk, low return

By performance improvement

By
 c

om
pi

la
tio

n
tim

e

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation29

Small-Cost Optimizations
Generally effective (Class A)

– Inlining of small methods
– Null checks and array bounds checks elimination

(with only forward dataflow analysis)
– Scalar replacement by PRE
– Inlining of TICs

Occasionally effective (Class B)
– Null check and array bounds checks optimizations (with

full analysis and PRE)
– Redundant TICs elimination
– Merge points elimination

Not effective (Class C) - NONE

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation30

Large-Cost Optimizations
Generally effective (Class D) - NONE
Occasionally effective (Class E)

– Inlining of non-small methods
– Escape analysis
– DAG Optimizations

Array bounds checks elimination by loop versioning and code
scheduling

Not effective (Class F)
– DAG Optimizations

Scalar replacement, loop striding, and count down loop generation

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation31

Results of Class A Optimizations
Relative to all optimizations enabled,

– Achieved 86% of the effectiveness
– Spent 33% of the cost

0%

20%

40%

60%

80%

100%

comp jess db javac mpeg mtrt jack jbb

IA-32 IA-64 PPC

0%

20%

40%

60%

80%

100%

comp jess db javac mpeg mtrt jack jbb

IA-32 IA-64 PPC

Effectiveness Cost

Taller bars are better Shorter bars are better

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation32

Results of Class A and B Optimizations
Relative to all optimizations enabled,

– Achieved 90% of the effectiveness
– Spent 34% of the cost

0%

20%

40%

60%

80%

100%

comp jess db javac mpeg mtrt jack jbb

IA-32 IA-64 PPC

0%

20%

40%

60%

80%

100%

comp jess db javac mpeg mtrt jack jbb

IA-32 IA-64 PPC
Taller bars are better Shorter bars are better

Effectiveness Cost

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation33

Summary
We identified a set of cost-effective optimizations
(Class A+B) that achieved 90% of the effectiveness
at 34% of the cost.

A Inlining of small methods
A Null checks and array bounds checks elimination (with only forward

dataflow analysis)
A Scalar replacement by PRE
A Inlining of TICs
B Null checks and array bounds checks optimizations (with full

analysis and PRE)
B Redundant TICs elimination
B Merge points elimination

We will utilize the results to determine a set of
optimizations for multi-level optimizations.

IBM Research, Tokyo Research Laboratory

Effectiveness of Cross-Platform Optimizations for a Java Just-In-Time Compiler | PPL20043 | © 2004 IBM Corporation34

プロジェクトメンバー

中谷登志男
小松秀昭
小野寺民也
菅沼俊夫
河内谷清久仁
石崎一明
小笠原武史

川人基弘
安江俊明
竹内幹雄
緒方一則
古関聰
稲垣達氏

© 2002 IBM Corporation

IBM Research, Tokyo Research Laboratory

PPL2004 | 3/12/2004 |

ありがとうございました。

