CHAPTER 20

The Outer Stellar Layers

In the present chapter we shall discuss the actual physical boundary condi-
tions which must be satisfied at a stellar surface (Sect. 20.1), and some of the
conditions under which it is possible to approximate them by the simple
boundary conditions of vanishing density and temperature (Sects. 20.2 and
20.4). Also, we shall discuss the boundary conditions that must be applied in
the case of convective transfer in the outer stellar layers (Sects. 20.4 and 20.6).
The structure of both radiative and convective envelopes* will be examined
(Sects. 20.3 and 20.6), and regions on the Herzsprung-Russell (H-R)
diagram where the envelopes are convective will be approximately determined
(Sect. 20.5). The temperature distribution in stellar envelopes will be dis-
cussed in Sect. 20.7, and integrated adiabats in hydrogen and helium
ionization zones (useful in discussions of convective envelopes) will be
derived in Sect. 20.8. Unless we state otherwise, we shall assume that the
regions of interest are of uniform composition and that no magnetic fields,
which may affect convection, are present.

20.1 Photospheric Conditions

The photosphere may be considered, qualitatively, as the ““visible surface”
of a star; it is the layer from which the energy coming up from the deep
interior is finally radiated away into space. It is obvious that the photosphere
must have a finite temperature in order to maintain this steady outward flow
of radiant energy.

For the purposes of work in stellar interiors it is usually sufficient to
define the photosphere as the layer at which the actual temperature, T, is
equal to the effective temperature, T,:

T=T,=T,, (20.1)

* By stellar envelope we mean those outermost stellar layers whose mass is large compared
to the mass lying above the photosphere (¢f. Sect. 20.1) but small compared to the mass of
the whole star.
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588 APPLICATIONS TO STARS

where the subscript p denotes the photospheric value of the appropriate
quantity and T, is defined by the relation

L =4aR%T:. (20.2)

Here L is the luminosity of the star, R is the radius of the photosphere (the
“surface”) of the star, and o is the Stefan-Boltzmann constant. The justi-
fication for our use of (20.1) is that, according to the theory of stellar atmos-
pheres, the radiation from an actual stellar atmosphere has approximately
the same character as the radiation which would be emitted by a black
surface whose temperature is equal to T,. Equation (20.1) may be taken as
the physical surface boundary condition for the temperature.

The physical surface boundary condition for the pressure (or density)
follows from the requirement that the material above the photosphere shail
have a finite optical thickness, i.e., that, when the temperature T has fallen to
the value T,, the radiation shall be able to escape from the star. Before we
can apply this requirement, we must know the temperature distribution in
the atmosphere as a function of optical depth. This can be obtained to
sufficient accuracy for work in stellar interiors by applying the so-called
“Eddington approximation” to the equation

dp,  xp L,
&= e am® (203)

where p, is the frequency integrated radiation pressure, given in terms of the
frequency integrated specific intensity I (assumed axially symmetric) by the
relation (see Sect. 2.5)

1
2
p,=7n JI(ﬂ)uzdu, (20.4)
-1

where we assume here and throughout this chapter that the refractive index
is unity. Equation (20.3) is exact for an isotropic source function and for a
grey atmosphere (x, = x = const., independent of frequency v) in radiative
equilibrium; it is also exact (under corresponding assumptions) if the
atmosphere is non-grey and if x is defined as the flux-weighted mean (cf.
Chap. 8)

K= Fl- J~ k,Fdv, (20.5)
[}
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where F is the integrated net flux, related to I (again assumed axially
symmetric) by the equation (see Sect. 2.2)

F=2r | lz(ﬂ)udu. (20.6)

Equation (20.3) is not exact if x is interpreted as the Rosseland mean;
however, the equation becomes increasingly more accurate with increasing
depth since the flux-weighted mean then goes over into the Rosseland mean.
In practical applications of (20.3) one nevertheless takes x to be the Rosse-
land mean. We assume that r ~ R, the stellar radius (so that we are neglecting
curvature), and that L, = L, the total luminosity, and assume that all energy
is being carried by radiation. In this case we have L /d4nr? = F =~ constant
with depth throughout the thin, photospheric regions, whence (20.3) gives
the result

p,=—§ t+p/0), (20.7)

where
dr=—xpdr (20.8)

is the element of (normal) optical depth and p,(0) denotes the surface value

of the radiation pressure.
The Eddington approximation consists essentially in using, at all optical
depths, the relation
1
p=3 aT*, (20.9)
which is actually valid only for large optical depths (cf. Sect. 6.3). One also
approximates the value of p,(0) by considering only outgoing radiation (that
is, assuming no incident radiation on the top of the atmosphere) and
assuming the specific intensity at the surface to be isotropic in all outward
directions. We have
1

27! 2 _ _21
pO=7 f 1O*du=5_10)
0
and

1
F=2z [ (Q)udp=2I(0),
[1]
which give

2F
~=—, 20.10
P05, (20.10)
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Using (20.9), with the relation a = 4o/c, and (20.10) in (20.7), we have

F 2F
—_— 4=___ —_—
3cT c1+3c

or
1F 3
4 —_—— e —
T = 3 < 1+ 3 1:) .
Writing F = oT}, we obtain, finally, the well-known “grey-atmosphere”
approximation for the temperature distribution:

T*=(1/2) TA(1 + (3/2)7)=TA(1+3/2)7), (20.11)

where To=(1/21*)T, is the “boundary” temperature, i.e., the value of T at
7 = 0 (where p = 0). Since T = T, defines the location of the photosphere, we
have from (20.11) that

7,=(2/3). (20.12)

Thus the photosphere is located in our approximation at an optical depth
of (2/3).
To determine the photospheric value of the pressure, P, we must make

use of the equation of hydrostatic equilibrium:

dpP

— = .13

3= "&P (20.13)
where g,(= GM/R?) is the surface gravity, here regarded as constant
throughout the thin photospheric regions, and P is the rotal pressure.
Combining (20.8) and (20.13) gives

dP_g,
P (20.14)
or o
Pp=gsj%dr, (20.15)

where we have taken P = 0 at T = 0, i.e., we neglect radiation pressure.*
While  is actually a function of position above the photosphere, we can as a
zeroth approximation evaluate x at the photosphere and remove it from
under the integral sign in (20.15). (We shall show in Sect. 20.4 that this
approximation is accurate generally to within better than a factor of, say,
2 or 3). Thus

2
P~/3 5 (20.16)

* See footnote p. 591.
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Equation (20.16) is then the approximate physical boundary condition which
must be satisfied by the pressure at a stellar surface. *

An alternative interpretation of (20.16) is provided by using the expression
for the pressure scale height,

_ (dmP\"' P
H=—( i ) =g (20.17)

for a star in hydrostatic equilibrium, in (20.16). Evaluating (20.17) at the pho-
tosphere and eliminating P, between this equation and (20.16) we obtain

K0, H, = (2/3) (20.18)

as an equivalent expression of the condition implied by (20.12). Equation
(20.18) can be interpreted as saying that the photosphere is the layer at
which the ratio of the pressure scale height to the photon mean free path is
approximately equal to unity. The photosphere is therefore quite literally the
layer from which the photons can first escape directly from the star.

20.2 Solution of the Equations of Stellar Structure
in the Outer Radiative Layers of a Star

For a number of reasons, one of which is to determine the effect on the
interior solution of using p, = T, = 0 as the surface boundary conditions, we
must examine the solution of the equilibrium equations in the outer stellar
layers. This solution is greatly simplified by the fact that M, ~M in these
regions, because of the relatively low densities existing in the outer parts of a
star, i.e., of the relatively great central mass concentration typical of stars.
Also, we can set L, = L, since the temperatures are too low here for thermo-
nuclear reactions to contribute appreciably to the luminosity, and we
neglect gravitational energy sources which can cause L, to depend on r even
outside the nuclear energy generating region,

* The value of P at 7 = 0 is actually p,(0), the radiation pressure at v = 0. Using the
approximation (20.10) for p,(0) and the relation L = 4nR2F, it is easily seen that retaining
the surface value p_(0) of P results in the presence of an additional factor on the right side
of the final result (20.16) of

(1+ L )=(1+1.6x10‘451:l—L) (20.16")

4ncGM

if L and M are in solar units and x, is in cm?/gm. This factor is nearly equal to unity for all
stars whose (L/M) values do not greatly exceed the solar value, and we henceforth neglect
this factor.
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We shall assume here that radiative transfer obtains everywhere in the
layers immediately below the photosphere, even if the material is con-
vectively unstable (¢f. Chap.13); the case of convective transfer will be
considered in Sect. 20.6. It is probably a good approximation to assume only
radiative transfer in the outer layers of main sequence stars earlier than about
A5 (say T,>7500°K) and perhaps of giants and supergiants earlier than, say,
F5 and KO, respectively (¢f. Sect. 20.5). Such stars may have convection
zones, but they will probably be too thin and ineffective to play an important
role in determining the structure of the stellar envelope or of the interior. We
shall discuss the physical reasons for this difference in the role played by
convection in the envelopes as compared to the role played by radiation in the
envelope in Sect. 20.6.

The only equilibrium equations which are left to be integrated, then, are
the hydrostatic equation and the equation of radiative transfer, which we
write in the forms

1dP_ gp__ M,

T)dr____P___GTr 5P (20.19)
1dT _ 3xp 1 L,
Tdr  4acT*4nr* (20.20)

From these equations we obtain the expression for the radiative temperature
gradient (with respect to pressure):

Vr=\dinP

3L (L\(M\«xP
‘16nacGM(f)(E>T ’ (2020)

where n, is the effective polytropic index (¢f. (12.15)). Another useful form
of (20.21) is obtained by writing L = nacR>*T? (T, = effective temperature)
and g (local gravitational acceleration) = GM,/r?. We obtain

3 kP(L\(R\* T} ,
v,=rﬁz(f>(;) L (2021)

Unless we specifically state otherwise, we shall in the remainder of this

dnTy _ 1 * 3 L kP
aa M.+1  16macG M, T?

* We actually have V, = (n,+ 1)~ ! only in the case in which all the energy is being carried
by radiation. In convectively unstable regions V, is to be identified with the “fictitious
radiative gradient” (cf. Sect. 14.1), i.e., the true gradient which would obtain if all the energy
were being carried by radiation. In the latter case V, # (n,+1) " ! in general.
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chapter set (L,/L)~1 and (M,/M) =1 (as is appropriate for the outer stellar
layers). In this case (20.21) becomes simply

3. kP

Ve =167acGM T*" (20.22)

(Note that (L,/L)~1 and (M,/M)=1 do not necessarily imply that (r/R)~1;
thus (20.22) may be valid, under suitable circumstances, even if (r/R) is con-
siderably less than unity; see Sect. 20.3). Finally, it is useful to note that the
reciprocal of the constant factor in (20.22) may be written as

16rmacGM

_16g -10M
3L 3T 1.292 x10 c.g.s., (20.23)

L
where g (= GM/R?) is the surface gravity of the star and M and L are in
solar units.

It is often possible to represent the opacity x over the regions of interest
by an interpolation formula of the form

K=#kop"T "’ (20.24a)

=KkoP"T™""°, (20.24b)

where xq, ko, #,and s are assumed to be constants in the relevant regions. In
general, the n and s in (20.24b) are not the same as the # and s in (20.24a);

however, for a perfect gas equation of state they are the same and, further-
more, in this case the relation between i and x is seen to be

Ko =1, (%) . (20.25)

When (20.24b) is substituted into (20.22), the variables are separable and we

have

prap=167¢GM puveisgr

3oL
Assuming that P = P, when T = T, (some arbitrary temperature), we have

+1 n+1 16naCGM,Tn+s+4[1—(To/T n+s+4:l

Tnts+4 3xoL T——(Fc:—__/l’)”—l— (20.26)
(n+s+4+#0)
16macGM _ In(T/To) (n+s+4=0), (2027

=) L TRy
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where we have assumed (as we always shall unless otherwise indicated) that
n# —1; in fact, we have n>0 in practically all physically realistic cases of
interest in the outer stellar layers. Solving directly for P in (20.26) and (20.27),
we have also

£_ n+1_1+ n+1 1 z n+s+4 1_ ng n+s+4
P T \n+s+4/VO\T, T

(n+s5s+450) (20.27")
1 T p
=1+(n+1)§51n<T) (n+s+4=0), (20.27")
r (V]
where
’ n+1
vo =kl Fo (20.27")

* =16racGM Totste

is the value of V, corresponding to the values P = P,, T = T,. Using (20.24b),
we may also write (20.26) and (20.27) in the forms

n+l 16macGM 4_[1—(T0/T)"+‘+4

v S W] (n+s+4%#0) (20.28)

16nacGM T In(T/Ty)

=(n+1). 3’CL .1—(P0/P n+1

(n+s+4=0). (20.29)

The corresponding expressions for V, can be obtained by using the solutions
(20.28) and (20.29) in (20.22):

_ n+1 .1_(T0/7v)n+s+4
T nts+4 1 (P[Pl
In(T/To)
1—(Po/Py*!

(n+s+4#0) (20.30)

=(n+1)- (n+s+4=0). (20.31)

By using (20.27’) and (20.27”) in (20.30) and (20.31), these last equations may
also be written in the forms

n+1 o\ o n+l ,
- _—Tr= 4#£0 20.30
r n+s+4+(T) V—nisga| (tst4#0)  (2030)

=V; +(n+1D)1n(T/Ty) (n+s+4=0), (20.31)

where VO is given by (20.27"). We note that V, as given by (20.30) and
(20.31) or by (20.30") and (20.31") may exceed V,4 = (I, — 1)/I,, the adiabatic
gradient (see (18.8") for a general formula for computing I,). If it does, the
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radiative gradient is convectively unstable (cf. Sect.13.1), and the above
results may have to be modified so as to include convective transfer; see
Sect. 20.6.

It is to be noted that all the above solutions are valid independently of the
equation of state of the stellar material, except insofar as the equation of state
influences the form of the opacity law (20.24b). We shall discuss these
solutions in the following sections.

20.3 Stellar Envelopes in Radiative Equilibrium

Here we consider stellar envelopes which may be regarded to good
approximation as being everywhere in radiative equilibrium; hence (cf.
Sects. 20.2 and 20.5) we are in effect concerned with rather hot stars
(T, = 7500°K, say, for the main sequence). We shall also restrict ourselves
here to the regions of the envelope below the region of hydrogen ionization
(say where T 10*°K). (The regions in and above the hydrogen ionization
region will be considered in Sect.20.4.) In such regions the electron density
does not depend strongly on density and temperature (assuming a “normal”
composition of predominantly hydrogen) and the opacity may be expected
to behave in the same qualitative way as, for example, a Kramers opacity
does. In other words, we are concerned here with regions of the star in which,
say, the exponents » and s in the opacity law (cf. (20.24a,b)) are positive or
zero (mathematically, we need only assume that #+s> —4 for the purposes
of the present discussion). We shall also assume pure radiative transfer, even
in regions which are convectively unstable (¢f. Chap.13). Modifications
introduced by convection are discussed in Sect. 20.6.

We notice from the solutions (20.26)-(20.31") of the radiative transfer
equations in the envelope that for the case n+s44>0, these solutions have
an interesting property: as T rises above T, and P rises above P,, the
solutions become less and less sensitive to the values of T;, and P, (T, and P,
may be interpreted, for example, as photospheric values or as values at some
point immediately below the region of hydrogen ionization). Moreover, the
radiative gradient V, and hence (assuming pure radiative transfer) the
effective polytropic index n, both approach constant values as one descends
into the interior; i.e., the envelope takes on a polytropic structure in the
deeper layers (a polytropic structure is characterized by a constant value of
the effective polytropic index). For sufficiently large values of T'and P, in
fact, all purely radiative solutions approach the one *radiative zero”
solution (see Schwarzschild {Sc58b, Sect. 11]), which is characterized by
Py = 0 and T, = O (vanishing surface pressure and temperature). Since the
convergence of all purely radiative solutions to the one radiative zero
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solution is extremely rapid in most cases (for example, n+s5+4 = 8.5 for a
Kramers opacity, » = 1, s = 3.5), it follows that in these cases the simple
boundary conditions P = T = 0 at r = R should provide excellent approxi-
mations to the correct ones. Hoyle and Schwarzschild [Ho55], however,
have shown that these boundary conditions may not provide an adequate
approximation to the actual situation in stars with very large radii and small
masses (i.e., giants of small mass). In these cases the photospheric pressure is
reached, according to the radiative zero solution, so deep in the envelope
that 1—r,/R is not small compared to unity, r, being the radial distance at
which P (obtained from the radiative zero solution) is equal to P,.
The radiative zero solution may be written in the form

P = KT"*!, (20.32)
where n, has the constant value (see (20.21), (20.26), and (20.30"))
s+3
= .33
n, ) (20.33)

and where the constant K is given by the relations

_| n+1  16macGM i+ 1) (20.34a)

| n+s+4 3L ‘
n+1 16nacGM (#\" M+

_[n+s+4. 3k, L (7[)] i (20.345)

where in (20.34b) we have assumed a perfect gas equation of state with
constant mean molecular weight 4. For a Kramers opacity law (n = 1,
s = 3.5) we have n, = 3.25, and the radiative zero solution is

P —_ KT4.25
where

—

k| 1 . 16macGM # ]
1425 3L pu|

Comparison of (20.30") with the basic equation (20.22) shows that the
quantity xP/T* is constant in the radiative zero solution (which exists only
for n+s+4>0). Thus, noting (20.24b), we see directly that Poc T"*?,
where n, = (s+3)/(n+ 1), valid for the radiative zero solution.

Another interesting property of the radiative zero solution may be
derived from the constancy of the quantity xP/T*. From this and the above
we see that the variation of x with depth in the envelope is given by the pro-
portionality xoc T ~". Using (20.24b), (20.32), and (20.33), we have, more
explicitly,

K=KoK"T3 ",
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This shows that the opacity « is strictly constant in the envelope (where the
radiative zero solution is valid) if n, = 3. Since realistic values of n and s
usually lead to n,~3, it follows that, typically, x is a slowly varying function
of depth in a radiative zero envelope.

Is the radiative zero solution stable against convection? As we have seen
(¢f. (13.13)), the condition for stability of the radiative gradient against con-
vection in regions of uniform composition is that n,>1/(I’,—1) or
V, <V, a=(,—1)/I';, where (¢f. (9.88) and (18.8")) I, is the appropriate
adiabatic exponent. But n, is typically close to 3 (and V, close to 0.25) for
reasonable values of n and s. Moreover, outside of regions of partial
ionization I, =(5/3)and V,4 = 0.4 for a non-relativistic, perfect monatomic
gas in which radiation pressure is negligible. We conclude that the radiative
zero solution is stable against convection under these conditions. In regions
of partial ionization of an abundant element, however, this may not be true
since I', approaches unity in such regions. Since the radiative zero solution is
not generally valid in the regions of hydrogen ionization (to be discussed in
the next section), it is normally only helium ionization that may produce
convective instability in “radiative zero” envelopes (more specifically,
second helium ionization since first helium ionization usually occurs very
close to the hydrogen-ionization region).

Note (see (13.31)) that the specific entropy S decreases inward in con-
vectively stable regions of a uniform composition radiative zero envelope in
which no irreversible processes (such as nuclear reactions) are occurring.

The radiative zero solution (20.32) provides a remarkably good approxi-
mation to the structure of realistic stellar envelopes in radiative equilibrium
(at least below the region of hydrogen ionization) computed by numerical
integration of the structure equations on the basis of tabulated (i.e., non-
power law) opacities. Typically, for a reasonable opacity law the solutions
(20.26)-(20.31") will have converged to the radiative zero solution to good
accuracy by the time T has reached, say, 2T,. Since T is likely to be of the
order of or less than 10%°K, levels deeper than, say, (2-3) x 10*°K should
normally be described adequately by the radiative zero solution (20.32).

We see, then, that the structure of stellar envelopes in radiative equi-
librium (and also of the interior regions of the stars of which the envelopes
form a part) are in most cases essentially independent of the surface boundary
conditions, and the simple boundary conditions of vanishing surface
pressure and temperature are usually adequate. In contrast, we shall see
(¢f. Sects. 20.5 and 20.6) that the internal structure of stars with convec-
tive envelopes is critically dependent on the surface boundary conditions.
Hence the surface boundary conditions must be treated very carefully in
such cases, which include most stars cooler than, say, 5000-7500 °K.
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The solutions (20.26)—(20.31") obtained in Sect. 20.2 and, more parti-
cularly, the polytropic radiative zero solution (20.32), may be expected to be
good approximations to the structure of the envelope of a star whose outer
layers are in radiative equilibrium and are chemically homogeneous, as long
as M,~M and L.~ L. The first of these conditions will usually fail before the
second will, because the energy sources (if nuclear) are usually strongly con-
centrated toward the center. This first condition (M,~ M), however, in most
cases is valid to fair accuracy throughout the outermost 30-50 per cent of the
stellar radius, i.e., possibly throughout the major portion of the stellar
volume. For example, in the n, = 3 polytrope (¢f- Eddington [Ed26,
Chap. 4]), which is a good rough approximation to the structure of most main
sequence stars earlier than the late M’s (which may be completely con-
vective, ¢f. Limber [Li58]), we have the following tabulation:

1-M,/M r/R

0.045 0.58

.095 St
52 29.

This table shows that in this case only about 10 per cent of the total mass lies
in the outer half of the stellar radius. For this reason the simple solution
(20.32) is extremely useful for a variety of purposes and should always be
kept in mind for applications in approximate work.

It should be noted that the radiative gradient can be convectively unstable
(V.>V,q = (I,— D/I) even in a stellar envelope having n+s+4>0 whose
radiative zero solution is convectively stable ((n+1)/(n+s+4)<V,y). This
would be the case, for example, if P, and T, were such that V0>V
(see (20.27™). Convective transfer might therefore be important in the
vicinity of the point (P,, T,) and the above solutions would no longer be
applicable; the approach to the radiative zero solution might then be
seriously impeded or prevented altogether (see Sect. 20.6). In general, the
actual radiative gradient at a point characterized by a given temperature T
will be greater than or less than the radiative zero value (n+1)/(n+s+4)
according as the pressure P at that point is greater than or less than, respect-
ively, the corresponding radiative zero value Py 5 (see (20.32)). That this last
statement is true can be seen from the relation (cf. (20.22) and (20.32))

n+1 P\t ,
= ) .34
" n+ s+4(PR,z_) (20.34)

We may conclude that the larger is the pressure corresponding to a given
temperature, the greater is V, and hence the greater is the tendency for the
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material to be convectively unstable. These considerations will be useful for
the work in Sect. 20.6.

The distribution of temperature in the envelope will be considered in
Sect. 20.7.

20.4 Radiative Transfer in the Photospheric and
Sub-Photospheric Regions

In this section we are primarily interested in stars cooler than about
10*°K, i.e., stars in which hydrogen is not fully ionized at the photosphere.
In these stars we consider principally only the region between the photosphere
and the level (at T~ 10*°K) where hydrogen is appreciably (or nearly fully)
ionized. In these regions most of the opacity arises from absorption by
neutral hydrogen and by the negative hydrogen ion{H ™) (the latter source of
absorption predominates over the former, generally, for T<(6-7) x 10° °K).
The opacity from both sources increases with increasing electron density
(¢f. Chap. 16) which, in turn, increases rapidly with increasing temperature in
regions of partial ionization because of the nature of the Saha equation. It
follows, then, that the opacity increases in these regions strongly with in-
creasing temperature for given density or pressure, in marked contrast to the
behavior of the opacity in regions below the hydrogen ionization region. The
behavior of the solutions of the radiative transfer equations is therefore
qualitatively different in these regions than in the deeper layers. Moreover,
because of the proximity of these regions to the stellar surface, we cannot
expect any sort of “radiative zero” solutions to be very useful; we must use
the more general solutions in which the surface boundary conditions are
““felt” by the regions farther in. It is for these reasons that we consider the
superficial outermost layers separately from the deeper regions. We shall see
that the solutions of the equations of radiative transfer are usually violently
unstable against convection because of the rapid inward increase of the
opacity. For stars with T, <7300°K [Ba63] this convective instability leads
to deep convective envelopes, which can be an important influence on the
internal structure of such stars. In this section we shall ignore convection
even in regions which are convectively unstable; effects of convection will
modify the solutions which we shall obtain in some cases and these effects
will be discussed in Sect. 20.6.

We shall assume here as in Sect. 20.3 that the opacity x can be approxi-
mated by simple power law expressions such as those in (20.24), with n, s,
Ko, and x, constant in the particular regions of interest (an alternative
method of approximating the opacity in these outer regions has been used,
for example, by Hoyle and Schwarzschild [Ho55]). It is clear from the above
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discussion that we shall have to allow s to take on negative values in the
regions of present interest. We also use surface gravity g, and effective
temperature T, as parameters in place of M and L (see (20.23)). Finally, in the
general solutions (20.26)-(20.31") we shall interpret P, and T, as boundary
values, where the “boundary” is defined by t = 0, see Sect. 20.1. Thus
P, = 0 (we are therefore ignoring radiation pressure, see the footnote in
Sect. 20.1) and T, (boundary temperature) = T,/2/* if the grey atmosphere
temperature distribution formula (20.11) is used.
We write (20.26) for P(T) in the form

P=PP'f(T, 1),

where P, is the photospheric pressure (where T =T, and f(T,T,) is a
dimensionless function which takes into account the variation of pressure
with depth; obviously, f(T,,T,) = 1. We have the following explicit expres-
sions for P, and f(T,T,), obtainable from (20.26), assuming that T, = T./2"/*
and P, = 0 (¢f. (20.11)):

. n+1 1_6_ gs n+s "ﬁ%ﬂ ;T’.l—l
Pp—{—n 573 T T: [1 (1/2) , (20.35a)
(n+s+4+#0)
vera ntstd) 1
TIT)y 4 —(1)2 AT
ATLT)= (TVT.) ,.(ﬂ/l ; (20.35b)
1—(1/2) *
= 16 s, 1/4 ..11
P,—[(n+l) 3 aT? -In(27%) (20.362)
(n+s+4=0)
InQRV*1T,
f(T,Te)=[—§(2—1,.f)—)]"“, (20.36b)
n+l 16g 1 Intetsl Lo
Fo= {l‘”‘—n+s+4| T TP [(2> 1[p"F,  (20.37a)
(n+s+4<0)
L"%iﬂ |n+s+4]| _1_1
FTT)=|2 |,,:ff§/,T) (20.37b)
@ * -1

(kg is defined in (20.24b)). Equation (20.37b) shows that in case n+s+4 <0,

|n+s+4| _1_
AT |2 " const (20.38)
sde e =const. .

@)
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in the limit as T increases beyond T,; in other words, the pressure becomes
independent of 7 when T becomes large compared to T, and the pressure is
then equal to a constant times P,, which itself depends (for a given opacity
law) only on g; and T,. For example, for n = 1 and s = —9 (a possible value
in many cases), the limiting value of /(7,T,) is 1.41; i.e., the pressure levels
off with increasing temperature to about 1.4 times its photospheric value.
Physically, a negative value of (#+ s+4) means a rapid inward increase in «;
in order for a given radiant flux to be transmitted, the temperature gradient
(with respect to P, for example) must also increase inward. Eventually (if
n+ 544 remains negative) the temperature gradient becomes so steep that P
becomes insensitive to T in these regions.

This behavior of the temperature gradient is clearly revealed in the
expression (see (20.30)) for the radiative gradient V, = (d In T/d In P),,, (it is
important to emphasize that in convectively unstable regions V, really means
the “‘fictitious radiative gradient” (see(14.12)), i.e., the gradient that would
obtain if all the energy were being carried by radiation). We may write
(20.30) and (20.31) in the forms

nts+4
F%[l”(%) ] (n+s+4#0)  (20.39)

=(n+1)InQYT/T) (n+s5+4=0). (20.40)

If n+5+4>0, we see again that V,»(n+1)/(n+s+4) (the radiative zero
solution) as T increases beyond T,. If, on the other hand, n+s+4 <0, we

have
n+1 21/4T |n+s+4]
= - 20.41
v, |n+s+4|[( T, 11 ( )

which shows that V, increases with increasing depth in this case. It is clear
that if —(n+s+4) is large enough over a sufficiently large region, V, could
attain quite large values (>>1) and we would then expect violent convective
instability. (We recall, ¢f. Sect.13.1, that convective instability occurs in
uniform composition regions whenever V, >V,,, where V4 = (I,—1)/I.
For I',=(5/3) we have V,4 = 0.4. In the case of an abundant element under-
going ionization we have I',—1, whence V,4—0. In this last case it is clear
that ionization would further enhance any convective instability that may be
present.)

We note that a density inversion can occur if x increases inward suffi-
ciently rapidly (i.e., if —(n+s+4) is large enough) and if the energy transfer
is wholly radiative. Since in this case the pressure P becomes essentially
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independent of T because of the steep temperature gradient, it follows that if
PocpT (perfect gas equation of state), for example, the density p must
decrease with increasing depth in order that the product pT remain approxi-
mately constant, It is easily seen that for a perfect gas equation of state with
constant mean molecular weight u, a density inversion occurs whenever
V,>1 (still assuming pure radiative transfer).

In Sect. 20.4a we shall consider the behavior of the solutionsinand above
the photosphere. In Sect.20.4b we shall consider approximate power-law
expressions for the opacity due to H and H™, and in Sect.20.4c we shall
discuss some numerical results and conclusions regarding the outermost
layers of cool stars.

20.4a Behavior of Solutions in Regions In and Above the Photosphere

We consider now the behavior of the solutions in the photospheric and
superphotospheric regions. For this purpose it is instructive to use the
approximate grey atmosphere temperature distribution (see (20.11)):

T4=(1/2) TH1+3/2)1), (20.42)

where 7 denotes normal optical depth. We obtain from (20.39) and (20.40)
the equations

_nts+4
y=_ntl [1—(l+%r) # ] (n+s+4#0) (20.43)

" n+s+4
=”—I—11n(1+§z) (n+s+4=0),  (20.44)

which show that V,—»0 as t—0. Hence the (grey) atmosphere becomes
isothermal at sufficiently small optical depths (1< (2/3)); in such regions P
and p decrease outward exponentially: they vary approximately as exp
[-(r—R)/H,], where R is the photospheric radius (at r = (2/3)) and
H, = R T,/ug, (assuming a perfect gas equation of state) is the photospheric
pressure scale height. We also see from (20.43) and (20.44) that the layers
sufficiently far out in a stellar atmosphere are always in radiative equilibrium,
at least within the framework of our simple physical picture.
At the photosphere (r = (2/3)) we have

g ntL [, 1w 20.45)
P = nsval T2 (n+s5+4+#0) (20.

=(1/4)(n+1)In2 (n+s+4=0). (20.46)
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Also, since (see (20.22) and (20.23))

P 16/ T\*
K?=? (—T—) v, (20.47)
we have at the photosphere:
16 16 1 [ atsts
%:TV,“’E? nij+4[1_ 5 ¢ ] (n+5+45£0) (20.48)
=@4/3)(n+1)In2 (n+s4+4=0). (20.49)

We note that the values of V, and («xP/g,) at a given optical depth 7 are in-
dependent of T,; this is also obviously true for the photospheric values.
Table 20.1 gives values of V¥ and (¢, P,/gs) for a grid of values of nand s.

Table 20.1

PHOTOSPHERIC VALUES OF V, AND (xP/g,)

n s n+ts K Pylgs v®
+4

0 0 +4 0.667 (= 2/3) 0.125
1 +3.5 +8.5 0.966 .181
1 +3 +8 1.00 1875
1 +2 +7 1.07 .201
1 0 +5 1.14 214
1 -2 +3 1.44 270
1 -5 0 1.85 347
1 -10 -5 2,93 .549*
1 —-13 —-8 4.00 .750*
1 -15 -10 4.94 926*
0.5 +3 +7.5 0.78 146
0.5 0 +4.5 0.96 .180
0.5 -3 +1.5 1.23 239
0.5 —-10 —-55 2.32 435+
0.5 —-12.5 -8 3.00 .562*

* Values for which V(") > 0.4 = V,, for I, = (5/3).

We see from Tabie 20.1 that the photosphere itself is stable against
convection except in cases of extremely rapid inward increase of x (i.e., large
values of —(n+s+4)). We also note that the values of (x,F,/g,) do not
differ from the value (2/3) appropriate for a constant opacity above the
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photosphere by large factors (in all cases by less than a factor of 7 and in
most cases by less than a factor of 2).

20.4b Interpolation Formulae for Opacity Due to H and H™

Approximate power-law formulae for the opacity arising from neutral
hydrogen (H) and the negative hydrogen ion (H™) have been given by
Hayashi, Hoshi, and Sugimoto [Ha62a]. Hayashi et al. start with the
following expressions for the opacity due separately to H and H™ :

Ky-= 10— 1.26

- X(1-x)P,(5040/T)** cm*/gm (2520 < T(°K) <10,080), (20.50)

K= 107.76X(1 — x)
.10~ 12:14(5040/T) cmzlgm(6300 <TCK)S 12’60()) s (20.51)

where X is the relative mass abundance of hydrogen, x denotes the degree of
ionization of hydrogen (the ratio of the number of hydrogen ions to the
number of neutral and ionized hydrogen atoms), P, denotes the electron
pressure in c.g.s. units, and temperature 7 is in °K.

A general expression relating P, to P,, the gas pressure, was derived in
Sect. 9.18 and is P, = [%/(1+ X)]F,, where X is the mean degree of ionization
of the material. From this it is clear that the value of P, depends, particularly
at low temperatures, strongly on the source of the free electrons. For
T<55000°K, most of the free electrons are supplied by single ionization of the
metals (at these temperatures hydrogen is nearly completely neutral),
whereas most free electrons are supplied by hydrogen ionization for
T2 5000°K. It is therefore clear that the relation between P, and P, cannot
depend very sensitively on the metal abundance for T2 5000°K. (5000°K is
approximately the temperature at which about as many electrons are
supplied by the metals as by hydrogen ionization, i.e., at which x~47",
where A is the “hydrogen/metal ratio”; 4 is of the order of 10** for Popu-
lation I stars and perhaps one or two orders of magnitude larger for Popu-
lation II stars.) For 2800 < 7(°K) < 5040 and 10% < P,(dynes/cm?) < 10*%, the
electron pressure can be represented adequately, according to Hayashi et al.
[Ha62a}, for a composition close to a “Population I’ composition (X = 0.61,
Y = 0.37, and Z = 0.02, where X, Y, and Z are the relative mass abundances
of hydrogen, helium, and heavy elements, respectively), by the formula

_ 0.70 Z 074
P =10~30-16 . 7.35 .52
e=1 <X+O.25Y 0.02 P ) ™, (20.52)

where c.g.s. units are used throughout, and where we neglect radiation
pressure: P~F, .
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On the basis of (20.52) Hayashi et al. derive the following approximate
interpolation formulae for the total opacity due to both H and H~ absorp-
tion, for X, Y, and Z close to 0.61, 0.37, and 0.02, respectively:

k=1, PY7*T*% (T(°K)<5040) (20.53)
K=xy P*7*T %747 (5040 5 T(°K) $10,080), (20.54)
where
' _qp-15.58 X 070 Z 074
%=10"""5 7\ X 70257 002 ° (20.55)
K} =K(5040)305+0-74+s (20.56)

Comparison of (20.53) and (20.55) with (20.50) and (20.52) shows that for
T $5040°K, almost the entire contribution to the opacity is from the H™ ion.
Values of —(0.74+5) at a temperature of 5040°K are given in Table 20.2

Table 20.2*
VALUES OF EXPONENTS IN (20.54) AnD (20.58)

log,, P (dynes/cm?) 2 3 4 5

—(n+s) -—-s —(nt+ts) —s —(mts) —s —(n+s) —s

Pop.1 (n=0.74) 132 139 107 114 86 93 68 75
Pop. II (n = 0.71) 11.7 124 107 114 94 101 84 91

* Adapted from Hayashi er al. [Ha62a).

(Table 4.2 of Hayashi et al. [Ha62a]) as a function of log P; this is the temper-
ature at which (for this “Population I’ composition) the switch-over from
(20.53) to (20.54) is made. The value of ; as given by (20.56) will insure
continuity of x at T = 5040 °K. It is important to note that (20.53)-(20.56) are
valid only for compositions close to the ‘“Population I”” composition. The
switch-over from (20.53) to (20.54) presumably corresponds, physically, to a
switch-over from electrons predominantly supplied by metals to electrons
predominantly supplied by hydrogen. Since in the second case the electron
pressure P, and the degree of hydrogen ionization x cannot depend to any
significant extent on metal abundance (or Z), x; should be essentially
independent of Z. A composition different from the above “Population I”
composition would require a different “transition” temperature (say 7,),
corresponding to the switch-over from (20.53) to (20.54). This transition
temperature decreases with decreasing Z and, since |n+s| > 3.05, the factor



606 APPLICATIONS TO STARS

T,3-05+0.74%+s in (20.56) decreases with decreasing Z. If the calculation is
done properly, x; should turn out to be independent of Z.

For a “Population II” composition (X = 0.90, ¥ = 0.10, Z = 0.001),
Hayashi et al. [Ha62a] give the following formulae:

K= Kk,POTIT3 86 (T(°K)<4380), (20.57)
K = K] P*71T~071-5 (4380 < T(°’K) < 10,080), (20.58)
K(I) — 10—19.14’K; = K6(4380)3'86+0'71 +s, (2059)

where values of 0.71 +s are also given in Table 20.2.

It should be mentioned that there will be a contribution to the opacity
from molecular absorption for T<3600°K ([Ha62a, p. 78]; also Vardya
[Va60a, 61, 64, 66]; Sommerville [So64]). For T22500°K, however, this
effect is probably small [Ha62a, p.78] and is neglected in the above formulae.

These formulae and Table 20.2 show that for T"< 5000°K in stars com-
posed predominantly of hydrogen, s~—4 and n+s+4~+1; for
5000 5 T(°K) < 10,000, s ranges from about — 13 to about — 8 (representative
value —9 or —10) and n+ 544 ranges from about —3 to about —9 (repre-
sentative value —5 or —6).

20.4¢c Some Numerical Results and Conclusions

Tables 20.3 and 20.4 give some values of the radiative gradient V, (see
(20.39)) and the function f(T, T,) (see (20.35)) for several values of T and T,
on the basis of the foregoing formulae, assuming a “Population I"’ compo-
sition. (For T>5040°K, we have taken s = —9.74, giving n+ s+4 the value

Table 20.3
VALUES oF V, (cf. (20.39))

7,(10% °K) T(10° °K)
=T, 3.60 5.04 7.50 9.00 10.08
2.29 0.28 0.82 1.10 10.22 25.94 45.99
2.80 0.28 0.61 0.94 9.05 23.04 40.87
3.60 0.28 0.28 0.70 7.30 18.68 33.19
5.04 0.48 0.48 5.69 14.69 26.15
7.00 0.48 0.82 2.56 4.78
8.00 0.48 1.14 2.20

10.00 0.48 0.51
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—35; for T<5040°K, we have used the value s = —3.79. Both V, and f(T,T,)
have been assumed continuous across the “transition” temperature 5040°K ;
see (20.27") and (20.30).)

From these tables (or from equations (20.26)-(20.31°) and (20.35)-
(20.41)) we can draw the following conclusions. First, we note that in all
cases the value of the radiative gradient V, increases steadily inward at least
until the region (at T'=10,000°K) is reached where hydrogen is appreciably
ionized ; convective instability (V,>0.40, say), in fact, is attained in nearly all
cases somewhere between the photosphere and the region of appreciable
hydrogen ionization. (It is interesting to note the very large values attained
by V,(~20 to 50) in some cases; these values would actually obtain if
convection were too ineflicient to exert any “smoothing” influence on the
temperature gradient. Since V, may also be interpreted as the ratio of the
pressure to the temperature scale heights (if pure radiative transfer obtains),
it follows that in these regions of very large V, the temperature scale height
is only a few per cent of the pressure scale height; hence the temperature
may change by a factor of two, e.g., in only a small fraction of a pressure
scale height.) At temperatures somewhat above 10*°K, where hydrogen
is mostly ionized, the opacity must begin to decrease with increasing
temperature because the electron density in these regions is now relatively
insensitive to temperature (i.e., s must increase and become positive).
In these deeper regions bound-free contributions from helium and heavier
elements become important and the opacity begins to acquire a
“Kramers-like” behavior (i.e., n and s positive or zero, say). Hence V, should
generally begin to decrease in value at temperatures somewhat above 10*°K.

Table 20.4
VALUEs OF f(T, T,) (cf. (20.35))

T,(10% °K) T(10° °K)
T=T, 3.60 5.04 1.50 9.00 10.08
2.29 1 2.385 3.386 3.890 3.935 3.948
2.80 1 1.796 2.781 3.261 3.304 3.312
3.60 1 1 2.048 2.514 2.555 2.567
5.04 1 1 1.322 1.350 1.358
7.00 1 1.116 1.272 1.314
8.00 1 1.174 1.261
10.00 1 1.0162
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If effective convection has set in by the time 7 has reached ~10*°K, the
behavior of V, (now the “fictitious radiative gradient™) will be altered (cf.
Chap. 14). Note also that for given 7, V, decreases with increasing T,. This
is primarily a result of the increasing proximity of the photosphere to the
region of interest as T, increases. For example, for 7= 10,080°K (in
or near the region of appreciable hydrogen ionization), values of V, are
quite small for T,210,000°K; any convective instability present in the
envelopes of these hotter stars will probably be caused more by some abun-
dant element (hydrogen and/or helium) undergoing ionization and thereby
lowering the value of V,4 than by some property of the opacity increasing the
value of V,.

Secondly, we note that over the range of temperatures of interest to us at
present, the function f(T,T,) (¢f. (20.35)) is a slowly varying function of both
T and T,, particularly for T>5040°K (for which n+ s+ 4 <0). This suggests
that the pressure at some point between the photosphere and the hydrogen-
tonization region (for example, at the point at which convection may become
effective) is not very sensitive to the exact temperature at that point and,
furthermore, that this pressure is roughly proportional to P,, the photo-
spheric pressure, which depends (for a given opacity law) only on g; and T,
(this approximate proportionality to P, should really be restricted to the
case n+s+4<0, ¢f. next paragraph).

Assuming that T is appreciably larger than T,, we have from (20.35)-
(20.37) the following approximate expressions for the pressure at some
temperature 7T

n+1 16 g +s+4 -:-1
~ LS _Bs _mtstaly 20.60
P {n+s+4 3 x{)T:T (n+s+4>0), (20.60)

yap\y_L_
p={(,,+1).13_6%.1n(§71)}"+1 (n+s+4=0), (20.61)
0te e

In+s+4] 1

~{ n+1 16g, 2 * }»H

(n+s+4<0). (20.62)

Thus we see (neglecting the slowly varying logarithmic term in (20.61)) that
the pressure at some given temperature Tappreciably larger than 7, is given by

Poc (g,/THY+D (20.63)
for n+s+4>0 (where the factor of proportionality depends on T') and by
Poc (g;/TeI"+sl)1/("+ 1) (20.64)

for n+s+4<0, ie., for [n+s|>4 (where the factor of proportionality is
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practically independent of 7). The important conclusion to be drawn from
these considerations is that the pressure (and hence also the density) at a
given temperature (considerably larger than T,) in the envelope generally
decreases strongly with increasing effective temperature and increases rather
weakly with increasing surface gravity. The first of these effects arises,
physically, from either of two factors. For cooler stars, for which x increases
strongly with increasing temperature 7, the resulting steep temperature
gradient implies that the pressure is not very sensitive to the temperature on
the steep portion of the curve. The pressure at a given temperature is there-
fore essentially proportional to the photospheric pressure, which in turn
decreases with increasing effective temperature T, because of the rapid
increase of x, with increasing 7, (recall that, approximately, P,cc g,/x, and
x,oc P T,”"~%). For hotter stars (say with T, near 10,000°K), for which «
does not increase so strongly (or perhaps even decreases) with increasing T
(say for which n+s+4>0), the pressure depends more sensitively on T and
the photospheric pressure may actually increase with increasing T,. The
pressure at a given T now depends more sensitively on how “far” the
photosphere is away from the point in question, however, and clearly
decreases as the photosphere approaches the level in question. The second of
these effects (dependence on surface gravity) arises essentially from the fact
that the pressure at a given 7, being proportional to the weight of the
overlying layers, increases with increasing surface gravity g,. Note that the
specific entropy at a given 7 generally increases strongly with increasing T,
and decreases less strongly with increasing g,.
These considerations will prove useful in the next section.

20.5 Regions on the H-R Diagram Where
Convection in Stellar Envelopes is Effective

We have seen that stars of “normal” composition (i.e., composed pre-
dominantly of hydrogen) with T, 5 10*°K are unstable against convection
in the regions above the hydrogen ionization region because of the rapid
inward increase of the opacity, and in the hydrogen ionization region both
because of this and because of the small values of the adiabatic gradient V4
resulting from the ionization of hydrogen (¢f. Sect. (9.18) and (18.8")). Stars
with T, somewhat greater than 10* °K are probably also unstable against con-
vection at or immediately beneath their photospheres, but now primarily
because of the small values of V,4 rather than of any excessively large values
of V,. In both cases the He* ionization region may be unstable against con-
vection if sufficient helium is present (say more than 10 per cent of the
hydrogen abundance, by numbers), because of the effect of the ionization of
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He™ in diminishing the values of V,,4. In stars with T, considerably greater
than 10*°K, in which hydrogen is essentially fully ionized everywhere in the
star, convective instability can only exist in the ionization zones of He and
He*, since there is now no reason to expect the opacity to increase strongly
inward outside of these zones (it can be seen from Fig.16.5 that, while n in
the opacity law (20.24) is always close to unity in the helium ionization
zomes, s may for certain densities be slightly negative in the second helium
ionization zone). Only in stars with T,> ~5x 10* °K (where hydrogen and
helium are both essentially fully ionized throughout) can one expect the
entire envelope to be stable against convection; such stars could in principle
be purely radiative in their outer layers all the way to the surface.*

We conclude that, for one reason or another, essentially all stars of
“normal” composition with T,< ~4x 10*°K (later than, say, O3) are con-
vectively unstable somewhere in their outer layers. Why, then, do not all
such stars have convective envelopes? The crucial point is the effectiveness
of convection in the envelope. We shoul ask, in which stars can the convective
instability lead to a (possibly deep) convection zone in which an appreciable
fraction of the total energy is carried by convection?

Possibly the best approach to the answer is the following: Assume values
of chemical composition, L, M, and R appropriate for stars in different
regions of the H-R diagram; then integrate the equations of radiative transfer
through the atmosphere (usually assumed grey), using realistic opacities,
until a point of instability against convection is reached. Then, using a
theory of convection such as the B6hm-Vitense mixing-length theory (cf.
Chap. 14), carry the solution down through the convectively unstable
regions (which will be considerably extended if convection has become
effective, cf. Sect. 20.6b) to the point (if it exists) where the material is again
stable against convection. These calculations should indicate which stars
have effective convective envelopes. The main uncertainty here is, aside from
the intrinsic uncertainty in the mixing length theory itself, in the value to be
used for the mixing length A. In the cooler stars (say T,<7000°K), the
computed depth of the convection zone is quite sensitive to the value of 4.

Such calculations have been carried out by B6hm-Vitense [B658] for
fairly widely distributed points on the H-R diagram, and by Baker [Ba63,
64b] for points confined along and near the Population I main sequence. In
both cases the calculations showed that stars cooler than some “transition”
effective temperature (which depends on surface gravity g, as well as on other
quantities) have deep and effective convection zones in their envelopes, and

* Actual O and B stars, however, evidently are not generally in simple radiative, hydrostatic
equilibrium in their outer layers; see, for example, Underhill {Un60].
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the depth of these zones increases with decreasing effective temperature T, ;
stars hotter than this transition temperature have only thin and ineffective
convection zones. The following tabulation shows the results of B6hm-
Vitense (private communication, 1964):

Luminosity Convection Ineffective Spectral
Class Jor T,> Class
v 7500°K A7
J i | 6500°K F5
I 5000°K G2
Ia 4000°K KO

Some of Baker’s [Ba63,64b} results are reproduced in Fig. 20.1, in which
the fractional thickness Ar/R (R = stellar radius) of the convection zone is
plotted against effective temperature 7, along the zero-age main sequence,
for several values of «, the mixing length-pressure scale height ratio. The
composition adopted by Baker was a “Population I’ composition, X = 0.70,
Y = 0.27, Z = 0.03; and the values of luminosity L and radius R adopted
by Baker for each mass M are given to better than 10 per cent for L and to
better than 5 per cent for R by the formulae

log L = 4.47log M—0.03,
log R = 0.891og M —0.006,

where L, M, and R are in solar units. It is seen from Fig. 20.1 thatfora = 1.5,
Baker’s value of the “transition” effective temperature, above which the con-
vection zone is very thin and ineffective in zero-age main sequence stars, is
about 7300°K, in adequate agreement with BGhm-Vitense’s results.

In order to obtain a somewhat intuitive understanding of these results, we
shall adopt a simplified picture of convective transfer. This picture has been
used by a number of authors (Hoyle and Schwarzschild [Ho55], Hayashi
et al. [Ha62a], for example) and it can be related to the mixing-length theory
of convection (¢f. Chap.14). To obtain this picture, we start with the
expression which was derived in Chap. 14 on the basis of the mixing-length
theory for the average convective flux:

F,=(1/2) piicpAT (20.65a)

BOEer oo

=n. pvscpT. (20.65¢)
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Fig. 20.1 Fractional thickness Ar/R of convective envelopes vs. effective
temperature T, for zero-age main sequence stars (from Baker [Ba63,64b]).

Each curve corresponds to a labelled value of «, the ratio of the mixing
length to the pressure scale height.

Here p is the density, © is the average convective velocity over one mixing
length, cp is the specific heat per unit mass at constant pressure, AT is the
average excess of a convecting element over the average of its surroundings
after having moved through one mixing length, and vg denotes the local
Laplacian (adiabatic) velocity of sound:*

vs=y/T1Plp=/[\(RIuP)T, (20.66)

* See the fourth footnote in Sect.14.3 for the appropriate relativistic generalization of
(20.66).
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where I is defined in Sect. 9.14. In the second equality in (20.66) we have
assumed a “modified” perfect gas equation of state of the form

R
P="2pT, 20.67
up? ( )

where g = F,/(P, + P,) is the ratio of gas to total (gas plus radiation) pressure,
# is the gas constant per mole, and g is the mean molecular weight of the
material. In (20.65c¢) the value of the factor # could, in principle at least, be
computed from the mixing-length theory, and its value would be found to
depend strongly on local physical conditions. For example, using the order-
of-magnitude values derived in Sect. 14.6, we find that 5 ~ (¢;/tx) ~ 10~ 2 or so
in the deep interior and 7~107" in the outermost stellar layers. The simpli-
fied picture consists in ignoring this dependence of # on local physical con-
ditions and regarding # as a sort of constant “efficiency factor” whose value
is simply assumed. (We note that #<(1/2) even if v = vy, since AT/T is
always less than unity under realistic conditions.) Taking # and cp as con-
stant, then, we see that the convective flux F,ocpT>/>oc PT'/2 for an equation
of state of the form (20.67) and thus depends only weakly on T if P (rather
than p) is regarded as the other independent thermodynamic variable.
The total flux, on the other hand, is

Foa=(R/r)*-oT}, (20.68)

where r denotes radial distance, R the stellar radius, ¢ the Stefan-Boltzmann
constant, and 7, the effective temperature. We now define f as the ratio of the
convective to the total flux:

F, r\ neppTog
=—=|=] ——. 20.69
f Ftolal (R> 0’T¢ ( )

We are going to regard f as a measure of convective efficiency, such that
/<1 corresponds to inefficient convection, f~1 to efficient convection. The
relation between f and the dimensionless parameter 4 (ratio of the ‘““con-
vective” to the “radiative” conductivities, introduced in Chap. 14, see (14.70),
(14.98), and (14.99)), and hence the justification for regarding f as an
efficiency parameter, will be obtained at the end of this section.

We use the equation of state (20.67) to express pT in terms of P, (20.66)

for vg, and write
~(22)(2cet 20.70
o=(33)(%%) @070
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(since 5%/2u is the value of ¢p for a perfect monatomic gas with § = 1);
(20.69) then becomes

5 (r\2 ([, &\Y? (2couB\ PT*?
=5nle) () () o ey

We must now consider the dependence of P on g,, T,, and 7. We shall
examine the convective efficiency of a region in or immediately above the
hydrogen ionization region, since the material is likely to be highly con-
vectively unstable here (i.e., V, > V,,). Calculations (for example, Baker
[Ba63,64b]) show that, if convection is not effective in the hydrogen ioniza-
tion region, it is usually not effective in the He* ionization region either.
Presumably this is because, in spite of the higher densities in the He* ioniza-
tion zone, the material is not strongly unstable against convection in this
zone (i.e., V,—V,4 is not very large), provided that the material above this
zone is in radiative equilibrium. We shall also use the P(T') relation which
applies in the case of pure radiative transfer, in evaluating f at the level in
question. The equation ((20.73) below) that we obtain for f will then not be
strictly valid if f as given by this equation should turn out to be larger than
unity. In regions of strong convective instability, however, the purely radia-
tive P(T) relation always yields (for given photospheric conditions) smaller
values of P, for given T, than the correct P(T) relation which applies to
cases where both radiation and convection contribute to the flux. Our equa-
tion for f therefore underestimates the values of f that would be given
if the “correct” (but unknown) P(T) relation were to be used in place of the
purely radiative relation. The factor by which (20.73) underestimates the
“true” value of f is probably always less than 10; this is adequate accuracy
for our present purposes.

Since we know from Baker [Ba63,64b] that the transition effective
temperature for main sequence stars is ~ 7500°K, we use (20.54) and the
purely radiative P(T) relation (20.37), valid for 72 5000°K, in which
n+s+4< 0. Assuming T to be considerably larger than T,, we thus have

n+ 1 168 2|n+s+4ll4 il
(1) {|n+s+4| 3K Tel"+s| ( )

whence (20.71) becomes

5 (r\(LR\Y? (2couB
(i) () ()

1 P
2 n+1 .§2|n+s+4|/4 n¥1 ' g:-c-l
In+s+4] 3 Kk a+Intsl”

O'T¢ n+1

(20.73)
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where (see(20.55) and (20.56)) for a “Population I’ composition (X = 0.61,
Y=037,2Z =0.02)

K;, =10" 15.58(5040 3.05 +0.74+s. (20.74)

For simplicity, we shall adopt n = 1, s = —10 (although » = 0.74 is
implied by (20.74)); then n+s = —9, n+s+4 = —5, and x| = 107376,
With these values, (20.73) becomes

1/2 1/2 1/2
oG] () (522 5 v

where c.g.s. units are used throughout. We note that f increases slowly with
increasing g, and decreases very rapidly with increasing T,. This behavior of
Sfoccurs because F, oc Pocg, /2] T.%/? (for given T) and F oc T.*. We see
that, because of the large value of the exponent of T,, the transition from
J<1 (ineffective convection) to f~1 (effective convection) is extremely rapid
and occurs within a fairly well-defined, narrow range in 7, and is not very
sensitive to g;. For main sequence stars not greatly different from the sun we
may take g,~3x 10* cm/sec? (approximately the solar value), since it may
easily be shown that g, varies only very slowly along the main sequence
(decreasing slowly toward earlier spectral types). We also take T~10*°K
since (as was pointed out earlier) this is probably close to regions of large
convective instability. Because hydrogen is probably partially ionized here,
we shall take (2cpuf/5%) ~ 20, since (see the latter part of Sect. 9.18) hydrogen
ionization (if hydrogen is a dominant element) can increase the value of
¢p by a factor of 20-30. We also take I'; ~(5/3), u~1, f~1, (r/R)~ 1, and
n=~0.1. Defining the “‘transition” effective temperature to correspond to
f = 0.5 (half of total flux carried by convection in the hydrogen ionization
region), we can solve (20.75) for this value of 7,. We obtain T,~7.0x 10*°K,
in surprisingly good agreement with values obtained by Baker [Ba63,64b],
and by Bohm-Vitense. We note that, because of the large value of the
exponent of T, in (20.75), the result is not very sensitive to the exact values
used for the various parameters.

We may also extend this result to non-main sequence stars by considering
lines of constant convective efficiency, i.e., lines along which f = const.
From (20.75) we obtain for the relation between T, and g, along a line of

constant f
*\2/17 417 (.5\2/17 (31, \1/17
3f "
oo () (G () (55)

1 2\ T\ g \YV,
(20 5% ) 10% 3x10 K. (@079
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Hence, for constant values of n, f, T, r/R, etc., we have
T,=const. g7, (20.77)

where a~(1/17) in this crude approximation. It can be deduced from the
tabulation at the beginning of this section that a value a=(1/13) in (20.77)
will reproduce BShm-Vitense’s results. Considering the crudity of our
approximations, this may be considered satisfactory agreement.

We note that the lines of constant convective efficiency are almost
vertical (T, ~ const., almost independent of g;) on an H-R diagram, but that
they do slant slightly to the right, since g, decreases as luminosity L increases
(see Fig. 20.2). Assuming that Loc M*, it is easy to show that, if T, cg/",
then

L=const.T,?, (20.78a)

4/1
V‘i(&“‘)-

We have y = 17.3 if a = (1/17) (our value) and y = 12 if « = (1/13) (Bohm-
Vitense’s value). Equation (20.78a) is the equation of a locus f = const. on
the H-R diagram.

Noting from Fig. 20.2 that the line f = 0.5 crosses the main sequence at
about spectral type A7V, we may evaluate the constant in (20.78a) from the
information given in Chap. 0. Equation (20.78a) may then be written in the

form
L T, \"? _ ,
(_10> = (—76 ) (f=0.5), (20.78a")

where L is in solar units and 7, is in °K.

We may conclude from these results that all stars lying to the right of the
locus in the H-R diagram corresponding to, say, f = 0.5 (see Fig. 20.2) have
effective convection zones in their envelopes. Stars lying to the left of this
locus essentially have purely radiative envelopes (i.e., any convection zones
present will be thin and ineffective and can be disregarded as far as the struc-
ture of the star is concerned).

To summarize the argument briefly: We showed that in the region where
the temperature gradient is extremely steep (owing to the rapid inward
increase of the opacity), the pressure P is not very sensitive to the value of the
temperature 7 in this region (simply because of the steep gradient). Therefore

where

PP,

P’
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Fig. 20.2 Regions on the H-R diagram where convection is expected to
be effective in stellar envelopes. The results of Bohm-Vitense (see tabulation
at beginning of this section) have been used for the f = 0.5 locus. The main
sequence points were obtained from Keenan [Ke63].
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where P, is the photospheric pressure (at 7 = (2/3)):

K, being the photospheric value of the opacity. Assuming that Koc PT?, say,
in the relevant regions, we have

&8s
Bope
which gives

1/2
s
PocSs .
N

Since, approximately, F, occ PT"/? oc P,T*/?, where F, is the convective flux,
we have

Fca:TIIngl/Z/TeQ/Z‘
On the other hand, the total flux is F,,ocT,* (for r/R=1), whence
J=F.|FqcT g 2T},

which, aside from the factor of proportionality, is (20.75).

All the above discussion has been for stars of Population I. However,
because of the smallness of the exponent «, the corresponding results for
Population II stars will not be significantly different from the above.

As is shown by the calculations of Baker [Ba63,64b] (see Fig. 20.1) and
Bohm-Vitense [B558], and as we shall see in Sect. 20.6, the depth of the outer
convection zone increases from a small fraction of the radius for main
sequence stars in or near the transition region to ~ 15 per cent for the sun
until, according to Limber [Li58), the stars become completely convective in
the late M spectral class (cf. Sect. 26.3). However, the calculations of Baker
[Ba63,64b] imply that the temperatures at the bottoms of the convection
zones may reach an upper limit and therefore that there may be some
possibility that the Iate M stars are not convective all the way to the center.

Some semi-empirical evidence that the late type stars develop deep con-
vective envelopes at least during their gravitational contraction to the main
sequence will be presented in Sect. 26.1b.

We consider, next, the relation between f, the ratio of the convective to
the total flux, and the dimensionless parameter 4 (ratio of “convective” to
“radiative” conductivities, see Chap. 14). There it was shown that 4 could be
regarded, roughly, as an efficiency parameter for convective transfer, such
that 4>>1 implies efficient convection, while 4«1 implies inefficient con-
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vection. We shall now justify our use of f as a convective efficiency para-
meter. From (14.98) we have the following expression for A4:

_ 4@ AL} ) puge, T
9 (400/3)(T4g/x;’)P ’ (20.78b)

where a is the mixing length-pressure scale height ratio and the other symbols
are as defined in Chap.14. We note in (20.78b) that pvsc,T = F,/n (cf.
(20.65¢c)). We also have the following expression for the fictitious radiative
gradient (¢f. (20.21):

dinT 3 xP{L,\(R\*T}
r=(m>md—-i—6- —fz(-—f) ("—') —g—. (20.78C)
Using the expression Fy, = (R/r)’eT?, we can solve (20.78c) for the
quantity
4ac T4 Lr Ftotal
3 %P <—I?) v, (20.784d)
which enters into the denominator of (20.78b) for 4. Equation (20.78b) then
becomes
QI/Z 2 f
A= V,—, 20.78e
ENP TV n (20.78¢)

which is the desired relation.
Under most stellar envelope conditions the factor multiplying V, f/n is of
order unity. Assuming, moreover, V, to be of order unity, we have the order-

of-magnitude relation

A~fin.* (20.78f)

It then follows that, aside from effects arising from a possible variation of
V., A is of the same order of magnitude as f/n and has essentially the same
dependence on stellar parameters (such as T, g,, T) asdoes f/n(see (20.75)).
Hence, if f/n>1, then 4>>1 and convection, if it occurs, can be efficient.
Similarly, if f/n<1, then A« 1 (unless V, happens to be extremely large) and
any convection present will be inefficient. Moreover, if the variation of V,
with stellar parameters is ignored, it is seen that with » assumed constant,
lines of constant f are also essentially lines of constant 4, Q.E.D.
We note that, writing
"M = pvgepT (20.78g)

* Assuming that f~1 and using the order-of-magnitude expression 7~ (5 /2,) (see the
discussion following (20.67)), valid in the deep interior, we have A~ (fer /8™ 1 in the deep
interior, as was also obtained in Sect.14.7.
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as the “‘maximum possible convective flux” (a considerable overestimate in
practically all cases!), we can also write

n = F,JF.m™x (20.78h)

We note that F,"*" is the convective flux which would correspond to mean
convective velocities equal to the sonic velocity; such convective velocities, in
turn, imply that (AT/T)~ 1 (since, in general, (5/vs) ~(AT/T)? if « ~ 1, cf.
Chap. 14). Using (20.78h) in (20.78f), we see that

A~F " [Fgars (20.781)

which provides another interpretation of A. If A>>1 (as is normally true in
the deep interior, see the preceding footnote), then the maximum possible
convective flux is much larger than the total actual flux (convective plus
radiative); hence the flux could easily be practically wholly convective if
conditions demanded that it be so. If, on the other hand, 4«1, then non-
supersonic convection could never account for more than a small fraction of
the total flux.

Finally, we recall that a large value of f/5, and hence (assuming that
V,~1) a large value of 4, do not necessarily always imply that f~1. How-
ever, unless V,—V,y«1, 4A>1 implies that B (¢f. (14.81))> 1, which in turn
implies that {=(V,—V)/(V,~V,4) (cf. Sect. 14.7)~1 (efficient convection in
the sense of Chap. 14). We have (cf. (14.43))

_ Vr_vad
Ty

r

f ¢, (20.78 )
so that f< { always and f~(V,—V,4)/V, if {~1. This last relation
shows that f can approach unity when A>1 if V, is several times V,,4. If
A«1, then B«1 (unless V,—V,y>>1) and hence {« 1 (inefficient convection
in the sense of Chap. 14). From (20.78j), then, it follows that f<«1 and only a
small fraction of the total flux is convective.

20.6 Stellar Envelopes in Convective Equilibrium

As we have seen in Sect. 20.5, all stars of “normal” chemical composition
(i.e., predominantly hydrogen) whose effective temperatures 7T, are lower
than some “transition” temperature (which is about 7500°K for main
sequence stars, i.e., about spectral type A7) are expected to have effective
convection zones beginning immediately beneath their photospheres and
extending (perhaps) deep into the interior. There exists some semi-empirical
evidence, to be discussed in Sect. 26.1b, which suggests that deep and
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effective convective envelopes indeed develop in late type stars. We consider
in this section the general structure of such convective envelopes and some of
their properties.

20.6a Preliminary Considerations

It is clear that if a good theory of convective transfer existed, one could
compute the complete structure of such an envelope simply by using this
theory to integrate the stellar structure equations from the point where the
material first becomes convectively unstable (V,>V,;) down through the
convection zone to the point (if it exists) where the material is again stable
against convection (V,<V,,). The best theory of convection available at
present seems to be the Bohm-Vitense mixing-length theory [Vi53, B558],
which we have described in Chap. 14. We have also noted that calculations
employing this theory have been carried out, for example, by Bohm-Vitense
[B658] and by Baker [Ba63,64b], and we have summarized some of their
results in Sect. 20.5. These calculations are quite complex, however, and it is
useful to consider simpler, more approximate methods of calculation which
have been used in the past and which provide insight into the physical factors
which determine the structure of convective envelopes.

The first simplification is based on the fact, which we noted in Chaps. 13
and 14, that the excess of the superadiabatic gradient (which is really just the
actual gradient, V) over the adiabatic gradient V,; becomes smaller and
smaller as one descends into a convection zone. (In the language of Chap. 14,
the parameter A generally increases with increasing depth in a stellar enve-
lope, cf. Sect.14.7.) Let us refer to the outermost region of a convection zone,
where the excess of the superadiabatic gradient over the adiabatic is appreci-
able, as the “transition region.” Its detailed structure depends critically on
the theory of convection which is being used; for example, in the case of the
mixing-length theory, the value used for the mixing length A plays a decisive
role in determining the detailed structure of this region. In the regions below
the transition region (assuming that they exist and are unstable against convec-
tion), the superadiabaticity of the gradient will be small and for this reason,
as we have seen (Chaps.13 and 14), the structure of the region becomes
insensitive to the theory of convection which is being used. In such regions the
structure can often be approximated by neglecting this superadiabaticity and
simply setting the actual gradient equal to the adiabatic:

dinP ™ 1 °

where I', can be computed at each point from knowledge of the local values
of p, T, and chemical composition (see Chap.9 and (18.8")). Equation

V=
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(20.79) can then be integrated through the region to yield P as a function
of T.

It should be noted that in the approximation (20.79) and in the absence
of irreversible processes (see (13.31) and the discussion following this
equation), the specific entropy S is constant with depth in the convection
zone. Because, however, V is always slightly larger than V,, in an actual con-
vection zone containing no nuclear energy sources, S actually always
increases inward somewhat in such convection zones.

In dwarfs later than, say, GO the transition region is likely to be thin
(¢f. Baker [Ba63,64b]) and one sometimes neglects it entirely, using (20.79)
throughout the entire convectively unstable region. In giant and supergiant
stars, however, the transition region is likely to occupy a considerably larger
fraction of the convection zone than in the dwarfs, so that use of (20.79)
throughout the convection zone may introduce a large error.

If I, is constant in the regions of interest, then (20.79) can be integrated at
once to give

PocTI2=1) (20.80)
which may be written in the form

P=KT™*!, (20.81)
where

n,=1/I,—1), (20.82)

and where K is a constant of integration whose value is determined by the
values of P and T at the bottom of the transition region. If the transition
region is neglected, then the value of K would be determined by the values of
P and T at the point where convective instability first sets in; sometimes
photospheric values of P and T are used, since the point where convective
instability first occurs is usually rather close to the photosphere (¢f. Sect.
20.4). In this last case, then, the computation of a stellar atmosphere is
required (although a simple grey atmosphere is usually assumed) in order to
evaluate K. Sometimes even the atmosphere is neglected and the simple
“zero” boundary conditions T = 0 and P = 0 at r = R (the stellar radius)
are used. In the last case it is clear that the value of K is not determined at all
by the boundary conditions (assuming that the star is not completely con-
vective, ¢f. Sect. 22.5) and K must be regarded as an additional constant of
integration. In this case K is sometimes simply regarded as a free parameter
whose value is chosen so as to give a reasonable fit to observations. For
example, models of stars with convective envelopes have been computed
(cf., for example, Schwarzschild [Sc58b, Chap. 4]) by ignoring the hydrogen
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and helium ionization zones, setting I, = (5/3), and using the zero boundary
conditions P = 0 and T = 0 at r = R. Equation (20.81) then becomes

P=KT?*?, (20.83)

where K is now regarded as a free parameter. In this case we see from our
considerations of the Vogt-Russell (V-R) theorem (cf. Sect.18.1) that
now the value of K must be specified, in addition to the values of mass M and
chemical composition, in order for the structure of the star to be determined.
If L, M, and R are assumed known, then the value of K is adjusted until a
reasonable chemical composition for the model is derived; in this way the
value of K may be considered as determined by observation. As we shall see
later in this section, the value of K determines the depth of the convective
envelope.

Even if I, is not constant (as in the hydrogen and helium ionization
zones, for example), (20.79) can still often be integrated analytically by
making use of the constancy of the entropy along an adiabat (¢f. Limber
[Li58], for example, and Sect. 20.8). It must be realized that this method will
not give accurate results if used in the transition region of the convection
zone. Baker [Ba63,64b] has computed departures from isentropy in con-
vective envelopes on the basis of the mixing-length theory. As we shall see in
the next subsection (Sect. 20.6b), the existence of these zones of hydrogen and
helium ionization greatly increases the depths of convective envelopes over
those which would otherwise obtain and greatly increases the luminosity of
completely convective stars (cf. Sect. 23.5).

We note from (20.81) that if I', is approximately constant, convective
stellar envelopes have an approximately polytropic structure below the
transition region, just as radiative envelopes should have an approximately
polytropic structure below the region of hydrogen ionization. The important
difference between the two cases, however, is that in the case of radiative
envelopes the value of the constant K is simply and directly determined (cf.
(20.34)) from L and M and the theory of radiative transfer, but not by the
surface boundary conditions; whereas the value of X in the case of convective
transfer is determined from L, M, and R by the surface boundary conditions
and a complicated and very uncertain theory of convective transfer.

20.6b Structure of Convective Envelopes

Before considering the details of the structure of a convective envelope,
let us first consider, for orientation, the structure of the envelope of a star
with

7500 < T,(°K) < 10,000.
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In such a star convection will not be effective in the envelope (¢f. Sect. 20.5)
and we accordingly ignore convection altogether and assume pure radiative
transfer in the envelope. The upper limit to 7, is imposed so that hydrogen
will not be completely ionized at the photosphere. We shall refer in the
following discussion to Figs. 20.3 and 20.4, which show, schematically,
temperature 7 vs. pressure P in the envelope and alsoV, = (dIn T/d In P),,q4,
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Fig. 20.3 Schematic curve of log T vs. log P in a radiative envelope in a
star with 7500 < 7,(°K)<10,000.

the “fictitious radiative gradient” (equal to the actual gradient, V, in the case
of pure radiative transfer), vs. P. The numbers on the vertical scale in Fig. 20.4
are inserted merely to give a rough idea of the scale of the variations in V,;
a realistic V, curve might differ considerably, quantitatively, from the one
shown.

The point P in Figs. 20.3 and 20.4 represents the photosphere (r = (2/3)),
where T=T, and P = P, ~ g/x, (see (20.16)), where g, denotes surface
gravity and «, denotes the photospheric value of the opacity x. Proceeding
inward from P, the point A is the point at which the material first becomes
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Fig. 20.4 Schematic curve of y,=(d log 7/d log P),,4vs. log P in a
radiative envelope in a star with 7500 < 7T ,(°K) <10,000.

unstable against convection, and the region 4B is the region of violent con-
vective instability, resulting from the rapid inward increase in x. We assume
that in this region AB the opacity may be represented adequately by the
interpolation formula

Kap=KoP*T™™""%, (20.84)
where we assume, further, that n’ + s’ + 4 <0. We then have that, if the transfer
in this region is purely by radiation (see (20.37), (20.41)),

_{ n+1 16 g,
AB—

o ——
77

|n"+s'+4] 3 x,

1
1 wsrays_ [ Le ARl | LA
| @ (% . (2085)

’ 174 4\ [0 +8"+4]
yam__mt1 [(2 T) -1], (20.86)

Tnrs+4|\ T,

which show that 7 increases inward rapidly with increasing P and that,
therefore, the gradient V, may become extremely large in this region, as we
have seen.
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Suppose now that near point B the opacity law switches abruptly to the
law
K=KoP"T™"7% (20.87)

where now we assume that n+s+4>0 (typical values would be n~1, s~3),
but that x is continuous at B. Since (see (20.22)) V,ocxP/T* in regions where
M,~M and L,~L, we have, using (20.87) and the continuity of « at B, for

T>Tgand P> Py:
P n+t1 T —n—s—4
=V =) |+ 20.88
(2 (@) s

(20.89)

where

is the value of V, at B. It is now easy to show from some of the formulae
given in Sect. 20.2 that for pure radiative transfer, by the time T has risen to
such a value that (T/Tp)"****>1 (i.e., T> T, where T is a few times Tj),
V, will have approached the “radiative zero” value:

n+1

= ~0. ~] s~ .90
A (~0.25 for n~1,s~3), (20.90)

and will retain this value throughout the envelope. The gradient will be
stable against convection for T> T, except possibly in the region DE, where
He" ionization may lower the value of V,4 or of s and produce convective
instability. Because of the (slight) effect of He* ionization on the values of n
and s (see Fig. 16.5), the V, curve in Fig. 20.4, if realistically drawn, would
probably show some small wiggles in this region.

The region of partial hydrogen ionization will probably be confined to the
region AB (i.e., hydrogen is likely to be largely ionized at B). This region is
quite thin because of the rapid increase of T with increasing P. Also, any
existing convection will not be effective in this region because the rapid rise
in T implies low pressures and hence low densitites, which in turn imply small
convective efficiency in this region (¢f. (20.71)). This steep temperature rise
also helps make any convection in the He®* ionization zone ineffective
because the pressures (and hence the densitites) for given temperature here
are smaller than would otherwise have been the case. Thus, for hot stars such
as the kind we are considering here, convection is confined to thin, ineffective
regions (the region in which hydrogen and first helium ionization occurs, and
possibly the region in which second helium ionization occurs).

We consider now the structure of the envelope of a star with, say,
T,<7500°K, which is cool enough so that it has an effective and possibly
extended convection zone beneath its photosphere. Here we assume that as
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we move inward from the photosphere, we reach a temperature within a con-
vection zone, say T, where the pressure and density are sufficiently great that
convection is effective at temperatures higher than T;. We also assume that
Ty is sufficiently low that hydrogen ionization is not very far advanced here.
This assumption follows from the discussion in Sect. 20.4 which illustrates how
for cool stars the effect of photo-dissociation of the H™ ion upon the opacity
is sufficient to make the radiative gradient V, become a rapidly increasing
function of temperature, thus allowing for the possibility of convection
(V.>V,y) in regions still too cool for appreciable hydrogen ionization.
Finally, we assume for simplicity that the convection is so efficient for T> T
that the superadiabaticity of the actual gradient Vcan be neglected, so that we

T B
H-He |$

- IONIZATION ONIZATION-I

o

o

-

TRANSITION REGION (INEFFECTIVE CONVECTION)
EFFECTIVE CONVECTION /~—
LOG T} P ‘ ' /
) / / o, A |

LOG P—

Fig. 20.5 Schematic curve of log T vs. log P in a convective envelope in
a star with T,<7500°K.

can set V equal to the adiabatic gradient V,4; in other words, we assume that
the P-T relation in the convection zone (for T> Ty) is the adiabatic one. We
shall refer in the discussion to Figs. 20.5 and 20.6, which show, schematically,
log T vs. log P in the envelope and V,, the “fictitious radiative gradient” (now
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not equal to V), vs. log P (again the numbers on the vertical scale in Fig. 20.6
are inserted only to give a rough indication of relative values; the curve
drawn is purely schematic and not quantitatively accurate).

1000

100

[¢]

LOG P —

Fig. 20.6 Schematic curve of v, vs. log P in a convective envelope in a
star with 7,<7500°K.

Again, point P represents the photosphere and A4 the point at which
instability against convection first sets in (V, = V,,). The region AB is the
“transition region”, which is convectively unstable and in which radiation
and convection compete as transfer mechanisms. Here V lies between V, and
V.a; V lies closer to V, in regions near A4, and closer to V,4 in regions near B.
The structure of this region 4B will depend sensitively on the particular
theory of convection which is being used; accordingly, there is considerable
uncertainty about the precise structure of this region. At B convection be-
comes effective, so that we may set V=V,y. We assume that hydrogen ioni-
zation is not very far advanced for T< T (therefore I, ~ (5/3)); we accord-
ingly have in the convective region BC (see (20.83))

PBO = K, T3, (20.91)

where K, = Pg/Ty?3 is evaluated, in principle at least, from the values of
P and T at B (bottom of the transition region). In reality, hydrogen will
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probably be partially ionized in region BC, so that a more complicated
relation between P and T in this region would be required; however, for
heuristic reasons, we nevertheless adopt (20.91) in this region.

The fictitious radiative gradient, V,, cannot be evaluated accurately in
region AB, as a theory of convection must actually be used. If, however, the
convection is so inefficient here that V~V,, then V, would be given approxi-
mately by (20.86) if n” +5"+4 <0 or by (20.39) if »' +5' +4>0. Assuming the
same opacity law xkoc P"T ™"~ to apply in region BC as in region AB, we

have in region BC
VO _y® (ﬁ)" “(1)—" - (20.92)
r r PB TB

where V,® is the value of V, at B. Since (20.91) is assumed to be valid in
region BC, we have in this region

B6)_ o) T 1.5(n'—-1)-s'
VEO_yB( ) (20.93)
Ty

Since s’ <0 and n’ ~1 in region BC, it follows that V, continues to increase in
this region; i.e., the material becomes more and more convectively unstable
as point C is approached.

We consider now region CF, which contains the zones of hydrogen (H),
first helium (He), and second helium (He*) ionization. Although the H-He
and the He™ ionization zones are usually distinct and well separated in actual
stars (as shown schematically in Fig. 20.5), we shall treat these zones for
simplicity as only one extensive ionization zone. We shall also assume that
V = V,, throughout the regions CF and FG. Here we need the integrated
adiabatic relation between P and T in an ionization zone (see Sect. 20.8). Let
us just recall first, however, that 13— 1 and I5/(I; — 1) becomes very large in
an ionization region of an abundant element (¢f. Sect. 9.18). As a very
crude approximation, we might replace I/(I'; —1) in region CF by a
constant average value {(I,/(I';,— 1)), so that, approximately

Poc T<M/T2=1)) (20.94)

in region CF. Since (I3/(I; —1)) is a fairly large number, it follows that P
increases very rapidly inward with increasing T, i.e., T increases very slowly
with increasing P (which is just the opposite of the behavior for radiative
transport in an ionization zone). At the bottom of the ionization region
(point F), then, the pressure is very large for the temperature, much larger
than if the ionization regions had been neglected. We note also that because
of the small average temperature gradient in region CF, the ionization
regions are considerably “drawn out” and spread over a large portion of the
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envelope; this is in marked contrast to the situation in radiative envelopes,
where because of the steep temperature gradient the ionization zones are
very thin. In the region FG, below the ionization zones, I is again essentially
constant and approximately equal to (5/3), so that here

PE® = K,T?5, (20.95)

where the value of K, is determined by the value of K, (see next paragraph).

From Sect. 20.8 we have the following result, based on the constancy of
the entropy along an adiabat, for a “classical” perfect gas consisting only of
hydrogen and helium: If hydrogen and helium are essentially unionized at
point C and essentially completely ionized at point F (including both stages of
helium ionization), we have as the relation between the values of the quantity
(P/T>'?) at points C and F:

P P\
EAYEA 2036

where the values of the constants C and a depend on the helium/hydrogen
ratio B (by numbers):

1+B

aEm, (20.97)
o 1 (1+B\'™* (@nm )Y
— 500y 1 . 9al2B/(1+B)] e
C=é a <1+ 2B> 2 [———F——] (20.98)
2(1—-2a)
— 100.6085(1 —a)_ag____l_—_a . (2099)
(1 ~a

Here m,, k, and % denote, respectively, the electron rest mass, the Boltzmann
constant, and Planck’s constant; and c.g.s. units are used in (20.99). Using
(20.91) and (20.95), we may also write (20.96) in the form

K,=C-K3, (20.100)

which is the relation between the K’s above and below the ionization region.
For B = 0 (pure hydrogen), we have

a=1/2,
3/24,5/27J1/2
C=2e5/4[(*___3__2”'"=’)1 k ] =403,

so that
K,~4.0K1’*  (pure hydrogen). (20.101)
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For B = oo (pure helium), we have
a=(1/3),

2 3/21,5/2712/3
C=3e5/3[(—3"—'—‘,);rk—] =7.63,

so that
K,~7.6K}®  (pure helium). (20.102)

Since a typical value of K; might be ~ 1077 c.g.s. units,* we see (assuming
pure hydrogen) that K, ~ 1072, i.e., that K,/K, ~10°, Hence the pressure at
a given temperature below the ionization region can perhaps be some 103
times greater than would have been the case if the effects of the ionization
zones had been ignored.

In Fig. 20.5 the dashed line C'G’H’ shows the T vs. P curve that would
have been obtained if the ionization regions had been ignored.

What determines the depth of the convective envelope, i.e., the point at
which V, has decreased in value until it is again equal to V,4? It is clear that
to answer this question, we must consider the behavior of V, throughout the
convection zone.

We have already followed the course of V, down to the point C, where
hydrogen ionization is assumed to set in. Previous discussion has shown that
the opacity xoc P"T ™"~ *is a strongly increasing function of T'in regions where
H is only partially ionized (assuming H to be the most abundant element),
i.e., that s is fairly large and negative in such regions. Since H will become
nearly fully ionized somewhere between points C and D, we may expect the
opacity law to change into a “Kramer’s” type of law somewhere between C
and D. We shall assume for simplicity that the opacity law switches abruptly
at point C to the law xoc P"T ~""°, where now n+s-+4>0 (say n~1, s~3),
and x is continuous at C. We then have for T>T,

P n+1 T ~n—s~-4
=yOf a 20.103
e T e

where the sub- and superscripts C refer to values at point C.

The P(T) relation is extremely complicated, quantitatively, in region CF
(see Sect. 20.8), and so also is the detailed behavior of V, in this region.
However, the qualitative features of the V, curve in region CF (see Fig. 20.6)
are easily understood from (20.103) (recalling that n+s+4>0) by noting

* For example, for the sun we may estimate the value of K, by using the relation
K, = P,/T,25, where P, and T, are photospheric values of Pand T. Taking P,~10°
dynes/cm? and T, ~ 6103 °K, we obtain K; ~ 3x10~3,
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that T is nearly constant in regions CD and EF and that Poc T?*° in region
DE. Hence V, should increase inward in both regions CD and EF. Quanti-
tatively, we know at least the relation between the value of the quantity
(P/T?-%) at points just above C (where hydrogen and helium are essentially
unionized) and that at points just below F (where hydrogen and helium are
essentially completely ionized). Using (20.91) and (20.95) in (20.103), we
obtain in region FG

K n+1 T 1.5(n—1)—s
(FG) _ (O f >2 —
\%A A (Kl) (Tc) (20.104)
1.5(n—1)-s
_y® <T1) , (20.105)
F
where
n+1 1.5(m—1)—s
V,‘”:V,‘C’-(—ﬁ—z) G;z) (20.106)
1

is the value of V, at some point just below F. We note that since n~1 and
K,/K>1, the factors in (20.104) and (20.106) containing the K’s may be
quite large, perhaps as large as 105—105, say. On the other hand, since
s=~3 and Ty/T.~4 -5, say, the factor containing the 7s in (20.106) is likely
to be of order 10~ 2, Hence the factor multiplying V,© in (20.106) is still
large compared to unity, say perhaps 10°~10%. This means that the value of
V, has been increased by a large factor in going down through the ionization
zones of hydrogen and helium; the material is consequently considerably
more unstable against convection at F than it was at C.

At points interior to the ionization zones (T>T;), where P = K,T?5,
(20.105) shows that, since n~1 and s~ 3, V, varies approximately as 73, so
that V, now steadily diminishes in value as greater and greater depths below
the ionization zones are attained. When V, has fallen to the value V,; = 0.4
Gf I, =(5/3)), we again have stability against convection, and it is at this
point (point G in Figs. 20.5 and 20.6) that the convection zone ends. For
T > T, radiative transfer will obtain (at least in the envelope). In fact, at
depths for which 7 is somewhat larger than Ty, the radiative zero solution,
for which V, = (n+1)/(n+s+4), will have been reached, provided that M,
and L, are still approximately equal to M and L (this may not be the case at
all in sufficiently cool stars).

It is clear from these considerations that the larger is the value of V,),
the deeper the convective envelope will be. If we had not taken the ionization
zones of hydrogen and helium into account (see dashed curves in Figs. 20.5
and 20.6), the points Fand C would have coincided and we would have had
K,/K, = 1 and T = T.. Hence V,"” would have had the much smaller
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value V,(©), and it is clear that the convective envelope would have been much
shallower in this case than in the former one. Briefly stated, we may say that the
ionization zones hold the temperature down in these zones, making them
almost isothermal ; whereas the pressure continues to increase inward through
these zones. Immediately beneath these zones, then, the pressure is very large
for the temperature, and the fictitious radiative gradient V,ocxP/T* is very
large, thus making the material highly unstable against convection here. We
conclude that the presence of the hydrogen and helium ionization zones
considerably deepens the convective envelopes of cooler stars over the depths
they would otherwise have.

We consider now the dependence of the depth of the convective envelope
on T,. We combine (20.106), (20.100), (20.93), (20.91), (20.24b), (20.23) and
(20.22) to obtain

(F) 3 Te4 1+l +1-(1—a)(n+1)r1.5(n —n)+s—s'
=_’_KOC Kl Tc

" 16 g, (20.107)

. T[}.S(n— 1)—s’

where (20.24b) is applied at point B, and where primed » and s denote values
above point C, unprimed n and s denote values below point C. Since n~n’~1
and a~(1/2) (for a mixture composed predominantly of hydrogen), the
exponent of K, is approximately unity so that V,\* increases with increasing
K,.Since in our simplified picture the value of the constant K| is determined
by the values of P and T at the point B (see Fig. 20.5), we see that the larger
is Pgand the smaller is T}, the greater is K, and hence also V,". In order to
consider the dependence of V,*? (which controls the depth of the con-
vection zone) on T,, we must consider the dependence of K; on T,. Since
points C and F are defined, respectively, as the points where H ionization is
just setting in and where He™ ionization is essentially complete, it follows
that T, (~8000—-10,000°K) and T«~50,000°K, say) do not depend
sensitively on stellar parameters.

Since a theory of convection is actually required in order to evaluate X,
our considerations will be quite uncertain quantitatively. Let us, for the sake
of simplicity, assume that the energy transfer in region 4 B is purely radiative
(this will probably cause the value of K, to be underestimated, but this is of
no consequence in our present considerations). We then have for T a few

times T, (cf. (20.35), (20.37)), approximately,

&
Py Ty :I" (20.108a)
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and
L
Jc—25g:'+l
KiocTg™ = T (20.108b)
where
n'+s'+4 4 .,
= w1 YSwFd for n’+s5'+4>0,
_ _In'+5| 'y
x=0, == for n'+s'+4<0.

Equation (20.107) then becomes (considering T and Ty as fixed)

F) -y +1—(1—a)(n+1)] 1
VP T, ’g1—{[n'+1—(1—a)(n+1)]/(n+1))
s
1 20.108
T(2.5—x)[n’+1—(1—-az)(n+1)]' ( . c)
B

Taking the typical values n’' =n~1, a~(1/2), we have

T P 20.1084)
r °Cgs1/2TBz.5—x- (20.
For Tz>5040°K, we have seen that a representative value is s = —10,
which gives x = 0, y = 4.5, and
VO L (20.108¢)

1/2p1/22.5"
gs/ T'e/ TB

Since T; (temperature at bottom of convection zone) oc [V.F]'/3 (cf.
(20.105)), we have also

1 o
Tgoc———-HTI/GTSI (T3>5040°K). (20.108f)
&s e B

For T;<5040°K we have s"~ —3, whence x = 1, y = 2, and

Ve Te (20.108¢)
r (x_—e'._; - g
g1y
also
T2/3
TGOCW (T,<5040°K). (20.108h)

It is probable that as density and pressure in the sub-photospheric regions
increase in cooler and cooler stars, the temperature Ty at which convection
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becomes effective also is likely to be smaller in cooler stars (as is confirmed
by detailed calculations of Vardya [Va60b,64]). It may, in fact, be the case
that the ratio Ty/T, is approximately constant (i.e., constant value of optical
depth at the point where convection becomes effective). Hence it is clear from
(20.108f) that the temperature at the bottom of the convection zone increases
roughly linearly with 1/T,, i.e., increases as one goes to cooler and cooler
stars, for T,>5040°K. For T,<5040°K, (20.108g) suggests that V. (and
also Tg) decreases slowly with decreasing T,. The calculations of Baker
[Ba63,64b] also show that the temperature T at the bottom of the convection
zone tends to level off and perhaps even shows signs of decreasing with
decreasing T, at T,~5100°K. If 7; remains approximately constant or
decreases slightly with decreasing T,, then a sufficiently cool star could
become completely convective only by the central temperature falling to a
value near that of T;. According to Limber [Li58], the late M dwarfs are
completely convective (cf. Sect.26.3). Such stars will be discussed in
Sect. 23.5.

We emphasize the approximate nature of our considerations. In real
stars hydrogen is likely to be partially ionized at point B in Figs. 20.5 and
20.6. If this partial ionization were to be taken into account, the relation
between K, and K, would be considerably more complicated (cf. Sect. 20.8)
and the depth of the convection zone as calculated above would be reduced
somewhat. Also, since the value of K is determined by the values of P and T
at the bottom of the “transition region,” then the value of X, is rendered
uncertain by the uncertainties in the theory of convection, which determines
the detailed structure of this region. Also, the assumption that the opacity
law is Kramers-like below point C (n~1, s~~3, n, s constant below point C)
introduces error because H is not fully ionized at point C. Finally, the
procedure of setting V = V,, introduces some error, which is the less serious,
the lower is T,. Baker [Ba63,64b] has shown that the entropy actually
increases somewhat in traversing the convection zone from top to bottom,
which results in a slightly smaller depth of the convection zone than would be
obtained by setting V = V,4. This is to be expected since, actually, V>V,q,
which means that the actual temperature at a given pressure P is somewhat
larger than would be given by setting V = V,,, and hence that the actual
entropy increases inward in a convection zone (see also (13.31)). The
uncertainty in the value of K,, however, is more serious than the non-
adiabaticity of the convection zone, since the value of K, determines which
adiabat applies to the adiabatic region of the convection zone. In spite of these
possible complications, our simple picture is nevertheless qualitatively correct.

It is important to note that careful attention to the surface boundary
conditions is absolutely essential to obtain realistic results for main sequence
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stars cooler than about 7000°K ; as we have seen, in these cases the structure
of the entire outer portions of the star depends critically on these boundary
conditions. If we had ignored them, the existence of deep convective
envelopes in cool stars might have been missed altogether (indeed, this was
the case prior to Osterbrock’s now classic work [Os53]). In hot stars such
careful attention is not needed (¢f. Sect. 20.3); indeed, the simple *“‘radiative
zero” boundary conditions can generally be used.

Finally, we note that, if the envelope of a late type star contains strong
magnetic fields which may strongly affect (if not impede) convective motions,
then the structure of such an envelope may be quite different from the
structure that we have described above.

20.7 Temperature Distribution in the Envelope

In general, it is not possible to obtain simple analytic expressions for the
distribution of temperature with depth in an envelope. In the case of radiative
envelopes the reason is primarily the complicated behavior of the opacity in
the regions in and above the level of hydrogen ionization. In the case of con-
vective envelopes the reason is primarily the existence of the ‘‘transition
region” where a theory of convection should be used. We showed, however,
that in the case of both radiative and convective envelopes the deeper
regions tend to take on an approximately polytropic structure; i.e., in such
regions we have, approximately,

P=KTmtt, (20.109)
where
;‘s%ii (radiative envelopes)
= (20.110a,b)
P (convective envelopes)
and
n+l 16nacGM |- . L.
K [n pwwe WL :, (radiative envelopes) (20.111a,b)

K(L, M, R,comp.) (convective envelopes),

provided that #, and K are constant. In (20.111b) X is evaluated from the
surface boundary conditions (except possibly in the case of completely con-
vective stars).

If we neglect the complicated structure of the outermost layers and simply
assume that (20.109) may be used as an adequate approximation throughout
the envelope, then a simple analytic formula for the temperature distribution
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in the envelope can be obtained. First, however, we formulate the problem
more generally.
We write the equation of hydrostatic equilibrium in the form

dP _dlnP 1dT M,

=P =~ P, (20.112)

which gives, using the definition #,+1 = dIn P/d In T of effective polytropic
index,

dT M, T
(re+D==G = p 5 (20.113)
= —ﬂ“;M'-;lz, (20.114)

where we have used the “perfect” gas equation of state (20.67) (with radiation
pressure included) in (20.113) to obtain (20.114). Assuming that (Bu) is
constant in the envelope and that M, ~ M, we obtain from (20.114)

T

B L) ,
J(ne+1)dT == "®)’ (20.114)
Te
where we have taken T = T, (effective temperature) at r = R (photospheric

radius).

If (n,+1) is constant throughout the relevant regions of the envelope (as
in (20.110)), then we obtain from (20.114’), neglecting T, in comparison to
T, the simple analytic solution referred to above:

L1 pom i1y
I=.xi~a &

=n.:i-1 (g*) ’ (ﬁ_lllzﬂ) '

where x=r/R. If M and R are expressed in solar units, we have

22.91 x 10° BuM (1 )
— . ~—1)°K. 20.116
T n,+1 R X 1 ( )

(%—1) , (20.115)

We note that to the approximation to which we are working, (20.115)
applies to either radiative or convective envelopes since both obey the same
type of polytropic equation (20.109). The only difference between the two
types of envelope, from the standpoint of (20.115), is that n, will have one
value (=~ 3) for radiative envelopes and another value (~1.5) for convective

envelopes.
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20.8 Integrated Adiabats in Hydrogen and
Helium lonization Zones

It was stated in Sect. 20.6 that if I, = const. in a convection zone in a
star, then the integrated adiabats are simply

P=KTT/T2~1 (20.117a)
=KT*® if I,=(5/3), (20.117b)

where K serves to identify the particular adiabat under consideration. It was
also stated there that even if I, is not constant (as in an ionization zone of a
dominant element, ¢f. Sect. 9.18), it is still possible, by assuming the local
specific entropy S to remain constant along an adiabat, to write down
analytic expressions for the integrated adiabats. We shall obtain such
expressions in this section for a gaseous mixture of H and He undergoing
ionization. Equivalent expressions have also been derived by Limber [Li58].
Applications of these expressions are made in Sects. 20.6 and 23.5.

(It is also possible to obtain integrated adiabats directly by numerically
integrating the equation

dinP I,

(dln T)s= -1 /®D (20.118)

from some initial pair of values of P and T which serves to identify the
particular adiabat under consideration. Examples of formulae for computing
I'; are found in Chap. 9. Such integrated adiabats have been computed by
Vardya [Va60a,65]).

We consider a mixture of non-interacting, non-relativistic, Maxwell-
Boltzmann gases in thermodynamic equilibrium, all having the same temper-
ature 7, and we neglect radiation pressure. Each stage of ionization of each
species of particle is treated as a distinct kind of particle, as are also the free
electrons. Assuming the electrons to be Maxwell-Boltzmann particles means,
of course, that the electron gas is being assumed non-degenerate (¢f. Chaps. 3
and 10). If n; denotes the number density of particles of type i, each of (rest)
mass m;, we have for the entropy per unit volume contributed by particles of
type i, ignoring the excitation energy in the case of “‘compound” particles
(see (10.68a)),

(20.119)

T B(T)(2rm;)**k*2e?
S"—-knl'ln[ })i * h3 ]’
where P, = nkT is the partial pressure exerted by i-type particles, B;(T) is
the partition function for particles of type i (see (3.25)), k is Boltzmann’s
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constant, 4 is Planck’s constant, and e is the base of the natural logarithms.
We now use the relation P; = (n;/n)P in (20.119), where n = Zn; is the total
particle number density and P = )i:,» P, is the total pressure in tilc system. We
then form the sum S = EilSi over all types of particle present and divide

through by p, the mass density of the mixture, so as to obtain the total
specific entropy s=S/p (entropy per unit mass). Making use of the relation
n/p = Nofu, where N, is Avogadro’s number and g is the mean molecular
weight (¢f. Chap.15), and dividing the resulting equation through by N,k,
we obtain for the total specific entropy in units of Nyk

(20.120)

L_l _ri;'ln [TS/Z 1 Bi(T)(ani)S/ZkS/ZeS/Z]
Nok™ p4n P n h3 )

We now apply (20.120) to a mixture consisting only of H® (unionized
hydrogen), H* (ionized hydrogen), He® (unionized helium), He* (singly
ionized helium), He* * (doubly ionized helium), and free electrons, and we
assume that the free electrons have all come from the ionization of H and He.
This assumption will be adequately realized for a ‘“‘normal” composition
(predominantly H), even if some metals are present, for temperatures
2 5000 °K, for then the number of electrons supplied by ionization of metals
will form only a small fraction of the number supplied by hydrogen ionization
(cf. Sect. 20.4). We now write in an obvious notation

ny=n(H%+n(H"), (20.121)
ny.=n(He®) +n(He*)+n(He* ), (20.122)

where ny and ny, are the total number densities of atoms and ions of,
respectively, H and He. Letting n, denote the electron number density, we

have
n=ny+ny.+n, (20.123)

as the total particle number density in the mixture. We now define

B=ny[ny (20.124)

as the He/H abundance ratio (by numbers) and
x =fraction of all H atoms and ions that are (once) ionized,
y, =fraction of all He atoms and ions that are once ionized,  (20.125)

y, =fraction of all He atoms and ions that are twice ionized.



640 APPLICATIONS TO STARS

The following relations are then immediately obtained:

n,=xny+(y;+2y3)ny.=nu[x+(y; +2y,)B], (20.126)
n=1+X)ny+1+y,+2y)ng.=ny[1+x+(1+y,+2y,)B], (20.127)
n(H% 1-x n(H) x

n  1+x+B(1+y,+2y,)” n  14+x+BA+y,+2y,)’
n(Heo)= (1 — V1 _yZ)B n(He+)= le (20 128)
n 14+x+B(1+y,+2y,)’ n 1+x+B(1+y,;+2y,)"

n(He™ ™) _ :B n,_ x+B(y;+2y,)
n 1+x+B(1+y,+2y,)’ n 1+x+B(1+y,+2y,)

Moreover, taking the atomic masses (in A.M.U.’s) of H and He to be 1
and 4, respectively, we have for the mean molecular weight of the mixture
(ignoring elements heavier than He?)

u~nﬂ+4nm__ 1+4B

= . .129
n 14+x+B(1+y,+2y,) (20.129)

Finally, we assume that the partition functions B(T) can be approximated in
the case of “compound” particles by their first terms. Including nuclear
spins (and assuming the nuclear spin of He* to be zero), we have, again in an

obvious notation,
B(H°)=4’ B(H+)=2, B(He°)=1,
B(He*)=2, B(He**)=1, B(e)=2.* (20.130)

Using (20.128), (20.129), and (20.130) in (20.120), we obtain
52 3/21.5/2 5(2
s 1 {(l—x)ln[T 14+x+B(1+y;1+2y,) 42nmy)’ k% e ]

Nok 1+4B P 1—x A
T*? 14x+B(1+y,+2y;) 2Qnmy)* k"2

+xIn P o . PE
T3% 14 x4+ B(1+y,+2y,)

+B(l—y;—y,)In . 17272

( Y1 .VZ) [ P B(l—yl—}’z)
3/21,5/2,5/2
. (27[mHe)h3 ke :l (20.131)

* The values of the B’s for He®, He*, and He* ¥ in (20.130) are one-half the values as
given by Limber [Li58), who incorrectly took the spin of the He* nucleus to be (1/2). This
factor of two, however, does not affect Limber’s conclusions or the final results as ex-
pressed in (20.133) and in the formulae in this section following (20.133).



20.8 The Outer Stellar Layers 641

+y,Bln T5/2 14+x+B(1+y,+2y,) . 2(2nmy,)* 2k52e512
P y:B K
+y,BIn T*2 1+x+B(1+y,+2y,) Qamy)*k%2e?
p y2B K
T°? 1+x+B(1+y,+2y,)
+|x+B(y,+2 In . 2y,
L (y1+2y,)] [ P P T T
2(2nm,)*2k51%¢5/2
)

1

T5/2
. ln{ z [1+x+B(1+y,+2y,)] e5/2}

—(1-x)In(1-x)=xInx—~B(1~y,—y,)In[B(1—y,—y,)] (20.132)
—y1Bln(y;B)—y,Bln(y,B)
—[x+B(y; +2y,)]In[x+ B(y, +2y,)]

3/21,5/2 3/21,5/2
+ln|:(2nm,;l) k ]+ Bln[(znmﬂi) k ]

3/21.5/2
+[x+B(y;+2y,)] ln[(z—“"%k—} [1+B(y,+y;)]2In 2]],

where my, my,, and m, denote, respectively, the H, He, and electron (rest)
masses (we neglect the mass differences between ions of a particular atomic
species).

Equation (20.132) is the explicit expression of the integrated adiabats for
the particular system considered here, where the value of the specific entropy
s specifies the particular adiabat under consideration. That (20.132) is indeed
the expression for the integrated adiabats can be seen from the fact that the
degrees of ionization x, y,, and y, are functions of P and T (cf. Chap. 15), so
that (20.132) is a one-to-one relation between P and T along an adiabat. For
x = y, = y, = 0 (no ionization) and for x = 1, y; = 0, y, = 1 (complete
ionization), (20.132) yields P/T/? = const., which is just (20.117b).

Equation (20.132) will be simplified if conditions at point 4 (characterized
by values P, T™9) along a given adiabat are such that He is largely neutral
(ie., y ~ yi¥ ~ (), and if conditions at point B (characterized by values
P®_ T®) along the same adiabat are such that H is almost fully ionized
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(i.e., x®~ 1) and such that very little neutral He is left (i.e., ¥ ~ 1 —y{P),
Evaluating the right side of (20.132) at points 4 and B and equating (since s
is being assumed constant on a given adiabat), we obtain

P P Y
(‘_Ts/z)B: C(T5’2>A ’ (20.133)
where
(A4)
a= 1TX A (20.134)
24+ B2+ yP)
and

InC=(5/2)(1—a)+1In{2+B(2+y,)]—-aln[1+x+ B}

1
t3rBR+y,)

—B(1—y,)In[B(1-y)] (20.135)
—~By,;In(By;)—[1+B(1+y,)]In[1+B(1+y,)]

{(1—x)1n(1—x)+2xlnx+BlnB

3/21,5/2
+[1=x+B(1+y5)] 1n[@ﬂe—,)lgk—]+2mn2}.

In (20.135) we have omitted the superscripts (4) and (B), but it is to be
understood that x (degree of H ionization) is to be evaluated at point 4 and
y, (degree of second He ionization) is to be evaluated at point B. Equation
(20.133) gives the value of (P/T>/?) at some point in the H or He* ionization
zones, assuming points 4 and B to be connected by an adiabat identified
by the value of (P/T>/%) at point A.

If ¥~ 1 (essentially complete ionization at point B), we have (20.133)
again, with (remembering that x=x“4)

“=12+j—3+;’ (20.136)
Qnm,)*?K*e** '~ (243B)' 7
C= 73 ) E
o
282438 | 1—=X)! —%,2xJ1/(2+38B) (20.137)
. 2 . [W] )
where
3/27,5/2,5/2
[(2nm,) h3k e :|=100.6085 c.g.5. units. 20.138)
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If y{®~ 1 and x4 ~0 (essentially no ionization at point A4 and essentially
complete ionization at point B), we have (20.133) again, with

4 1+B
" 2+43B°

27rme 3/2k5/285/2 1-a 1 2
Cz[( )h3 'a’(l—a)l-,-Zz“ . (20.140)

(20.139)

Finally if x4’~1 (essentially complete H ionization at point 4) and
P~ 1 (essentially complete H and He ionization at point B), we have
(20.133) again, with

“=§:—"£g’ (20.141)
(27tme)3/2k5/2e5/2 l—a(2+3B)1—a 1 e
C=[ h? of (1+2B)TF 2B/ +3B) 217 (20.142)

Equation (20.133), when applied to the adiabats numerically computed
by Vardya [Va60a), yields results which agree to 3 or 4 significant figures
with Vardya’s results.
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