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Technical Abstract 

 

The flat panel speaker is a relatively new technology that disregards the normal rules of 

loudspeaker design by encouraging resonance in the speaker cone. These speakers have 

been commercially available for some 10 years, yet little is known about their method of 

operation. A single company (NXT) licenses flat panel speaker technology to 

manufacturers, but has given scant explanation as to how these devices work. Though 

there is beginning to be academic interest in these speakers, current computational 

techniques (Finite Element Analysis, Boundary Element Method) are extremely slow when 

analysing vibrating panels with such high degrees of freedom. Due to the slow nature of 

these methods it has not been possible to perform investigative research to understand 

the method of operation of such panels. By using a new computational method that 

describes the surface displacement of the panel using Jinc function wavelets, the 

radiated power spectrum can be computed for a panel in a fraction of time previously 

needed. Using this method it has been possible to fully analyse flat panel speakers and 

for the first time provide an explanation for how they work to the academic community. 

 To analyse the acoustical properties of a flat panel speaker, a computer 

simulation of such a device was designed and built within MatLab. This model contains 

two distinct submodels – 1) a simulation of the structural dynamics of a flat panel 

speaker, and 2) a prediction of the power radiated from the surface of this panel when 

coupled with surrounding air. Both submodels contain simplifying assumptions about the 

nature of panels being simulated, but due the separate nature of the submodels it is a 

simple procedure to add in more complexity to one area of the model in the future. For a 

typical flat panel speaker the complete model can compute a 4000 point power spectrum 

over the working range (20Hz – 20kHz) in approximately 3 hours. Until recently this would 

have taken many days.  

 This model was used to compute the power spectrum of a real flat panel speaker. 

The speaker was dismantled and its panel carefully measured to find out all the 

parameter values need to run the model. The panel was found to have high damping and 

high modal density, and critical frequency of 23kHz, above the working range of the 

speaker. The resulting power spectrum was found to be extremely flat above low 

frequencies. By changing the damping of the simulated panel and computing the radiated 
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power spectrum for different damping values, it was found that the real panel was close 

to radiating like an infinite panel, with no wave/boundary interactions. For this behaviour 

the driving point radiates all acoustic power, acting like a monopole. The real panel 

radiated power approximately 3x in magnitude that of an infinite plate. The difference 

was found to be due to a reverberant bending-wave field in the panel area around the 

drive point. An approximate value for the radiation from this reverberant field was 

calculated using Statistical Energy Analysis (SEA), and when added together with the 

power radiated from the drive point gave extremely close agreement with the model 

predicted power spectrum. These two methods of panel radiation are normal not seen 

together, but the combination of high damping (producing infinite plate behaviour), high 

modal density (creating a reverberant field), and being below the critical frequency 

(meaning no dominant modes) results in both radiation sources being present in this 

case. Both sources of radiation have a highly dispersed pattern, a known feature of flat 

panel speakers. The dual radiation theory was validated by calculating the SEA 

approximate power spectrum of other flat panel speakers and then checking with results 

predicted by the full Jinc function model. Excellent agreement was seen for a range of 

panels.  

 The method of operation of a single pair of flat panel speakers is now understood, 

and this dual radiation method is thought to hold for a wide range of flat panel speakers. 

The SEA approximation provides an extremely quick way of computing the approximate 

radiated power spectrum for a flat panel speaker (<15minutes). This approximation is 

typically within 3dB of the true value due to the flat nature of the true spectrum and so is 

accurate enough for most purposes. The SEA approximation is a new tool in flat panel 

speaker design and due to its speed allows for new design methods, namely 

optimisation.  
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Section 1: Introduction 

1.1 Background 

1.1.1 Conventional Loud Speakers  

Electrically powered loudspeakers have existed for over 100 years, and are omnipresent 

in our lives – we find them in laptops, radios, mobile phones, train address systems to 

name only a few. Conventional loudspeakers rely on piston-like cones to provide the 

mechanical motion that creates sound waves. This is not new technology – it was in 

1925 that C. Rice and E. Kellogg first devised the piston-cone arrangement that 

dominated loudspeaker design for the rest of the 20th century. Much academic and 

commercial effort has gone into making these cones as rigid as possible through 

improved materials and adhesives, eliminating any resonances. These resonances are 

the main cause of unwanted audio colouration and ‘smear’. 

 Despite the age of this technology the design is by no means perfect and piston-

cone loudspeakers suffer from one key problem: at high frequencies the sound radiated 

tends to become very directional – they ‘beam’. This means that it is extremely difficult 

to evenly fill a space with sound radiated from conventional speakers, especially given 

the variations in directivity at different frequencies. 

1.1.2 Distributed Mode Loudspeakers 

10 years ago the first ‘Distributed Mode’ loudspeakers (DMLs) were developed by New 

Transducers Ltd (known as NXT). These speakers turn convention on its head by actively 

encouraging resonances in the loudspeaker cone. A thin flat panel is used and is 

generally excited using a magnetic coil to set up bending waves throughout the panel. 

These DMLs (or ‘flat panel speakers’ as they are often called) are the first new idea in 

speaker technology in over 60 years, and have some exciting properties: a very 

dispersed radiation pattern at all frequencies; and their slender dimension. Figure 1 

below shows the dispersed nature of this new technology. 
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Figure 1 – Typical Radiation Patterns for Conventional and Distibuted Mode Loudspeakers 

 

The sound quality of flat panel speakers is not yet as good as the best piston-cone 

speakers, but their slender dimensions and ability to evenly fill a room with sound are 

resulting in them being used widely for home cinema, computer audio, and public 

address systems. 

1.1.3 Current Understanding of Flat Panel Speakers 

Though NXT design and licence DML technology, they give little explanation as to the 

physics of DML sound radiation. The most in-depth description of the theory comes in 

NXT’s original introductory article for the audio industry [Azima, 1998]. Here they state 

that by exciting such panels so as to set up bending waves, a series of complex and 

highly random waves are produced. These waves are so complex as to be almost 

random, and so each point on the panel acts like a small independent cone radiating 

uncorrelated sound waves. Due to the complex and uncorrelated nature of resonance, 

adjacent sound waves do not cancel one another out, and so we observe a very diffuse 

radiation pattern, approaching that of a point source. 

 There is beginning to be academic interest in this kind of loudspeaker, but there 

is not thought to be any further explanation as to how these flat panel speakers work 

other than that given by NXT. Most academic work has been concerned with novel uses 

for this technology and not in understanding the underlying physics.  

Conventional loudspeakers  show  a high 
degree of directivity, ‘beaming’ at high 
frequencies. 

Distributed mode loudspeakers show a far 
more dispersed radiation pattern. 

[Images from Elac Electroacoustics Website] 
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1.2 Motivation for Work 

1.2.1 A New Analysis Technique 

To analyse a thin walled structure such as a flat panelled speaker it is natural to analyse 

the air-structure coupling to calculate the sound power radiated into the surrounding air. 

In the past two decades it has been convention to analyse complex structures using 

either the boundary element method (BEM) or finite element method (FEM). These 

methods are well understood and can be applied to a large number of general 

structures, but even with advances in computing power they remain rather slow. This is 

especially problematic for high frequency analysis, where short wavelengths necessitate 

very many degrees of freedom.  

 A new method has been developed that uses Jinc function wavelets to analyse 

the power radiated from planar structures [Langley, 2007]. This method is not as 

general as BEM or FEM but for simple planar structures allows for much faster analysis 

of the acoustical power radiated from their surface. We shall not discuss the Jinc 

function method in any depth, but in summary the method is to describe the surface 

displacement of the structure by using a grid of Jinc function wavelets [see Appendix 1 

for description of Jinc function]. These wavelets are radially symmetric, allowing for a 

simple and analytic calculation of the dynamic stiffness of the structure, from which the 

radiated acoustic power can also be calculated analytically. It is this analytic nature that 

allows for much faster computation than all previous methods and suits the analysis of 

flat panel speakers well. 

1.2.2 Explaining the Physics of Flat Panel speakers 

Though flat panel speakers have now been on the market for over a decade, there has 

been no clear explanation for the governing physics. NXT likely understand the physics, 

but their brief explanation is without any physical or mathematical rigour to back up their 

claims. These loudspeakers do reproduce sound well, as countless commercial products 

and reviews testify, but prior to this research no-one in the academic community 

understood why. NXT are an intellectual property based company, and seem to be 

working hard to ensure their I.P. is kept secure – to the point where DML license holding 

manufacturers cannot advertise the full specifications of their DML products. Through 

use of the fast Jinc function method it was felt that the time was now right to investigate 
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how these loudspeakers operate and try to provide an explanation to the academic 

community at large. 

1.3 Research Strategy 

1.3.1 Designing a Model Speaker 

It is rather difficult to analyse DMLs experimentally, as has been documented previously 

[Hill & Mapp, 2003]. For this research an accurate computer model of a flat panel 

speaker was designed. Firstly, a model that simulated the structural dynamics of a flat 

plate was needed – how the plate responds to a given force input. A program was 

written that simulated the displacement response to a given harmonic force input at any 

frequency. This model was made to be general enough to allow for many changes in 

plate properties. To predict the acoustic power radiated from such a plate, the model 

plate was coupled to the surrounding air space. This involved using the Jinc function 

method to predict the dynamic stiffness and so the acoustic power. 

1.3.2 Investigate real speakers 

Having designed an accurate model, a real set of flat panel speakers was dismantled 

and measured to find out the physical properties of a typical set of flat panel speakers. 

These properties were fed into the model to allow the acoustic power to be predicted. 

This led to some interesting discoveries and theories. These theories were investigated 

and validated by changing various properties of the model speakers and re-analysing 

the predicted acoustic power output.  

1.4 Structure of Report 

This report documents the stages of development of the research introduced previously, 

and the resulting conclusions. The research consisted of 2 main phases, and so shall 

this report:  

1) Designing and building the dynamic response model of a flat panel speaker, and 

coupling this to the surrounding air 

2) Using this model to analyse flat panel speakers 

The first section shall give the underlying theory behind the models used, how the theory 

was implemented, and what investigative tools result from each model. The second 

section will deal with four issues: how the parameter values of a real flat panel speaker 
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were found, what results the model predicted for these values, what the implications of 

these results are, and how any theories about flat panel speakers can be validated. In 

academic papers it has become common to refer to ‘flat panel speakers’ as ‘distributed 

mode loudspeakers’ (DMLs), and this term shall be used from here on in this document.  
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Section 2: Building an Accurate Model 

2.1 Structural Dynamics Model 

2.1.1 Theory 

A DML is little more that a flat plate with some boundary conditions given by the frame it 

rests in. Simply supported plates have the simplest mode shapes of all plates, so it is 

sensible to begin by modelling this type. The model was designed to be general enough 

to allow different edge conditions to be imposed in future, with all subsequent parts of 

the model still performing correctly. A simply supported flat plate has mode shapes and 

frequencies given by [Crighton et al, 1992, p589]: 
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where Lx and Ly describe the planar dimensions of the plate, h the thickness, ρ the 

density of the plate material, and D the bending stiffness. The response of this plate to a 

forced sinusoidal displacement, F, at a point (xo, yo), and at some frequency, ω, can be 

found using a summation of mode shapes: 
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where η defines the coefficient of damping of the plate. It is convention to normalise the 

mode shapes by the system mass before using the infinite summation. All modes were 

multiplied by a normalising factor before summation: 
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2.1.2 Modelling Technique 

Using MatLab as our programming environment, it is simple to calculate the mode 

shapes given by Eqn. (1a) directly. But to compute the panel displacement at any given 

frequency how do we decide the limits to use for our summation in Eqn. (2), which is in 

theory infinite? 



Luke Humphry, King’s College Cambridge  May 2007 

Analysis of Flat Panel Speakers  Page 7 

 Using a wavenumber space approach to represent different modes, it is known 

that for modes close to frequency ω the mode with the maximum n value occurs when m 

is 1, and vice versa [Norton & Karczub, 2003, p210], see Figure 2 below.   

Figure 2 – Modes in Wavenumber Space 

 

It was found that to calculate the response of the plate one should sum over modes up 

to and including Φ1.5n(max),1.5m(max), subsequent modes making no practical difference to 

the response due to the factor ωnm
2 becoming extremely large and further away from ω2. 

The values n(max) and m(max) can be calculated by rearranging Eqn. (1b) and setting m 

or n to 1 respectively. 

 A program has been written which lays a mesh on the plate and computes all the 

mode shapes needed to find the response of a plate up to a given maximum frequency. 

The frequency range of interest to us is 20 – 20,000 Hz, the range of human hearing. 

The mode shapes are computed and then stored in a 4D array – (n x m) x (x x y) – to 

allow them to be called quickly for later parts of the program, namely to find the 

response at any given frequency using the summation over modes given by Eqn. (2).  For 

a maximum frequency of 20kHz, we need to perform a summation of the order of 40x40 

(nxm), dependent on plate parameters. When calculating the response at high 

frequencies this summation is rather time consuming, but the program has been written 

to sum over fewer modes at low frequencies – dramatically speeding up calculations. 

When calculating the response at a given frequency, a unit input force is assumed, ie  

F = 1 in all cases. 

For a frequency ω, modes with a 
resonant frequency near ω mark out 
an arc in the wavenumber space. 
Modes with maximum values for n 
and m are given along kx and ky axes 
respectively. 
 

n(max) 

m(max) 

[Original Image reproduced from Norton and Karczub, 2003] 
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2.1.3 Resulting Investigative Tools  

Using this model for the response of a plate, three key tools were developed to aid 

investigation of DMLs. The first is an animation (slowed down) of the harmonic response 

at any frequency. This allows us to view the deformation and wave patterns of the plate. 

This animation is simply performed by multiplying the complex displacement given by 

the model with a rotating exponential function, and plotting only the real part of the 

resulting displacement. The second tool is also an animation but this time animates the 

displacement shape as we scan up in frequency. This is extremely instructive in showing 

us how the nature of deformation changes with frequency. To perform this animation we 

must re-compute the response at each frequency step, and plot the resulting real 

displacement. At all frequencies the level of displacement is rather small (<0.1 mm for 

200 x 200 mm panel) so the animation displacements are scaled to give the viewer a 

clear idea of the mode shapes and wave patterns.  

Figure 3 – Snapshot of Harmonic Animation Tool 

 

The third tool is one that computes the mobility transfer function from one point on the 

plate (force input) to another (velocity output). This lets us quickly visualise what the 

plate is doing at various frequencies, and gives an insight into some of the key 

parameters such as modal density and modal overlap factor. To validate the model we 

used the transfer function. We first computed the parameters modal density, modal 

overlap factor, and critical frequency. These are dependent on the plate dimensions and 

This snapshot is taken from the MatLab animation tool developed to view the response of a 
panel. The above response is found for a 20x12x0.1cm steel panel being excited at 2000Hz. 
The x and y axis describe the mesh grid position, and the z axis describes the normalised 
plate amplitude. 
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materials and can be easily calculated [see Appendix 2 for equations]. These 

parameters are the basis for statistical element analysis (SEA) and have allowed the 

model to be verified as correct against SEA predictions [see Appendix 3 for one such 

verification]. The model and SEA predictions are in agreement and so we can trust the 

model output. 

2.2 Coupling Panel to Surrounding Air 

2.2.1  Theory 

When analysing the acoustical properties of a vibrating structure, it is the power radiated 

as sound waves into the surrounding air that is of key interest. The Rayleigh integral 

describes the pressure in space as a result of a vibrating planar structure, from which 

we can calculate the total power radiated: 
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The pressure, p, at a location x in space is defined in terms of the complex displacement 

w(x′), the air density ρa, acoustic wave number ka, and the frequency of vibration ω. 

Calculating the power radiated by integrating over the volume is cumbersome and time 

consuming, but we can greatly simplify the problem by using the Jinc function method. 

We can calculate the time averaged power radiated by the plate by using the following 

equation: 
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where an is a generalised coordinate, calculated trivially from the displacement u(xn) 

given in Eqn. (2) by employing a Jinc function representation.  For a baffled plate the 

imaginary part of the dynamic stiffness matrix, D, can be represented as: 
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where  ρa, ca, ka, c define respectively: the density of air; speed of sound in air; acoustic 

wave-number; and size of mesh spacing.  The variable rij is the distance between two 

points i and j on the plate. It is as a result of the Jinc function being radially symmetric 
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that we can use this simple formula for calculating the dynamic stiffness matrix, and so 

simply calculate the radiated power.  This method computes the total power radiated in 

the near field, by using the air pressure at every point on the plate due to surface 

displacements. The total power in the near field is necessarily the same as the total 

power in the far field, and so this method provides a quick way of computing the far field 

power, which is of interest when analysing the acoustical properties of DMLs. 

 When analysing the power radiated from a flat plate it is instructive to have some 

idea of the region in which it is operating. The key parameter here is the critical 

frequency, the frequency at which the acoustic wave number equals the plate bending 

wave number. The combination of critical frequency and excitation frequency tell us how 

efficiently different modes will radiate. Maximum efficiency occurs when modes are 

excited at their coincidence frequency or above (see Figure 4 below), coincidence 

frequency being the frequency at which bending waves ‘fit’ acoustic waves, ie their wave 

numbers match.  

Figure 4 – Typical Radiation Efficiency for a Single Mode 

  
If we excite a plate below the critical frequency we find that modes with high radiation 

efficiency resonate well below the excitation frequency and so do not have high 

amplitude. Resonant modes have high amplitude but low efficiency, and so no particular 

coincidence 
frequency 

Low efficiency 
below coincidence 

High efficiency 
above coincidence  

ωn for   
ωn > ωcritical 

ωn for   
ωn < ωcritical 

A typical mode has low radiation efficiency below its coincidence frequency. If 
resonance occurs below coincidence, low efficiency will occur at resonance. The 
mode will resonate below its coincidence if ωn > ωcritical. Similarly, modes that 
resonate above ωcritical will resonate with high efficiency. The plot shown is for the 
first mode (1,1) of a 19cmx19cm steel plate. 
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modes dominate the response. If we excite the plate above the critical frequency 

however, we find the resonant modes have high amplitude and high efficiency and so 

will be dominant. It is this change in behaviour that makes the critical frequency of such 

importance to the investigation of flat plate sound radiation. 

2.2.2 Modelling Technique 

A program has been written in MatLab to perform the calculations defined in Eqns. (5) 

and (6) to find the power radiated from the plate at a given frequency. It is a testament 

to the simplicity of the Jinc function method that once the displacement u(xn) has been 

found using the previous model, only a few lines of codes allow us to find the power 

radiated. To populate the matrix D it was decided to find a matrix R such that  

rij = |xi – xj|. Originally this was performed as a double for-loop but this proved extremely 

slow. R has dimensions of (a x b) x (a x b), where a and b are the number of points in the 

mesh in the x and y directions respectively. For a mesh of 20 x 20 this leads to dim(R) = 

400 x 400. The final size of R is proportional to the mesh resolution c to the power 4, 

and so not only is R very large, but it can increase in size very quickly for a small 

increase in resolution. A fast way of computing R was needed. 

 MatLab is fast at computing matrix calculations, and copes well with complex 

numbers, but is rather slow at for-loops. To avoid using for-loops a program to populate 

R was developed that described the x and y position of each mesh point by using real 

and imaginary components, and used MatLab’s in-built (and highly optimised) ‘abs’ 

function to find the distance between pairs of complex points [see Appendix 4 for 

program code]. This neat method resulted in a speed up of over 100x when computing 

R, and so allowed the power at any given frequency to be calculated in a fraction of a 

second. The matrix R was stored, meaning that after the first power calculation the 

power could then be calculated at other frequencies by recomputing u(xn) and using 

Eqns (5) and (6) with R as before.  

 To validate the power calculations, plots of non-dimensional frequency (knon-d) 

versus non-dimensional radiation efficiency (σ) were found for the first 6 modes of 

vibration. Knon-d and σ are found directly using: 
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 where Lx and Ly define the plate dimensions in both planar directions, and all other 

symbols are as described previously. We can see that σ is directly proportional to the 

power calculated using Eqns. (5) and (6) and so if we calculate σ using the same steps 

as we do the power then σ is a suitable variable to validate our coupled model. Plots of σ 

vs knon-d were performed for a square steel plate and the results validated against 

benchmark results found using the FFT method [Williams & Maynard, 1982]. The model 

and benchmark results show excellent agreement and so we can take the model as 

predicting the radiated power accurately [see Appendix 5 for graph].  

2.2.3 Tools Developed 

Using the air-coupled model of a DML, two key tools were developed to aid investigation 

of these speakers. The first is a program that computes and plots the power transfer 

function, found by calculating the radiated acoustic power at a series of frequencies. 

This allows us to see what kind of acoustical response different DMLs have, ie smooth 

and flat (this is desirable for loudspeakers) or modal and jagged. Initially a strange 

phenomenon was observed – at a high frequency the transfer function would suddenly 

rise in amplitude. The reason for this is not due to the physics of the plate, but is in fact 

due to a breakdown in the Jinc function method. This occurs when the mesh grid being 

used over the plate is of too large a spacing to describe high wave numbers.  

Figure 5 – Breakdown of Jinc Function Method at High Frequencies 

 

The Jinc function method breakdown is seen as a large rise in predicted 
radiated power at 14kHz. This breakdown occurs when the wavelength 
of resonant modes is shorter than half the grid spacing of the wavelet 
mesh used to describe the plate. 
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The Jinc wavelets can only be used to describe bending waves that have a half 

wavelength larger than grid spacing of the mesh.  A conservative value for the maximum 

frequency of bending waves that can be depicted using the mesh is given by: 
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For the plate used to compute the power spectrum shown in Figure 5 above, this 

maximum frequency turns out to be ωmax = 14kHz, above which the spectrum goes awry. 

A simple check was added to the program to stop the spectrum being computed above 

this breakdown frequency, ensuring accurate (but sometimes truncated) results. This 

model takes anywhere from a few minutes to a few hours to produce a 4000 point 

power spectrum. The variation in time is as a result of the number of mesh points. Even 

when taking a few hours this is far faster than FEA or BEM computations. The speed of 

computation allows for many models to be run in order to fully analyse the effect of 

different parameters on the power spectrum. 

The second tool is one that computes the non-dimensional radiation efficiency for 

each mode, and then plots this as a surface in the modal domain (ie plots σn,m at (n,m) 

for all modes used within our model). This allows us to see how close each mode is to 

resonating at maximum efficiency, ie when ωres = ωcoincidence. By visualising this we see 

which region of operation the plate will be in at low and high frequencies, ie is ωres 

greater or less than ωcritical, with the repercussions resulting from being in either region 

discussed in section 2.2.1. We can use this tool to understand the mode of operation of 

DMLs. This tool typically takes around 15minutes to run, dependent on the number of 

modes used within the model and so allows for quick analysis of many different panels. 

2.3 Optimisations 

2.3.1 General Optimisation Methods 

To ensure that the models developed were of practical use when investigating DMLs, the 

models needed to be fast. Conventional computational methods such as FEM or BEM 

can take days or even weeks of continuous calculation, we needed to do this in minutes 

or hours. Various common MatLab optimisation techniques were used to speed up the 

code. These included: 

1. Vectorising equations where possible to avoid the use of for-loops. 
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2. When for-loops were necessary, rewriting functions in-line to avoid the overhead 

of calling these functions 

3. Splitting in-built functions into sections that must be included within for-loops, 

and sections that can be performed out with the loop, to avoid unnecessary  

re-computation 

4. Using an optimised package of exponential based functions (exp, sine, sinc etc). 

These improve upon MatLab’s inbuilt functions by not being so general purpose 

– they are optimised for ‘double’ type data only.  

These optimisations saw a marked improvement in the speed of the programs, the total 

time needed to compute a power transfer function was decreased by 10x.     

2.3.2 Outstanding Problems  

There are two outstanding problems with the code in terms of how well optimised it is. 

The first is that it can require a large amount of RAM. This is as a result of the size of R, 

which is regularly over 250MB in size. Thus, for Eqns. (5) and (6) we need approximately 

4x250MB = 1GB of free RAM to allow the power prediction program to run completely 

within memory, which is critical to ensuring fast computation. Few desktop computers 

have enough free RAM to run these programs in this manner, and so a server was used 

that contained 6GB, thankfully more than enough for the plates investigated. 

 The other outstanding problem is that MatLab’s sinc function is not very fast and 

is the bottleneck in computing Eqns. (5) and (6). This has been improved by optimising 

in the manner discussed in the previous section but even after re-writing sinc inline and 

using an optimised sine function, computing sine(kaR) takes 75% of the time of the 

whole program. This is clearly the first point of call if the program needs to be optimised 

further, though the author has reached the limits of his optimising tricks. 
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Section 3: Investigating the Loudspeaker 

3.1 Finding Loudspeaker Panel Parameters 

3.1.1 Dismantling the Speakers 

To investigate DMLs it was necessary to determine the parameters of some real 

speakers to feed into the model. A pair of second hand Packard Bell FSP-100 DMLs 

were sourced and carefully taken apart [see Figure 6 below]. Each speaker is comprised 

of:  

1. A stiff plastic panel, with fake dust cover on front side 

2. A rigid steel frame, with concave perforated back plate 

3. Electrically driven magnetic voice coil, positioned centrally 

The plastic panel is a section of two-ply corrugated polypropylene board, corrugations 

running lengthways along the panel. This suggests that the panel will not have uniform 

stiffness, as assumed in the model so far. The panel is simply glued around its outer 

edge into the frame.  

Figure 6 – The Specimen DML 

 

The panel was prised out of the frame using a flat blunt knife, and care was taken to 

avoid deforming either the panel or frame in the process. The mass of the steel frame is 

sufficiently large compared with that of the panel that we can assume it is rigid in space 

during operation. Also, the glue that holds the panel in place is not very strong, and is 

A Packard Bell FSP-100 
flat panel PC speaker. 
Dimensions approximately 
20x12cm. Pen shown for 
reference. 

Perforated concave metal 
back plate. Voice coil 
shown to top right. Voice 
coil sits in circular recess 
in centre of back plate 

The thickness of the 
speaker reaches a 
maximum of 15mm in 
centre of concave back 
plate.  

Corrugated plastic panel. 
Circular mark seen in 
centre due to voice coil. 
Soft synthetic cloth dust 
cover covers front side of 
panel and is glued tight on 
back as shown.  
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only applied on the outer few mm of the panel, so our assumption of a simply supported 

boundary condition seems plausible. One should note however that the weak glue will 

likely be dissipative and result in a large degree of boundary damping. The panel was 

measured and the resulting parameters are shown in Table 1 below: 

Table 1 – Specimen Panel Parameters 

Parameter Symbol Value 

Length Lx 187 mm 

Width Ly ~128 mm * 

Excitation Point (xo, yo) (93,64) mm 

Thickness h 4 mm 

Mass M 18.25 g 

(Density) (ρ) (194 kg/m3) 
 * The panel has long edges that are slightly concave – width varies between 

121mm in centre and 131mm at top and bottom 

The density ρ was assumed to be uniform and calculated using the other measured 

parameters. The point of excitation was found to be in the very centre of the panel. 

3.1.2 Stiffness Test 

A key parameter needed in the model is that of D, the bending stiffness. This was found 

by performing a standard bending stiffness test – applying a load and measuring the 

resulting deflection [see Figure 7 below]. This was performed in both directions, x and y, 

to find the variation in stiffness between the two directions due to the plastic corrugated 

ribs. Care was taken to apply an even load across the free end by using a rigid brass 

plate to allow the panel to be treated as a beam. Deflection measurements were taken 

quickly to avoid errors due to a small amount of plastic deformation that was observed. 
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Figure 7 – Images of Panel Stiffness Test  

        

 If the load is applied evenly and the panel treated like a beam, we can use the 

equation for a clamped beam: 

 
δ3

3
x

yx
WlEILD ==   (9) 

where W is the applied load, δ the resulting deflection, and lx the length of the free 

section of the panel. Similarly this equation can be applied in the y direction. By plotting  

δ against W and taking the gradient we can then gain an estimate for the bending 

stiffness D. Plots in both directions are shown below in Figure 8; as expected the 

relationship is remarkably linear. 

Brass plate placed at edge of panel to ensure 
even spread of load. Load applied at midpoint 
of panel edge. An evenly spread load avoids 
any torque and allows bending beam 
equation to be used. 

Load applied at edge of panel and resulting 
displacement measured in vertical direction. 
Measurement taken quickly to avoid plastic 
deformation. 
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Figure 8 – Results From Stiffness Test – Deflection vs Load 

 

The deflections measured are far greater than those experienced during normal 

operation of the DMLs, but the plots are linear enough that we can assume the stiffness 

calculated here will be the same for small deflections. The results in both directions are 

shown below: 

Table 2 – Panel Stiffness Values 

Direction Stiffness Symbol Value (Nm) 

Lengthways Dx 0.80 

Widthways Dy 0.22 

Average D 0.51 
 

As expected the stiffness is different in each direction, though in the same order of 

magnitude. To simplify future analysis we assume that the stiffness D is uniform, and 

has a value that is the mean of the values found experimentally.  

3.1.3 Laser Vibrometer Testing 

The final parameter that is needed to run the model is the damping coeffiecient, η, of 

the panel. To find the damping of a vibrating structure it is common to excite the 

structure and perform modal analysis on the resulting transfer function. The panel is 

extremely light and so attaching even a small accelerometer will result in too large a 

A linear relationship is seen in both planar directions. Lines of best fit and equations 
are shown above. The predicted y axis intercept approaches zero for both cases, and 
so we can assume that stiffness is also linear at smaller deflections than the range 
measured experimentally. 
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change in mass for accurate results. With this in mind, a laser vibrometer was used to 

measure the surface response due to excitation, in this case performed by a short tap 

from an impulse hammer. The hammer tap was applied at the same point in the panel’s 

centre that the electromagnetic voice coil had been attached, to try and excite the same 

modes in testing as in normal use.  

Figure 9 – Laser Vibrometer Testing          

 

The laser vibrometer measured the response of the central point – ie a driving point 

response. The model predicted and experimental mobility transfer functions agree well 

for low frequencies [see Appendix 6]. All predicted modes within the model are shown 

experimentally, with small differences in resonant frequency being due to the different 

edge conditions imposed upon the panel for each method. Some extra modes are found 

experimentally that are not shown in the model spectrum. Some of these are anti-

symmetric modes that occur because the impact did not occur exactly on the centre of 

the plate, and so were excited experimentally but not within the model. The few 

remaining unaccounted modes are due to resonances of the whole system, ie the 

system of the panel and the elastic suspension ropes. At frequencies above 1khz the 

experimental spectrum becomes less clear and unsuitable for modal analysis. 

Panel suspended by elastic chord 
through top corners. Laser aimed at 
reflective sticker placed in centre of 
panel. 

Impact hammer used for test, released 
to swing under gravity to give impulse. 
Tip of medium hardness used. 
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 We can use the low frequency region to find the damping of the panel. This was 

performed by looking at the sonogram of the first few seconds after impact and 

calculating the damping at a range of frequencies by using the exponential decay of 

each. The damping decreases with increasing frequency, to an asymptote of 

approximately 0.014 [see Appendix 7 for detail]. It is thought that the high damping at 

low frequencies is predominantly due to boundary damping (longer wavelengths are 

affected by boundaries more strongly), and that at high frequencies the internal 

damping of the panel dominates. In this experimental case the boundary damping is due 

to friction and small impacts of the elastic cord in each corner hole. When the panel is in 

the speaker frame the boundary damping will be caused by the glue holding it in place 

along its edge. This is very tacky and will be highly dissipative, greatly increasing the 

damping at low frequencies. The internal damping that dominates at high frequencies is 

high for a plastic panel (0.014). This was thought to be due to the fake dust cover on the 

surface of the plastic panel. The soft fabric is pulled tightly over the front of the panel – 

a crude damping treatment as well as an aesthetic addition.  

The model uses a constant damping value, and this was assumed to be the 

mean of the damping values recorded experimentally – μ = 0.05, but in reality the panel 

will have higher damping at low frequencies (due to glue on edges) and lower damping 

at high frequencies (internal damping).  

3.1.4 Modal Parameters 

Some parameters that give us an insight into how the panel is operating are those used 

within SEA, specifically modal density, nd, critical frequency, ωc and modal overlap factor, 

md. For a flat plate these can all be calculated directly [see Appendix 2]. Using the 

dimensions and material values found for the real panel, these modal parameters were 

found, see Table 3 below. 

Table 3 – Modal Parameters for Experimental Panel 

Parameter Name Symbol Value 

Modal Density nd 0.0152 modes/Hz 

Critical Frequency ωc 23.1kHz 

Modal Overlap Factor md 7.61 @ 10kHz 
 

The panel has a very high critical frequency, slightly above that of the operating region of 

loud speakers. These means that all modes will be operating below coincidence, though 
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at high frequencies some modes will be approaching coincidence. The modal density is 

high, with approximately one mode every 65Hz. This results in a high value for the modal 

overlap factor: we expect to see a smooth transfer function especially at high 

frequencies. It should be noted however that due to the driving point being positioned in 

the centre of the panel anti-symmetric modes will not be excited and so the modal 

density in practise will be half that calculated here. 

3.2 Model Results 

3.2.1 Radiation Efficiency Plot  

As found in section 3.1.4 the panel operates with all modes below coincidence. To see 

exactly how close to coincidence each mode operates, the tool that computes a plot of 

non-dimension radiation efficiency for each mode was used. The resulting image is 

shown below: 

Figure 10 – Radiation Efficiency of Modes of Experimental Panel 

 

This plot shows the radiation efficiency σn,m for all modes used within the model (ie 

1.5n(max) x 1.5m(max) ), and thus shows many modes that are above coincidence. 

These modes, however, resonate well above 20kHz and so will not contribute much to 

the overall response. The important point to note from the plot is that the transition to 

coincidence at 23kHz is very steep, and so all modes below 20kHz have a comparable 

The above surface plots shows a ridge at 23kHz, where modes resonate at their coincidence 
frequency. All modes below 20kHz are shown in the dark blue region, resonating well below 
coincidence. Modes at 20kHz are found on the n axis at (24,1), and m axis at (1,16). 
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low radiation efficiency value. Thus, there should be a fairly even value of radiated 

power across a large frequency range, with all resonant modes radiating at a similar 

efficiency below coincidence. This would not have been the case had the critical 

frequency been below 20kHz. We also see from the plot the high modal density, with 

approx 300 modes below coincidence at 23kHz. Again this will result in a smooth power 

spectrum, as resonances merge into one another. 

3.2.2 Complete Power Spectrum 

The key result for analysing the method of operation of vibrating panels is the power 

spectrum for radiated power. Using the tools developed previously this was computed 

for the real panel parameter values found in section 3.1. The resulting spectrum is 

shown below: 

Figure 11 – Modelled Power Spectrum of Experimental Panel 

 

The key features of this spectrum are: 

1. Distinct modes below 1kHz 

2. A very flat response above 3kHz, almost horizontal at 10kHz 

3. A gentle rise in radiated power at high frequencies  

The first feature is to be expected, as at low frequencies the modal overlap factor is very 

low giving rise to distinct modes. The last of these features can be explained by looking 

Model predicted power spectrum for experimental panel. After an initial low frequency 
modal region the spectrum is remarkably flat. 
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at radiation efficiencies in Figure 10 above. At high frequencies our modal summation 

will include some modes that are approaching coincidence, and so the overall radiated 

power will increase. What is interesting here is quite how flat the spectrum becomes at 

10kHz. 

3.3 Explaining the Radiation Method 

3.3.1 Infinite Plate Theory 

One possible mode of operation of the panel is that it has such high damping that it 

radiates much like an infinite plate. For an infinite plate (or finite plate with extremely 

high damping) the waves that are created by the excitation point decay quickly and do 

not interact with a boundary. The resulting wave pattern is of all waves travelling 

outwards like ripples in a pond. In this scenario all sound power will be radiated from the 

driving point, which will act as a point source. If the DML operates as a point source it 

explains why we do not see any beaming for this type of speakers.   

 For an infinite plate radiating below its critical frequency, the power radiated from 

the driving point can be calculated directly [Fahy, 1987 p94]: 

 2
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where F is the force of excitation (assumed to be 1 for all calculations). This value was 

calculated using the experimental panel material properties, and was compared with the 

model predicted power: 

Figure 12 – Power Spectrum and Infinite Plate Radiation 

 

The power radiated from an 
infinite plate is constant at 
all frequencies, radiating 
from the driving point like a 
point source. The power 
from an infinite plate with 
the same properties as the 
experimental panel is lower 
than that of the panel but in 
the same order of 
magnitude. 
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Though the power from an infinite plate is of a similar magnitude to that of the model, 

the model is approximately 3x greater. Some other method of radiation is occurring, but 

of comparable magnitude to that of an infinite plate.  

3.3.2 Effect of Changing Damping 

Previous results showed that the panel radiates power of a level comparable to that of 

an infinite plate. It was questioned as to exactly how close the behaviour of the panel 

was to that of an infinite plate. An infinite plate can be realised in practise by using a 

finite plate with extremely high damping. With this in mind, the damping of the model 

panel was varied from 0.25% to 50% and the radiated power calculated using the power 

spectrum tool. The mean power in the region 7.5 – 17.5kHz (the ‘flat’ region) was 

calculated for each panel and plotted against damping. 

Figure 13 – Power vs Damping for Experimental Panel 

 

At high damping values the radiated power tends to a limit. The relationship of radiated 

power to damping was modelled as an inverse power law plus a constant offset, and 

using a curve fitting tool this offset was found to be 4.8x10-4 W. This agrees favourably 

with the infinite plate value found using Eqn. 10, Pinf = 4.6x10-4 W. The graph shows us 

that the damping value of 0.05 used within the model of the real plate puts us in a 

region that is quite close to exhibiting infinite plate behaviour in terms of the power 

Inverse power law observed between radiated power and damping. An 
asymptote of P = 4.8x10-4 W is found at high damping values. 
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radiated. It was thought that the radiation from the driving point must account for at 

least some of panel radiation.  

 By using the animation tool we find that the real panel is vibrating in a rather 

special manner in the flat region: 

Figure 14 – Experimental Panel Response at 10kHz 

 

Thin plates usually vibrate in one of two distinct manners: if damping is high then the 

response is like an infinite plate, or if damping is low then the waves reflect off edges to 

create a semi-random reverberant field. The reverberant field consists of multiple 

uncorrelated modes superimposed on one another. The direct field experienced in an 

infinite plate can be thought of as consisting of multiple modes with high correlation – ie 

all tracking the central driving point. The model panel exhibits both types of behaviour: 

the driving point being much higher in amplitude than the surrounding displacements, 

but the surrounding displacements being semi-random and all of similar amplitude. 

Does the reverberant field radiation account for the difference between our model 

predicted radiation and that of an infinite plate? 

3.3.3 Accounting for Reverberant Field 

To analyse the power radiated by the reverberant field a method for calculating it was 

needed.  The reverberant field radiation at any frequency can in fact be calculated 

directly using an SEA approximation [Lyon R, 1975, p234]: 

The panel exhibits infinite plate behaviour (large response at driving point) and also reverberant 

behaviour (semi-random wave pattern in surrounding region). 



Luke Humphry, King’s College Cambridge  May 2007 

Analysis of Flat Panel Speakers  Page 26 

 pradrev EP ωη=  (11) 

 where Prev defines the acoustic power radiated due to the reverberant field, ηrad the 

radiation loss factor resulting from coupling the panel with the surrounding air, and Ep 

the energy within the vibrating plate. The energy can be eliminated by noticing that a 

similar SEA equation holds for the power input to the plate at the drive point: 

 in
rad

revpin PPEP
η
ηωη =⇒=  (12a,b) 

where η refers to the plate loss factor, or damping, as before. We can calculate the input 

power directly [Lyon R, 1975, p49]: 
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To find the radiation loss factor ηrad we find there is a direct formula for baffled plates 

[Fahy 1987 p237]: 
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where σ defines the radiation efficiency as before. Having computed σ at resonance for 

all the modes of interest in our model (section 3.2.1) this data was used to estimate σ at 

a given frequency of interest, allowing ηrad to be calculated and so Prev found.  

The radiation efficiency was estimated by taking an average efficiency of those 

modes with resonant frequencies close to the given frequency of excitation, ω. Only 

modes close to the frequency of excitation will respond strongly, and they will all have a 

similar radiation efficiency (as shown by Figure 10 above). Thus, it was thought to be a 

satisfactory assumption to take the mean efficiency of these modes when calculating σ. 

Modes ‘close’ to the frequency of excitation were defined as having resonant 

frequencies within ω ± 10%. This was felt to be a reasonable approximation for the 

region of modes that would contribute towards the displacement of the panel. Using this 

approximate value for σ at each frequency a power transfer function for Prev was found, 

as shown in Figure 15 below: 
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Figure 15 – Model Predicted and Theoretical Power for Experimental Panel 

 

The power radiated due to the reverberant field is slightly too low to account for all the 

power from the panel, but when the driving point radiation is added the combined power 

is strikingly similar to that predicted by the model. The theoretical combined power is 

smooth (save for some noise due to using a discrete sample of modes) and does not 

show the detail of the model prediction, but shows the same general trend. The lack of 

detail is due to using an SEA approximation when calculating the radiation from the 

reverberant field. The agreement between this theoretical spectrum and that predicted 

by the model validates the theory that the panel operates with both driving point and 

reverberant field radiation being significant to the total power output, as noted when 

looking at the displacement pattern (see Figure 14). The combined theoretical power is 

slightly lower than the model predicted power at high frequencies. The model is thought 

to be correct and so the theoretical value is under-predicting at high frequencies. This is 

due to the region of modes used to find σ at high frequencies. Modes slightly higher than 

this region will not have a large amplitude but will be at coincidence or above and so will 

be radiating extremely efficiently. If the region used is increased from ± 10% to ± 15% 

we include these efficient modes in our calculation of σ and see a much better 

agreement between the model predicted and theoretical radiated power. However, if the 

region is increased much further then the theoretical value over predicts at high 

frequencies. The correct region to use when calculating σ depends on critical frequency 

By adding together theoretical values for infinite plate and reverberant field behaviour 
excellent agreement with model predict results is seen. 
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and modal density, and will vary from plate to plate, hence choosing this region is 

somewhat of an art. 

3.3.4 Applying Dual Radiation Theory to Alternate Panels 

It has been shown that for the DML analysed the acoustic radiation can be split up into 

two distinct radiation methods that can be easily computed using an SEA approximation. 

To validate the theory that these two methods occur somewhat independently and sum 

to give the total power, the theoretical result was plotted against the model predictions 

for some other panels. The two very different panels were modelled – one small stiff 

panel (where the radiation from the reverberant field dominates total radiation), and one 

large less stiff panel (where the driving point radiation dominates). For both cases we 

see excellent agreement between theoretical radiated power and model predicted 

power [see Appendix 8 for plots]. It is important to note that we have modelled one 

panel with 1/4 of the area of the original, and one panel with 1/10 of the stiffness of the 

original, yet both panels still have a significant contribution from both types of radiation, 

as was found for the original panel. It is thought that this dual radiation method is found 

for panels of a wide range of parameter values, and so one can surmise that this is the 

radiation method operating in all DMLs. 

3.3.5 Computational Use of Dual Radiation Method 

The dual radiation method for calculating the radiated power from DMLs uses a 

computationally trivial direct calculation if σ is known. This SEA approximation of the 

power spectrum shows none of the detail of the power spectrum predicted by the full 

model. However, as the full model shows, DMLs quickly have a high modal overlap 

factor as the frequency increases, and so settle down to give a very flat response. The 

response is so flat that above the initial modal low frequency region the direct method 

for calculating the power is typically within 3dB of the model predicted value. It should 

be noted that the extremely high edge damping experienced by the panel when glued 

into the speaker frame has not been included in the model. The low frequency region is 

expected to have higher modal overlap than predicted by the model and so the initial 

modal region will be contained to lower frequencies. Many DMLs are rated as operating 

from 300Hz – 20kHz, and so it is expected that the edge damping lowers the modal 

region to be confined to below 300Hz. Thus, the dual radiation method will show a good 

approximation to the model for all frequencies above 300Hz, ie the working range of the 
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speaker. This means that the approximate power response for the full working range of 

a DML can be calculated in 15mins; 15mins to calculate σ for each mode, and negligible 

time to compute Ptot from σ. This is an extremely useful tool when designing and 

analysing such speakers. 

 To speed up the computation still further a fast method of computing the 

radiation efficiency is needed. There is one such direct method for finding the average 

radiation efficiency that is extremely fast to compute [Leppington et al, 1982]. This has 

the added benefit of computing the average radiation efficiency, ie we do not need to 

guess a suitable region of modes over which to average σ. This method will allow the 

power spectrum for a flat panel to be computed in a fraction of a second. 

3.4 Analysis of Theory 

3.4.1 Desirable Properties of DML 

For accurate sound reproduction we require loud speakers to have a flat radiated power 

spectrum. Through analysing a real DML using the computational model developed in 

this research it has been found that the acoustic response of this DML is indeed very flat 

over a large range of frequencies. As discussed above, the modal low frequency region 

will likely be confined to an even lower frequency when the panel is sitting in the frame, 

and a relatively flat response will be seen from 300Hz – 20kHz. The power that radiates 

from the drive point contributes to the flat response by being constant at all frequencies, 

but also has the desirable property of radiating power evenly in all directions, as if it 

were a monopole. The power radiated due to the reverberant field is also thought to be 

highly dispersed. A single mode will radiate sound with some directivity, and will have a 

specific radiation pattern. The high modal density of the DML ensures that many modes 

are active, each with a different radiation pattern. When these patterns are added 

together the resulting radiation pattern is thought to be averaged over space, and so will 

not have a high directivity. The modal density of the plate is constant with frequency and 

so it is not expected that the degree of directivity will vary much once into the working 

region of the speaker. This is highly desirable when trying to fill a space with even sound, 

and is the main improvement over ‘beaming’ conventional speakers.  

 The one undesirable property of DMLs is the relatively high value of 300Hz for 

the start of the working region. This is dependent on the fundamental wavelength and 

damping of the panel. For the Packard Bell speakers analysed here the fundamental 
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mode is at 110Hz. To reach as low as 20Hz we would need an extremely large plate, and 

so most manufacturers choose to use DMLs in conjunction with a separate (piston-cone) 

subwoofer.  

3.4.2 Comparison with Conventional Loud Speakers 

It is interesting to compare the efficiency of DMLs and normal piston-cone loud 

speakers. For conventional loudspeakers the efficiency is rather difficult to estimate. 

Often efficiency is defined by a sensitivity rating, the sound level (ie acoustic intensity) at 

1m from the speaker when a 1W input is given. This is typically of the order of 90dB for 

conventional loudspeakers. Using the model predicted power for the Packard Bell DMLs 

analysed, we see that the locally averaged acoustic power is never less than 1.2x10-3 W. 

This power is as a result of Pin = 0.1W, found by Eqn. 13. It was assumed that the 

magnetic voice coil driving the panel has an efficiency of 20%, and so the total electrical 

power in to the speaker was calculated as being 0.5W. The efficiency of the panel and 

voice coil were assumed to be constant over the working range, and so the total 

radiated power from a 1W electrical input was found to be 1.2x10-3/0.5 = 2.4x10-3W. 

For DMLs the radiated sound is extremely dispersed, and so we assume that it radiates 

equally in all directions, giving an intensity of 83dB at 1m from the panel. This compares 

well with rated specifications of commercial DMLs, which are typically 85dB 

[Wharfedale, n.d.].  

The fact that conventional speakers typically have a slightly higher sensitivity 

rating (90dB vs 85dB) should not be mistaken for thinking that they are more efficient. 

DMLs project evenly over an entire sphere, but convention loud speakers project in a 

wide cone shape. The sensitivity rating of a conventional speaker is taken in the middle 

of this cone, where the intensity is highest. If we assume that a conventional speaker 

projects acoustic power evenly over a cone of 90°, we find that the projection area at 

1m is 0.15x that of the whole sphere at 1m. To convert the intensity of the DML to be 

comparable with the sensitivity of a conventional speaker we must normalise by dividing 

by this factor, giving a normalised DML sensitivity of 83+8 = 91dB. Rather large 

assumptions have been made in calculating the normalised sensitivity of the DML, but 

we can at least see that the efficiency of flat panel and conventional speakers is of the 

same order of magnitude.  

The key difference between DMLs and conventional speakers is their directivity 

or lack of it. This difference is seen most obviously in the current uses of DMLs – in 
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environments where an even sound level is required: hospital p.a. systems, home 

cinema, car cabins. Conventional loud speakers are still typically used for high end 

music stereos, dj monitor speakers, and any environment where having a directed 

sound field and a resulting ‘sweet’ spot is desirable. Using the previous rough 

calculation for sensitivity it is interesting to note that there has not been a rapid uptake 

of DMLs for portable audio devices which we might expect due to their slender 

dimensions. Portable devices have a finite supply of power (the batteries) and so must 

be efficient. Though DMLs are of comparable efficiency to conventional speakers, the 

fact that they are not directed means that the sound intensity for a given power input is 

lower than that in the centre of projection of a conventional speaker. Portable devices 

are typically used by only a few people, and are of low volume so reflections do not 

dominate the sound levels, it is the direct field that is key here. If the projection angle of 

a conventional speaker is sufficiently large to include these few listeners it will be more 

efficient to use a conventional speaker than a DML, with the same resultant intensity for 

the listeners. There are some fantastic benefits to using flat panel speakers, but not in 

every situation. 
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Section 4: Conclusions 

4.1 Novel Modelling Method 

A novel method based on Jinc function wavelets has been employed to calculate the 

power radiated from a DML. This method improves upon FEA and BEM by taking far less 

time to compute, especially at high frequencies. It is thought that this is one of the first 

uses of this new method, and the first time DMLs have been modelled in this way. The 

method has been shown to be a powerful tool in practical vibro-acoustic problems. 

4.2 Findings 

4.2.1 Panel Radiation Method 

The key finding of this research is that the sound emitted from a small DML is due to two 

wave-field phenomena – point source radiation emanating from the central driving point, 

and scattered radiation from a reverberant bending wave field. The two methods of 

radiation are of similar magnitude, and both have a dispersed radiation pattern. This 

research has resulted in the full analyse of one specific DML, but by simulating other 

panels it has been shown that the dual radiation theory of sound production holds for 

many panels of varying dimensions. It is thought that the dual radiation theory 

developed for this particular DML can be applied to a wide range of DMLs, possibly all.  

 NXT have previously provided a brief explanation for how DMLs can radiate power 

in such a dispersed manner. The explanation involves the idea of a chaotic bending 

wave field resulting in uncorrelated sound being projected in all directions. There is a 

semblance of truth in their description, though it is overplayed. The chaotic wave field 

mentioned is simply a reverberant field, a result of using panels with high modal density. 

By using a panel with high damping the driving point also contributes significantly to the 

radiated power, though this is not mentioned by NXT. The author suspects that ‘high 

damping’ elicits less of a buzz in trade magazines than ‘chaos theory’. 

4.2.2 Design Parameters 

The key parameters that define the response of the panel are the SEA parameters, 

namely: modal density and critical frequency. The experimental panel analysed was 

shown to have high modal density (1 mode every 65Hz), and a critical frequency above 

the working region (23kHz). This value of the critical frequency results in resonant 
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modes being below coincidence, and so no single mode dominates the acoustic 

response. This multimodal radiation results in a dispersed radiation pattern. The high 

modal density is important for two reasons – 1) it ensures the reverberant field includes 

many modes and so produces a dispersed radiation pattern, and 2) it results in a high 

modal overlap factor, giving the flat response that is so critical to the performance of any 

loud speaker. Now that the method of radiation is understood these parameters can be 

used as a design tool, optimising parameters with reference to some desired value of 

critical frequency and modal density. 

4.2.3 Dual Radiation Method of Computation 

A fast method for calculating the power spectrum for a DML has been developed. This 

method uses an SEA approximation for the power emitted from a reverberant field and a 

direct calculation for the power from an infinite plate. By accepting the dual radiation 

theory, we can compute an approximate result for a DML’s power spectrum in minutes. 

This approximate result shows the general trend of the power spectrum but not the 

detail. The real power spectrum is so smooth at all medium and high frequencies, 

however, that this approximate result is typically within 3dB of the real value, even 

tracking the rise in power seen at high frequencies.  

 In this research a method was used that allowed a 4000 point power spectrum to 

be computed in 15 minutes. Another method is known that uses a direct calculation for 

radiation efficiency at resonance [Leppington et al, 1982], and will allow an 

approximation for the radiated power of a flat panel to be computed in seconds. For 

many design situations the value of being able to compute the approximate spectrum in 

seconds will far outweigh the value of having a precise spectrum . 

4.2.4 Comparison with Conventional Loud Speakers 

DMLs improve upon conventional speakers by their size and lack of directivity, and are 

ideal for filling a space with uniform sound. They do not improve upon conventional 

speakers in terms of efficiency, and so are better suited to home cinema and p.a. 

systems than portable audio – despite their small size. DMLs can only reproduce sound 

as low as their fundamental frequency, for small panels this is approximately 100Hz. 

Unless extremely large panels are used DMLs are generally paired with a conventional 

piston cone subwoofer. 
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Section 5: Future Work 

5.1 Improving Model Accuracy  

The model of a DML that has been developed through the course of this research is very 

general and leaves us with much scope for future work. The model used made 

simplifying assumptions about plate damping, stiffness and boundary conditions. Future 

work could involve developing a more accurate model by using a non-uniform bending 

stiffness value, non-constant damping value, and different boundary conditions to 

compute mode shapes. Finding an accurate model for damping is non-trivial, especially 

when the panel has peculiar boundary conditions (tacky glue). The resulting mode 

shapes can be used to compute the radiated power without any changes to the power 

spectrum tool.  

 Further accuracy can be gained by altering the power spectrum tool to compute 

the power radiated for an un-baffled panel. The method for calculating the power 

spectrum for an un-baffled or even partially baffled plate is known [Langley, 2007], but 

will require a new power spectrum computer program. This program takes the same 

inputs as the power program used in this research (namely the mode shape at a given 

frequency) and so can be used as a direct replacement of the power spectrum tool used 

here for a baffled plate. 

5.2 Additions to the Model 

 Theories about the possible radiation pattern emitted from a DML have been 

guessed, with reference to the two modes of radiation found to be dominant. It would be 

useful however to compute this radiation pattern directly and visualise it in 3D space. 

This can be done using either the Rayleigh Integral (slow but accurate), or by an 

extension of the Jinc function method (fast but possible inaccurate).  

 Further to this, being able to fully auralise the radiated signal would allow us to 

‘listen’ to the response of a particular DML design, at some point in space. To listen to 

the radiated sound we need both phase and magnitude information, though the model 

gives only magnitude. If a minimum phase assumption is applied, we can regain the 

phase information by using the Hilbert transform. 
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5.3 Alternate Model 

The response of DMLs has been found to be very smooth due to a high modal density, 

and so using the fast method of computing radiated power (by addition of driving point 

and reverberant field radiation) is a valid approximation. Currently this takes in the 

region of 15minutes to compute, due to using the (already fast) Jinc function method to 

calculate the radiation efficiency. If the direct method [Leppington et al, 1982] is used a 

tool which give the power spectrum in less than a second will be possible. 

5.4 Panel Optimisation 

One outcome of this project is a very fast method for computing the power spectrum of 

such a DML. With such a fast tool it is now possible to use optimisation in the design of 

DMLs. Possible criteria for optimisation include – total power output, critical frequency, 

modal density, and bandwidth of low frequency modal region. The latter of these criteria 

will need to use the full Jinc function based model, for the other three the fast SEA 

model will suffice. Parameters that can be included in optimisation procedures include 

damping, stiffness, panel dimensions, and boundary conditions. The possibility of using 

non-uniform plates and varying the drive point position is another area of investigation.  
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Section 8: Appendices 

 
Appendix 1 Description of Jinc Function 

 

The Jinc function is defined as:  

x
xJxjinc )()( 1= , 

where J1(x) is a Bessel function of the 1st kind and satisfies 
2
1)(lim 0 =→ xjincx . 

The graph below displays a 1D jinc function for values of x from -15 to 15. 

 

Figure A1 – 1D Jinc Function 
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Appendix 2 Equations Used to Calculate Modal Parameters 
 

Modal Density: 
D
hLL

n yx
d

ρ
π4

=   

Critical Fequency: 
D
hcac

ρω 2=   

Modal Overlap Factor: dd nm ωη=   

 

[Cremer & Heckl, 2005, p302 & 496]  
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Appendix 3  Mobility Transfer Function SEA Verification 
 

Figure A2 – Mobility Transfer Function, Model predicted and SEA Approximation 

 

 

The SEA approximation for velocity is found using the following equation: 

 
ωηρ

πω 2)(2
)(

yx

d
SEA LhL

nv =  

where nd defines the modal density of the plate. 
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Appendix 4 make_R code printout 
 

function R = make_R(Lx, Ly, c) 
  
%makes an array R, which contains the distance between the i'th and j'th 
%points in the vectorised form of the plate position.  
%Lx, Ly, and c are used to define the grid, before vectorising. 
  
  
[B,A] = meshgrid((0:c:Ly),(0:c:Lx)); %make meshes of x and y position 
  
AB = A + B*i; %combine x and y position into singlematrix, defining the x 

   and y coordinates of every mesh point as x + iy 
 

AB = AB(:); %vectorise matrix into single row vector 
  
ABmat = repmat(AB,1,size(AB)); %make vertical mesh of x and y positions 
  
R = abs(ABmat - ABmat.'); %find distance between points 
  
  
return 
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Appendix 5 Power Validation using Non-dimensional Radiation Efficiency 
 

Figure A3 – Radiation Efficiency vs Non-dimensional Frequency 

 
 

The above results are found using the Jinc function model, and are plotted atop 

benchmark results found using the FFT method of Maynard and Williams (marked with 

‘x’). FFT results kindly supplied by Prof. Langley. Excellent agreement is seen, validating 

the accuracy of the model. 
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Appendix 6 Experimental vs Predicted Transfer Function 
 
 

Figure A4 – Mobility Transfer Function found using Model and Laser Vibrometer 

 
 

The first three model modes are predicted at frequencies coinciding with modes found 

experimentally. The model panel is excited exactly in its centre, but the experimental 

panel shows small resonances of anti-symmetric modes due to not being excited exactly 

in its centre. The experimental result comes from a laser vibrometer that was un-

calibrated, hence we see an offset between the two spectra. 
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Appendix 7 Damping with frequency 
 
 

Figure A5 – Fitting Curve to Experimental Damping Data 

 
 

MatLab Curve Fitting Tool Output: 
General model: 

       f(x) = a*exp(b*x)+c 

Coefficients (with 95% confidence bounds): 

       a =      0.1487  (0.131, 0.1664) 

       b =   -0.002897  (-0.003768, -0.002027) 

       c =     0.01422  (0.003852, 0.02459) 

Goodness of fit: 

  SSE: 0.0002492 

  R-square: 0.9811 

  Adjusted R-square: 0.977 

  RMSE: 0.005262 

 
 
For a line of best fit that gives a high R2 value we find that the asymptote, c, is at c = 
0.014. This is an estimate for the internal damping of the panel. 
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Appendix 8 Theoretical Power Plots  
 

Figure A6 – Power Spectrum for 95x65mm2 Panel  

 
 
 

Figure A7 – Power Spectrum for Pane with 0.1x Stiffness  

 
 
 
 


