
A Study of Brushless
Doubly-Fed (Induction)

Machines

CONTRIBUTIONS IN MACHINE ANALYSIS, DESIGN AND CONTROL

A DISSERTATION SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Paul C. Roberts

September 2004 Emmanuel College

(revised January 2005) University of Cambridge





To God, Ruth and my parents.

I will lift my eyes to the mountains;

From where shall my help come?

My help comes from the LORD,

Who made heaven and earth.

Psalm 121





Abstract

The Brushless Doubly-Fed Machine (BDFM) shows commercial promise as a variable speed drive or

generator. However, for this promise to be realised the design of the machine must be improved be-

yond that proposed to date. This dissertation contributes towards this goal through machine analysis,

design and control.

A generalised framework is developed for a coherent and rigorous derivation of models for a wide

class of BDFMs, of which machines with ‘nested-loop’ design rotors are a subset. This framework

is used to derive coupled circuit, d-q axis, sequence components and then equivalent circuit models

for the class of machines. Proofs are given for all derivations, exploiting the circulant properties

of the mutual inductance matrices. The coherence between the different models allows parameters

calculated for the coupled circuit model to provide parameter values for the other models.

A method of model order reduction is proposed for the class of BDFMs with ‘nested-loop’ rotors,

and examples given of the efficacy of the procedure. The reduction method allows parameter values to

be computed for a simple equivalent circuit representation of the machine. These calculated parameter

values, and those for other BDFM rotor designs are verified by experimental tests on a prototype

BDFM.

The significance of particular equivalent circuit parameters is investigated from the model. Se-

ries rotor inductance terms are found to have a significant and direct effect on machine performance.

These terms are shown to relate directly to the design of the rotor, and are quantified using the previ-

ously developed framework. Seven different rotor designs, including a new BDFM rotor design, are

considered to show how the values of these parameters change.

An experimental method of parameter estimation is developed for the equivalent circuit model,

and the relationship between these parameters and the parameters in other forms of the model derived.

The experimental method is shown to be applicable both to standard induction machines and to BDFM

machines, yielding accurate results in each case.

A synchronous reference frame model for the class of BDFMs is derived and is used to analyse the

stability of the machine via a linearized model. Practical methods for the design of PID controllers

are proposed to stabilise the machine using voltage source inverters. Results are presented from

experimental implementations which show a significant improvement in performance over previously

published results.

The non-linear control technique, feedback linearization, is applied to the BDFM and shown to

have some robustness to modelling errors, in a realistic simulation. An initial attempt at implementa-

tion of the scheme is reported. Preliminary results are encouraging, and warrant further investigation.

Keywords: ac machines, BDFM, Brushless Doubly Fed Machines, control, coupled circuits, dq

axis, equivalent circuits, feedback linearization, model reduction, parameter estimation, synchronous

reference frame
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Notation & Terminology

Notation

Numbers

R field of real numbers

C field of complex numbers

Z set of integers

Z
∗ set of non-negative integers

N natural numbers (positive integers excluding zero)

j the imaginary unit, i.e.
√
−1

< {X} ,= {X} denotes real, imaginary part of X ∈ C

X̄ denote the complex conjugate of X ∈ C

F
n×m denotes that a set comprised of matrices of dimension n × m, the elements

of which are in the set or field F.
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xii NOTATION & TERMINOLOGY

Vectors

x · y scalar (dot) product of x and y

∇x f Given a vector function, f ∈ R
n , which is a function of the vec-

tor x ∈ R
m , and possibly other vector or scalar variables, then

∇x f =










∂ f1

∂x1

∂ f1

∂x2
· · ·

∂ f2

∂x1

∂ f2

∂x2
· · ·

...
...

. . .










, which is known as the Jacobian of f when n = m.

‖x‖2 2-norm of a vector or vector signal. For x ∈ R
n , ‖x‖2 ,

√
∑n

i=1 x2
i . Def-

inition 3.1 defines the 2-norm of a continuous function x , which shares the

same notation, however the reader should assume the standard definition

unless otherwise indicated.

L2 The space of square integrable Lebesgue measurable functions, see defini-

tion 3.1.

‖P‖i,2 The induced 2-norm of a system P , see definition 3.2

Matrices

X−1, X† indicating inverse, pseudo-inverse of matrix X

XT, X∗ indicating transpose, complex-conjugate transpose of matrix X

Xxy element of matrix X at x th row, and y th column

X̂ estimated value of X

0 zero matrix of compatible dimension

I the identity matrix of compatible dimension

In the n × n identity matrix (also used to denote complex current)

X⊥ X⊥ is a matrix where the rows (or columns) of X⊥ span the orthogonal comple-

ment of the subspace defined by the span of the rows (or columns) of X . Whether

row space or column space is intended will be determined by the context.
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Mathematical terminology

B











x :
[

I

−I

]

x ≤







1
...

1

















, a hypercube around the origin.

∝ proportional to

∅ the empty (null) set

∩ intersection, e.g. A ∩ B denotes the set defined by the intersection of set A

and set B

, defined as

∃ ‘there exists’

∀ ‘for all’

: ‘such that’

∈ ‘in’, for example ∃q ∈ R : q2 = q., reads ‘there exists a q in the field of

real numbers, such that q2 = q’.

end of proof.

♥ end of remark.

[0, 10] closed interval from 0 to 10, that is a range from 0 to 10 including both 0

and 10.

(0, 10) open interval from 0 to 10, as above but excluding 0 and 10. Hence [0,∞)
is the interval from 0 to∞ excluding∞, but including 0.

⇒ ‘implies’, from left to right, e.g. A⇒ B reads ‘A implies B’.

⇐ ‘implies’, from right to left, e.g. A⇐ B reads ‘B implies A’.

⇔ ‘implies’, from right to left and from left to right, e.g. A ⇔ B reads ‘B

implies A and A implies B’.

iff ‘if and only if’

À ‘much greater than’, for example a À b ⇒ a > b + K for some (‘large’)

K > 0.

¿ the dual ofÀ.
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Electrical Machine Notation

Xs1, Xs2, Xr indicating a stator 1, 2, or rotor quantity X

Xd, Xq, X0 indicating direct (or d) axis component, quadrature (or q) axis component,

zero (or 0) sequence X

X e indicating an equilibrium value of quantity X

X s or Xsync indicating the value of quantity X in the synchronous reference frame

R,M, L , Z resistance, mutual inductance, self inductance, impedance

Q an inductance-like term arising from the movement between stator and rotor

Xcc indicates a coupled-coil inductance parameter

X ′ indicates an apparent (referred) quantity

Xe indicates an equivalent circuit inductance parameter

v, i, λ instantaneous voltage, current, flux linked (λ is also used to denote eigen-

values).

φ stator-rotor phase offset, or magnetic flux.

p1, p2 stator 1, stator 2 winding number of pole pairs

ω1, ω2 stator 1, stator 2 supply frequencies

ωr BDFM rotational shaft speed

ωs frequency of currents in the rotor reference frame in BDFM synchronous

mode see (4.26).

θr BDFM angular position

s1, s2 stator 1 and stator 2 slip, as defined in equations (4.32) and (4.33), not

to be confused with s which denotes the complex variable of the Laplace

transform.

J current density, or moment of inertia

Te, Tl electrical torque, load torque

d machine diameter, as shown in figure 2.1

w machine stack length, as shown in figure 2.1

αc coil pitch, in radians (see figure 2.2)

αs slot pitch, in radians (see figure 2.2)

ys slot pitch, in metres

µ0 permeability of free space, µ0 = 4π × 10−7H/m

B magnetic flux density

g air gap width (see figure 2.2)

H magnetic field intensity, see definition 2.1
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Terminology

absolute harmonic see remark 2.6

A/D analogue to digital converter

balanced three phase supply three voltage or current sources supplying K cos(ωt − φ),

K cos(ωt−2π/3−φ), and K cos(ωt−4π/3−φ) for some K , φ, ω.

cascade induction mode operation of the BDFM when the second stator is short circuited,

see section 1.2.1.

D/A digital to analogue converter

FBL feedback linearization, see chapter 8.

FFT fast Fourier transform, a fast implementation of the discrete

Fourier transform

I/O input / output

inverter a device which converts DC to AC, i.e. performs in inverse opera-

tion of a rectifier. In this dissertation the word always refers to an

electronic device.

lamination stack length length of the stack of laminations (typically made from electrical

steel) used to make a machine stator or rotor. Figure 2.1 shows this

dimension on a rotor.

LHP left half-plane, the dual of RHP.

LMI linear matrix inequality

LPV linear, parameter-varying

LTI linear, time-invariant

Matlab ‘Matrix-Laboratory’: computer software for numerical and sym-

bolic computations from the Mathworks, Inc.; essentially a high

level programming language design for mathematical computa-

tion.

MIMO multiple input, multiple output

mmf magneto-motive force, see definition 2.2

orthonormal completion a set of mutually orthonormal vectors which span the orthogonal

complement of a subspace.

ODE ordinary differential equation.

orthogonal matrix a unitary matrix with X ∈ R
n×n , hence its columns form an or-

thonormal basis for R
n .

PI Proportional-Integral, a controller with transfer function K p + Ki
s .

PID Proportional-Integral-Derivative, a controller with transfer func-

tion K p + Ki
s + Kds.

relative harmonic see remark 2.6
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RHP right half-plane - refers to the position of (typically poles or zeros)

in the complex plane, RHP means that < {X} > 0 where X is the

complex number in question.

rms root mean square - the square-root of the mean of the square of a

quantity.

simple induction mode operation of the BDFM when the second stator is open circuit, see

section 1.2.1.

Simulink A modelling environment within Matlab, allowing easy solution

of ODEs.

SISO single input, single output

stack length abbreviation of lamination stack length.

unitary matrix X ∈ C
n×n is a unitary matrix if X ∗X = X X∗ = I , which means

that the columns of X form an orthonormal basis for C
n .



Chapter 1

Introduction

This dissertation is concerned with the analysis, design and control of the Brushless Doubly-Fed

Machine (BDFM).

The BDFM, sometimes referred to as the Brushless Doubly-Fed Induction Machine, is an AC

electrical machine which can operate as both a motor and a generator. As the name implies the

machine requires two AC supplies, and has no direct electrical connection to the rotor, which removes

the need for carbon brushes sometimes found in electrical machines.

This chapter reviews the development of the BDFM, then section 1.2 gives a basic description

of the machine operation, and explains the modern interest in the machine. Readers unfamiliar with

the machine may prefer to read this section first. We then outline the approach and structure of this

dissertation in section 1.3

1.1 Evolution of the BDFM

The history of the modern BDFM can be originally traced back to a patent taken out by the Siemens

Brothers and Mr. F. Lydall in 1902 for a self-cascaded machine [97].

At the time it had become clear that the supply distribution standard was changing from DC

to AC. The adoption of AC brought the induction machine into industrial service. The induction

machine offered a simple and robust construction, which was desirable, however industry required

variable speed operation which led to a significant problem as the fundamental operating speed for

an induction machine is fixed by the mains frequency. At the turn of the 20th century the common

method of controlling the speed of induction machines was the introduction of series resistance to

the rotor, connected via slip rings, as the modern luxury of power electronic frequency converters

(inverters) had not even been conceived.

The use of series resistance (rheostats) connected to the rotor is inherently lossy, and thus there

was a strong desire to design machines which could be operated at different speeds without rheostatic

loss [97].

1
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It was well known at the time that connecting two induction machines together allowed one to

achieve three different speeds of efficient operation [48, p. 648]. Such an arrangement was known

as ‘cascaded induction machines’. The Lydall patent covered the incorporation of two induction ma-

chines with air gap fields of different pole numbers in one frame. Lydall realised that the resulting

machine would mimic the behaviour of two cascaded (but physically separate) machines because un-

like pole number fields do not couple. His machine had two stator windings and two rotor windings

each brought out on slip rings. Three different efficient speeds of operation could be achieved, the

synchronous speed of winding 1, ω/p1, the synchronous speed of winding 2, ω/p2, and the cas-

cade synchronous speed, ω
p1+p2

. Lydall’s work was to achieve ‘self-cascaded’ operation by, in effect,

putting two machines in the same frame.

At the same time as Lydall’s work, others were attempting to create a ‘self-cascaded’ machine,

but their attempts used suitable spacing of the stator windings to ensure non-linking of the stator

fields, rather than different pole number fields. Prof. Silvanus P. Thompson took out a patent in 1901

[49, p.406] for such a machine, Steinmetz in the USA for a similar machine in 1903, and Meller in

Germany in 1904 [48, p.651].

In 1907 Hunt [48] further developed Lydall’s original idea, although it appears he was initially

unaware of Lydall’s work [49, p. 407]. Hunt realised that the slip rings were unnecessary, that is,

if the cascade connection is made rotor to rotor, rather than rotor to stator, then no slip rings are

needed, and three speeds of operation are still possible. Hunt also contributed to the development

of the machine and showed that with suitably designed stator and rotor windings it was possible to

reduce copper losses significantly. The single rotor winding was designed to couple to both air gap

fields and needed significantly less cross-sectional area of copper than Lydall’s design, leading to

smaller slots and a more practical rotor design. Hunt developed the machine from 1907 to 1914,

and he describes some refinements in his 1914 paper along with experiences gained from industrial

applications, principally in the mining industry [49].

Further improvements were made to the rotor and stator designs by Creedy in 1920 [27]. Creedy

also refined some of Hunt’s rules for choosing suitable pole number combinations, thus providing

greater choice of machine configurations. Most significantly Creedy’s rules for choosing pole num-

bers led to the possibility of using a machine with 6 and 2 poles, which was 50% faster than the

fastest machine available using Hunt’s rules. However, in fact, Creedy’s rules for choosing pole

number combinations were still incomplete.

The self-cascaded machine met with some commercial success. Hunt reports a number of ma-

chines which found application in areas including an air compressor in a colliery, and as an air com-

pressor for refrigeration [49, p. 426].

However, after Creedy’s paper no further publications appeared until Smith published in 1966

[102]. Smith’s machine was in the category of the Thompson/Steinmetz/Muller machines, that is,

the non-linking of stator fields was achieved by spatial separation rather than different pole number



1.1 Evolution of the BDFM 3

fields. Smith’s initial motivation appears to have been for the cascade mode of operation, and he

presents, for the first time, a model of the steady-state operation of the machine. The following

year Smith published on the synchronous performance of his machine, and noted that a lower power

frequency converter could be used to extract slip power from the rotor by induction, or if supplied

from the second winding, the machine would behave as a synchronous machine [103]. This was a

significant development as it was the first time that the full synchronous mode was noted, however the

Smith machine was not a true BDFM, rather two magnetically separate machines in the same frame.

Furthermore, in his 1967 paper Smith presents an equivalent circuit for his machine, and analyses its

performance in the synchronous mode of operation. Cook and Smith went on to publish on stability

of the synchronous mode of operation, [24, 25], however, as mentioned, his work concerns essentially

two separate induction machines in cascade, which happen to be put in the same frame. Nevertheless

Smith must be credited with first noting the synchronous mode of operation which is achieved by a

double feed.

In 1970 an unquestionably significant contribution was made by Broadway and Burbridge [17].

Indeed, physically, the modern BDFM is essentially the same as that proposed by Broadway and

Burbridge. It seems that they were unaware of the work of Smith, however. Broadway and Bur-

bridge returned to the Hunt machine, and made significant contributions to the design of the rotor.

They reasoned that a wound rotor, which the Hunt and Creedy designs required, would lead to higher

losses and lower durability. They sought to design a cage-type rotor which could be made by the

same means as a squirrel cage rotor, yet did not suffer from excessive leakage reactance. They have

erroneously been credited with first realising that a cage rotor for a BDFM must have the number of

bars given by the sum of the pole pairs of the stator windings; in fact Hunt noticed this [27, p. 534].

Nevertheless Broadway and Burbridge were the first to formalise this concept. Their main contribu-

tion was to propose the ‘nested-loop’ design rotor, which has been adopted in most subsequent work

on the BDFM. Broadway and Burbridge presented an equivalent circuit for the BDFM, and some

performance aspects were analysed in steady-state. They also noted that the second winding can, not

only extract slip power, but also be used to run the machine in a synchronous mode. Yet unlike Smith,

they only consider the synchronous mode in the case that the second stator supplies DC.

Broadway published again in 1971 on what is, in essence, the modern Brushless Doubly-Fed

Reluctance Machine (BDFRM) [15]. In this paper it is noted that doubly-fed operation is possible

with different supply frequencies, through the use of a variable frequency inverter. In 1974 a further

publication by Broadway appeared, with a valuable discussion of the effects of two pole number fields

sharing the same iron circuit, and the effects of saturation [16].

Four years later Kusko and Somuah [57] presented work on a BDFM with two 3 phase wind-

ings on the rotor, although they conceded that the Broadway/Burbridge design would have been an

improvement. They are, perhaps, the first to have noticed that the BDFM equivalent circuit has simi-

larities with that of the synchronous machine in synchronous operation, however they were principally
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concerned with slip power recovery rather than true double feed - the latter requiring a fully controlled

converter.

In 1983 and 1987 Shibata and Kohrin and Shibata and Taka published on the Broadway machine,

firstly in the cascade mode of operation and then in the synchronous doubly-fed mode [94, 95].

In the mid-1980s as part of US Department of Energy contracts, interest developed in the BDFM

at Oregon State Univserity [65]. Wallace, Spée, Li and others at Oregon studied BDFMs exten-

sively, and indeed the name ‘BDFM’ originated in these publications. Their work used the Broad-

way/Burbridge rotor, and developed a coupled-circuit dynamic model for their prototype machine.

They used this model to investigate performance [110, 104]. They then reconsidered the rotor design,

and presented some analysis and proposals for refinement [109]. This work led towards a patent filed

by Lauw in 1993 [59].

Hunt, Creedy and Broadway/Burbridge all proposed a single stator winding which allowed both

pole number fields to be achieved without the need for separate stator windings. However Rochelle

et. al investigated this winding configuration and concluded that it can lead to circulating currents

[88]. Therefore, later work at Oregon used separate windings.

Li et. al. proposed a d-q (two axis) dynamic model for their prototype machine, and presented

performance results [64, 63]. In these works the authors use separate three phase windings, although

as they comment, under their modelling assumptions the multi-tap single winding is effectively the

same. They used this d-q model to derive an equivalent circuit for their prototype BDFM, and consid-

ered steady state performance of the machine in the synchronous mode, [60]. This work was furthered

by Gorti et. al [41]. Boger et. al. generalised the Li d-q model to any pole pair configuration, however

their starting point was an assumed stator and rotor configuration [11, 12].

Also at Oregon, Ramchandran et. al. offered frequency-domain methods of extracting most

parameters for the d-q model described in [64]. Their work was initially presented in simulation only,

but then partially verified by experiment in a later paper [79, 80].

At this stage, work on the BDFM at Oregon concentrated on control aspects and applications

of the machine, which will be discussed later. However further contributions were made on the

modelling of the BDFM by Williamson et. al at Cambridge University. They presented a generalised

harmonic analysis of the BDFM which is capable of predicting the steady-state performance of any

BDFM with a nested loop rotor with any stator winding, allowing the harmonic contributions to be

specifically analysed [115, 114, 33]. Williamson and Ferreira also used finite element analysis to

verify their results and investigate the effect of iron loss and saturation [33, 34]. Williamson and

Boger also used the harmonic analysis model as a starting point to investigate inter-bar currents in

the BDFM. Significantly they found that, unlike in a conventional cage rotor induction machine,

the performance of the BDFM is significantly impaired by inter-bar current, to the extent that they

recommend insulation of the rotor bars [12, 117]. Nevertheless, this does not mean that it would be

impossible to cast a rotor, as Koch et. al. present methods by which this can be achieved [55].
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As previously discussed, Cook and Smith noted the presence of unstable operating modes in the

doubly-fed single frame cascade induction machine [24, 25]. Similar lightly damped, and unstable

regions were evidently of concern to the work at Oregon State University from the outset [104, p.

742].

The first attempt, and indeed the only to date, to analyse the open-loop (that is without any feed-

back, speed or otherwise) stability of the BDFM was undertaken by Li et. al. in 1991 [62], the same

work was also published four years later [61].

Reference [61] (and [62]) used the d-q axis model developed in [64], and linearized this model

about an operating point. The approach adopted used the first term of the Taylor series, as usual when

performing a linearization. However the process is complicated by the choice of reference frame for

the d-q axis model, which is synchronous with the rotor. In such a reference frame the equilibrium

conditions are not constant, but sinusoidally varying. This rendered the linearised system periodic,

and Li et. al. used Floquet theory (see [28]) to numerically analyse the stability, and present an

algorithm for doing so.

In 1992 Brassfield et. al. published a ‘direct torque control’ algorithm for the BDFM [13] (also

published as [14]). This is believed to be the first control algorithm proposed for the BDFM. The

algorithm was developed from the d-q model developed in [64], but using a vector flux quantity

instead of rotor current states. The algorithm seeks to regulate the torque and control winding flux

derivatives, and then outer PI (proportional-integral) loops use these variables to drive the controlled

outputs to their reference set points. However, the algorithm, in its most basic state, requires complete

knowledge of the stator and rotor currents, speed and position in real time. To overcome this limitation

an estimator was proposed to estimate the flux variables, leaving only measurement of the stator

voltages and currents, and the speed and position. The results were presented in simulation only.

It is interesting to note that the development of the ‘direct torque control’ algorithm in [14] is, in

fact, closely related to the application of feedback linearization to the BDFM, although the authors

do not appear to have made this connection. Feedback linearization is a non-linear control design

technique where full state feedback is used to remove non-linearities in a model. The application of

feedback linearization to the BDFM will be discussed in chapter 8.

In reference [128] a variation of the ‘direct torque control’ algorithm of [14] was presented where

the outer loop PI regulation is replaced with an adaptive control law. Simulation results were pre-

sented.

In 1993 Zhou et. al. presented experimental results from a so-called ‘scalar’ control algorithm

for the BDFM. The algorithm comprised of two PI regulation loops, one for the shaft speed and the

other for the grid-connected stator power factor, by varying the instantaneous magnitude and phase of

the converter-fed stator. The proposed algorithm requires a current source inverter [127]. The ‘scalar’

control algorithm requires measurement of the grid-connected winding voltage, current and the rotor

speed.



6 Introduction

In reference [127] it was also noted that the ‘direct torque control’ algorithm was being imple-

mented in hardware, however to date this is the last mention of the ‘direct torque control’ algorithm,

suggesting that there were practical problems associated with its implementation. One problem men-

tioned was that of computational complexity and associated hardware limitations, but there may have

been more fundamental problems with the algorithm.

A significant development took place in 1994 when Zhou and Spée noted that the d-q model of

[64] could be rotated into a reference frame in synchronism with the machine d-q currents, rather

than synchronous with the rotor itself [130]. While this reference frame lacks a concrete physical

interpretation it is has the advantage that the d and q quantities become constant quantities in the

steady state. In reference [130] version of the d-q model in the rotor reference frame supplied with a

current source inverter (first presented in [42]) was converted into the synchronous reference frame.

From the synchronous reference frame model a rotor field orientated control scheme was devel-

oped, using the dynamic BDFM equations to decouple control winding flux and torque. The method

assumes that the flux is a constant parameter, and then estimates the remaining quantities required to

derive a demanded control winding current. The control input is the desired electrical torque, which is

used to regulate the speed using a PI regulator. The effect of all stator resistance terms is neglected, as

are leakage inductances. The control algorithm required measurement of the power winding voltages,

position and speed. The control winding currents are the control outputs, which are fed into a current

source inverter.

Reference [125] (also published as [129]) presents an experimental implementation of the control

algorithm. Principally the implementation is as described in [130], with the same control inputs,

however the internal calculations were manipulated for easier implementation, using a synchronous

load angle as the internal variable.

Two simplifications of the proposed field orientated scheme were presented. The first, [126], re-

moves the need for position measurement, by assuming a fixed value of the synchronous load angle

during transients. This was reported as degrading the step response for a 100rpm step speed change

from 0.4s to 1.2s. The second simplification proposed in [124] is conceptually similar to the original

field orientated scheme. However, no attempt is made to estimate the electrical torque, instead the

synchronous load angle is regulated. Although the new algorithm constitutes a conceptual simplifica-

tion, the performance of the resulting control law was improved: 0.3s for a 100rpm step change. The

authors attribute this improvement is due to an increase in controller bandwidth made possible by the

reduced controller complexity.

An implementation of the original field orientated scheme ([125]) was reported in [96]. The

results are for a much larger machine (30kW), and although the dynamic performance is not as good

(100rpm step response of 1.3s), it is likely that the speed of response was limited by inverter rating,

rather than the control algorithm.

More recent publications have appeared for the cascaded doubly-fed machine, which is electri-
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cally similar to the machine of Lydall, but literally comprises of two machines, in two separate frames

with the rotors coupled both mechanically and electrically. A stator flux orientated control scheme

and ‘combined magnetizing flux’ control scheme were presented. It is claimed that these schemes

would apply equally to the BDFM, although results are only presented for the cascaded machine

[45, 46].

1.2 Description of the BDFM

The contemporary BDFM is single frame induction machine, without any brushes, which has two

3-phase stator supplies (hence ‘doubly-fed’), of different pole numbers. Typically the two stator

supplies are of different frequencies, one a fixed frequency supply connected to the grid, and the

other a variable frequency supply derived from a power electronic frequency converter (inverter), as

illustrated in figure 1.1.

3 − phase grid, 50Hz

BDFM
3 − phase variable freq.

frequency converter
Fractionally rated

PSfrag replacements

p1
p2

Figure 1.1: BDFM concept: a brushless, doubly-fed induction machine

1.2.1 Machine Concept

The machine may be thought of, conceptually, as two induction machines, of different pole numbers

(and hence different synchronous speeds, for the same supply frequency) with their rotors connected

together both physically and electrically. Physically the machine is very similar to the self-cascaded

machine proposed by Hunt [48], the main distinction is that the BDFM is explicitly a doubly-fed

machine.

This combination of induction machines is similar to the traditional cascade connection of induc-

tion machines. In a traditional cascade connection, the rotor of one machine was connected to the

stator of the next (via slip rings). However it was Hunt who realised that if both machines were in the
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same frame, then it was advantageous to connect the rotors together, rather than one machine’s stator

to another’s rotor, as it removed the need for slip rings [48]. Hunt also showed that the rotor-rotor

connections amounted to essentially the same system as stator-rotor connections.

If stator 1 has p1 pole pairs, and stator 2 p2 pole pairs, then the BDFM can be operated as

an induction machine of either p1 pole pairs or p2 pole pairs, by connecting stator 1 or stator 2

respectively, and leaving the other supply unconnected in each case. In the sequel this mode of

operation will be referred to as simple induction mode. The characteristics of the BDFM in this mode

are the same as those of a standard induction machine, except that the performance will be poor. The

reasons for this will be addressed in chapter 4.

However, if the non-supplied stator winding is short-circuited, then the behaviour of the machine

is like that of a cascaded induction machine. A cascade induction machine formed from p1 and p2

pole pair induction machines has characteristics which resemble an induction machine with p1 + p2

pole pairs. This will be discussed in more detail in chapter 4, and in the sequel this mode will be

referred to as cascade induction mode.

The previous two modes are both asynchronous modes of operation, that is, the shaft speed is

dependent on the loading of the machine, as well as the supply frequency. However in doubly-fed

mode the BDFM has a synchronous mode of operation which is the desirable operating mode, and

the one for which the design of the machine is to be optimised.

1.2.2 Synchronous mode of operation

We shall now introduce the synchronous mode of operation of the BDFM. The synchronous mode of

operation of the BDFM relies on cross-coupling between the stator and rotor [115], so does, in fact,

the cascade induction mode of operation.

Cross-coupling means the coupling of the field produced by stator 1 to stator 2, and vice-versa.

By design, this cross coupling cannot occur directly between stator 1 and 2 as they are chosen to be

non-coupling - in the simple case this means that the pole number of each field must be different. A

full discussion of this point is given in chapter 2.

PSfrag replacements

p1 p2

ω1

p1

ω2

p2

ωr1 ωr2

V1 V2

ωrf1 =
ω1

2π
f2 =

ω2

2π

Stator 1 Rotor Stator 2

Figure 1.2: BDFM concept: speed of stator and rotor fundamental fields

If stator 1 has p1 pole pairs and is supplied with a three phase supply at ω1 rad/s, then the stator

current wave, and hence air gap magnetic flux density will rotate at ω1/p1 rad/s. Similarly if stator 2

has p2 pole pairs and rotates at ω2 rad/s then the waveforms will rotate at ω2/p2 rad/s. Therefore the
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fundamental magnetic flux density due to stators 1 and 2 may be expressed as follows (ignoring any

fixed angular offsets):

b1(θ, t) = B̂1 cos (ω1t − p1θ)

b2(θ, t) = B̂2 cos (ω2t − p2θ)

where B̂1, B̂2 are the peak magnetic flux density and θ is the angular position around the circumfer-

ence.

If the rotor is rotating at ωr rad/s, then the fundamental flux density equations may be written in

the rotor reference frame, θ ′ = θ + ωr t :

b′
1(θ

′, t) = B̂1 cos
(

(ω1 − ωr p1)t − θ ′ p1
)

b′
2(θ

′, t) = B̂2 cos
(

(ω2 − ωr p2)t − θ ′ p2
)

Therefore the magnetic flux densities, in the rotor reference frame, are travelling waves of frequency

(ω1 − ωr p1) and (ω2 − ωr p2) respectively.

Cross coupling, then, requires currents induced by b′
1 in the rotor to ‘couple’ with b′

2 and vice-

versa. By ‘couple’ we mean, in this context, that a constant torque be produced, i.e a torque with

a non-zero mean. Torque can be expressed as the integral from 0 to 2π of the product of a current

wave and magnetic field wave. The induced current wave due to a magnetic field will be of the same

frequency in the steady state. Therefore if a constant torque is to be produced by cross coupling then

(ω1 − ωr p1) = ±(ω2 − ωr p2). Taking the negative condition and rearranging gives:

ωr =
ω1 + ω2

p1 + p2
(1.1)

Equation (1.1) gives the requirement on rotor speed for cross-coupling to occur in steady-state.

It is noteworthy that ω2 = 0 is a perfectly legitimate BDFM synchronous speed, that is, the second

supply may be fed with DC. This operational condition was noted by Broadway and Burbridge [17].

The condition when ω2 = 0 will be referred to as natural speed in the sequel, and is given by:

ωn =
ω1

p1 + p2
(1.2)

Furthermore there must be spatial compatibility for cross coupling to occur. That is, the current

induced in the rotor by b′
1 must produce a magnetic field containing a p2 pole pair field harmonic

component for cross coupling to occur; and of course, vice-versa. This requirement can be satisfied by

a special design of rotor, one example of which is the ‘nested-loop’ rotor first proposed by Broadway

and Burbridge [17]. Further consideration of rotor design is given in chapter 5.

When the synchronous conditions are satisfied then the machine produces torque, the value of

which is controlled by a load angle, like that of a synchronous machine [115]. Also, the power

supplied to the machine is approximately split between the two stator supplies in the ratio ω2 : ω1,
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therefore if only a small speed deviation is required away from the natural speed, then it is likely that

a variable speed drive installation could be designed with an inverter rating a fraction of the total drive

power, perhaps as small as 30% of the total [104].

Furthermore, it can be shown that the power factor of the machine can be controlled in this

synchronous mode, and, subject to inverter capacity, the grid-connected winding may run at leading

power factor [115].

1.2.3 Potential Applications for the BDFM

The BDFM then has some very attractive features: it is brushless in operation, offers high power

factor operation when operating as variable speed drive, and can achieve variable speed operation

with a fractionally rated inverter. The fractional rating of the inverter will lead to significant economic

benefits, as typically the cost of a variable speed drive is dominated by the cost of the inverter [127].

The most promising applications therefore are applications requiring variable speed operation,

preferably over a limited speed range, and in environments where high power factor and lack of

brushes are highly advantageous.

Wind power generation is a likely area of application at present, the advantages of fractional

inverter and high power factor have already prompted the use of the doubly-fed induction machine

[75]. The BDFM maintains these advantages but also achieves brushless operation, which particularly

for off-shore installations, would be of considerable benefit; increasing the time between services

[8, 19].

Other applications that have been considered, include pump drives [10]. Again the motivation is

the reduced inverter rating, the typically low starting torque required for fluid loads means that this

advantage can be maximised.

There is, however, likely to be a cost penalty for using a BDFM as compared to a conventional

induction machine-based drive. The rotor is likely to be more complex, hence manufacturing costs

will be slightly higher, and also it is likely that the machine itself may be slightly larger for the same

output torque. However the benefits will certainly outweigh the costs in an appropriate number of

application areas.

1.3 Approach of this work

The evidence of the previous discussions leads to a number of unresolved issues which prevent the

commercial adoption of the BDFM. The BDFM is seen as a brushless replacement for certain electri-

cal machines in particular applications, however to date no machines are in commercial service and

there is no industrial experience of machine design or control. It is therefore desirable for the ma-

chines manufacturers to quantify the performance penalty incurred with the new technology (if any),

as this decides the economic success, or otherwise. The performance of the machine is of commercial
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concern in: its physical size, efficiency, the extent to which it draws harmonic currents, the required

inverter rating for machine operation and the dynamic stability of the drive system.

Initially the focus of this work was on the dynamic stability of the machine, however it became

clear that existing analysis of the machine was incomplete and provided only a partial solution. There-

fore this dissertation addresses the following areas:

• The development of a coherent set of models for a general class of BDFM machines which

accurately predict both steady state and dynamic performance (Chapters 2, 3, 4, and 7);

• The use of these models to investigate the steady-state performance of the machine and the

stability of steady-state operating points, and to propose a method of quantifying machine per-

formance in terms of machine equivalent circuit parameter values (Chapters 4 and 5);

• The estimation of machine parameter values by experiment (Chapter 6);

• The consideration of new rotor designs to improve the steady state performance (Chapter 5);

• The consideration of control strategies to stabilize and improve the damping of steady-state

operating points (Chapters 7 and 8).

The specific context of these areas will now be discussed.

1.3.1 BDFM Model Development

A spectrum of modelling techniques has been successfully employed in the study of electrical ma-

chines, ranging from the elegant simplicity of the equivalent circuit model to the detail and precision

of finite elements modelling. Both ends of this spectrum, and methods which fall in between, have

their place in BDFM modelling and have been successfully used.

Finite elements modelling, from the users perspective, essentially allows ‘experiments’ to be

performed on detailed numerical models of electrical machines which are defined by their physical

dimensions and electrical connections. This approach allows dynamic and steady-state modelling and

can include the effects of saturation. This technique has been applied to the BDFM in [34, 33], and

gave very good predictions. However, the complexity of the model makes the computational burden

significant, typically of the order of 1 hour of computation time to simulate 1 s, using a Pentium 4

class processor. Furthermore, the finite element approach is very much a computer-based method of

experimentation rather than an analysis tool, that is, it provides little insight as to how designs may

be improved, and machines must be investigated on a case by case basis. For these reasons finite

elements modelling is not considered further in this dissertation.

While the finite elements technique leads to accurate results, it can be difficult to gain insight into

machine operation. A generalised harmonic analysis for the BDFM with a ‘nested-loop’ design rotor
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was presented in Williamson et. al. [115, 114]. Harmonic analysis performs a harmonic decomposi-

tion of the magnetic flux density, and couplings between constituent motor circuits, which can be vital

in the optimization of machine design. The model presented in [115, 114], while not able to account

for saturation, can model any configuration of nested-loop rotor BDFM (although not any other rotor

design) in combination with any realistic stator winding. However, as is typical with harmonic analy-

sis, it can only be used to model the steady-state operation of the machine, which means it cannot be

used investigate stability of the machine.

Other modelling techniques applied to the BDFM include, dynamic coupled-circuit models, al-

though these were applied to a specific example[110, 104]. d-q axis dynamic models have been pre-

sented [64, 63, 11, 12], however these models either apply to a specific machine, or to machines with

‘nested-loop’ design rotors, and furthermore the connection between these models and the coupled-

circuit model is not made clear. Equivalent circuit models have been proposed by a number of authors

[17, 60, 65, 59, 41]. However, these have generally been either given without derivation, or have been

for a specific machine configuration. Again the connection between these equivalent circuit models

and either the d-q axis models or coupled circuit model has not been made clear.

There is a need for a generalised dynamic and steady-state modelling framework which can be

applied to a wide class of BDFM machines, including, but not limited to, those with a ‘nested-loop’

rotor. A rigorous derivation of other models is needed from this framework to give a d-q axis model,

and equivalent circuit model which are consistent and for which parameter values may be calculated

and their physical meaning made explicit. This dissertation provides such a framework and rigorous

derivations.

1.3.2 Use of BDFM models to investigate performance, new rotor designs and the
estimation of machine parameters

The majority of previous work on the BDFM has been analysis detached from any performance

objectives. While some work has been done on the basic machine operation, [41, 60, 114, 10], it has

not sought to identify key machine parameters which an ideal design would optimize. Therefore it is

difficult to know what design compromises will lead to good machine performance without actually

designing a machine and testing it.

This dissertation provides a partial solution by investigating which machine parameters in the

derived equivalent circuit model have the greatest impact on machine performance.

Since the work of Broadway and Burbridge the rotor design has remained largely static for the

BDFM [17]. Although some investigations into improving the performance of the ‘nested-loop’ de-

sign of rotor proposed by Broadway and Burbridge was undertaken [109], the design of the rotor has

not been considered since. However the design of the rotor cannot be considered a closed area of

research as Broadway and Burbridge themselves concede [17]. Therefore in this dissertation new ro-

tor designs are considered and their performance evaluated using the derived equivalent circuit model
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and by experimental means.

The issue of parameter estimation for the BDFM has received relatively little attention. Only

two publications appear in the literature [80, 79]. These methods find parameter values for a d-q

axis model. However little, or no, experimental evidence was presented supporting the efficacy of the

approach. We therefore propose a new method of parameter estimation. The method gives parameters

for the derived equivalent circuit model which are related back to parameter values for the d-q axis

model, and for which considerable experimental evidence is presented for its effectiveness.

1.3.3 Analysis of stability of the BDFM and the development of control strategies

The only publication to address the stability of the BDFM in its synchronous mode of operation was

presented by Li et. al. [61] (also published as [62]). However, because of the model used, Li et. al.

were forced to analyse the stability of a periodic system, which therefore, did not admit the use of

well-established controller design tools for LTI systems. Furthermore, the analysis was for a specific

BDFM machine.

There is a need for a rigorous stability analysis which covers a wide class of BDFM machines.

This dissertation develops a general linearized model which admits local stability analysis by standard

eigenvalue techniques, and from which controllers may be designed. We also investigate the quadratic

stability of the electrical dynamics of the class of BDFM machines considered.

Furthermore although a number of publications have appeared on control aspects of the BDFM

[125, 129, 130, 126, 124], all of the publications containing experimental results were for control

schemes which required a current source inverter. Therefore we propose two practical control strate-

gies using a voltage source inverter.

Recognising the limitations of linear controller design techniques we consider the nonlinear con-

troller design technique feedback linearization. We give two possible methods of application to the

BDFM and outline initial attempts at implementation of such schemes on a prototype BDFM.
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Chapter 2

BDFM Coupled Circuit Modelling and
Parameter Calculation

2.1 Introduction

For the purposes of this work it is necessary for the adopted model to predict both dynamic and

steady-state performance of a range of different machine designs. Furthermore, in order to make use

of the model and to explore potential machine designs it is necessary to calculate parameter values

for any such model.

As discussed, it has been decided to use a coupled-circuit model for this purpose.

Wallace et. al. and Spée et. al. [110, 104] used a coupled circuit technique to model a prototype

BDFM, however no generalisation of this model was ever presented. Although Wallace et. al used the

model to simulate their prototype machine, [104], the limitations of the model were never addressed,

specifically, the inclusion of leakage inductance effects, allowance for finite conductor widths and

the generalisation of the model to a wide class of machines. The work presented here is similar to

their work, but generalised, to allow any realistic BDFM to be modelled, allow the inclusion of some

leakage inductance effects and makes allowance for finite conductor widths.

The machine is modelled as a set of interconnected coils. This assumption is reasonable in prac-

tice, as will be argued, as it allows almost all industrial-type electrical machines to be modelled

without further simplification. From this standpoint, relationships between stator and rotor of the

machine are derived in terms of mutual inductance matrices.

Furthermore the parameter calculation technique adopted is particularly suited for implementation

on computer, and when so done allows significant modification of the design of the machine to be

performed with relative ease. This is achieved by calculating inductance parameters in a coil by coil

basis, and then combining the results in a manner appropriate to the circuit being analysed.

In contrast to [110], two methods are proposed for the calculation of inductance parameters.

Firstly the parameters are calculated by direct integration, and secondly by splitting into Fourier

15
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series prior to integration.

The latter method is useful as it allows the harmonic content to be investigated. This is something

that will be important in chapter 5.

Finally a dynamic model is derived for the BDFM using the calculated parameters.

Some of the results presented in this chapter will be of no surprise to readers familiar with elec-

trical machine modelling. However the BDFM is an unusual machine, and great care must be taken

in the analysis as not all results applicable to related machines, such as the induction machine, can

be directly transfered. For this reason, and because it is anticipated that readers from a system-theory

background will have had less exposure to electrical machine modelling, derivations are presented in

detail.

An attempt has been made to state assumptions at the start of each section and in some cases

references are provided to well-respected works which adopt the same assumptions.

2.2 Preliminaries

The following definitions are standard, for further information see, for example, [122].

Definition 2.1. Let there be N turns of wire with current i ∈ R A flowing in each. Let the magnetic

field intensity vector be H ∈ R
3, dl ∈ R

3 a direction vector of infinitesimal magnitude, J be the

current density, and d A ∈ R
3 a direction vector normal to the surface S of infinitesimal magnitude.

Ampere’s Law states:
∮

C
H · dl =

∮

S
J · d A = Ni

where S is any open surface bounded by a closed path C . In the case that the surface S contains N

conductors each carrying current i , then the right hand side reduces to Ni , as shown. A right-hand

coordinate system will be used, therefore an anti-clockwise closed path requires the positive direction

of current flow to be out of the page. Ampere’s Law is only valid if the rate of change of electric flux

density is negligible. This fact will be assumed.

Definition 2.2. [35, p. 132] The magneto-motive force (mmf) of any closed path, C , is defined as the

net ampere-turns, Ni =
∮

S J · d A, enclosed by that path:

FC ,

∮

S
J · d A = Ni

where N , i , S, and J are as given in definition 2.1

Definition 2.3. A magnetic material is said to be linear if:

∃µ : B = µH, µ constant
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where µ is the magnetic permeability of the material, and B is the magnetic flux density.

Linearity of the magnetic material implies that there is no saturation, or skin effects.

Definition 2.4. The magnetic flux, φ, passing through a surface, A is defined as:

φ ,

∮

A
B · d A

Definition 2.5. Gauss’s Law for magnetic fields states that total magnetic flux out of any closed

surface, S, is zero:
∮

S
B · d A = 0

Definition 2.6. The magnetic flux φl , linked by a circuit with conductor density, C , is defined as:

φl ,

∮

A2

∮

A1(A2)

B · d A1Cd A2

where the surface A1 is defined by the closed curve due to elemental conductor Cd A2 within which

the magnetic flux density is B. In the simple case of N coincident conductors bounding a surface A

the flux linked by the circuit reduces to:

φl , N
∮

A
B · d A

Therefore from definitions 2.1, 2.3 and 2.4, in a network of k circuits, if a magnetic material is,

or can be assumed to be, linear, the magnetic flux φl linked by circuit n ≤ k due to magnetic flux

produced by circuit m ≤ k circuits is linearly dependent on the current flowing in circuit m.

Definition 2.7. For a network of n circuits with linear magnetic material the Mutual inductance,

M ∈ R
n×n , can be defined in terms of the flux linked by each of the n circuits due to the current

flowing in the n circuits:

φl = Mi

where M is not a function of i . The flux linked by the j th circuit due to current flowing in the k th is

M jk .

Definition 2.8. Self inductance, L k , is the flux linked in the k th circuit (k ≤ n) due to current flowing

in the k th circuit. Therefore:

Lk = Mkk

i.e. the self inductance terms are the diagonal elements of M .

Lemma 2.1. [72] From energy conservation it can be shown that:

∀i, j ≤ n : Mi j = M j i (2.1)



18 BDFM Coupled Circuit Modelling and Parameter Calculation

Lemma 2.2. [72] For any mutually coupled coils of self inductance L i and L j and mutual inductance

Mi j :

Mi j ≤
√

L i L j (2.2)

Definition 2.9. Faraday’s law relates the voltage induced across the terminals of a circuit due to the

flux linked by that circuit:

v = dφl

dt

where the electro-motive force (emf) induced in the circuit is given by −v.

Definition 2.10. A matrix, A ∈ R
n×n is said to positive (semi) definite if xT Ax > (≥)0 ∀x ∈ R

n 6= 0.

From this definition the following are immediate:

1. If A, B are positive definite then A + B is positive definite.

2. If A is positive definite and γ > 0 where γ is scalar, then γ A is positive definite.

3.

[

A 0

0 B

]

is positive definite if and only if A and B are positive definite.

Analogous results follow for positive semi-definite matrices and negative (semi) definite matrices.

Lemma 2.3. [72] For any set of mutually coupled coils , M ∈ R
n×n , with constant inductance

parameters, the work done in increasing the current from 0 to i ∈ R
n , that is the energy stored, is

1
2 iT Mi. Furthermore from Lenz’s law, with the chosen sign convention, this energy must be greater

than or equal to zero. We may therefore conclude from def. 2.10 that M is positive definite.

2.3 General Electrical Machine Coupled-Circuit Model

Given a network of n circuits, each with terminal voltage, v ∈ R
n , current i ∈ R

n flowing in them,

and φ ∈ R
n being the flux linked by each circuit, combining Faraday’s law and Ohm’s law:

v = Ri + dφ
dt

(2.3)

where R ∈ R
n×n is the matrix of resistances.

This modelling approach is called a coupled-circuit or coupled-coil model.

It should be noted that for any physically realizable system the principle of reciprocity requires

that R and M are symmetric, that is that R = RT and M = MT. Further, it is usually the case that R

is diagonal.
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Assuming a linear magnetic circuit, from the definition of mutual inductance, def. 2.7, equation

(2.3) may be expanded using the chain rule to give:

v = Ri + d M
dt

i + M
di
dt

(2.4)

In electrical machines the mutual inductance term, M , is assumed to vary only with the rotor

position, θr ∈ R.

We define the rotor angular speed as:

ωr ,
dθr

dt
(2.5)

It is then natural, to express (2.4) in terms of the rotor angular speed:

v = Ri + ωr
d M
dθr

i + M
di
dt

(2.6)

In systems theory terms an electrical machine can be thought of as a dynamic system with input

voltage and output currents. In this case, the system admits a state-space representation where the

currents are the system states. From (2.6):

M
di
dt
= −Ri − ωr

d M
dθr

i + v (2.7)

2.3.1 Torque Calculation

The electro-magnetic torque developed by the machine couples the electrical differential equations

to the mechanical differential equations. The torque produced by an electrical machine can be deter-

mined by considering instantaneous power transfer in the system.

Firstly we recall that the energy stored in magnetic field in a coupled circuit network, or magnetic

co-energy, is defined as:

Wco =
1
2

iT Mi (2.8)

Therefore the instantaneous power transfer from the magnetic field is given by:

dWco

dt
= 1

2
diT

dt
Mi + 1

2
iT d M

dt
i + 1

2
iT M

di
dt

= 1
2

iT d M
dt

i + iT M
di
dt

as
Wco

dt
is scalar and M = MT (2.9)

Multiplying (2.4) by iT from the left:

iTv = iT Ri + iT d M
dt

i + iT M
di
dt

(2.10)
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Therefore from (2.9) with (2.5), and expanding via the chain rule gives:

iTv = iT Ri + 1
2

iT d M
dt

i + dWco

dt
= iT Ri + ωr

1
2

iT d M
dθr

i + dWco

dt
(2.11)

Equation (2.11) is a balance of the instantaneous power transfer in the system. The input power,

iTv is balanced by the Ohmic loss term, i T Ri , the rate of change of stored energy in the magnetic

field, dWco
dt , and the remaining term corresponds to the mechanical power generated by the machine.

Therefore the electrical torque generated by the machine is given by:

Te =
1
2

iT d M
dθr

i (2.12)

Notice that the torque may equivalently be defined as:

Te =
∂Wco

∂θr
(2.13)

2.4 Calculation of Parameters for Electrical machines

In the previous section the general electrical machine equations have been derived. In order to pro-

ceed with simplifying transformations it is necessary to explore the structure of the inductance and

resistance matrices in (2.4). The structure is most simply revealed by calculating values for these

parameters, under the assumptions stated in section 2.3. The following additional assumptions will

now be made:

• The permeability of iron can be considered to be infinite.

• The air gap width between the stator and rotor is small enough, relative to the machine length

and diameter, that it may be assumed that:

– The effects of finite machine length can be neglected.

– The lines of magnetic flux in the air gap are parallel.

• The machine is assumed to consist of a cylindrical rotor inside a cylindrical stator, with con-

ductors which may each be adequately modelled as a uniform conductor distribution on the

surface of either the rotor or stator cylinder within the region containing those conductors (see

figure 2.2). That is, the conductors are assumed to be of zero depth, but finite width.

• For the purposes of mutual inductance calculation the rotor and stator are separated by an

effective air gap width, given by Carter’s Factor. See section 2.8 for full details.

• All conductors in each slot of the stator (or rotor) are uniformly distributed over the same pitch,

although the pitch may differ between stator and rotor. The pitch over which the conductors are

distributed is assumed to be the slot mouth width.
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• The effects of leakage (discussed in section 2.5.2) may be satisfactorily modelled by some

suitable addition to the self-inductance terms only.

The assumptions stated above, combined with those used to derive (2.4), are known to yield a

model with satisfactory accuracy in the modelling of induction machines and BDFMs: [115] and

[110] present BDFM models derived using these assumptions. [114] and [104] verify these respec-

tive models against experimental results. Furthermore, [113] and [116] give examples of models

for cage rotor induction machines derived with these assumptions, the results being verified against

experimental data.

As calculation of parameters for a variety of different machines is required, the approach pre-

sented here is motivated by versatility. It is similar to that described in [110], but the assumption

of point conductors relaxed, and generalised for any machine for which the stated assumptions are

reasonable. We first calculate the flux density due to unit current flowing in a single coil. We then

use this result to derive an expression for the mutual inductance between any two coils with a par-

ticular class of conductor distributions (to generalise to any conductor distribution is trivial, but of

limited application). We then split the machine windings and rotor circuits into single coil elements

and compute the mutual inductance between all single coil elements. We then sum the single coil

elements taking care with the sign to yield the machine parameters. The calculation of flux density

and inductance for a single coil is well-known, and can be found in, for example, [43, ch. 1], although

it is usual to express the result as a Fourier series rather than a definite integral, as is required in this

case. Furthermore point conductors are usually assumed, whereas, in common with [116] we allow

for uniformly distributed finite width conductors. For these reasons, and for the benefit of the reader

from a systems theory background, a full derivation is included.

2.4.1 Magnetic Flux Density due to Single Coil

We wish to determine the spatial magnetic flux density produced in the air gap due to current i flowing

in a coil of N turns connected in series. The coil is the basic building block used to create machine

windings. From Definition 2.1, we may relate the line integral of the magnetic field intensity around

any closed path to the current flowing through the surface bounded by the closed path. Figure 2.1

shows a machine rotor in plan with a section through the rotor. As the air gap is assumed small, the

rotor and stator diameter are taken to be the same. Figure 2.2 shows a cross-section through a rotor

and stator of an electrical machine. For simplicity, the cylindrical rotor and stator surfaces have been

flattened, thus the far left and right hand edges of the diagram are coincident. The figure shows two

stator slots filled with conductors, and the remaining slots empty. ⊗ and ¯ indicate current flow into

and out of the page respectively.

Consider the closed path, C1: as we assume that the iron has infinite permeability the portion of

the line integral of magnetic field intensity in the iron is zero regardless of the exact path. Therefore
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from Ampére’s Law (def. 2.1), because J = 0 everywhere, around C1:

H3g − H4g = 0 (2.14)

⇒ H3 = H4 (2.15)

where g is the air gap length as shown in figure 2.2, and Hx are magnetic field intensities. Whereas,

around path C2 we get:

H2g − H1g = Ni

where N is the number of conductors each with current i flowing in them.

From def. 2.3 the total change in air gap magnetic flux density across a slot with N conductors

with current i flowing in each is:

1B = B2 − B1 =
Niµ0

g
(2.16)

Thus equations (2.16) and (2.14) show that changes in magnetic field in the air gap only occur between

teeth, and that the value of this change is given by (2.16).

As in [116], it is assumed that the change in magnetic field is linear across the slot mouth, ws ,

which therefore means that the current density, J for the two slots shown is as given in figure 2.2.

The magnetic flux density, B is shown in blue.

In order to calculate B1 and B2 Gauss’s Law (def (2.5)) may be applied to the cylindrical surface

of the machine rotor. By considering the flux density waveform (see figure 2.2), it can easily be shown

that:

B2αc + B1 (2π − αc) = 0 (2.17)

where αc is the coil pitch in radians, as shown in figure 2.2.

From (2.17) and (2.16):

B1 =
−Niµ0

g
αc

2π
(2.18)

B2 =
Niµ0

g
(2π − αc)

2π
(2.19)

where ws the slot mouth width in radians, as shown in figure 2.2.

We have now calculated the air gap magnetic field due to current i flowing in a coil, as shown

in figure 2.2. We may now write down the equation of the air gap magnetic flux density, Bk(θ), due

excitation of the k th circuit as shown in blue in figure 2.3 (the green lines depicting the j th circuit

conductor distribution will be used in a later section):
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Bk(θ) =

























B1k + (B2k − B1k )
θ − βk

wsk

βk <θ < βk + wsk

B2k βk + wsk <θ < βk + αck

B2k + (B1k − B2k )
θ − βk − αck

wsk

βk + αck <θ < βk + αck + wsk

B1k otherwise

(2.20)

Using (2.18) and (2.19), equation (2.20) may be written in terms of the current, number of turns and

slot and pitch geometries of the k th circuit, shown in blue in figure 2.3:

Bk(θ) =
Nkikµ0

g



























−αck

2π
+ θ − βk

wsk

βk <θ < βk + wsk

2π − αck

2π
βk + wsk <θ < βk + αck

2π − αck

2π
− θ − βk − αck

wsk

βk + αck <θ < βk + αck + wsk

−αck

2π
otherwise

(2.21)

2.4.2 Mutual (and self) Inductance of Single Coils

From the definition of mutual inductance 2.7 and flux linked 2.6, the mutual inductance between the

j th circuit and k th circuit of an electrical machine, M jk , is given by:

M jkik = w
d
2

∫ 2π

0
Bk(θ)

∫ θ

0
C j (τ )dτdθ

where ik, Bk are the current and magnetic flux density in the air gap in the k th circuit, C j is the conduc-

tor density function for the j th circuit (
∫ θ

0 C j (τ )dτ will be referred to as the conductor distribution

function for the j th circuit). In particular, the conductor density function is related to the current

density for the j th circuit by the coil current, i j :

J j (θ) = C j (θ)i j

As self inductance is a special case of mutual inductance, mutual inductance will henceforth be used

to refer to both mutual and self inductance.

We have assumed that the conductors in each coil are uniformly distributed across the slot mouth

width (ws in figure 2.2). Therefore, as each coil comprises of N series connected turns, the current in

each turn is the same, and the current density function will always be of the form shown in figure 2.2,

with each rectangle having area Ni , as depicted.
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PSfrag replacements

ws j

wsk

N j

αc j

αck

B2k

B1k

Bk

β j

βk

∫ θ

0 C j (τ )dτ

0 2π

Figure 2.3: Air gap magnetic flux density due to excitation of the k th coil and conductor distribution

for the j th coil

Figure 2.3 shows Bk(θ) and
∫ θ

0 C j (τ )dτ for a typical jk pair. From this diagram we may write:

M jkik = w
d
2

N j

[
∫ β j+ws j

β j

Bk(θ)
θ − β j

ws j

dθ +
∫ β j+αc j

β j+ws j

Bk(θ)dθ+

∫ β j+ws j +αc j

β j+αc j

Bk(θ)
β j + ws j + αc j − θ

ws j

dθ

]

(2.22)

where Bk(θ), the magnetic field due to the k th circuit is given by (2.21) and
∫ θ

0 C j (τ )dτ is the con-

ductor distribution function for the j th circuit.

Therefore the mutual inductance between any two coils of differing pitches, and positions may be

calculated by considering unit current flow in one coil, and computing Mi using (2.22), because the

integral can be analytically solved for the magnetic field distribution assumed.

2.4.3 Calculation of spatial harmonic components of mutual inductance

Equation (2.22) can be used to calculate space harmonic components of the mutual inductance be-

tween two coils. The space harmonic components of the mutual inductance between two coils are

the components of mutual inductance due to terms of the Fourier series representation of magnetic

flux density. The method described is essentially the same as that used in [113, 116] although the

presentation is rather different, and lends itself more directly to calculation by computer.

The Fourier series representation of the magnetic flux density for a single coil can be derived by

finding the Fourier series of equation (2.21). It is straightforward to show that it is given by:

Bk(θ) =
2Nkikµ0

πg

∞
∑

n=1

sin(nαck/2)
n

sin(nwsk/2)
nwsk/2

cos
(

n
(

θ − βk −
αck
2 −

wsk
2

))

(2.23)
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Thus the nth spatial harmonic component of magnetic flux density for the k th coil is:

Bkn (θ) =
2Nkikµ0

πg
sin(nαck/2)

n
sin(nwsk/2)

nwsk/2
cos

(

n
(

θ − βk −
αck
2 −

wsk
2

))

(2.24)

Hence the nth spatial harmonic component of mutual inductance linking the j th coil to the k th coils

is:

M jkn = w
d
2

N j

[
∫ β j+ws j

β j

B1
kn
(θ)
θ − β j

ws j

dθ +
∫ β j+αc j

β j+ws j

B1
kn
(θ)dθ+

∫ β j+ws j +αc j

β j+αc j

B1
kn
(θ)
β j + ws j + αc j − θ

ws j

dθ

]

(2.25)

where B1
kn

is the Bkn due to unit current flow.

Alternatively (2.25) can be derived directly from (2.4.2). The conductor distribution function,
∫ θ

0 C j (τ )dτ from figure 2.3 may be written as a Fourier series:

∫ θ

0
C j (τ )dτ =

2N j

π

∞
∑

n

sin(nαc j /2)
n

sin(nws j /2)
nws j /2

cos
(

n
(

θ − β j − αs j /2− ws j /2
))

(2.26)

Before proceeding it is necessary to recall the following trigonometric result:

Lemma 2.4. Given m, n ∈ N and φ1, φ2, θ ∈ R then:

∫ 2π

0
cos(nθ + φ1) cos(mθ + φ2)dθ = 0 ∀n 6= m

Proof. Apply trigonometric identity 2 cos(A) cos(B) = cos(A + B) + cos(A − B), then integrate,

and the result comes by inspection.

Substituting (2.26) and (2.23) into (2.4.2), and using Lemma 2.4 gives:

M jk = w
d
2

2Nkµ0

πg
2N j

π

∑

n∈N

sin(nαck/2)
n

sin(nwsk/2)
nwsk/2

sin(nαc j /2)
n

sin(nws j /2)
nws j /2

∫ 2π

0
cos

(

n
(

θ − βk −
αck
2 −

wsk
2

))

cos
(

n
(

θ − β j − αs j /2− ws j /2
))

dθ (2.27)

Remark 2.5. The principle used to derive (2.27) applies more generally to the mutual inductance

between any two circuits. From equation (2.4.2) and Lemma 2.4 it can be seen that the mutual

inductance between two circuits can only consist of terms from the Fourier series representation of the

magnetic flux density distribution, B(θ) and the conductor distribution function,
∫ θ

0 C(τ )dτ which

corresponds to the same absolute harmonic. More precisely if Qb, Qc denote the set of absolute

harmonics which have non-zero coefficients for the magnetic flux density and conductor distribution

function respectively, then only harmonics in Qb ∩ Qc contribute to the mutual inductance. ♥
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Remark 2.6. The terms absolute and relative harmonic are used to differentiate between the math-

ematical harmonics in a Fourier series (i.e. the value of n), and relative harmonics, that is integer

multiples of some frequency (or pole number) field. In other words the fundamental absolute har-

monic is n = 1, the second absolute harmonic n = 2 and so on. Whereas the first relative harmonic

is n = k, for some integer k and the second relative harmonic is n = 2k and so on. ♥

2.5 Mutual Inductance of Machine Windings

Using equation (2.22) the mutual inductance matrix for a machine winding may be calculated.

We are concerned with the calculation of mutual inductance parameters for any winding which

can be made up of interconnected groups of coils. A group of coils is a number of coils, typically in

different positions within the frame, connected in series.

In order to calculate the mutual inductance matrix for a machine winding, each group of coils

can be represented by a single circuit as it is series connected. Therefore it can be represented by

a single self-inductance term with mutual inductance terms for each coupling to other coil groups.

Furthermore, these inductance terms are the summation of the inductance terms of the individual

coils making up the group:

Suppose that there are a total of N coils, with mutual inductance matrix M̃ ∈ R
N×N . Further

suppose that there are m sets of series connected groups of coils. Hence there are m circuits in total,

and the voltage induced at the terminals of each of the m circuits is given by:

v = T M̃
dĩ
dt

(2.28)

where ĩ ∈ R
N is the current vector and T ∈ R

m×N , T is a combination matrix made up of only

1s, -1s and 0s. Typically T will have only one non-zero element per column, because each coil is

only connected to one series set. T can be found by considering the connections between the coils

which form each group. When elements of T are −1 this corresponds to the coil being connected the

opposite way around.

Furthermore, if the current flowing in each of the m series connected groups of coils is i , then,

after some consideration, it can be seen that the current in each of the N coils is T Ti . Therefore:

M = T M̃T T (2.29)

where M is the mutual inductance matrix for the m sets of series coils.

The procedure outlined above can be used to calculate the mutual inductance matrices for any ma-

chine subject to the constraints described at the start of the section. The method has been implemented

in Matlab, and has been used to calculate all inductance parameters used in this dissertation.

Functions were written which compute the mutual inductance between individual coils, returning

the answer as a symmetric matrix, the fact that the matrix must be symmetric facilitates the elim-
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ination of programming errors. Functions were written for the direct calculation method, equation

(2.22), and for the calculation method using the Fourier series representation, equation (2.27).

As each coil must be placed in a slot, the functions were written to take a list of slots which house

the ‘out’ and ‘return’ conductors for each coil, and from this compute the mutual inductances.

When one coil is on the stator of the machine, and the other on the rotor, then the functions take

an angular offset parameter. The stator-rotor (and hence rotor-stator) mutual inductance terms will,

of course, be parameterised by this angular offset.

2.5.1 Calculation of rotor and stator inductance matrices

When applying the previously outlined procedure to a machine, the transformation matrices can al-

ways be partitioned into a block diagonal matrix.

By choosing the coil order so that the stator coils appear before the rotor coils, the transformed

mutual inductance matrix will be:

M =
[

Tss 0

0 Trr

][

M̃ss M̃sr

M̃T
sr M̃rr

][

Tss 0

0 Trr

]T

(2.30)

where M̃ss, M̃sr , M̃rr are the coil mutual inductance matrices for the stator, stator to the rotor, and the

rotor respectively. Tss, Trr are the combination matrices for the stator and rotor respectively.

Note that the M̃sr will be a function of the rotor position at any instant.

Appendix B.2 gives full details of the stator winding used on the prototype machine, including

the coil order, and coil combination matrix used, and thus serves as an example application of this

calculation procedure. Appendix B.2 also reviews standard ‘winding factors’ which are often used in

the design of machine windings and can be used to verify inductance calculations for certain winding

configurations.

2.5.2 Leakage inductance

Thus far, inductance arising from leakage effects have not been discussed. Inductance arising from

leakage effects are inductances due to the magnetic flux not linking stator and rotor conductors. This

definition is similar to that found in [31, sect. 5.2], except that for our purposes the harmonic mutual

inductance terms are not considered part of the leakage terms, rather as a separate term (contrary to

[43]).

There are various types of leakage effects, a summary of those used is found in appendix C.1.

Typically leakage inductances in a well designed machine are 1-2 orders of magnitude lower than

the principal inductance terms. For simplicity it will be exclusively assumed that leakage inductance

causes an increase in self inductance only. This assumption will typically lead to only very small

errors, and simplifies the calculations which follow.
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2.5.3 Resistance calculation

The calculation of resistance is rather more straightforward than inductance calculations. We assume

that the resistivity is constant, and therefore the resistance of a coil is given by:

R = ρl
A

(2.31)

where A is the wire cross-sectional area, l is the total length of wire in each coil, and ρ is the resistivity

of the material at the operating temperature. The coil’s length is approximately given by:

l = 2k N (αc
d
2
+ w) (2.32)

where αc is the coil pitch, d the diameter of the centre-line of the slots, w the machine stack length,

N the number of turns in the coil, and k > 1 a constant to allow for the space required to bend the

conductors in the coil, typically k < 1.1.

Once the coil resistance has been calculated, the resistance of each group may be computed using

the same combination matrices used to compute the group inductance parameters.

In this dissertation it is assumed that the resistance of each coil is constant throughout the machine

operation. The major source of error introduced by this assumption is the increase in resistance due

to temperature. However if resistance values are calculated at a normal running temperature, then the

error will be minimised. There is also a small error due to the skin effect, however at the frequencies

involved, with copper or aluminium conductors, this error is likely to be negligible.

2.6 Some properties of machine windings

Having described methods of computation for machine inductance parameters. It will be useful to

derive analytic expressions for a class of stator windings. The general approach is well-known, how-

ever a complete derivation is included to ensure consistency with the previously used notation, and

so that it can be used to draw some conclusions about suitable, and unsuitable, winding arrangements

for the BDFM.

The ensuing approach shares much with that adopted in [43, chap. 1], although the presentation

is different.

The following properties will now be assumed for stator windings. These assumptions cover

concentrated, and distributed windings both fully pitched and short pitched when series connected:

• Each coil is of the same pitch.

• The machine slot pitch is constant for this winding.

• The coil is located inside the slots.
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• The winding is comprised of groups of series connected coils. Each group comprises of Ng

coils separated from one another by a constant angle α1.

• There are 2p groups in each phase of the winding.

Before proceeding we will recall three trigonometric results which will be required later:

Lemma 2.7. Given θ ∈ R, N ∈ N:

N−1
∑

n=0

e j (nθ) =









e j (N−1)θ/2 sin(Nθ/2)
sin(θ/2)

θ 6= 2πk, k ∈ Z

N otherwise

Proof. Notice that the left hand side is a geometric progression. Recalling that:

N−1
∑

t=0

x t = 1− x N

1− x
, x ∈ C 6= 1

then, for θ 6= 2πk, k ∈ Z:

LHS = 1− e j (Nθ)

1− e j (θ)
=
(

e j (Nθ)/2

e j (θ)/2

)
e− j (Nθ)/2 − e j (Nθ)/2

e− j (θ)/2 − e j (θ)/2

= e j (N−1)θ/2 sin(Nθ/2)
sin(θ/2)

Lemma 2.8. Given p, n, k ∈ N then:

sin(nπ)
p sin(n π

p )
=













1 n = kp, p odd

cos(kπ) n = kp, p even

0 otherwise

Proof. When n 6= kp, sin(n π
p ) 6= 0, and clearly sin(nπ) = 0, hence the result.

When n = kp we investigate what happens as n approaches kp. Let q = n + δ where q, δ ∈ R.

Consider the limit as q → n. By L’Hôpital’s rule:

lim
q→kp

sin(qπ)
p sin(q π

p )
= lim

q→kp

cos(qπ)π
p π

p cos(q π
p )
= cos(kpπ)

cos(kπ)
= ±1

Lemma 2.9. Given θ, φ ∈ R 6= 2πk (k ∈ Z), N ∈ N:

cos(θ)+cos(θ−φ)+cos(θ−2φ)+· · ·+cos(θ−(N−1)φ) = sin(Nφ/2)
sin(φ/2)

cos (θ − (N − 1)φ/2)
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Proof.

Applying the trigonometric identity cos(A − B) = cos(A) cos(B)+ sin(A) sin(B) gives:

LHS = cos(θ) [1+ cos(φ)+ cos(2φ)+ · · · + cos((N − 1)φ)]+

sin(θ) [sin(φ)+ sin(2φ)+ · · · + sin((N − 1)φ)]

= cos(θ)

[
N−1
∑

n=0

cos(nφ)

]

+ sin(θ)

[
N−1
∑

n=0

sin(nφ)

]

From Lemma 2.7, taking real and imaginary parts we may write:

LHS = cos(θ)
[

cos((N − 1)φ/2)
sin(Nφ/2)
sin(φ/2)

]

+ sin(θ)
[

sin((N − 1)φ/2)
sin(Nφ/2)
sin(φ/2)

]

recombining using cos(A − B) = cos(A) cos(B)+ sin(A) sin(B) gives:

LHS = sin(Nφ/2)
sin(φ/2)

cos (θ − (N − 1)φ/2)

Magnetic flux density due to a coil group

We consider a group of Ng series connected coils of Nc turns each, with equal current ig flowing and

each displaced from the next by constant angle, αg. Each coil has a magnetic flux density distribution

given by (2.23) with βk = {βg, βg + αg, · · · , βg + (Ng − 1)αg} for the different coils in the group,

Nk = Nc, ik = ig To compute the resultant field distribution the contribution from each coil is

summed. It can be shown using Lemma 2.9:

Bg(θ) =
2Nc Ngigµ0

πg

∑

n∈N

sin(nαc/2)
n

sin(nws/2)
nws/2

sin(nNgαg/2)
Ng sin(nαg/2)

cos
(

n
(

θ − βg − αc
2 −

ws
2 − (Ng − 1)αg

2

))

(2.33)

see [43, Sect. 1.4] for details.

Magnetic flux density due to a single series connected phase

It is assumed that a single phase comprises of either p or 2p groups of coils where p ∈ N is the

number of pole-pairs. If the winding is a double layer winding (where coils are ‘short-pitched’), then

it is assumed that each phase comprises of 2p coil groups connected in series with alternating polarity.

If the winding is single layer (‘fully pitched’) then it is assumed that each phase has p coil groups,

connected in series, all of the same polarity.
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In both cases the total magnetic flux density for a phase is the sum of its component groups. The

flux density of each group is given by (2.33), but with different values of the group offset, βg.

In the case of the single layer winding βg = {βk, βk + 2π
p , · · · , βk + 2π(p−1)

p }, for the double

layer winding βg = {βk, βk + π
p , · · · , βk + 2π(2p−1)

2p }, where βk is the angular offset of the k th phase.

However in the case of the double layer winding the polarity of connection alternates.

Using Lemma 2.9 the magnetic flux density for the k th phase, with current ik , of a single layer

winding can be written as:

Bksing.(θ) =
2Nc Ngikµ0 p

πg

∑

n∈N

sin(nαc/2)
n

sin(nws/2)
nws/2

sin(nNgαg/2)
Ng sin(nαg/2)

sin(nπ)
p sin(nπ/p)

(

cos(n(θ − βk − αc
2 −

ws
2 − (Ng − 1)αg

2 − (p − 1)πp ))
)

from Lemma 2.8, assuming p even (modification trivial for p odd):

= 2Nc Ngikµ0 p
πg

∑

n=pt
t∈N

sin(nαc/2)
n

sin(nws/2)
nws/2

sin(nNgαg/2)
Ng sin(nαg/2)

cos(nπ/p)

(

cos(n(θ − βk − αc
2 −

ws
2 − (Ng − 1)αg

2 − (p − 1)πp ))
)

(2.34)

For a single layer winding, the coil pitch, αc will generally be αc = π
p [99, sect. 10.7], therefore all

even absolute harmonics vanish. The resulting magnetic flux density is:

= 2Nc Ngikµ0 p
πg

∑

n=p(2t−1)
t∈N

sin(nαc/2)
n

sin(nws/2)
nws/2

sin(nNgαg/2)
Ng sin(nαg/2)

cos(nπ/p)

cos(n(θ − βk − αc
2 −

ws
2 − (Ng − 1)αg

2 − (p − 1)πp ))

(2.35)

A double layer winding consists of coil groups spaced by π
p . The polarity of connection of these

coil groups alternates, thus a phase of a double layer winding can be thought of as two phases of a

single layer winding connected in series, but with one set the opposite polarity to the other.

Therefore the magnetic flux density may be written as:

Bkdoub.(θ) =
2Nc Ngikµ0 p

πg

∞
∑

n

sin(nαc/2)
n

sin(nws/2)
nws/2

sin(nNgαg/2)
Ng sin(nαg/2)

sin(nπ)
p sin(nπ/p)

(

cos(n(θ − βk − αc
2 −

ws
2 − (Ng − 1)αg

2 − (p − 1)πp ))−

cos(n(θ − βk − αc
2 −

ws
2 − (Ng − 1)αg

2 − (p − 1)πp −
π
p ))

)

(2.36)
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from Lemma 2.8, assuming p even (modification trivial for p odd):

= 2Nc Ngikµ0 p
πg

∑

n=pt
t∈N

sin(nαc/2)
n

sin(nwsk/2)
nwsk/2

sin(nNgα1/2)
Ng sin(nα1/2)

cos(nπ/p)

(

cos(n(θ − βk − αc
2 −

ws
2 − (Ng − 1)αg

2 − (p − 1)πp ))−

cos(n(θ − βk − αc
2 −

ws
2 − (Ng − 1)αg

2 − (p − 1)πp −
π
p ))

)

(2.37)

applying the identity cos(B)− cos(A) = 2 sin( A+B
2 ) sin( A−B

2 ):

= 4Ng Ncikµ0 p
πg

∑

n=pt
t∈N

sin(nαc/2)
n

sin(nws/2)
nws/2

sin(nNgα1/2)
Ng sin(nα1/2)

cos(nπ/p)

(

sin(−n π
2p ) sin(n(θ − βk − αc

2 −
ws
2 − (Ng − 1)αg

2 − (p − 1)πp −
π
2p ))

)

(2.38)

notice that the sin(−n π
2p ) suppresses even multiples of the working harmonic, p. Hence the magnetic

flux density for a phase from a double layer winding may be written as:

= 4Nc Ngikµ0 p
πg

∑

n=p(2t−1)
t∈N

sin(nαc/2)
n

sin(nws/2)
nws/2

sin(nNgα1/2)
Ng sin(nα1/2)

cos(nπ/p)

(

sin(−n π
2p ) sin(n(θ − βk − αc

2 −
ws
2 − (Ng − 1)αg

2 − (p − 1)πp −
π
2p ))

)

(2.39)

2.6.1 Mutual inductance between two stator windings

Equation (2.39) gives the magnetic flux density for a single phase of any winding realisable under the

assumptions stated.

Using a similar method to that used to derive (2.39) the conductor distribution function for each

phase may be derived. Equation (2.26) gives the conductor distribution for a single coil, hence the

conductor distribution for a phase of a double layer winding can be written as:

∫ θ

0
C j p(τ )dτ =

4Nc Ng p
π

∑

n=p(2t−1)
t∈N

sin(nαc/2)
n

sin(nws/2)
nws/2

sin(nNgα1/2)
Ng sin(nα1/2)

cos(nπ/p)

(

sin(−n π
2p ) sin(n(θ − β j − αc

2 −
ws
2 − (Ng − 1)αg

2 − (p − 1)πp −
π
2p ))

)

(2.40)

From equation (2.4.2) the mutual inductance between two phases is proportional to the integral

of the product of (2.40) and (2.39) (if the winding is single layer a similar result ensues). This leads

to the following results:

Remark 2.10. The mutual (and self) inductance between phases within any double or single layer

three phase winding can only comprise of terms from the Fourier series representation of the magnetic

flux density (or equivalently the conductor distribution function) which are odd harmonics of the
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working harmonic (the number of pole pairs). Note that the mutual inductance will include 3rd

harmonics of the working harmonic, however these terms can be shown to cancel out if the supply is

a balanced three phase set, see for example [43]. ♥

Remark 2.11. The individual phases of a three phase winding will have the same self-inductance,

and same mutual-inductance between phases. This is self-evident from considering (2.39) and (2.40):

different phases differ only in the value of βk and β j , which correspond to a phase offset, which has

no bearing on the value of the integral (Lemma 2.4). The self-inductance has βk = β j , and the mutual

inductance βk = β j + 2π/3 (for βk > β j , which can be ensure for all phases). Therefore for a three

phase winding the stator-stator mutual inductance matrix will be of the form:

Mss =







Ls Ms Ms

Ms Ls Ms

Ms Ms Ls







which, from definition A.1 is a symmetric, circulant matrix. ♥

Rules for choosing pole numbers for BDFM stator windings

Kusko and Somuah [57] give general guidelines for choosing non-coupling pole pair combinations,

however they offer no proof, or say for which windings their claims apply. From the preceding work

a general statement may be made:

Theorem 2.12. The mutual inductance between any two phases of any single layer three phase wind-

ings of p1 ∈ N and p2 ∈ N pole pairs respectively (p1 > p2) will be zero if and only if, p1 is even and

p2 is odd, or p1 and p2 are both even providing that p1/p2 is not odd (p1/p2 may not be an integer)

and p1 6= p2. Furthermore the condition is sufficient for double layer windings.

Proof. Sufficiency:

A three phase winding of p1 pole pairs produces the set of absolute harmonic Q1 , p1(2t−1), t ∈
N and for p2 pole pairs, Q2 , p2(2t − 1), t ∈ N.

If p1 is even and p2 odd then Q1 therefore contains only even numbers, and Q2 only odd numbers.

Hence Q1 ∩ Q2 = ∅, hence from Remark 2.5, the mutual inductance will be zero.

Q1 = p1(2k − 1), k ∈ N and Q2 = p2(2k − 1), k ∈ N, hence Q1/p2 = p1(2k − 1)/p2

and Q2/p2 = (2k − 1). As p1/p2 is not odd then Q1/p2 ∩ Q2/p2 = ∅, as Q2/p2 is odd, hence

Q1 ∩ Q2 = ∅.
Necessity:

From (2.35) none of the terms will be zero, hence:

If p1 and p2 are odd then p1 p2 is odd, and thus p1 p2 ∈ Q1, hence the mutual inductance is

non-zero.

If p1 and p2 is even and p1/p2 is odd, then Q1/p2 and Q2/p2 are both odd, and hence ∃q ∈
Q1/p2 : q ∈ Q2/p2, hence Q1 ∩ Q2 6= ∅ hence the mutual inductance is non-zero.
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Remark 2.13. For a double layer winding, the sin(nαc/2) term will typically be zero for certain

harmonics, by design. It can be shown that this term is equivalent to± cos( nπq
k )where k is the number

of slots per pole, and q is the number of slots by which the winding is short-pitched. Therefore if,

say, p1 = 1, p2 = 15, and if the 2 pole winding is wound with q = 1, k = 5 then no coupling will

result as all odd 15th harmonics are cancelled. However, practically speaking, because k À q unless

p2 À p1 too then there is little chance of being able to cancel out the coupling by careful choice of

αc, hence Theorem 2.12 is necessary and sufficient in most practical situations. ♥

Remark 2.14. Notice that Theorem 2.12 is derived from consideration of the mutual inductance be-

tween phases of different windings. It can be shown (see e.g. [43]) that when a p pole pair three

phase winding of the types assumed, is supplied with a balanced set of three phase voltages, absolute

harmonics of order 3np, n ∈ N of the magnetic flux density and conduction distribution function

are zero. Therefore the requirement of theorem 2.12 for zero coupling may be relaxed: any p1 and

p2 such that p1/p2 = 3k, k ∈ N, p1 > p2. This relaxed requirement allows the usage of 6/2 pole

machines, such as [11]. However extra caution should be exercised, as there will be direct coupling

between the two different pole number stator whenever the balanced condition is not met (e.g. due to

differing end winding resistances in each phase). ♥
There is a further requirement which is imposed on candidate stator pole pair combinations, the

requirement that there be no unbalanced magnetic pull on the rotor. If there were this would unduly

stress the machine bearings. Creedy [27, p. 512] gives necessary and sufficient conditions for this

to be so. He points out that the conditions given by Hunt [49, p.408], who first made this point, are

sufficient but not necessary. Creedy states that to avoid unbalanced magnetic pull it must be ensured

that, “...at every instant any value of the square of the magnetic [flux] density which appears at any

point [around the circumference of the rotor] shall also appear at one or more other points equally

distributed around the circumference with respect to the first.” However Creedy’s interpretation of this

rule is still only sufficient. It is worth noting that some authors have cited Broadway and Burbridge

[17, p. 1281] as stating that unbalanced magnetic pull can be avoided by ensuring that the pole pairs

of the stator winding differ by at least 2, in fact Broadway and Burbridge states that this is a necessary,

but not sufficient condition. However it turns out that the condition given in Broadway and Burbridge

is both necessary and sufficient:

Theorem 2.15. In order not to impose unbalanced magnetic pull on the rotor of a machine with two

different pole pair fields in the airgap, p1 and p2, the pole pairs must be chosen so that |p1− p2| 6= 1.

Proof. Assume that the air gap field, at some time instant, ti is given by:

B(θ, ti ) = B1 cos(p1θ + φi
1)+ B2 cos(p2θ + φi

2) (2.41)
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where B1, B2 ∈ R are the amplitudes of the flux density waves, and φ i
1, φ

i
2 ∈ R are the phase offsets

at time ti . p1, p2 ∈ N are the number of pole pairs. Then from Creedy [27, p. 512], the square of this

value, must be balanced. Squaring gives:

B(θ, ti )2 = B2
1 cos2(p1θ + φi

1)+ B2
2 cos2(p2θ + φi

2)+ 2B1 B2 cos(p1θ + φi
1) cos(p2θ + φi

2)

(2.42)

Applying the trigonometric identities: cos2(A) = 1
2 +

1
2 cos(2A) and cos(A + B) + cos(A − B) =

2 cos(A) cos(B) gives:

B(θ, ti )2 =
B2

1

2
+ B2

1

2
cos(2p1θ + 2φi

1)+
B2

2

2
+ B2

2

2
cos(2p2θ + 2φi

2)+

B1 B2 cos((p1 + p2)θ + φi
1 + φi

2)+ B1 B2 cos((p1 − p2)θ + φi
1 − φi

2)

(2.43)

The only way unbalanced magnetic pull can occur is if B(θ, ti )
2 contains a point between 0 and 2π

which is not balanced by another point or points. It is reasonably straightforward to see that cos(nθ)

(where n ∈ Z) is only unbalanced if n = ±1. Therefore B(θ, ti )
2 is balanced iff±2p1,±2p2,±(p1+

p2),±(p1 − p2) 6= 1. As p1, p2 ∈ N then this condition reduces to |p1 − p2| 6= 1.

2.6.2 Mutual inductance between two stator windings where coils groups are not in
series

Early BDFM machines used a special tapping on their stator winding to avoid the need to have sep-

arate isolated 3 phase windings to produce the two pole number fields, see for example [48, 17].

However it was shown by experiment in Rochelle et. al. [88], and theoretically by Alexander [2], that

connections of this nature can lead to windings where circulating currents are induced. Circulating

currents lead to additional Ohmic losses, and may lead to poor iron utilisation and knock-on effects

in the rest of the machine. Therefore separate 3 phase windings are now generally used.

In the preceding derivation of inductance parameters for single and double layer windings, we

have assumed that each winding consists of only three distinct circuits. That is, the groups of coils

making up a phase are connected only in series. However it is common practice when designing 3

phase electrical machine windings to choose to connect coils within a phase in either series, parallel

or some combination of the two, as suits the particular situation (often parallel connections allow a

narrower wire gauge to be used which is preferred by machine winders) [91, sect. 6.4].

It will be shown, however, that even when adhering to the criteria of theorem 2.12 it is possible

to get coupling between two stator windings when the coil groups are connected in parallel. This fact

has been inadvertently verified by experiment on the prototype machine.

Using the method outlined in section 2.5.1 the mutual inductance matrix for a series or parallel

connected winding may be calculated. Appendix B.2.2 gives the details of the stator winding used in
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the prototype machine. The windings are a 4 and 8 pole winding with all coil groups connected in

series. After transformation by the combination matrix (B.8) the stator mutual inductance matrix is

(without any leakage effects added):

Mss =















0.210 −0.0963 −0.0963 0 0 0

−0.0963 0.210 −0.0963 0 0 0

−0.0963 −0.0963 0.210 0 0 0

0 0 0 0.217 −0.0974 −0.0974

0 0 0 −0.0974 0.217 −0.0974

0 0 0 −0.0974 −0.0974 0.217















(2.44)

Recall that:

[

Vs1

Vs2

]

= Mss
dis

dt
(2.45)

⇒ dis

dt
= M−1

ss

[

Vs1

Vs2

]

(2.46)

where Vs1, Vs2 are the stator 1 and 2 supply voltage vectors, is is the stator current vector. Furthermore

from Lemma A.5 as M−1
ss is block diagonal as Mss is block diagonal. Therefore dis

dt may be expressed

as:

dis

dt
=
[

M̃ss1 Vs1

M̃ss2 Vs2

]

(2.47)

where M̃ss1, M̃ss2 can be found from Lemma A.5.

Therefore we conclude that there is no direct coupling between the two stator supplies because

the rate of change of current in the first winding is due only to stator 1 voltage supply.

An alternative winding was considered for the prototype machine, which comprised of the same

coil groups, however connected such that four sets of groups were connected in parallel for each

phase. Details can be found in appendix B.2.2. To analyse a winding with parallel paths it is necessary

to treat each parallel path as a separate circuit. Therefore the stator mutual inductance matrix is

24 × 24, and as such too unwieldy to be printed here. However it can easily be shown that Mss (and

hence M−1
ss ) are not block diagonal. Performing the same analysis applied to the series connected

winding we may write:

dis

dt
= M−1

ss

[

Vs1 p

Vs2 p

]

(2.48)
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where

Vs1 p =

















Vs11
Vs11
Vs11
Vs11
Vs12
Vs12
Vs12
Vs12
Vs13
Vs13
Vs13
Vs13

















Vs2 p =

















Vs21
Vs21
Vs21
Vs21
Vs22
Vs22
Vs22
Vs22
Vs23
Vs23
Vs23
Vs23

















(2.49)

where Vs11 is the first element of Vs1 etc.

Evaluation (2.48) for some balanced three phase voltage source of magnitudes V1 and V2 respec-

tively give:

dis

dt
=




























211.2 V1 cos(ωt)−87.0 V2 cos(ωt)+86.8 V2 sin(ωt)
211.2 V1 cos(ωt)+87.0 V2 cos(ωt)−86.8 V2 sin(ωt)
211.2 V1 cos(ωt)−87.0 V2 cos(ωt)+86.8 V2 sin(ωt)
211.2 V1 cos(ωt)+87.0 V2 cos(ωt)−86.8 V2 sin(ωt)

−105.6 V1 cos(ωt)+182.9 V1 sin(ωt)+118.7 V2 cos(ωt)+31.9 V2 sin(ωt)
−105.6 V1 cos(ωt)+182.9 V1 sin(ωt)−118.7 V2 cos(ωt)−31.9 V2 sin(ωt)
−105.6 V1 cos(ωt)+182.9 V1 sin(ωt)+118.7 V2 cos(ωt)+31.9 V2 sin(ωt)
−105.6 V1 cos(ωt)+182.9 V1 sin(ωt)−118.7 V2 cos(ωt)−31.9 V2 sin(ωt)
−105.6 V1 cos(ωt)−182.9 V1 sin(ωt)−31.7 V2 cos(ωt)−118.8 V2 sin(ωt)
−105.6 V1 cos(ωt)−182.9 V1 sin(ωt)+31.7 V2 cos(ωt)+118.8 V2 sin(ωt)
−105.6 V1 cos(ωt)−182.9 V1 sin(ωt)−31.7 V2 cos(ωt)−118.8 V2 sin(ωt)
−105.6 V1 cos(ωt)−182.9 V1 sin(ωt)+31.7 V2 cos(ωt)+118.8 V2 sin(ωt)

200.1 V1 cos(ωt)−83.1 V1 sin(ωt)+40.2 V2 cos(ωt)
−200.1 V1 cos(ωt)+83.1 V1 sin(ωt)+40.2 V2 cos(ωt)
200.1 V1 cos(ωt)−83.1 V1 sin(ωt)+40.2 V2 cos(ωt)
−200.1 V1 cos(ωt)+83.1 V1 sin(ωt)+40.2 V2 cos(ωt)

172.0 V1 cos(ωt)+131.8 V1 sin(ωt)−20.1 V2 cos(ωt)+34.8 V2 sin(ωt)
−172.0 V1 cos(ωt)−131.8 V1 sin(ωt)−20.1 V2 cos(ωt)+34.8 V2 sin(ωt)
172.0 V1 cos(ωt)+131.8 V1 sin(ωt)−20.1 V2 cos(ωt)+34.8 V2 sin(ωt)
−172.0 V1 cos(ωt)−131.8 V1 sin(ωt)−20.1 V2 cos(ωt)+34.8 V2 sin(ωt)
−28.1 V1 cos(ωt)+214.9 V1 sin(ωt)−20.1 V2 cos(ωt)−34.8 V2 sin(ωt)
28.1 V1 cos(ωt)−214.9 V1 sin(ωt)−20.1 V2 cos(ωt)−34.8 V2 sin(ωt)
−28.1 V1 cos(ωt)+214.9 V1 sin(ωt)−20.1 V2 cos(ωt)−34.8 V2 sin(ωt)
28.1 V1 cos(ωt)−214.9 V1 sin(ωt)−20.1 V2 cos(ωt)−34.8 V2 sin(ωt)




























(2.50)

Therefore notice that all the coil groups are functions of both V1 and V2. Therefore there is significant

direct coupling between the two windings. The effect of the cross coupling has been to introduce

circulating currents in the other winding. This will lead to poor copper utilisation and efficiency. This

winding was built and experiment confirmed the presence of circulating currents.

The machine was supplied from winding 1 (4 pole) with a balanced three phase supply derived

from the 50Hz grid, with the rotor removed. The rotor was removed to eliminate any possibility of

coupling via the rotor. The 4 pole winding was excited and allowed to reach thermal equilibrium while

the 8 pole winding was left unconnected at the terminals. Once thermal equilibrium was attained then

voltage, current and power were measured using a three phase digital power meter. Immediately after

disconnecting the power supply the DC resistance was measured of each phase of the 4 pole winding.

Table 2.1 summarises the results for both the parallel path winding and series connected winding. It

can immediately be seen that an unaccounted extra loss of 29% appears in the parallel path winding

whereas there is substantially no such extra loss in the series path winding, thus confirming that there
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Phase Voltage Current Power I 2 R Diff.

(V) (A) (W) (W) (W)

4 pole winding with parallel paths R = 1.77Ä

R 26.9 9 200 143 57

Y 26.9 9 200 143 57

B 25.8 8.67 186 133 53

4 pole winding with series paths R = 3.4Ä 1

R 47.1 8.95 270 272 2

Y 46.9 8.83 264 265 1

B 46.9 8.75 263 260 3

Table 2.1: Power dissipated as measured by a three phase power meter when the 4 pole winding of

prototype machine described in appendix B.2 is excited with the 8 pole winding open circuit. The

results compare the difference between series and parallel connection of the 4 pole winding.

are circulating currents induced in the 8 pole winding by the 4 pole winding when the windings are

implemented with parallel coil groups.

Remark 2.16. The previous example leads to a general statement of caution: Theorem 2.12 gives rules

for choosing non-coupling stator winding pole numbers. However non-coupling is only guaranteed

when the coils groups are connected in series, furthermore it is easy to find examples of parallel

connected coil groups which lead to circulating currents being directly induced. Therefore it cannot

be assumed a priori that parallel connection of coils groups will lead to a satisfactory winding for the

BDFM. ♥

2.7 BDFM Rotor Mutual Inductance terms

Having considered mutual inductance parameters for realistic stator windings it is pertinent to con-

sider the mutual inductance parameter of potential BDFM rotors. Although section 2.5.1 provides a

method of calculating rotor-rotor and rotor-stator mutual inductance matrices it will be of benefit to

derive some analytical results.

As BDFMs are not used commercially, there is not a ‘standard’ BDFM rotor class, as there is

for conventional induction machines. The most commonly adopted rotor design for the recent proto-

types described in the literature (see table D.1) is the nested-loop rotor design, conceived by Broad-

way/Burbridge [17].

It is generally accepted that, at the current stage of BDFM development, the rotor design cannot

1This experimental data was obtained by Xiaoyan Wang.
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be considered finalised [109], however it will be argued in chapter 5 that all realistic BDFM rotors

will share the same general form of the mutual inductance matrix.

The general type of rotor design, which will be considered, falls within the following assumptions:

1. Each rotor circuit conductor distribution function must contain p1 and p2 space-harmonic

terms, so that it couples to the stator.

2. Rotors must have (or can be modelled as having) S = p1 + p2 identical circuits spaced evenly

around the circumference. As has generally been assumed so far, the circuits must be con-

structible from coil groups of the form illustrated in figures 2.2 and 2.3.

3. The rotor may have multiple sets of circuits as described in 2, each set may be different from

the other sets, and each set of circuits may be positioned at any angular position around the

rotor.

For example if p1 = 2, p2 = 4 then S = 6, so the rotor must have 6 identical circuits evenly

spaced around the circumference. Further sets of 6 may be added as desired. The nested-loop rotor

design, in all its variants, clearly falls into this category as can be seen from figure 2.4, although this

class of rotors is considerably broader.

It should be noted that this class of rotor designs does not guarantee that the rotor will cross-

couple and allow the machine to operate in synchronous mode. Chapter 5 presents results for a rotor

design (rotor 3) within this rotor class which does not cross couple.

Essentially the reason for this is that cross-coupling requires not only that the conductor distribu-

tion function contains the correct space harmonic terms, but also that the spatial distribution of rotor

coils must be such that harmonic field components of the right frequency are produced. This issue is

discussed further in chapter 5.

2.7.1 Rotor-rotor mutual inductance matrices

Firstly we consider a rotor consisting of only the outer loops of each ‘nest’ (see figure 2.4), that is a

rotor with only 6 circuits. Clearly the self-inductance will be the same for every loop, and furthermore

the mutual inductance between one loop and all other loops will always be the same, regardless

which loop is considered. The self and mutual inductances can be calculated directly from (2.27),

for appropriate parameter choices. If instead we consider a slightly more general rotor structure

where there can be overlap between adjacent nests, then the mutual inductances will differ. The most

general case possible for S = p1 + p2 circuits will have Q = floor(S/2) different mutual inductance

parameters, where ‘floor’ denotes round down. Without loss of generality it will be assumed that

adjacent elements in the mutual inductance matrix correspond to parameters for adjacent nests. In
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PSfrag replacements

2π
p1 + p2

Rotor coreEnd ring

Rotor barsRotor loops

Type 1

Type 2

Type 3

︸ ︷︷ ︸

‘Nest’

Figure 2.4: Three variant nested loop rotor designs, the difference between the designs is essentially

one of ease of fabrication [33, 115]
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this case the rotor-rotor mutual inductance matrix for Mrr circuit is:

Mr =


























Lr Mr1 Mr2 · · · MrQ−1 MrQ MrQ−1 · · · Mr2 Mr1

Mr1 Lr Mr1 Mr2 · · · MrQ−1 MrQ MrQ−1 · · · Mr2

Mr2 Mr1 Lr Mr1 Mr2 · · · MrQ−1 MrQ MrQ−1 · · ·
· · · Mr2 Mr1 Lr Mr1 Mr2 · · · MrQ−1 MrQ MrQ−1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

MrQ MrQ−1 · · · Mr2 Mr1 Lr Mr1 Mr2 · · · MrQ−1

MrQ−1 MrQ MrQ−1 · · · Mr2 Mr1 Lr Mr1 Mr2 · · ·
· · · MrQ−1 MrQ MrQ−1 · · · Mr2 Mr1 Lr Mr1 Mr2

Mr2 · · · MrQ−1 MrQ MrQ−1 · · · Mr2 Mr1 Lr Mr1

Mr1 Mr2 · · · MrQ−1 MrQ MrQ−1 · · · Mr2 Mr1 Lr


























(2.51)

and mutual inductance matrix of the outer loops of the rotor of figure 2.4, is a special case of Mrr

where all the mutual terms are equal.

If the rotor in question has N sets of S circuits, such as the rotor shown in figure 2.4, which has 3

sets, then the total mutual inductance matrix can always be written as:

Mrr =










Mrr1 Mrr12 · · · Mrr1N

Mrr12
T Mrr2 Mrr23 · · ·

...
...

...
...

Mrr1N
T · · · Mrr (N−1)N

T Mrr N










(2.52)

where Mrr i ∈ R
S×S is the rotor-rotor mutual inductance matrix for the i th set of S circuits, and

Mrr i j ∈ RS × S is the mutual inductance between the i th and j th sets. It should be noted that from

definition A.1 (2.51) is a symmetric circulant matrix. An example of a rotor-rotor mutual inductance

matrix is given in equation (B.12), which is the inductance matrix for the prototype ‘nested-loop’

rotor described in section 5.2.1.

2.7.2 Rotor-Stator mutual inductance matrix

Firstly we consider the mutual inductance between a single stator phase and single rotor circuit. A

phase of the stator winding will have a magnetic flux density of the form of (2.39). As the rotor circuit

will be formed out of a series connection of coil groups, the conductor distribution function will be the

summation of individual coil conductor distribution functions given by (2.26). The resulting mutual

inductance can be calculated from the derived expression for mutual inductance, equation (2.4.2).

From the Lemma 2.4, we know that the mutual inductance between a single phase and a single

rotor circuit can only contain harmonics common to both stator and rotor coils. Therefore assuming

the stator winding is a single or double layer winding, as previously described, then we know that

the mutual inductance can contain no more harmonic terms than are present in the expression for the

stator magnetic field (2.39), that is odd multiples of stator pole-pairs.
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Hence the mutual inductance between one phase of a p1 pole-pair stator and a single rotor circuit,

regardless of the particulars of the circuit itself, can be written Msr =
∑

n∈Q M(n) cos((θr − β1)n),

where M is the coefficient for the n th harmonic, θr is the rotor position, β1 is an offset angle, and

Q = p1(2k − 1), k = {1, 2, 3, · · · }. As discussed in the previous section each rotor circuit is offset

from the next by 2π/S radians, where S = p1 + p2. Furthermore each stator phase is, of course,

offset from the previous by 2π
3p1

radians for stator 1 and 2π
3p2

for stator 2. Hence we may write down

the rotor-stator mutual inductance matrix:

Msr =















∑

n∈Q1
M1(n) cos((θr − β1)n)

∑

n∈Q1
M1(n) cos((θr − 2π

S − β1)n) · · ·
∑

n∈Q1
M1(n) cos((θr − 2π

3p1
− β1)n)

∑

n∈Q1
M1(n) cos((θr − 2π

S −
2π
3p1
− β1)n) · · ·

∑

n∈Q1
M1(n) cos((θr − 4π

3p1
− β1)n)

∑

n∈Q1
M1(n) cos((θr − 2π

S −
4π
3p1
− β1)n) · · ·

∑

n∈Q2
M2(n) cos((θr − β2)n)

∑

n∈Q2
M2(n) cos((θr − 2π

S − β2)n) · · ·
∑

n∈Q2
M2(n) cos((θr − 2π

3p2
− β2)n)

∑

n∈Q2
M2(n) cos((θr − 2π

S −
2π
3p2
− β2)n) · · ·

∑

n∈Q2
M2(n) cos((θr − 4π

3p2
− β2)n)

∑

n∈Q2
M2(n) cos((θr − 2π

S −
4π
3p2
− β2)n) · · ·

∑

n∈Q1
M1(n) cos((θr − (S−1)2π

S − β1)n)
∑

n∈Q1
M1(n) cos((θr − (S−1)2π

S − 2π
3p1
− β1)n)

∑

n∈Q1
M1(n) cos((θr − (S−1)2π

S − 4π
3p1
− β1)n)

∑

n∈Q2
M2(n) cos((θr − (S−1)2π

S − β2)n)
∑

n∈Q2
M2(n) cos((θr − (S−1)2π

S − 2π
3p2
− β2)n)

∑

n∈Q2
M2(n) cos((θr − (S−1)2π

S − 4π
3p2
− β2)n)















(2.53)

where Q1 = p1(2k − 1), Q2 = p2(2k − 1), k = {1, 2, 3, · · · }, S = p1 + p2, p1, p2 ∈ N are the

number stator winding 1 and 2 pole pairs, M1(n),M2(n) ∈ R are the coefficients for the n th absolute

harmonic of mutual inductance, and β1, β2 ∈ R are offset angles between the first rotor coil and the

first phase of stator winding 1 and 2 respectively.

As with the rotor-rotor mutual inductance the rotor may contain additional sets of S identical,

equally spaced, rotor circuits. In the case that the stator-rotor mutual inductance matrix has N such

sets it becomes:

Msr =
[

Msr1 Msr2 · · · Msr N

]

(2.54)

where Msr i is the mutual inductance of the i th set of S equally spaced circuits on the rotor and is given

by (2.53) for a suitable choice of parameters.

2.8 Effect of Slotting on Mutual inductance terms

Hitherto all magnetic flux density and mutual inductance calculations have been derived assuming

that the stator and rotor are smooth cylinders, i.e. without any slots. The BDFM will generally have

a slotted stator and rotor to reduce leakage inductance.
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The effect of slotting is to change the profile of the air gap from a uniform ring of constant width,

to one where the width varies depending on whether or not the stator and rotor teeth align or not. It

is expected, therefore, that the air gap magnetic flux density will change as a result of slotting. Under

the stated assumptions the flux density was shown to be inversely proportional to the air gap width,

so if the air gap width varies, then it is reasonable to expect the flux density to vary accordingly with

a ripple pattern related to position of the slots.

A detailed analysis of slotting effects is beyond the scope of this work, [43, chap. 6] includes

a detailed discussion. However a significant effect of slotting which cannot be ignored is that the

effective width of the air gap is increased, on average. This will then scale the mutual inductance

terms.

The fractional increase in effective air gap width can be approximated by Carter’s Factor. Hence-

forth it will be assumed that the air gap width used is the effective air gap width. Appendix C.2 gives

details of the calculation method with references.

As noted in [43, sect. 6.11] a significant effect of slotting, which has been ignored, is its effect

on higher harmonic components of mutual inductance (differential leakage in the vocabulary of the

reference).

2.9 BDFM Coupled-Circuit Model

The BDFM coupled circuit model was first presented in [110] and [63]. The model will be presented

here, using previously defined notation.

In the BDFM it is convenient to partition v and i into stator 1, stator 2 and rotor quantities, noting

that the rotor voltage will always be zero. Note that the subscripted elements are still, themselves,

vectors:

v ,







vs1

vs2

vr






=







vs1

vs2

0






, i ,







is1

is2

ir







(2.55)

it should be noted that to practically deliver supply voltages of vs1 and vs2 will, in general, require 4

wire (3 phases plus neutral) connections in each case.

In partitioning the voltage and current it has been shown that for any well-designed BDFM:

1. The mutual inductance between stator 1 and stator 2 is zero by design, see section 2.6.2 for

details.

2. The mutual inductance matrices, M12 = M21
T, are functions of the rotor angle, as described in

section 2.5.1.
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3. The mutual inductance matrices Ms1, Ms2, Mr are all constant as they link circuits which are

not moving relative to one another, see section 2.5.1 for further details.

Therefore substituting (2.55) into (2.6):







vs1

vs2

0






=













Rs1 0 0

0 Rs2 0

0 0 Rr






+ ωr







0 0 d Ms1r
dθr

0 0 d Ms2r
dθr

d MT
s1r

dθr

d MT
s2r

dθr
0



















is1

is2

ir






+







Ms1 0 Ms1r

0 Ms2 Ms2r

MT
s1r MT

s2r Mr







di
dt

(2.56)

The torque equation, from (2.12) and (2.56):

Te =
1
2

[

i T
s1 i T

s2 i T
r

]







0 0 d Ms1r
dθr

0 0 d Ms2r
dθr

d MT
s1r

dθr

d MT
s2r

dθr
0













is1

is2

ir







= 1
2

[

i T
r

d MT
s1r

dθr
i T
r

d MT
s2r

dθr
i T
s1

d Ms1r
dθr
+ i T

s2
d Ms2r

dθr

]







is1

is2

ir







= 1
2

(

i T
r

d MT
s1r

dθr
is1 + i T

r
d MT

s2r
dθr

is2 + i T
s1

d Ms1r
dθr

ir + i T
s2

d Ms2r
dθr

ir

)

= i T
s1

d Ms1r
dθr

ir + i T
s2

d Ms2r
dθr

ir

=
[

i T
s1 i T

s2

]
[

d Ms1r
dθr

d Ms2r
dθr

]
[

ir

]

(2.57)

At this stage it is convenient to note the mechanical differential equation:

J
dωr

dt
= Te − Tl (2.58)

where J is the combined moment of inertia of the BDFM and load, and Tl is load torque exerted on

the BDFM. Frictional forces are neglected.

Stacking equations (2.58), (2.5) and (2.56) gives a complete state-space representation of the

dynamics of the BDFM, with the currents in each individual circuit, the position and speed forming

the state vector:
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d
dt












is1

is2

ir

θr

ωr











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



















Ms1 0 Ms1r

0 Ms2 Ms2r

MT
s1r MT

s2r Mr







−1















−







Rs1 0 0

0 Rs2 0

0 0 Rr






− ωr







0 0 d Ms1r
dθr

0 0 d Ms2r
dθr

d MT
s1r

dθr

d MT
s2r

dθr
0























is1

is2

ir






+







vs1

vs2

0













ωr

1
J

(
[

i T
s1 i T

s2

]
[

d Ms1r
dθr

d Ms2r
dθr

]
[

ir

]

− Tl

)















(2.59)

note that the inverse is guaranteed to exist from Lemma 2.3.

It is significant to note that the BDFM is a non-linear parameter-varying system: while the elec-

trical equations are linear in i , they depend on the parameters ωr and θr , which are themselves states

of the full system. The dependence on θr is particularly problematic to the control engineer because

normal machine operation necessitates a non-zero rotor speed, and therefore θr varies rapidly. The

torque equation is quadratic in i .

Using equation (2.59), with parameters calculated as described earlier in the chapter a dynamic

model was implemented in Simulink. Simulink is an environment for modelling systems of differ-

ential equations, solved by a variable time-stepping procedure, in this particular case a variable step

version of the 4th order Runge-Kutta method was used, for details see [108]. For ease of imple-

mentation, and to maximise running speed, the position dependent parameters Ms1r ,Ms2r and their

derivatives were computed off-line at 1◦ intervals and then values interpolated online.

Figure 2.5 shows the implementation of the coupled circuit BDFM model of equation (2.59)

implemented in Simulink. The block described at ‘Mutual inductance matrix calculation’ contains a

subsystem which implements the required interpolation of the rotor-stator mutual inductance terms,

and their derivatives. The same implementation was used for all the BDFM designs considered in this

dissertation, with different designs simply requiring different parameter values. As an example of the

simulation speed, the simulation of a BDFM with a ‘nested-loop’ design rotor (described in chapter

5 and appendix B as rotor 1) for 6s took 8.1s of CPU time on a 2.8GHz Pentium 4. The system had

26 states: 6 stator currents, 18 rotor currents and two mechanical states.

The model derived, although relatively simple to implement in simulation, provides little insight

into the behaviour of the machine, and there is therefore a strong motivation to transform the system

into a simpler form. This work forms the basis of the next chapter.
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Figure 2.5: Block diagram showing the implementation of the coupled circuit BDFM model, equation

(2.59), in Simulink

2.10 Conclusions

In this chapter a method of calculating machine inductance parameters which is sufficiently general

to cover any rotor or stator winding configuration, comprising of series connected groups of coils,

has been presented. The method calculates the self and mutual inductance for each coil group, and

then by choice of combination matrix, each series connected set of coils is combined into a machine

parameter. Furthermore, Carter’s factor was used to approximate the effect of slotting on the mutual

inductance parameters, and leakage inductances were estimated using standard methods applied on a

coil by coil basis.

The proposed method is straightforward to implement on a computer, and allows a general inter-

face for different machine windings or rotor designs.

It was argued that, because the assumptions made in the application of this modelling method

are common-place, and have substantial experimental backing in different modelling approaches, the

method proposed in this chapter is reliable and will give similar performance to other modelling

techniques based on the same assumptions.

Precise conditions were derived for the non-coupling of all harmonics of two stator windings, and

a proof given for conditions to avoid unbalanced magnetic pull. It was shown by counter example,

that it cannot be assumed that a winding with non-series connections of coil groups will meet the

non-coupling requirements for BDFM operation.

A broad class of BDFM rotors was defined, and the mutual inductance for the rotor-rotor and

rotor-stator determined using the method previously described.
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Using the derived parameters, a coupled-circuit model specific to the BDFM was derived from

the general electrical machine equations. This model can accurately model the transient (and steady-

state) performance of any BDFM. The model includes the effect of all space-harmonic components

of inductance parameters, however no attempt is made to take any saturation effects into account.



Chapter 3

d-q Transformed Model

3.1 Introduction

In chapter 2 a model was derived for the BDFM, and a method of calculating the values of the

mutual inductance parameters was presented. The derived coupled-circuit model has position varying

parameters, which means that it is not possible to solve the equations analytically for any condition

other than with the rotor at standstill.

However, it will be shown that if the model is transformed into the rotor reference frame, that is a

reference frame which rotates in synchronism with the rotor, then the position dependency vanishes.

Such a transformation will be shown to be achievable by an invertible state transformation of the

model equation (2.59).

The transformation adopted is the so-called d-q-0, direct-quadrature-zero transformation. It will

be shown that the zero sequence part of the transformation is of less interest, and thus the transforma-

tion is often referred to as simply d-q transformation.

Li et. al [64, 63] first showed that a d-q transformation could be applied to a BDFM. Their work

was generalised to any pole pair configuration BDFM in Boger et. al. [11, 12]. However nowhere in

the literature has there been a rigorous proof of why the transformation is effective. In fact, in both

papers non-invertible state transformations are used without explanation (the use of a non-invertible

state transformation implies a change to the model dynamics). It will be shown that this is of particular

consequence when modelling nested-loop rotors. Kemp et al. presented a variation of the model found

in [64, 63] for their prototype 6/2 configuration ‘nested-loop’ design rotor BDFM which does, in fact,

retain all observable dynamics [53]. We prove this fact as the model due to Kemp is a special case of

that described in this chapter.

Furthermore the generalised transformation given in [11, 12], starts from an idealised machine,

rather than explicitly transforming a more general model, where the implicit assumptions become

more explicit. In addition, all the d-q-0 BDFM models in the literature are derived for nested-loop

rotor BDFMs.

49
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In this chapter a new derivation, with full proofs, for the d-q-0 transformation is presented. The

approach adopted is to transform the general coupled-circuit model derived in chapter 2, with all

space-harmonic components retained in the stator-stator and rotor-rotor parameters. This approach

allows a large class of BDFM configurations to be incorporated in this model. The issue of how to

accurately model a nested-loop rotor will be addressed, using a reduced order model.

All the assumptions described in chapter 2 are maintained, including the assumption of 2 double

or single layer balanced three phase windings of appropriate pole numbers, as described in section

2.6, and a rotor as described in section 2.7.

In order to improve readability, the majority of the Lemmas used to prove the results are to be

found in appendix A, and referenced as appropriate from within the text. While some results in

appendix A are standard results collected for convenience; others, particularly Lemmas A.14, A.15,

A.16, A.17, A.18 and A.19 are believed to be original.

3.2 The d-q-0 state transformation matrix

We start by giving a physical interpretation of the d-q axis transformation. Figure 3.1, shows an

idealised stator winding where the red, yellow and blue coils represent the three phases, each offset

from the other by 120◦. Two additional coils are shown in figure 3.1, representing fictitious coils on

the d and q axes respectively. We now consider how the d and q axis coils relate to stator phases.

PSfrag replacements

q-axis, θ = π
2

d-axis, θ = 0
α id

iq ia

ic

ib

Figure 3.1: A pictorial representation of the d-q transformation, showing three coils representing the

phases of a stator winding, and two fictitious coils on the d and q axes by which the stator coils will

be represented. The d and q axes have been aligned (arbitrarily) to θ = 0 and θ = π
2 respectively.

As we have assumed that the machine windings are balanced, the coils representing the three
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phases must be physically identical to one another, but positioned differently within the machine. To

facilitate the explanation we assume that each stator coil produces a perfect 2-pole field in the air

gap (this assumption does not apply to the BDFM analysis following). Therefore if instantaneous

currents, ia , ib and ic flow in the stator coils, then the magnetic flux density distributions due to each

of the coils are Ba(θ) = iak cos(θ), Bb(θ) = ibk cos(θ + 2π
3 ), Bc(θ) = ick cos(θ + 4π

3 ), where θ is

the angular position around the air gap.

We firstly consider the flux due to the red phase coil. We want to find a way of producing the

same flux density using coils aligned to the d and q axes, as shown in figure 3.1. It turns out that if

the d and q axis coils are physically the same as the individual phase coils (but differently aligned),

then the same flux density, Ba(θ), can be achieved by exciting the d and q axis coils with currents

cos(α)ia and sin(α)ia respectively. To show this we consider the magnetic flux density in the air gap

due to the d and q coils:

Bd(θ) = idk cos(θ + α)

Bq(θ) = iqk cos(θ − π + α) = iqk sin(θ + α)

Now if id = cos(α)ia and iq = sin(α)ia , then Bd(θ)+Bq(θ) = cos(α)iak cos(θ+α)+sin(α)iak sin(θ+
α), which may be combined using a cosine trigonometric identity to give Bd(θ)+Bq(θ) = iak cos(θ).

Therefore the air gap flux density produced by current ia in the red phase, ib in the yellow, and ic

in the blue may be achieved by a d axis current of id = ia cos(α)+ ib cos(α− 2π
3 )+ ic cos(α− 4π

3 ) and

q axis current of id = ia sin(α)+ ib sin(α− 2π
3 )+ ic sin(α− 4π

3 ). Therefore the d and q axis currents

can be calculated by ‘resolving’ the phase currents onto the d and q axes. This is the physical basis

of the d-q transformation.

α, the angle of the d axis relative to the individual phase, is entirely arbitrary, and can be any

differentiable function. It is this freedom to rotate the d-q axis reference frame to any angle that has

the useful property that the position-varying mutual inductance terms found in electrical machines

may be represented as constant inductance terms by suitable choice of reference frame (i.e. the value

of α). Typically aligning the reference frame so that it rotates in synchronism with the rotor achieves

the desired effect [56, ch. 3]

However the transformation as is stands is not a 1 to 1 mapping. That is, there is an extra degree

of freedom in the 3 phase currents, which does not affect the d and q axis currents. This is the zero

sequence current. The zero (0) sequence current has the interpretation of resolving the currents which

produce magnetic fields which do not move parallel to the air gap, that is non-rotating fields. See

Krause [56, ch. 3] for further details. It can be shown that the zero sequence current is proportional

to the sum of the instantaneous three phase currents.

The full transformation from phase currents to d axis, q axis and 0 sequence currents may be

expressed as an invertible 3× 3 matrix [56, ch. 3]. In the sequel this transformation will be referred

to as the d-q-0 transformation.
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The d-q-0 transformation has been interpreted as an equivalent representation of the air gap mag-

netic flux density. However the same transformation may also be applied to the phase voltages, to

give equivalent d and q axis and 0 sequence voltages.

Additionally the d-q-0 transformation may be chosen so that it is orthogonal. This has the physical

advantage that it becomes a power conserving transformation [52], in other words, the product vTi is

the same whether v and i are expressed as d-q-0 or actual phase quantities.

The d-q-0 transformation may be used to transform the system into a reference frame which

rotates in synchronism with the rotor by aligning the d and q axes so that they track the rotor position.

It is important to note that while the physical explanation of the d-q-0 transformation assumed coils

giving a harmonic-free air gap field, no such assumption is required to use the d-q-0 transformation.

Harmonic effects will simply lead to different values of the d-q-0 currents. For a stator winding with

p1 pole pairs [56] gives the d-q-0 transformation as:

Cs1 =
√

2
3







cos(p1θr ) cos(p1(θr − 2π
3p1
)) cos(p1(θr − 4π

3p1
))

sin(p1θr ) sin(p1(θr − 2π
3p1
)) sin(p1(θr − 4π

3p1
))

1√
2

1√
2

1√
2







(3.1)

for the second stator winding with p2 pole pairs, the transformation is:

Cs2 =
√

2
3







cos(p2θr ) cos(p2(θr − 2π
3p2
)) cos(p2(θr − 4π

3p2
))

sin(p2θr ) sin(p2(θr − 2π
3p2
)) sin(p2(θr − 4π

3p2
))

1√
2

1√
2

1√
2







(3.2)

It is noted at this point that some references (e.g. [12]) include a phase offset angle in the second

stator transformation matrix. This is because the orientation of the d-axis can be aligned with the stator

field without loss of generality (changing the zero position simply changes the physical position of

θr = 0). However the second stator field cannot, in general, be assumed to be physically aligned with

the stator 1 field (as this would place a constraint on where the two windings are physically placed in

the stator slots).

In this work it has been chosen not to modify the transformation matrices. This means that some

mutual inductance parameters will contain a phase offset term.

In order to transform the rotor into d and q axis components a different transformation matrix is

needed. Boger et. al. [11] give the p1 pole pair rotor transformation matrix for a ‘nested-loop’ design

rotor with a single set of loops as:

Cr1 =
√

2
p1 + p2







cos(0) cos( 2πp1
p1+p2

) cos( 2π2p1
p1+p2

) · · · cos( 2π(p1+p2−1)p1
p1+p2

)

sin(0) sin( 2πp1
p1+p2

) sin( 2π2p1
p1+p2

) · · · sin( 2π(p1+p2−1)p1
p1+p2

)

1√
2

1√
2

1√
2

· · · 1√
2







(3.3)

they also give a similar transformation for p2 pole pairs, however we will show that it is not necessary

to use this transformation. In fact either the transformation for p1 or p2 pole pairs can be used.
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The transformation proposed by Boger, is a reasonable generalisation of the transformation ma-

trix for the stator phases. The transformation matrix ‘resolves’ each rotor loop into d and q axis

components, and the bottom row is a zero sequence component.

However unlike the stator transformation, the rotor transformation matrix is not square. This

means that the transformation does not simply constitute a change of variables, rather it reduces the

order of the model, and therefore will result in model which is a (possibly poor) simplification of the

original model.

In order to ensure that the model dynamics are unchanged, the transformation must be a similarity

transformation, that is one which is invertible (and therefore square, and full rank) [131, p. 53]. We

will therefore define such a transformation for the rotor.

From Lemma A.10 Cr1Cr1
T = I . From Lemma A.12 a matrix whose rows are orthonormal and

span the orthogonal complement to the row space of Cr1 exists. We denote this matrix C⊥
r1.

Using C⊥
r1 we may augment original transformation matrix (3.3), to one which is invertible. The

rotor transformation matrix for a single set of loops is therefore:

Cr =
[

Cr1

C⊥
r1

]

(3.4)

note that not only is Cr full rank (and hence invertible), but is also orthogonal (as the rows of both

Cr1 and C⊥
r1 are orthonormal). As for the stator transformation matrix orthogonality implies that the

transformation is power conserving.

When the rotor has N sets of S = p1+ p2 circuits, such as is the case with the ‘nested-loop’ design

rotor, then the full rotor d-q-0 transformation becomes (assuming rotor state order in accordance with

section 2.7.1):

Cr =













[

Cr1

C⊥
r1

]

0 0

0
. . . 0

0 0

[

Cr N

C⊥
r N

]













(3.5)

where each matrix on the diagonal is the same, the differing subscripts are simply to facilitate book-

keeping, that is Cr1 = Cr2 = · · · = Cr N . Note that because (3.4) is orthogonal so is (3.5).

At this point we also define Cr1dq ∈ R
2×S,Cr10 ∈ R

1×S,Crdq ∈ R
2N×N S , which will be useful

later on, as follows:
[

Cr1dq

Cr10

]

= Cr1 (3.6)

Crdq =







Cr1dq 0 0

0
. . . 0

0 0 Cr1dq







(3.7)
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3.3 Transformation to d-q-0 axes

We will use the transformation described in the previous section to transform the coupled-circuit

model derived in chapter 2, with stator windings fulfilling the requirements of section 2.6 and rotor

design compliant with the assumptions outlined in section 2.7.

One additional assumption will be required in the derivation: the stator-rotor (and rotor-stator)

mutual inductance matrix, given by equation (2.54) can be adequately approximated by the first non-

zero term of the series of harmonic inductances. As the rotor must fall within the assumptions of

section 2.7 we need the pth
1 and pth

2 absolute harmonic for the stator 1-rotor and stator 2-rotor coupling

respectively. It is significant that, in contrast to [11], we do not place any further constraint on the

rotor-rotor and stator-stator mutual inductance terms. In [11] the stator-stator, and rotor-rotor mutual

inductance are the fundamental (relative) harmonic terms from the Fourier series representation only.

From section 2.9 and particularly equation (2.56), the BDFM electrical equations can be written

as:







vs1

vs2

0






=







Rs1 0 0

0 Rs2 0

0 0 Rr













is1

is2

ir






+ d

dt













Ms1 0 Ms1r

0 Ms2 Ms2r

MT
s1r MT

s2r Mr













is1

is2

ir













(3.8)

where the terms are defined in section 2.9.

From (3.1), (3.2), and (3.5) we may define the overall d-q-0 transformation for the BDFM:

C =







Cs1 0 0

0 Cs2 0

0 0 Cr







(3.9)

note that as Cs1,Cs2,Cr are all orthogonal, C is also orthogonal, and hence invertible.

We also define a non-square transformation, Cns ∈ R
6+2N×6+N S . From (3.7):

Cns =







Cs1 0 0

0 Cs2 0

0 0 Crdq







(3.10)

where N is the number of sets of S = p1 + p2 rotor circuits.

Using (3.9) we may now define the d-q-0 transformed currents, through an invertible state trans-

formation of the currents in machine variables. The transformed stator currents are denoted idq0s1, idq0s2 .

The transformed rotor currents we denote by i trr , and we will later show that itrr can be partitioned

into d-q-0 components and other components:
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





idq0s1

idq0s2

itrr







,







Cs1 0 0

0 Cs2 0

0 0 Cr













is1

is2

ir







(3.11)

⇔







is1

is2

ir






=







Cs1 0 0

0 Cs2 0

0 0 Cr







T 





idq0s1

idq0s2

itrr







(3.12)

Substituting (3.12) into (3.8) and pre-multiplying by C gives:







Cs1 0 0

0 Cs2 0

0 0 Cr













vs1

vs2

0






=







Cs1 0 0

0 Cs2 0

0 0 Cr













Rs1 0 0

0 Rs2 0

0 0 Rr













Cs1 0 0

0 Cs2 0

0 0 Cr







T 





idq0s1

idq0s2

itrr






+







Cs1 0 0

0 Cs2 0

0 0 Cr







d
dt













Ms1 0 Ms1r

0 Ms2 Ms2r

MT
s1r MT

s2r Mr













Cs1 0 0

0 Cs2 0

0 0 Cr







T 





idq0s1

idq0s2

itrr













(3.13)

Defining the d-q-0 transformed voltages in a similar manner gives:







vdq0s1

vdq0s2

vtrr







,







Cs1 0 0

0 Cs2 0

0 0 Cr













vs1

vs2

vr







(3.14)

Substituting (3.14) into (3.13) and simplifying gives:







vdq0s1

vdq0s2

vtrr






=







Cs1 Rs1Cs1
T 0 0

0 Cs2 Rs2Cs2
T 0

0 0 Cr Rr Cr
T













idq0s1

idq0s2

itrr






+







Cs1 0 0

0 Cs2 0

0 0 Cr







d
dt













Ms1Cs1
T 0 Ms1r Cr

T

0 Ms2Cs2
T Ms2r Cr

T

MT
s1r Cs1

T MT
s2r Cs2

T Mr Cr
T













idq0s1

idq0s2

itrr













(3.15)

Further simplification and use of the chain rule gives, noting that Cr ,Ms1,Ms2,Mr are all con-

stant:
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





vdq0s1

vdq0s2

vtrr






=







Cs1 Rs1Cs1
T 0 0

0 Cs2 Rs2Cs2
T 0

0 0 Cr Rr Cr
T













idq0s1

idq0s2

itrr






+

ωr







Cs1 Ms1
d

dθr
(Cs1

T) 0 Cs1
d

dθr
(Ms1r )Cr

T

0 Cs2 Ms2
d

dθr
(Cs2

T) Cs2
d

dθr
(Ms2r )Cr

T

Cr
d

dθr
(MT

s1r Cs1
T) Cr

d
dθr
(MT

s2r Cs2
T) 0













idq0s1

idq0s2

itrr






+







Cs1 Ms1Cs1
T 0 Cs1 Ms1r Cr

T

0 Cs2 Ms2Cs2
T Cs2 Ms2r Cr

T

Cr MT
s1r Cs1

T Cr MT
s2r Cs2

T Cr Mr Cr
T







d
dt







idq0s1

idq0s2

itrr







(3.16)

We have already established that Ms1,Ms2 are symmetric circulant matrices (see remark 2.11).

Therefore from Lemmas A.15 and A.16:

Cs1 Ms1
d

dθr
(Cs1

T) =







0 p1(L1 − M1) 0

−p1(L1 − M1) 0 0

0 0 0






= Qdq0s1 (3.17)

Cs2 Ms2
d

dθr
(Cs2

T) =







0 p2(L2 − M2) 0

−p2(L2 − M2) 0 0

0 0 0






= Qdq0s2 (3.18)

Cs1 Ms1Cs1
T =







L1 − M1 0 0

0 L1 − M1 0

0 0 L1 + 2M1






= Mdq0s1 (3.19)

Cs2 Ms2Cs2
T =







L2 − M2 0 0

0 L2 − M2 0

0 0 L2 + 2M2






= Mdq0s2 (3.20)

where M1, L1,M2, L2 are the mutual and self inductance parameters of the first and second stator

winding respectively as in remark 2.11.

As discussed in section 2.7, the class of rotors considered here have N sets of S = p1 + p2

individual circuits. S is fixed for a particular pole pair choice, but N may be chosen by the designer.

Consequently, from section 2.7, the rotor-rotor and stator-rotor mutual inductances can be written as:
[

Ms1r

Ms2r

]

=
[

Ms1r1 Ms1r2 · · · Ms1r N

Ms2r1 Ms2r2 · · · Ms2r N

]

(3.21)

Mr =










Mr1 Mr12 · · · Mr1N

Mr12
T Mr2 · · · ...

...
...

. . .
...

Mr1N
T · · · · · · MrN










(3.22)
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where Ms1r j ,Ms2r j ∈ R
3×S, Mr j i ∈ R

S×S .

Now, it is immediate from the choice of rotor class that the diagonal block matrices of (3.22) are

symmetric circulant, as explained in section 2.7.1. However, after some consideration it can be seen

that this implies that the off-diagonal block matrices (e.g. Mr12) are non-symmetric circulant. This

fact is most easily seen by considering the mutual inductance between a single rotor circuit of one set

of S circuits and another entire set of S circuits. The geometry of each circuit within a set of S circuits

is the same, the only difference being the position around the circumference of each. Therefore it is

reasonably straight forward to see that the mutual inductance between two different sets of S circuits

is itself circulant.

Considering, first Cr Mr Cr
T, from (3.5) and (3.22):

Cr Mr Cr
T =













[

Cr1

C⊥
r1

]

Mr1

[

Cr1

C⊥
r1

]T

· · · . . .

...
. . .

...

. . . · · ·
[

Cr N

C⊥
r N

]

MrN

[

Cr N

C⊥
r N

]T













(3.23)

As all block matrices of (3.22) are circulant, with the diagonal blocks symmetric in addition, then

with the chosen form of the transformation matrix, applying Lemma A.16 to (3.23) gives:

Cr Mr Cr
T =









































Ldqr1 0 0 0

0 Ldqr1 0 0

0 0 L0r1 0

0 0 0 ∗11



















M12a M12b 0 0

−M12b M12a 0 0

0 0 M012 0

0 0 0 ∗12










· · ·










M12a −M12b 0 0

M12b M12a 0 0

0 0 M012 0

0 0 0 ∗12
T










. . .
...

... · · ·










Ldqr N 0 0 0

0 Ldqr N 0 0

0 0 L0r N 0

0 0 0 ∗N N









































(3.24)

where Ldqr j , L0r j ∈ R, ∗i j ∈ R
p1+p2−3×p1+p2−3 are the d and q axis rotor self-inductance, the ‘0’

sequence rotor self-inductance, and a matrix of other inductance terms for the j th set of rotor circuits.

Mi jk ,M0i j are the mutual inductance terms between different sets of S circuits, for d-q axes and zero

sequence respectively. Explicit expressions for Ldqr j , L0r j ,Mi jk , and M0i j can be found in the proof
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of Lemma A.16. We use ∗ to denote terms for which the exact value is not relevant, but that are not

(typically) zero.

We now consider the stator-rotor mutual inductance terms. As an example, consider Cs1 Ms1r Cr
T.

From (3.21) and (3.5):

Cs1 Ms1r Cr
T =



Cs1 Ms1r1

[

Cr1

C⊥
r1

]T

Cs1 Ms1r2

[

Cr1

C⊥
r1

]T

· · · Cs1 Ms1r N

[

Cr1

C⊥
r1

]T


 (3.25)

the incrementing subscript on the transformation matrix has been dropped as it no longer serves any

purpose.

The general term, Ms1r j , corresponding to the stator-rotor mutual inductance between stator 1 and

the j th set of rotor circuits, and is of the form of (2.53). The same is true for the Ms2r j terms.

To proceed further we must invoke the additional assumption mentioned: we will assume that

Ms1r j and Ms2r j may be well approximated by the first non-zero term of their Fourier series repre-

sentations. This is a physically reasonable assumption because the mutual inductance terms for a

particular term of the Fourier series are derived from the product of the stator magnetic flux density

and rotor conductor distribution function (or vice-versa). As the stator winding is specifically (and

quite effectively) designed to produce one pole number field only, the harmonic content will be small.

Therefore the higher terms in the Fourier series for the stator-rotor mutual inductance will typically

be small, and thus the error in neglecting them slight. Nevertheless the omission of these harmonic

terms will idealise the machine, in that it becomes impossible for any frequency other than the supply

frequencies to appear in the current waveforms in the steady state, which is at odds with physical

reality where the stator currents will contain harmonic components.

With this assumption, the terms in (3.25) can be simplified by application of Lemma A.17. Fur-

thermore similar terms in (3.15) may be simplified for the same reasons by Lemmas A.17 and A.18:
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Cs1 Ms1r Cr
T =













M11 cos(φ11) −M11 sin(φ11) 0

M11 sin(φ11) M11 cos(φ11) 0

0 0 0

03×D






· · ·







M1N cos(φ1N ) −M1N sin(φ1N ) 0

M1N sin(φ1N ) M1N cos(φ1N ) 0

0 0 0

03×D













(3.26)

Cs2 Ms2r Cr
T =













M21 cos(φ21) M21 sin(φ21) 0

M21 sin(φ21) −M21 cos(φ21) 0

0 0 0

03×D






· · ·







M2N cos(φ2N ) M2N sin(φ2N ) 0

M2N sin(φ2N ) −M2N cos(φ2N ) 0

0 0 0

03×D













(3.27)

Cs1
d

dθ
(Ms1r )Cr

T =













M11 p1 sin(φ11) M11 p1 cos(φ11) 0

−M11 p1 cos(φ11) M11 p1 sin(φ11) 0

0 0 0

03×D






· · ·







M1N p1 sin(φ1N ) M1N p1 cos(φ1N ) 0

−M1N p1 cos(φ1N ) M1N p1 sin(φ1N ) 0

0 0 0

03×D













(3.28)

Cs2
d

dθ
(Ms2r )Cr

T =













M21 p2 sin(φ21) −M21 p2 cos(φ21) 0

−M21 p2 cos(φ21) −M21 p2 sin(φ21) 0

0 0 0

03×D






· · ·







M2N p2 sin(φ2N ) −M2N p2 cos(φ2N ) 0

−M2N p2 cos(φ2N ) −M2N p2 sin(φ2N ) 0

0 0 0

03×D













(3.29)

where M1 j ,M2 j are the mutual inductance between stator 1, stator 2 and the j th set of rotor circuits,

and φ1 j , φ2 j are the electrical phase offsets between stator 1, stator 2 and the j th set of rotor circuits.

For a precise definition see Lemma A.17. D = S − 3, where S = p1 + p2.

The terms Cr Ms1r
TCs1

T,Cr Ms2r
TCs2

T may be induced by symmetry, and from Lemma A.17,

Cs1 Ms1r and Cs2 Ms2r (and hence Ms1r
TCs1

T and Ms2r
TCs2

T) are constant with θr , therefore d
dθr

Ms1r
TCs1

T =
d

dθr
Ms2r

TCs2
T = 0.

So far the resistance matrices have not been considered. The resistance matrices, Rs1, Rs2, Rr

will be diagonal, as long as the current path of each ‘circuit’ is independent. For the stator terms this
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will always be the case under the present assumptions, however for the rotor terms it may not be the

case. If the rotor were a squirrel cage then when modelling, it is more natural to take each ‘circuit’ as

a loop around two adjacent bars and the appropriate parts of the end ring. In this case neighbouring

‘circuits’ will share common bars. It can be shown that this has the effect of introducing off-diagonal

elements in the resistance matrix (see section B.7). However in any case the resistance matrix must

be symmetric and circulant from definition A.1.

For the present we will assume that all the resistance matrices are circulant, thus allowing for the

possibility of modelling cage rotor designs. As all the resistance matrices are circulant, from Lemma

A.16 it can be seen that the resulting transformed resistance matrix will be diagonal.

Using (3.17-3.20), (3.24), (3.26-3.29) in (3.16) gives:







vdq0s1

vdq0s2

vtrr






=







∗3×3 0 0

0 ∗3×3 0

0 0 Rrdq0













idq0s1

idq0s2

itrr






+

ωr












∗3×3 0

[

∗2×2
1 0

0 0
03×D · · · ∗

2×2
N 0

0 0
03×D

]

0 ∗3×3

[

∗2×2
1 0

0 0
03×D · · · ∗

2×2
N 0

0 0
03×D

]

0 0 0


















idq0s1

idq0s2

itrr






+





























∗3×3 0

[

∗2×2
1 0

0 0
03×D · · · ∗

2×2
N 0

0 0
03×D

]

0 ∗3×3

[

∗2×2
1 0

0 0
03×D · · · ∗

2×2
N 0

0 0
03×D

]


















∗2×2
1 0

0 0

0D×3

...

∗2×2
N 0

0 0

0D×3



































∗2×2
1 0

0 0

0D×3

...

∗2×2
N 0

0 0

0D×3



































∗2×2 0

0 ∗
03×D · · · ∗

2×2 0

0 ∗
03×D

0 ∗D×D · · · 0 0
. . .

∗2×2 0

0 ∗
03×D · · · ∗

2×2 0

0 ∗
03×D

0 0 · · · 0 ∗D×D














































d
dt







idq0s1

idq0s2

itrr







(3.30)

where ∗ denotes a constant (typically) non-zero element, D = S−3. Where dimensions are not given

for a particular element it is either scalar or the dimension can be deduced.

If we now reorder itrr to give i ′trr
so the zero portion of that Cs1r Ms1r Cr

T and similar elements

are collected together. We define the modified rotor resistance R ′
rtr

, significantly as Rrtr was diagonal,

R′
rtr

must also be diagonal. Hence:
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





vdq0s1

vdq0s2

v′trr






=







∗3×3 0 0

0 ∗3×3 0

0 0 R′
rtr













idq0s1

idq0s2

i ′trr






+

ωr












∗3×′3 0

[

∗2×2
1 · · · ∗2×2

N 02×N D

0 · · · 0 0

]

0 ∗3×3

[

∗2×2
1 · · · ∗2×2

N 02×N D

0 · · · 0 0

]

0 0 0


















idq0s1

idq0s2

i ′trr






+





















∗3×3 0

[

∗2×2
1 · · · ∗2×2

N 02×N D

0 · · · 0 0

]

0 ∗3×3

[

∗2×2
1 · · · ∗2×2

N 02×N D

0 · · · 0 0

]










∗2×2
1 0
...

...

∗2×2
N 0

0N D×2 0



















∗2×2
1 0
...

...

∗2×2
N 0

0N D×2 0



















∗2×2
1 · · · ∗2×2 02×N D

. . .

∗2×2 · · · ∗2×2
N 02×N D

02×2 · · · 02×2 ∗N D×N D






























d
dt







idq0s1

idq0s2

i ′trr







(3.31)

where D = S − 2.

By following through rotor terms it can be seen that we can now partition i ′trr
into

[

idqr
T īT

dqr

]T
.

Where idqr =
[

idqr 1
T · · · idqr N

T
]

, with each idqr j corresponding to the d and q axis currents from

the j th set of rotor circuits. Note that the zero sequence circuit in each case has been included in īdqr

along with terms corresponding to the orthogonal complement of the d-q transformation, C⊥
r (3.4).

Therefore with R̄dqr , M̄dqr ∈ R
N D×N D (3.31) may be written as:
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














vdq0s1

vdq0s2

vdqr







v̄dqr










=
([

Rdq 0

0 R̄dqr

]

+ ωr

[

Qdq 0

0 0

])
















idq0s1

idq0s2

idqr







īdqr










+
[

Mdq 0

0 M̄dqr

]

d
dt
















idq0s1

idq0s2

idqr







īdqr










(3.32)

⇔ d
dt
















idq0s1

idq0s2

idqr







īdqr










=
[

Mdq 0

0 M̄dqr

]−1










−
[

Rdq + ωr Qdq 0

0 R̄dqr

]
















idq0s1

idq0s2

idqr







īdqr










+
















vdq0s1

vdq0s2

vdqr







v̄dqr



















(3.33)

Qdq =







Qdq0s1 0 Qdqsr1

0 Qdq0s1 Qdqsr2

0 0 0






, Mdq =







Mdq0s1 0 Mdqsr1

0 Mdq0s2 Mdqsr2

Mdq0sr1
T Mdqsr2

T Mdqr







(3.34)

As the inductance matrix is block diagonal, its inverse will also be block diagonal from Lemma A.5,

therefore it is clear from (3.33) that īdqr is independent of the other currents. And therefore if we can

only measure the other currents, it is quite impossible to determine the value of īdqr . īdqr is said to be

unobservable from the output.

Furthermore as there is no voltage supply to the rotor, the rotor voltage will always be zero. It is

therefore not possible to affect, in any way, the value of īdqr by changing the supply voltage. īdqr is

said to be uncontrollable from the input (the supply voltage).

It is well-known to control engineers that removing states from a system which are uncontrollable

and unobservable, but unstable will inevitably lead to unsatisfactory performance. Fortunately, with

the BDFM, this is not the case. If we consider the rotor-rotor mutual inductance, Mr of (3.8), then

from Lemma 2.3 we know it to be positive definite, and furthermore we know it to be symmetric (some

definitions of positive definite do not require symmetry), thus all the eigenvalues of Mr must be greater

than zero. As the only transformation applied to Mr is a constant, invertible state transformation its

eigenvalues will remain unchanged. The same holds true for Rr , the rotor resistance. As Mr and Rr

C⊥
r1 can be chosen so that R̄dqr and M̄dqr are diagonal, hence −M̄−1

dqr
R̄dqr is negative definite, thus all

eigenvalues are negative. Hence the uncontrollable and unobservable states highlighted are stable and

can safely be removed.

Therefore the full d-q transformed BDFM model can be written as:
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





vdq0s1

vdq0s2

0






=
(

Rdq + ωr Qdq
)







idq0s1

idq0s2

idqr






+ Mdq

d
dt







idq0s1

idq0s2

idqr







⇔ d
dt







idq0s1

idq0s2

idqr






= M−1

dq

(

−Rdq − ωr Qdq
)







idq0s1

idq0s2

idqr






+ M−1

dq







vdq0s1

vdq0s2

0







Qdq =







Qdq0s1 0 Qdqsr1

0 Qdq0s2 Qdqsr2

0 0 0






, Mdq =







Mdq0s1 0 Mdqsr1

0 Mdq0s2 Mdqsr2

Mdqsr1
T Mdqsr2

T Mdqr







Rdq =







Rdq0s1 0 0

0 Rdq0s2 0

0 0 Rdqr







(3.35)

where Mdq0s1 is given by (3.19), Mdq0s2 by (3.20), Qdq0s1 by (3.17), Qdq0s2 by (3.18). Mdqsr1 is given

by (3.26) with the appropriate elements removed, Mdqsr2 by (3.27), Qdqsr1 by (3.28), Qdqsr2 by (3.29),

and Mdqr by (3.24). The resistance matrix is diagonal as previously discussed.

We now turn our attention to the torque equation. From (2.12):

Te =
1
2

iT d M
dθr

i (3.36)

substituting with (3.11) and simplifying gives:

= 1
2







idq0s1

idq0s2

itrr







T 





Cs1 0 0

0 Cs2 0

0 0 Cr







d M
dθr







Cs1 0 0

0 Cs2 0

0 0 Cr







T 





idq0s1

idq0s2

itrr







(3.37)

= 1
2
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idq0s1

idq0s2

itrr


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


T 





0 0 Cs1
d

dθr
(Ms1r )Cr

T

0 0 Cs2
d

dθr
(Ms2r )Cr

T

Cr
d

dθr
(Ms1r

T)Cs1
T Cr

d
dθr
(Ms2r

T)Cs2
T 0













idq0s1

idq0s2

itrr







(3.38)

=
[

idq0s1

idq0s2

]T [
Cs1

d
dθr
(Ms1r )Cr

T

Cs2
d

dθr
(Ms2r )Cr

T

]

itrr (3.39)

by adopting the same partition of itrr used in (3.33):

Te =
[

idq0s1

idq0s2

]T [
Qdqsr1

Qdqsr2

]

idqr (3.40)

We may now make a general statement about d-q axis transformations for this class of machines:
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Remark 3.1. For the class of BDFMs with: single or double layer isolated, series connected stator

windings, as discussed in section 2.6, with suitable choice of pole pairs p1, p2 as given by theorem

2.12, and a rotor which fulfils the requirements of section 2.7; and then if the mutual inductance be-

tween stator and rotor can be adequately approximated by the first non-zero term of their Fourier series

representation; then the BDFM equations may be transformed using the non square transformation

given by (3.10) which is a power-conserving transformation and removes the states corresponding

to īdqr . Furthermore, the states removed by this transformation are unobservable, uncontrollable and

stable, and do not appear in the torque equation. In the special case of a ‘nested-loop’ design rotor,

the transformation derived is identical to one of the transformations of Boger [12, p. 25]. ♥

Remark 3.2. It is significant that the BDFM, with a rotor within the class outlined, can have its rotor

modelled using a single d-q pair for each set of S rotor circuits. This is somewhat surprising because

the machine has two stator supplies, of different pole numbers, hence it would be expected that two

d-q pairs would be required for each set of rotor circuits. Or in systems theory terminology one

would expect matrix M , of Lemma A.17 to be of rank 4, when it is actually rank 2. This fact serves

to reinforce the necessity for the rotor to have S = p1 + p2 circuits per set, rather than any other

number. ♥
It it worth mentioning that the d-q transformation outlined may be extended for higher order

harmonic couplings between stator and rotor. It can be shown that the stator parameters will remain

the same for all higher harmonics, however the rotor parameters will change for some harmonic

combinations. This is because the special condition which allowed a single d-q pair to represent a

single set of S rotor circuits, as noted in remark 3.2 will only be met if (k1 p2 + k2 p2)/(p1 + p2)

is an integer where k1, k2 are the relative harmonic for each winding. This has the effect that the

higher harmonics may require 2 d-q pairs for each set of S circuits, rather than 1, and consequently

the rotor-rotor portion of Mdq will alter. For each harmonic the stator-rotor parameters will change.

3.3.1 Determination of d-q model rotor current from bar currents

The problem of determination of d-q model rotor current from bar currents will briefly be considered.

Clearly the d-q axis rotor current can be computed using (3.5), and then truncated to leave the non-

zero portion, as discussed in the previous section.

However, as we have shown, for every set of S = p1 + p2 circuits on the rotor only 1 d-q pair

is controllable from the stator voltages. Therefore it is possible to calculate the d-q rotor currents for

each set of S rotor circuits by measuring the currents in only two of the S circuits.

For each of the N sets of S rotor circuits the transformation from bar currents to d-q currents is

given by Cr N , where Cr N is of the form of 3.3. From the preceding discussion we know that:

idqr N = Cr N ir N (3.41)
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where ir N ∈ R
S , idqr N ∈ R

2 and Cr N ∈ R
2×S and it is full rank. We seek a transformation, C̃r N ∈

R
2×2, such that:

idqr N = C̃r N Pir N (3.42)

where P ∈ R
2×S , and P is a matrix which has a single 1 in each row, with all other elements zero,

and is rank 2 (that is the 1s must be in different columns). For example P might be:

P =
[

I2 0 · · ·
]

(3.43)

From 3.41 and 3.42 we may write:

C̃r N Pir N = Cr N ir N (3.44)

we have shown in the previous section that ir N = Cr N
Tidqr N , therefore:

C̃r N PCr N
Tidqr N = Cr N Cr N

Tidqr N (3.45)

as Cr N Cr N
T = I2:

C̃r N PCr N
Tidqr N = idqr N (3.46)

as C̃r N PCr N
T is full rank:

⇔ C̃r N PCr N
T = I2 (3.47)

⇔ C̃r N =
(

PCr N
T)−1

(3.48)

Therefore for each of the N sets of S rotor circuits a 2 by 2 transformation, which determines the d-q

rotor currents from any two bar currents, is given by C̃r N =
(

PCr N
T)−1

3.4 Model order reduction for Nested-loop rotor

The preceding derivation, culminating in remark 3.1, gives a full transformation for any BDFM rotor

in a broad class.

However, each of the N sets of S rotor circuits yields an additional d-q pair. Therefore the overall

model is of order 6 + 2N . It is desirable to reduce the order of the model so that a single d-q pair

models the rotor, thus reducing the order to 8.

Boger et. al. proposed a 8 order model (which reduces to 6 if the stator zero-sequence states can

be removed), [11]. However, their proposal is simply to sum the contributions from the N different

sets of circuits. No comment is made as to whether or not this is a good or poor approximation (in

fact they do not mention that it constitutes a model reduction at all).
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Figure 3.2: Block diagram of d-q transformed BDFM model

We will show that this can lead to a poor approximation, sometimes little better than ignoring

inner loops within a nest all together. The physical reason for this is that, in a ‘nested-loop’ design

rotor, the N sets are the different pitch coils within each ‘nest’. The difference in pitch means that

different currents will be induced into each of the coils, and the mutual coupling between the coils

within a ‘nest’ will lead to circulating currents within each ‘nest’. These currents are eliminated if

the inductance terms are simply summed, leading to erroneous results. Section B.3 details the mutual

inductance matrices for the prototype ‘nested-loop’ design rotor. Equation (B.13) shows the d-q

mutual inductance matrix for this rotor design. Significantly (B.13) confirms the coupling between

the sets of rotor circuits by the presence of non-zero off-diagonal elements.

There is, therefore, a need for an improved method of model reduction which reduces the approx-

imation error in some sense.

3.4.1 Model Reduction Techniques

From the preceding analysis it is clear that the electrical equations for the BDFM are linear. That is,

the currents (and voltages) appear linearly in the equations. Therefore the BDFM equations for the

d-q transformed model, (3.35) may be represented by the block diagram in figure 3.2.

It is important that the BDFM may be modelled as a linear system because linear systems are

amenable to a rich set of techniques, particularly in terms of model reduction. Model reduction has

received considerable attention in the field of linear systems theory.

It will be of use to redraw figure 3.2 separating out the connections between rotor and stator. To

simplify the notation we will repartition the state vector, and corresponding matrices into rotor and

stator quantities, rather then stator 1, stator 2, and rotor quantities as in equations (3.35):
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Figure 3.3: Block diagram of d-q transformed BDFM model with rotor and stator separate

Mdq =
[

Ms Msr

Msr
T Mr

]

(3.49)

Qdq =
[

Qs Qsr

0 0

]

(3.50)

Rdq =
[

Rs 0

0 Rr

]

(3.51)

and we partition the inverse of Mdq compatibly with Mdq as follows, using superscript i to denote

that the block matrix belongs to M−1
dq rather than Mdq . The analytical expression for these elements

can be determined from Lemma A.5. Note that M i
s 6= M−1

s etc.:

M−1
dq =

[

M i
s M i

sr

M i
sr

T M i
r

]

(3.52)

(3.53)

We start by reviewing some possible model reduction techniques
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Linear, Time-invariant Model Reduction Techniques

Linear, time-invariant (LTI) systems have had considerable attention devoted to their analysis, and

model reduction is no exception.

Two techniques of LTI model reduction are balanced truncation and optimal Hankel-norm ap-

proximation. Both these techniques offer ‘automatic’ methods of model reduction for LTI systems,

that is, they are mathematical procedures which give results that are guaranteed to be ‘good’ in some

sense.

Before proceeding further is it necessary to introduce some of standard notation of linear systems

theory:

Definition 3.1. [131, p. 92] Any function, x(t) ∈ R
n may be said to be L2(I ) space iff:

‖x‖2 ,

(∫

I
|x(t)Tx(t)|dt

)1/2

<∞

where I ⊂ R is the interval, which will typically be [0,∞). Thus a function x(t) is a member of

L2(I ) if x(t) has a bounded 2-norm over the interval I . L2[0,∞) is denoted by the short hand L
+
2 .

Definition 3.2. [131, ch. 4] Given a linear system, P , mapping u ∈ R
m to y ∈ R

n then the induced

2-norm, ‖P‖i,2 is defined as:

‖P‖i,2 , sup
u(t)∈L

+
2

‖y‖2

‖u‖2

where sup stands for supremum, or ‘least upper bound’. Hence the induced 2-norm of P is the

worst-case gain for any input signal in L
+
2

Both balanced truncation and the optimal Hankel-norm approximation can guarantee that induced

2-norm of the error system will not be more than some upper bound. To explain the precise nature of

this upper bound it is necessary to introduce some more systems theory notation:

Definition 3.3. [131, ch. 3] A minimal realization of an LTI system, G, with input u(t) and output

y(t) may be written as:

ẋ = Ax + Bu

y = Cx + Du

or more compactly as: G =
[

A B

C D

]

. A minimal realization is a representation of G for which the

dimension of x is minimised.

The controllability and observability gramians, P and Q respectively are given by the solutions

to:



3.4 Model order reduction for Nested-loop rotor 69PSfrag replacements

G1

G1G2

G2

uuy y

Figure 3.4: Parallel and series connection of systems

AP + P A∗ + B B∗ = 0

A∗Q + Q A + C∗C = 0

where P = P∗ ≥ 0, Q = Q∗ ≥ 0, that is P and Q are Hermitian, positive semi-definite.

The Hankel singular values of G are
√
λ(P Q), where λ(·) denotes the eigenvalues. Furthermore

there will always exist an invertible state transformation, T , such that x̃ = T x , and the transformed

gramians become P̃ = T PT ∗ = (T −1)∗QT −1 = Q̃ = 6 where6 is a diagonal matrix of the Hankel

singular values of G in descending order. The realization of G which achieves P̃ = Q̃ = 6 is called

the balanced realization.

Remark 3.3. Series and parallel connection of two systems, G1,G2 may be conveniently represented

by G1G2 and G1 + G2 respectively. If G1,G2 are linear then they can be represented by G1 =
[

A1 B1

C1 D1

]

, G2 =
[

A2 B2

C2 D2

]

. The parallel connection can be represented by

G1 + G2 =







A1 0 B1

0 A2 B2

C1 C2 D1 + D2







and the series connection by:

G2G1 =







A1 0 B1

B2(C1 + D1) A2 0

D2C1 C2 D2 D1







Diagrammatically the connection are illustrated by figure 3.4. ♥
Model reduction by balanced truncation reduces the order of the system by removing the states

corresponding to the smaller Hankel singular values. The induced 2-norm of the error system, that is

the error between the full-order and reduced order system for any input with unitary 2-norm, will be

less than twice the sum of the truncated Hankel singular values [131, ch. 7].

Model reduction by the optimal Hankel norm approximation, seeks to find a reduced order system,

Ĝ, such that the Hankel norm of the error system G − Ĝ is minimised. The Hankel norm of a system
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is the maximum Hankel singular value of that system. It turns out that for LTI systems it will always

be possible to find Ĝ, and furthermore it will always be possible to find a constant D0 such that the

induced 2-norm of G − Ĝ − D0 is less than the sum of the truncated Hankel singular values [131, ch.

8],[40].

Both these techniques could be applied to the d-q transformed model of the BDFM previously

derived, however the BDFM model, although linear, is not time-invariant. The model is dependent

on a parameter, the rotational speed, ωr thus the techniques can only be applied for a fixed speed.

There are, however, generalisations of both balanced truncation and optimal Hankel-norm reduction

for linear parameter-varying (LPV) systems, which will now be considered.

Model Reduction Techniques for Linear Parameter Varying Systems

The methods of model reduction for linear parameter varying systems, are rather less established than

for the LTI case. Nevertheless methods have appeared in the literature which are applicable. In the

BDFM model presented, the parameter variation appears in the ‘A’ matrix. From figure 3.2 it can be

seen that in the BDFM the ‘A’ matrix becomes A1+ωr A2. Hence the parameter dependence is affine

that is, linear with an offset.

Wood et. al. [118] and Wood [119] present generalisations of balanced truncation and Hankel

norm approximation for LPV systems. Related work in discrete time, which will not be further

discussed here, is presented in Lall and Beck [58], Beck and Doyle [5], Beck and Bendotti [4] and

Beck, Doyle and Glover [6].

An LPV system is one where time-dependent parameters enter the state equations through one or

more exogenous parameters:

ẋ = A(ρ)x + B(ρ)u

y = C(ρ)x + D(ρ)u
(3.54)

where ρ is the parameter vector which may be time-varying.

In [118] the notions of controllability and observability gramians, balanced realizations, and Han-

kel singular values is generalised to LPV systems. These are then used to obtain similar bounds for

the worst case induced 2-norm error. However, unlike in the LTI case the results do not lead to a

unique solution for each system. That is, suppose one wanted to reduce the order of a linear system

from 10 to 6: In the LTI case both balanced truncation and the optimal Hankel norm approximation

method lead to a unique upper bound on the 2-norm error for that particular system and reduction

choice. In the LPV case however, although a bound can be found, there is no guarantee that it is the

smallest bound possible. The reason for this will become apparent in the following discussion.

From [118] the generalised gramians are given by any solutions for P and Q to:

A(ρ)T Q + Q A(ρ)+ C(ρ)TC(ρ) < 0, Q = QT > 0, ∀ ρ(t) ∈ Fρ (3.55)

A(ρ)P + P A(ρ)T + B(ρ)B(ρ)T < 0, P = PT > 0, ∀ ρ(t) ∈ Fρ (3.56)
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where Fρ is the set of all possible parameter trajectories.

Having found such a P and Q the procedure is then the same as for the LTI case for balanced

truncation. Although a Hankel-norm approach is also presented which achieves an analogous bound

to the LTI case, the authors note that the additional complexity introduced limits the applicability of

the result, and therefore it will not be considered further here.

Note that, from the preceding discussion P and Q are not unique, because (3.55) and (3.56) are

inequalities rather than equalities in the LTI case. Because the BDFM d-q transformed equations are

affine in their only parameter, ωr (see figure 3.2), then from Lemma A.7 (3.56,3.55) will be satisfied

for all possible ωr if they are satisfied for the extreme values of ωr . To be precise, if ωmin
r < ωr < ω

max
r

then (3.56,3.55) are satisfied if:

(A1 + ωmax
r A2)

T Q + Q(A1 + ωmax
r A2)+ CTC < 0

(A1 + ωmin
r A2)

T
Q + Q(A1 + ωmin

r A2)+ CTC < 0, Q = QT > 0






(3.57)

(A1 + ωmax
r A2)P + P(A1 + ωmax

r A2)
T + B BT < 0

(A1 + ωmin
r A2)P + P(A1 + ωmin

r A2)
T + B BT < 0, P = PT > 0






(3.58)

The problem of finding a P and Q satisfying (3.57,3.58) (and with any further linear constraint

placed on the elements of P and Q) may be efficiently solved. The problem is a linear matrix

inequality (LMI) which is a convex optimization problem for which efficient algorithms exist [37].

As the upper bound on the error is the sum of the truncated singular values, the smaller the

truncated singular values can be made, the tighter the bound that can be achieved. Unfortunately the

constraint on P and Q to minimize the square-root of eigenvalues of P Q, or even the eigenvalues

themselves, amounts to a non-linear constraint, and therefore the problem becomes non-convex, and

hence impractical to solve. In [118] a procedure is proposed that will find a locally optimal solution

to the problem, via minimising the trace of a Q P pair, which therefore finds the minimum sum of the

eigenvalues of the Q P pair. Their algorithm is as follows:

1. Find a Q1 which satisfies (3.57) and minimises
∑

k trace(Q1 P0(ωrk )) where P0(ωrk ) is the LTI

controllability gramian for ωr = ωrk , and ωrk is the k th value for ωr over some grid of range of

permissible ωr values.

2. Solve for a P1 which satisfies equation (3.58) and minimises trace P1 Q1.

3. Solve for a Q2 which satisfies equation (3.57) and minimises trace Q2 P1.

4. Repeat steps 2 and 3 until the decrease in the cost function satisfies some convergence criterion.

Recall that the trace of a matrix is the sum of the eigenvalues, so this procedure has the effect

of trying to find a P and Q for which the sum of the eigenvalues of P Q are small. However the

procedure will not necessarily find the global minimum, and furthermore even if it did there may still
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be a P and Q which lead to a smaller upper bound on the error between the original and reduced

system.

Even if the optimal solution were to be found, one potential shortfall of the previous approach is

that the reduction process makes no assumption about the rate of change of the parameter, in our case

ωr . This may lead to further conservatism in the results. Explicit bounds on the rate of variation of

the parameter can be included, by making P and Q functions of the parameter, however the existence

of a suitable transformation matrix to balance the system becomes potentially, hard to find, see [119]

for details. Therefore parameter dependent P and Q will not be considered further.

It is worth mentioning that although the techniques described offer guaranteed bounds on the

induced 2-norm of the error, it is possible to easily calculate the induced 2-norm of the error (or

indeed of any system) in both the constant system and affine linear parameter varying cases. In the

LTI case the induced 2-norm is simply the maximum (technically a supremum) singular value of the

frequency response of the system over all frequencies [131, ch. 4]. In the LPV case it is a little more

involved.

Theorem 3.4. [7, Lemma 2.10] & Lemma A.9 Given the LPV system G =
[

A(ρ) B(ρ)

C(ρ) D(ρ)

]

where

ρ ∈ R
m is a time-varying parameter and γ ∈ R > 0. If there exists an X = X T ∈ R

n×n such that for

all possible parameter trajectories:







AT X + X A X B CT

BT X −I DT

C D −Iγ 2






< 0

then the system G is stable and there exists β < γ such that ||G||i,2 ≤ β.

Using theorem 3.4 an upper bound on the induced 2-norm of a system can be computed by finding

the solution X which minimises γ 2. This problem is often known as the L2 performance problem.

Fortunately theorem 3.4 presents this problem as an LMI with linear constraints, which can therefore

be directly solved.

However, in general, every parameter value must be checked, which constitutes an infinite number

of LMIs to be solved. The parameter space can, however, be gridded and the solution approximated

with a finite number of LMIs (see, for example [119] for details). In the case that ρ appears affinely in

G then it can be shown that it is only necessary to check the extreme point of the parameter box. As

the parameter dependence in the BDFM only appears in ‘A’, the sufficiency of checking the extreme

points can be seen from Lemma A.7 with Lemma A.8. Using Matlab’s LMI Control tool box this

bound can be computed using the quadperf function [37]. The L2 performance problem may also

be represented as an integral quadratic constraint (IQC) [74], for which a tool box is available for

calculation using Matlab [73].
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Stability of the BDFM

The LPV balanced truncation, and the new method of model reduction to be described, require the

system to be quadratically stable. We will now prove that the electrical BDFM equations are always

quadratically stable.

Theorem 3.5. Any BDFM satisfying the present assumptions is quadratically stable for any bounded

variation in shaft speed.

Proof. It was established in figure 3.2, that the dq-transformed BDFM equations may be written as:

di
dt
= A0i + ωr A1i + Bv

for suitable choices of A0, A1, B as given by figure 3.2. Or equivalently:

G =
[

A0 + ωr A1 B

I 0

]

Quadratic stability can be ensured by finding a single Lyapunov function which holds for all parameter

trajectories, that is find a P = PT > 0 : A(ρ)T P + P A(ρ) < 0, ∀ρ ∈ Fρ , where Fρ is the set of

permissible parameter trajectories and A(ρ) the system matrix ([7, Def 2.4]).

We first consider the eigenvalues of Rdq±Qdq . Qdq and Rdq for the class of machines considered

is given in (3.35). As Rdq ± Qdq is block triangular, from Lemma A.6, the eigenvalues of Rdq ± Qdq

are the union of the eigenvalues of: Qdq0s1 ± Rdq0s1 , Qdq0s2 ± Rdq0s2 and Rdqr .

As Rdq is diagonal and Rdq > 0, from the form of Qdq0s1 and Qdq0s2 then the eigenvalues of

Qdq0s1 ± Rdq0s1 and Qdq0s2 ± Rdq0s2 have strictly positive real parts.

Furthermore it is easy to show that the eigenvalues of Rdq0s1 + Qdq0s1 are the same as the eigen-

values of Rdq0s1 − Qdq0s1 , and similarly the eigenvalues of Rdq0s2 + Qdq0s2 are the same as those of

Rdq0s2 − Qdq0s2 . Essentially the reason for this is that the upper left 2× 2 blocks of Qdq0s1 and Qdq0s2

are skew-symmetric with real coefficients, and the remainder of the matrices are zero.

Therefore the eigenvalues of Rdq±Qdq are the same regardless of the sign of Qdq and are strictly

in the right half-plane, that is they have positive real parts.

From [32, Th. 3.1] M−1
dq (Rdq ± ωr Qdq) must have all eigenvalues in the left half-plane (i.e. it is

Hurwitz), as Mdq is positive definite (from Lemma 2.3, and recalling that Mdq = T T MT , for some

T ).

We have established that M−1
dq (Rdq ± ωr Qdq) has the same eigenvalues regardless of the sign

of ωr Qdq . Therefore as the eigenvalues are the same both matrices must, or at least can, have the

same Jordan Canonical form (see [131, Theorem 2.4]). Therefore there exists a T ∈ C
n×n such that

M−1
dq (Rdq+ωr Qdq) = T M−1

dq (Rdq−ωr Qdq)T −1, where n is the dimension of Mdq . Note that T will,

in general, be a function of ωr .
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Now to prove quadratic stability we seek a single Lyapunov function which holds for all−ωmax <

ωr < ωmax. Because the BDFM equations are affinely parameter dependent, then from Lemma A.7,

if we can find a single P which satisfies the extreme points, i.e. ωmax and −ωmax then it will also

satisfy the intermediate points.

The systems corresponding to the extreme points may be written as:

G1 =
[

A0 + ωmax A1 B

I 0

]

G2 =
[

A0 − ωmax A1 B

I 0

]

but, from the previous discussion G2 may also be written as:

G2 =
[

A0 + ωmax A1 T B

T −1 0

]

and therefore both G1 and G2 have the same ‘A’ matrices, thus any P which satisfies (A0
T +

ωmax A1
T)P + P(A0 + ωmax A1) < 0 proves quadratic stability for both G1 and G2, and we know

that such a P will always exist as A0 + ωmax A1 has strictly left half-plane eigenvalues ([47, Th

2.2.1]).

Therefore we know that a P exists for both G1 and G2, therefore the BDFM is quadratically

stable for any speed variation in the range −ωmax < ωr < ωmax. Then as ωmax was chosen arbitrarily,

quadratic stability is guaranteed for all ωr

Discussion of suitable model reduction methods for the BDFM with a nested loop rotor

We return now to our aim, to reduce the order of the d-q transformed BDFM equations so that the

rotor is represented by just two states. In other words we wish to find a simplified model of the rotor

which is equivalent in complexity to the model that one would derive from the special case when the

rotor comprises of only one set of coils. Physically speaking, we are trying to find an single set of

rotor coils which reasonably approximate the performance of the true rotor which has multiple sets

of coils.

From the previous discussion, it is clear that for dynamic BDFM modelling the machine cannot be

considered LTI, but rather LPV, as the rotor shaft speed will not be constant. Now we wish to reduce

the order of only the rotor states, leaving the stator states untouched. To apply balanced truncation in

this case it is necessary separate the rotor and stator systems, as shown in figure 3.3. If the rotor states

are not separated then, although the model reduction techniques can still be used, the helpful physical

distinction between rotor and stator states will be lost.

The problem is therefore to approximate the rotor currents, ir , using only two states. From figure
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3.3, it can be seen that the rotor currents are governed by the following differential equation:

dir

dt
= −

(

M i
r Rr + ωr M i

sr
T

Qsr

)

ir + u (3.59)

where u represents the exogenous inputs from the stator currents and input voltage.

The rotor system is balanced by application of the appropriate state transformation, and then states

truncated to reduce the order of the rotor to 2. However, there is no simple way to represent the bal-

anced system in terms of mutual inductance, resistance, and Q terms, thus the physical interpretation

that the component matrices hold is lost.

The loss of physical meaning of the components doesn’t necessarily have any bearing on the

efficacy of the method, however it is significant. Although a model is still of use as a ‘black box’

model, in that its predictive power is unchanged, the designer can no longer easily glean insight from

the form of the model.

There is therefore, a need for a method of model reduction which retains some physical interpre-

tation, yet is still an accurate approximation to the original system. We now present such a method.

3.4.2 New BDFM Rotor State Reduction Technique

An alternative approach to the more automatic methods can be found through consideration of the

BDFM differential equations. For reasons which will become apparent, it is necessary to diagonalize

the rotor mutual inductance matrix, Mr , by means of an orthogonal (invertible) transformation - this

will always be possible as Mr is symmetric (as shown in (3.24)). Furthermore the state order will be

chosen such as to order the eigenvalues in decreasing order from the top left. This can be achieved

with the following state transformation:

[

is

ĩr

]

=
[

I 0

0 T

][

is

ir

]

(3.60)

where T is a matrix of the eigenvectors of Mr in an appropriate order.

With Mr diagonal we now partition the BDFM equations into three parts, stator, 2 rotor states,

remainder of the rotor states. Then the equations may be written as:







vs

0

0






=







Ms M̃sr1 M̃sr2

M̃T
sr1

M̃r1 0

M̃T
sr2

0 M̃r2







d
dt







is

ĩr1

ĩr2






+













Rs 0 0

0 R̃r1 R̃r12

0 R̃T
r12

R̃r2






+

ωr







Qs Q̃sr1 Q̃sr2

0 0 0

0 0 0



















is

ĩr1

ĩr2







(3.61)

note that the off-diagonal resistances will, in general, be non-zero.
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Now, notice that if M̃sr2 , R̃r12 and Q̃sr2 were all zero, then the system would be reducible: ĩr2

could be removed with no error. It turns out that in the typical BDFM nested-loop rotors which were

simulated, these terms were always small, and hence truncating the system by removing ĩr2 was a

good approximation in all the cases tried.

Physically, having a small value of M̃sr2 , (and hence Q̃sr2) corresponds to having a (relatively)

large transformer turns ratio between the stator and that part of the rotor state. This means that smaller

voltages are induced, and if the resistances are similar, then the current will be smaller. The effect

of diagonalization (and ordering) of Mr has been to prioritise the effect of the stator coupling on

the various parts of the rotor, hence by keeping the states corresponding to the most significant Mr

singular values (as Mr is symmetric the eigenvalues are the singular values), and removing the other

states, the system will be reduced with little error.

The reduction algorithm can be summarised as:

1. Compute T , a matrix of eigenvectors of Mr ordered so that the corresponding eigenvalues

decrease from left to right.

2. Partition T into [ T1 T2 ], where T1 is 2 columns wide.

3. Apply the resulting non-square state ‘transformation’, ĩ =
[

I 0
0 T1

T

]

i , which reduces the state

order.

Thus application of the above algorithm to (3.61) leads to:

[

vs

0

]

=
[

Ms M̃sr1

M̃T
sr1

M̃r1

]

d
dt

[

is

ĩr1

]

+
([

Rs 0

0 R̃r1

][

Qs Q̃sr1

0 0

])[

is

ĩr1

]

(3.62)

Significantly, the structure of the component mutual inductance, resistance and Q matrices can be

shown to be the same as that for a BDFM with a rotor comprising of a single set of coils (i.e. where

each rotor ‘nest’ has only 1 loop in it). This means that the method can be thought of as determining

an effective single loop inductance and resistance for each nest. This fact will be used in chapter 5

to compare a ‘nested-loop’ rotor design to a novel rotor design by comparing terms in the machine

equations.

This fact will now be proved. Equation (3.24) gives the general form of the rotor-rotor mutual

inductance matrix, however in removing the unobservable and uncontrollable states, the rows and

columns containing terms denoted by a ∗ and the zero sequence terms are deleted. In the case of the

‘nested loop’ design rotor, each of the off-diagonal matrix blocks are themselves diagonal. In other
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words, M12b of (3.24) is zero. Therefore the rotor-rotor inductance matrix has the form:

Mdqr =















[

Ldqr1 0

0 Ldqr1

] [

M12a 0

0 M12a

]

· · ·
[

M12a 0

0 M12a

]

. . .
...

... · · ·
[

Ldqr N 0

0 Ldqr N

]















(3.63)

Let x be any eigenvector of Mdqr with corresponding eigenvalue, λx . We now define, xa and xb.

xa =
[

x1 0 x3 0 · · · xn−1 0
]T
, xb =

[

0 x2 0 x4 0 · · · 0 xn

]T

where xi is the i th element of the eigenvector, x . Because of the structure of Mdqr then xa and xb are

also eigenvectors of Mdqr with the same corresponding eigenvalue, λx , as long as xa 6= 0 and xb 6= 0.

From examination of the structure, as Mdqr xa = λx xa and Mdqr xb = λx xb then we can conclude

that:

xb = k
[

0 x1 0 x3 0 · · · 0 xn−1

]T
, where k ∈ R is arbitrary.

If xb is zero then the corresponding result for xa applies instead.

Therefore as all the eigenvalues of Mdqr appear in pairs, and the corresponding eigenvectors are

of the form of xa and xb, then the transformation matrix T1 will always be of the form:

T1 =


















α1 0

0 α1

α2 0

0 α2
...

...

αn 0

0 αn


















Therefore, it is immediate that the transformed rotor-rotor mutual inductance, M̃r1 , is of the form

k I , that is a scalar multiplied by the identity matrix. It is easy to show that the retained portion of the

transformed resistance matrix, R̃r1 , is also of the form k I .

The stator-rotor portions of the mutual inductance and Q matrices may be shown to transform to

matrices of the form:

M̃sr1 =










[

M̃1 cos(φ1) −M̃1 sin(φ1)

M̃1 sin(φ1) M̃1 cos(φ1)

]

[

M̃2 cos(φ2) −M̃2 sin(φ2)

M̃2 sin(φ2) M̃2 cos(φ2)

]










, Q̃sr1 =










[

M̃1 p1 sin(φ1) M̃1 p1 cos(φ1)

−M̃1 p1 cos(φ1) M̃1 p1 sin(φ1)

]

[

M̃2 p2 sin(φ2) M̃2 p2 cos(φ2)

−M̃2 p2 cos(φ2) M̃2 p2 sin(φ2)

]









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Therefore the new model reduction method reduces the order of the system in such a way that the

reduced order model has the same structure as a machine with a rotor comprising of one loop per

nest.

3.5 Simulation comparison of different BDFM model reduction tech-
niques

In order to evaluate the new ‘nested loop’ rotor BDFM model reduction technique, different BDFM

configurations were tested. Typical results will be presented, for a range of reduction techniques:

1. The new reduction method, as described in section 3.4.2.

2. ‘Biggest loop’ method: Model reduction by assuming that the rotor comprises of only the outer

loop of each ‘nest’. This technique can be easily applied by simply truncating parts of the

BDFM system matrices corresponding to the unwanted states.

3. ‘Sum loops’ method: This is essentially the method proposed in [64, 63, 11, 12]. The model

can be reduced by summing the inductance, resistance, etc components for each set of loops

into a single lumped parameter set.

4. LPV balanced truncation method: the method described in section 3.4.1, due to [118, 119].

The reduction method is applied only to the rotor, as previously described. Once the balancing

transformation has been found, the rotor system can be transformed, and then the component

system matrices truncated along with the state. The overall reduced system is given by G =






As Asr C̃r Bs

B̃r Ars Ãr B̃r Br

I 0 0







.

5. Full dq system: This is the full, untruncated system, as derived in section 3.3.

Figure 3.5 shows the upper bound on the induced 2-norm gain of the error between the full and

reduced system in each case. Two lines are plotted for each case, the straight line is for arbitrary speed

trajectories within the prescribed range, and is calculated using Theorem 3.4. The non-straight lines

are for constant speed, and are calculated from the supremum of the maximum singular value of the

frequency response for each speed. Clearly the new method provides significantly better performance

(lower error) than the other methods. Note that the summing method and ‘biggest loop’ method

performance are not that different, therefore suggesting that summing contributions is scarcely a

better approximation than assuming a simpler rotor structure. The relatively poor performance of

the LPV balanced truncation is probably due, partly to the non-convexity of the problem, and hence

the solution is only locally optimal, but more significantly, because of the requirement to apply the
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Figure 3.5: Maximum induced 2-norm gain of the error between the full and reduced d-q-0 trans-

formed BDFM ‘nested-loop’ rotor design models. Straight lines are upper bounds for arbitrary speed

variations computed using Theorem 3.4. Curved lines are upper bounds for fixed speeds, calculated

from the supremum of the maximum singular value of the frequency response for each speed, the

glitches in the red line are due to numerical problems. The upper bound on the induced 2-norm of the

full system was 0.7382. The full-order system has 17-states (15 electrical states - of which 5 corre-

spond to zero sequence states, and 2 mechanical states), and the reduced order systems are 8 states (6

electrical and 2 mechanical).

technique only to the rotor states. If this limitation could be removed then the technique would be

superior. By way of comparison, the LPV balancing procedure was applied to the entire system, and

the results are similar or better than the new reduction method. Notwithstanding these comments, all

the methods achieved some amount of effective model reduction. The upper bound on the induced

2-norm of full system was 0.7382, thus if the reduced systems all have similar 2-norm values then

the worst case error is 1.4764 (twice 0.7382, from the triangle inequality), so even the LPV balanced

truncation method achieved some level of error reduction.

Figures 3.6, 3.7, 3.8, 3.9 and 3.10 show current and rotor shaft speed transients for the BDFM with

a ‘nested-loop’ rotor operating in synchronous mode. The machine was simulated with zero initial

current, but with the shaft speed set to synchronous speed (700rpm in this case), the figures show

the speed and current transient as the machine attains equilibrium. As expected, the error between

the reduced order and full systems is least in the case of the new reduction method. The sum loops

method actually appears to be slightly worse than the biggest loop method in the current plot, but
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Figure 3.6: Stator 1 phase current transient at startup for a BDFM with a ‘nested loop’ design rotor in

synchronous mode, for different BDFM model reduction methods. Full-order d-q-0 model: 17 states,

reduced order models: 8 states

slightly better in the speed plot. The LPV balanced truncation method yielded very poor results in

these transient tests, and so has been omitted. Again, these plots serve to illustrate the effectiveness

of the new model reduction method. It is significant in figures 3.7, 3.8 and 3.9 , that the new model

reduction method achieves good estimation of the rotor bar currents, in contrast to the other method

considered. Previously the only available BDFM model which could estimate the rotor currents with

some degree of accuracy was the full order d-q model [53].

It is worth adding some confidence to the claim made at the start of the chapter, regarding the

additional assumptions made in the d-q-0 transformed BDFM model. It was claimed that the induc-

tive coupling between stator and rotor can be adequately approximated by the first non-zero spatial

harmonic of the Fourier series representation of the mutual inductance matrix. The d-q-0 and original

coupled circuit model of chapter 2 differ only in this respect.

Figures 3.11 and 3.5 show currents and shaft speed transients at startup for the full order d-q-0

transformed model, and the original coupled-circuit model. The coupled circuit model for this BDFM

is 26 states, of which 24 are electrical, and 2 mechanical. The full d-q-0 transformed model has 17

states, 15 electrical and 2 mechanical, however 5 of the electrical states correspond to zero-sequence

states, and as the supply in this case was balanced 3-phase, then the zero sequence states will remain

at zero.
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Figure 3.7: Inner loop rotor bar current transient at startup for a BDFM with a ‘nested loop’ design

rotor in synchronous mode, for different BDFM model reduction methods. Full-order d-q-0 model:

17 states, reduced order models: 8 states
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Figure 3.8: Middle loop rotor bar current transient at startup for a BDFM with a ‘nested loop’ design

rotor in synchronous mode, for different BDFM model reduction methods. Full-order d-q-0 model:

17 states, reduced order models: 8 states
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Figure 3.9: Outer loop rotor bar current transient at startup for a BDFM with a ‘nested loop’ design

rotor in synchronous mode, for different BDFM model reduction methods. Full-order d-q-0 model:

17 states, reduced order models: 8 states
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Figure 3.10: Rotor shaft speed transient at startup for a BDFM with a ‘nested loop’ design rotor

in synchronous mode, for different BDFM model reduction methods. Full-order d-q-0 model: 17

states, reduced order models: 8 states. The initial current was zero, the initial shaft speed was the

synchronous speed, 700rpm.
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The agreement between the two models for the conditions tested is very good, thus giving confi-

dence to the assumption made to derive the d-q-0 model. These results are typical of many operating

points, and BDFM models tried.
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(a) Stator 1 phase current
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(b) Rotor inner loop bar current
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(c) Rotor middle loop bar current
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(d) Rotor outer loop bar current

Figure 3.11: Current transients at startup for a BDFM with a ‘nested-loop’ design rotor in syn-

chronous mode for the original coupled-circuit BDFM model of chapter 2 and the full order d-q-0

transformed BDFM model of this chapter. Full-order d-q-0 model: 17 states (15 electrical, 2 mechan-

ical), coupled-circuit model: 26 states (24 electrical, 2 mechanical)

3.6 Conclusion

In this chapter we present a rigorous derivation of the d-q transformed model for a wide class of

BDFMs, including, but not limited to, the nested-loop rotor of Broadway and Burbridge [17]. The

model was derived directly from the coupled circuit model presented in chapter 2. The derivation is
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Figure 3.12: Rotor shaft speed transient at startup for a BDFM with a ‘nested-loop’ design rotor

in synchronous mode for the original coupled-circuit BDFM model of chapter 2 and the full order

d-q-0 transformed BDFM model of this chapter. Full-order d-q-0 model: 17 states (15 electrical, 2

mechanical), coupled-circuit model: 26 states (24 electrical, 2 mechanical). The initial current was

zero, the initial shaft speed was the synchronous speed, 700rpm.
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consistent with that presented in [12], although the method is more general.

Furthermore we show that the states removed from the d-q transformed model are unobservable

and uncontrollable, but stable. In addition it was proved that all BDFMs in the analysed class are

quadratically stable for all shaft speed trajectories.

It has also been shown that the d-q transformation proposed in Boger et. al. [11] is a simplifica-

tion, and can lead to significant errors, both in dynamic and steady-state performance.

We have derived a new method of reducing the order of the derived d-q model for ‘nested-loop’

rotor design BDFMs. The new method yields a model of the same order model as that found in [11],

but with greatly improved accuracy, in both transient performance and worst case L2 gain.
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Chapter 4

Equivalent Circuit Model and its
Implication for BDFM Performance

4.1 Introduction

In chapter 3 the coupled circuit model derived for the BDFM was transformed into d-q axes. In this

chapter we show how the d-q transformed model may be further transformed into complex symmet-

rical components. We then show how, in the steady state, this form of the BDFM model may be

written succinctly as an equivalent circuit where the meaning of the parameters has a clear physical

interpretation. The performance of the BDFM is then investigated using the equivalent circuit, and

some measures of ‘goodness’ of the BDFM are proposed, in terms of calculable machine parameters.

While the development of the equivalent circuit in this dissertation is achieved by way of transforma-

tions applied to the d-q model, the author has also shown that it is possible to derive the equivalent

circuit by considering the BDFM as two interconnected induction machines [86].

Li et al. used the d-q model for the 6/2 machine of [64], to derive an equivalent circuit represen-

tation, which was then used to investigate power flows within the machine [60]. A similar approach

was adopted by Gorti et al. [41]. Other references propose equivalent circuits without derivation,

[65, 59]. Yet in the literature the equivalent circuits presented are either for an idealised machine, or

for a specific machine configuration. There is, therefore, a need for a generalised derivation of the

equivalent circuit for a wide class of BDFM machines.

Williamson et. al. analysed the synchronous mode of operation of all nested-loop rotor BDFMs

[115] via harmonic analysis. However, the model is not developed into an equivalent circuit form,

nor is it used to identify design parameters. Broadway and Burbridge [17], Hunt [48, 49], and Creedy

[27] make qualitative comments regarding rotor design, however, nowhere in the current literature

has any method been proposed to quantitatively evaluate the performance of BDFM machines with

different rotor designs. In this chapter we consider quantitative methods of BDFM evaluation.

Furthermore we briefly consider the issue of magnetic loading for the BDFM, which is not

87
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straightforward because there are two different pole number fields in the air gap during normal oper-

ation.

During this chapter the modelling assumptions are exactly the same as for the d-q model, as

described in chapter 3.

4.2 Conversion to Symmetrical Components

From [51, sect. 3.7], d-q-0 components may be transformed into positive, negative and zero sequence

components using the following unitary (invertible) transformation matrix:







i+

i−

i0






=
[

C 0

0 1

]







id

iq

i0







(4.1)

where:

C = 1√
2

[

1 j

1 − j

]

(4.2)

the voltage sequence components are similarly defined.

For brevity the zero sequence components will not be included, however they can be deduced

from the d-q model, as the zero sequence are unaffected by the transformation (as the ‘0’ of the d-q-0

components is the zero-sequence).

The full transformation matrix will consist of N+2 copies of C along the diagonal for a full-order

model, or 3 copies of C along the diagonal for a reduced order model. N is the number of sets of

S = p1 + p2 circuits present on the rotor. For the full-order model the whole transformation matrix

is:

Cfull =










C1 0 · · · 0

0 C2
. . .

...

...
. . .

. . . 0

0 · · · 0 CN+2










(4.3)

where all Ci are equal, the subscripts are simply for book-keeping purposes.

This transformation shall now be applied to the full-order BDFM d-q model of equation (3.35),

with the zero-sequence states removed. Equation (3.35) is multiplied by (4.3) from the left and from
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the right by the complex conjugate transpose of (4.3) which gives:







vcs1

vcs2

0






= (Rc + ωr Qc)







ics1

ics2

icr






+ Mc

d
dt







ics1

ics2

icr







(4.4)

Qc = C QdqC∗ =







Qcs1 0 Qcsr1

0 Qcs1 Qcsr2

0 0 0






, Mc = C MdqC∗ =







Mcs1 0 Mcsr1

0 Mcs2 Mcsr2

Mcsr1
T Mcsr2

T Mcr







Rc = C RdqC∗ =







Rcs1 0 0

0 Rcs2 0

0 0 Rcr







where Qc,Mc, Rc ∈ C
2(N+2)×2(N+2), and the elements of which can easily be shown to be:

Rc =










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





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...

...
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0 0 0 0 0 · · · 0 Rdqr N 0

0 0 0 0 0 · · · 0 0 Rdqr N
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(4.5)

The vertical and horizontal lines demark rotor and stator portions of the matrix. Q c and Mc are given

by:
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where the symbols used in Mc and Qc are the same as those used in (3.17-3.20), (3.24) and (3.26-

3.29), and M1ir =
√

M2
1ia
+ M2

1ib
, φ1ir = arctan

(

M1ib/M1ia

)

.

The torque equation was given by (3.38) for the d-q model. Repartitioning the currents into stator

and rotor quantities, and noting that as all components in (3.38) are real, the transpose may be replaced

by complex conjugate transpose. (3.38) may therefore be written as:

Te =
1
2

[

idqs

idqr

]∗ [
0 Qdqsr

Q∗
dqsr

0

][

idqs

idqr

]

(4.7)

Applying the complex transformation to the currents in this equation gives:

Te =
1
2

[

ics

icr

]∗ [
0 Qcsr

Q∗
csr

0

][

ics

icr

]

(4.8)

where ics1, ics2, icr are the symmetrical components of the stator 1, stator 2 and rotor currents. Q csr

denotes the stator-rotor portion of Qc as defined in (4.6). Qcsr is therefore given by:

Qcsr =

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(4.9)

If we now consider a re-ordering of the states of (4.4) using a permutation matrix (hence orthogo-

nal). Particularly we re-order the states so that the new order becomes: i+s1, i
−
s2, i

+
r1, · · · , i+r N , i

−
s1, i

+
s2, i

−
r1, · · · , i−r N .

This can be achieved with the permutation matrix, P:

P =
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(4.10)

where a single · denotes a zero.
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If (4.4) is multiplied from the left by P and the substitution ic = PTicp made, then it is easy

to see that the transformed matrices, P Mc PT, P Rc PT, P Qc PT are block diagonal. Therefore it is

immediate that, as expected [81], the different sequence components are orthogonal, that is a positive

sequence does not affect negative sequence components and vice-versa:

[

vcp1

vcp2

]

=
(

P Rc PT + ωr P Qc PT)
[

icp1

icp2

]

+ P Mc PT d
dt

[

icp1

icp2

]

(4.11)

P Mc PT =
[

M+
c 0

0 M̄+
c

]

(4.12)

P Qc PT =
[

Q+
c 0

0 Q̄+
c

]

(4.13)

P Rc PT =
[

R+
c 0

0 R̄+
c

]

(4.14)

where icp1, icp2 are upper and lower partitions of ic, and similarly for vcp1, vcp2 . Also:

M+
c =
















(L1 − M1) 0 M11 exp( jφ11) · · · · · · M1N exp( jφ1N )

0 (L2 − M2) M21 exp(− jφ21) · · · · · · M2N exp(− jφ2N )

M11 exp(− jφ11) M21 exp( jφ21) Ldqr1 M12r exp(− jφ12r ) · · · M1Nr exp(− jφ1Nr )

...
... M12r exp( jφ12r ) Ldqr2 · · · M2Nr exp(− jφ2Nr )

...
...

...
...

. . .
...

M1N exp(− jφ1N ) M2N exp( jφ2N ) M1Nr exp( jφ1Nr ) M2Nr exp( jφ2Nr ) · · · Ldqr N
















(4.15)

Q+
c =
















− j p1(L1 − M1) 0 − j p1 M11 exp( jφ11) · · · · · · − j p1 M1N exp( jφ1N )

0 j p2(L2 − M2) j p2 M21 exp(− jφ21) · · · · · · j p2 M2N exp(− jφ2N )

0 0 0 · · · · · · 0
...

...
... · · · · · · ...

...
...

... · · · · · · ...

0 0 0 · · · · · · 0
















(4.16)
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R+
c =
















Rdq1 0 0 0 · · · 0

0 Rdq2 0 0 · · · 0

0 0 Rdqr1 0 · · · 0
...

... 0
. . .

. . .
...

...
...

...
. . .

. . . 0

0 0 0 · · · 0 Rdqr N
















=







Rdq1 0 0

0 Rdq2 0

0 0 Rdqr







(4.17)

where: Rdqr =










Rdqr1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 Rdqr N










In the BDFM, however, the special rotor design cross-couples positive and negative sequence

components from the different stator fields. Recall that in chapter 3 it was argued that rotor states

could be transformed into d-q axes using the stator 1 pole number transformation matrix, rather then

using two transformation matrices and then recombining. The effect of doing this is to, in effect,

reverse the phase sequence of stator 2. If we had used the stator 2 pole number transformation

matrix then the stator 1 phase sequence would have been reversed. This is not solely a mathematical

phenomenon, it corresponds to the physical reality that if the phase sequences of the stator supplies are

the same, then the frequencies of the stator fields viewed in the rotor reference frame are in opposite

directions, as shown in section 1.2.

Considering now, the torque equation. After transformation by P , the torque equation becomes:

Te =
1
2

[

icp1

icp2

]∗










[

0 Q+
csr

Q+
csr

∗ 0

]

0

0

[

0 Q̄+
csr

Q̄+
csr

∗
0

]










[

icp1

icp2

]

(4.18)

where:

Q+
csr
=
[

− j p1 M11 exp( jφ11) · · · · · · · · · − j p1 M1N exp( jφ1N )

j p2 M21 exp(− jφ21) · · · · · · · · · j p2 M2N exp(− jφ2N )

]

(4.19)

and icp1 and icp2 are the top and bottom partition of the symmetrical component current vector, ic

under the transformation P .

We now consider the supply voltage in the transformed state. Recall that the voltage must be first

transformed into d-q-0 axes, then into symmetrical components, removing the zero sequence state,

and finally re-ordered by P . The supply voltage is assumed to be a balanced three phase set, which
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can be represented by:

vs =







V cos (φ(t))

V cos
(

φ(t)− 2π
3

)

V cos
(

φ(t)− 4π
3

)







(4.20)

where φ(t) is some arbitrary function of time, in steady state it will generally be ωt , and note that V

may also be a function of time. This may be transformed to d-q-0 axes using (3.1) or (3.2) if this is

the stator 2 supply. For this example we use (3.1):

vdqs =
√

3
2







V cos (p1θr − φ(t))
V sin (p1θr − φ(t))

0







(4.21)

now remove the zero sequence voltage, and converting to sequence components using (4.2) gives:

vcs =
[

v+s

v−s

]

=
√

3
2

[

V exp ( j (p1θr − φ(t)))
V exp (− j (p1θr − φ(t)))

]

(4.22)

Therefore it is clear that v+s = v̄−s . It is significant that the equation (4.12), shows that the BDFM

is composed of two separate, yet similar, equations, one supplied with vcp1 the other supplied by

vcp2 = v̄cp1 . Therefore from (4.12) it is clear that icp2 = īcp1 . Hence the torque can be written as:

Te =
1
2

[

icp1

icp2

]∗










[

0 Q+
csr

Q+
csr

∗ 0

]

icp1

[

0 Q̄+
csr

Q̄+
csr

∗
0

]

icp2










= 1
2

i∗cp1

[

0 Q+
csr

Q+
csr

∗ 0

]

icp1 +
1
2

i∗cp2

[

0 Q̄+
csr

Q̄+
csr

∗
0

]

icp2

= 1
2

i∗cp1

[

0 Q+
csr

Q+
csr

∗ 0

]

icp1 +
1
2

ī∗cp1

[

0 Q̄+
csr

Q̄+
csr

∗
0

]

īcp1 = <
{

i∗cp1

[

0 Q+
csr

Q+
csr

∗ 0

]

icp1

}

= <
{

i∗csp1
Q+

csr
icrp1 + i∗crp1

Q+
csr

∗icsp1

}

= <
{

i∗csp1
Q+

csr
icrp1 + ī∗csp1

Q̄+
csr

īcrp1

}

= 2<
{

i∗csp1
Q+

csr
icrp1

}

(4.23)

Hence the BDFM may be fully described, in balanced three phase conditions, using:

vcp1 = (R+
c + ωr Q+

c )icp1 + M+
c

dicp1

dt
(4.24)

with the torque given by (4.23).

Note that this is a full dynamic model, which is mathematically equivalent to the full d-q model

under balanced conditions.



4.3 Steady-state Equivalent Circuit Representation 95

4.3 Steady-state Equivalent Circuit Representation

We will now show that under steady-state conditions the equations lead to a symmetric impedance

matrix, which means that a simple equivalent circuit comprised of passive components exists.

Table 4.1 compares the rms values and frequencies of the voltages under the various modelling

stages presented. An immediate consequence of table 4.1 is that if the positive sequence stator 1

current is to be equal in frequency to that of the negative sequence stator 2 current, then p1ωr −
ω1 = −p2ωr + ω2, which implies the familiar condition on the rotor speed for BDFM synchronous

operation:

ωr =
ω1 + ω2

p1 + p2
(4.25)

Phase quantity d/q quantity Sequence quantity
rms freq. (rad/s) rms freq. (rad/s) rms freq. (rad/s)

Stator 1

V1 ω1
√

3V1 p1ωr − ω1

√

3
2 V1 p1ωr − ω1

Stator 2

V2 ω2
√

3V2 p2ωr − ω2

√

3
2 V2 p2ωr − ω2

Table 4.1: Comparison of rms values and frequencies for the different models presented under a

3 phase balanced supply in steady-state: coupled-circuit model, d-q axis model, complex sequence

components model, the latter two models being in the rotor reference frame

Therefore from (4.24), when (4.25) holds all the non-zero voltage sources are at a frequency of

ω1− p1ωr . Therefore the currents, icp1 must also be at the same frequency, this can be most easily seen

by splitting (4.24) into real and imaginary components and taking the frequency response (Fourier

transform). This, of course, makes physical sense, as the d-q (and hence symmetrical components)

reference frame chosen is in synchronism with the rotor. The frequency of the currents in the rotor

reference frame under steady state conditions we denote by ωs :

ωs = p1ωr − ω1 = −p2ωr + ω2 (4.26)

In steady-state conditions, with (4.25) in effect, (4.24) becomes:
√

3
2

Vc = (R+
c + ωr Q+

c + jωs M+
c )

√

3
2

Ic (4.27)

where
√

3
2 Vc and

√

3
2 Ic (Vc, Ic ∈ C

N+2) are vectors of appropriate steady-state sequence components

of current and voltage. N is number of sets of S = p1 + p2 rotor coils in the particular machine. We
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now define:

Mcs1r =
[

M11 exp( jφ11) · · · · · · M1N exp( jφ1N )

]

(4.28)

Mcs2r =
[

M21 exp(− jφ21) · · · · · · M2N exp(− jφ2N )

]

(4.29)

Mcr =










Ldqr1 M12r exp(− jφ12r ) · · · M1Nr exp(− jφ1Nr )

M12r exp( jφ12r ) Ldqr2 · · · M2Nr exp(− jφ2Nr )

...
...

. . .
...

M1Nr exp( jφ1Nr ) M2Nr exp( jφ2Nr ) · · · Ldqr N










(4.30)

and note that from (4.15) and (4.16) ωr Q+
c + jωs M+

c is given by:

ωr Q+
c + jωs M+

c =







j (L1 − M1)(ωs − ωr p1) 0 j (ωs − ωr p1)Mcs1r

0 j (L2 − M2)(ωs + ωr p2) j (ωs + ωr p2)Mcs2r

jωs M∗
cs1r

jωs M∗
cs2r

jωs Mcr







(4.31)

We now define the slip between stator 1 and the rotor, and stator 2 and the rotor as follows:

s1 ,
ω1/p1 − ωr

ω1/p1
= ω1 − p1ωr

ω1
= −ωs

ω1
(4.32)

s2 ,
ω2/p2 − ωr

ω2/p2
= ω2 − p2ωr

ω2
= ωs

ω2
(4.33)

⇒ ω2s2 = −s1ω1 (4.34)

The notion of slip will be familiar for readers with a machines background. Slip is so-named because

it is the ratio of the difference in rotational speed between the stator magnetic field and the physical

rotor speed, normalised by the rotational speed of the stator magnetic field. Therefore the slip is zero

when the machine rotates at the stator field speed, and unity at standstill.

Substituting (4.32), (4.33) and (4.31) into (4.27) gives (subject to ω1 6= 0 and ωs 6= 0) :







V1

V2

0






=






− jω1







(L1 − M1) 0 Mcs1r

0 s1
s2
(L2 − M2)

s1
s2

Mcs2r

s1 M∗
cs1r

s1 M∗
cs2r

s1 Mcr






+







Rdq1 0 0

0 Rdq2 0

0 0 Rdqr



















I1

I2

Ir







(4.35)

⇒







V1
s2
s1

V2

0






=






− jω1







(L1 − M1) 0 Mcs1r

0 (L2 − M2) Mcs2r

M∗
cs1r

M∗
cs2r

Mcr






+







Rdq1 0 0

0 s2
s1

Rdq2 0

0 0 Rdqr /s1



















I1

I2

Ir







(4.36)

where
[ V1

V2
0

]

= Vc exp(− jωs), and similarly for I1, I2, Ir , that is V1, V2 are the complex phasors.
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Adopting a change of notation (4.36) becomes:






V1
s2
s1

V2

0






=






− jω1







Lcs1 0 Mcs1r

0 Lcs2 Mcs2r

M∗
cs1r

M∗
cs2r

Mcr






+







Rc1 0 0

0 s2
s1

Rc2 0

0 0 Rcr /s1



















I1

I2

Ir







(4.37)

In this new notation from (4.23) the torque equation becomes:

Te = 2<
{

− exp(− jωs)I ∗1 j p1 Mcs1r Ir exp( jωs)+ exp(− jωs)I ∗2 j p2 Mcs2r Ir exp( jωs)
}

= 2<
{

− j I ∗1 p1 Mcs1r Ir + j I ∗2 p2 Mcs2r Ir
}

= 2=
{

I ∗1 p1 Mcs1r Ir − I ∗2 p2 Mcs2r Ir
}

(4.38)

Now (4.37) is in a form which admits an equivalent circuit representation. Figure 4.1 shows

an equivalent circuit representation. The terms Mcs1r1,Mcs1r2, · · · ,Mcs1r N are the elements of Mcs1r .

Mcs2r1,Mcs2r2, · · · ,Mcs2r N are the elements of Mcs2r . Mcsr11,Mcsr12, · · · ,Mcsr N N are the elements of

Mcr . And Rcr1, Rcr2, · · · , Rcr N

PSfrag replacements

I1

V1

I2

V2
s2

s1

Ir1

Ir2

IrN

R1

R2
s2
s1

Rcr1

s1

Rcr2

s1

Rcr N

s1

jω1Lcs 1

jω1Lcs 2

jω1Lcr1

jω1Lcr2

jω1Lcr N

Mcs1r1

Mcs1r2

Mcs1r N

Mcs2r1

Mcs2r2

Mcs2r N

Mcr12

Mcr1N

Mcr2N
...

Figure 4.1: Coupled coils Equivalent Circuit for BDFM model with N sets of rotor circuits

Note that as there will, in general, be phase offsets between stator and rotor, and between the

different rotor circuits, the mutual inductance terms are complex, rather than real. This means that the

equivalent circuit is unusual in that there will be a phase offset at the voltage terminals. This is made

explicit in figure 4.2, following the dot convention for the polarity of the mutual inductance terms (see

e.g. [30] for details) between currents forming the input and output of each coupled coil. Physically

this corresponds to the physical phase offset between coil sets in the machine. It is worth noting that

in the case of a ‘nested-loop’ design rotor, the matrix Mcr is purely real, as the off-diagonal S × S
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sub-matrices in the coupled circuit rotor-rotor mutual inductance matrix will be symmetric circulant

matrices, rather than just circulant matrices.
PSfrag replacements

I1e− jφ

V1e− jφ

I2

V2
jωL1 jωL2

M

V1e− jφ = jωL1 I1e− jφ + jωM I2

V2 = jωL2 I2 + jωMe− jφ I1
[

V1

V2

]

= jω

[

L1 Me jφ

Me− jφ L2

][

I1

I2

]

Figure 4.2: Circuit equivalent of coupled coils with complex mutual inductance terms

4.4 Equivalent circuit for the BDFM with a single set of rotor coils

We now turn our attention to a sub-class of BDFMs having either a single set of rotor coils, or

equivalently a ‘nested-loop’ design rotor to which the model reduction method described in section

3.4.2 has been applied. While equivalent circuits have been presented for BDFMs with a single set

of rotor coils, they have been for specific machines. Both Li et al. [60] and Gorti et al [41] give an

equivalent circuit for a 6/2 configuration nested loop machine, however it is not clear how the model

order has been reduced. It is most likely that the method of summing the contributions from each

loop given in [64, 63] was used (see section 3.5 for details).

We will show that the circuit derived for a specific BDFM configuration in [60, 41] is in fact

the correct form for any BDFM of this sub-class, that is with a single set of rotor circuits. Further-

more we will synthesize the equivalent circuit in such as way as to preserve the physical meaning of

components, as far as possible.

A BDFM with a single set of rotor circuits is a special case of the general case previously pre-

sented in section 2.7. In this case the rotor-rotor coupling term, Mcr is a real scalar.

From figure 4.2 and (4.37) the steady-state equations may be written as:







V1e− j∠Mcs1r

s2
s1

V2e− j∠Mcs2r

0






=






− jω1







Lcs1 0 |Mcs1r |
0 Lcs2 |Mcs2r |

|Mcs1r | |Mcs2r | Mcr






+







Rc1 0 0

0 s2
s1

Rc2 0

0 0 Rcr /s1



















I1e− j∠Mcs1r

I2e− j∠Mcs2r

Ir






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taking the complex conjugate of each side (recalling that now the mutual inductance and resistance

terms are real) gives:







V̄1e j∠Mcs1r

s2
s1

V̄2e j∠Mcs2r

0






=







jω1







Lcs1 0 |Mcs1r |
0 Lcs2 |Mcs2r |

|Mcs1r | |Mcs2r | Mcr






+







Rc1 0 0

0 s2
s1

Rc2 0

0 0 Rcr /s1



















Ī1e j∠Mcs1r

Ī2e j∠Mcs2r

Īr







(4.39)

It will now be convenient to change notation into a more concise form, defining:

Ṽ1 , V̄1e j∠Mcs1r

Ṽ2 , V̄2e j∠Mcs2r

Ĩ1 , Ī1e j∠Mcs1r

Ĩ2 , Ī2e j∠Mcs2r

Ĩr , Īr

(4.40)

Hitherto the steady-state BDFM equations presented have been functions of sequence phasors.

From table 4.1 it is clear that the only difference in magnitude between a per-phase quantity and a

sequence quantity is a scalar multiple. Furthermore, as the steady-state equations are in terms of

phasors, the equations hold regardless of the reference frame chosen. A change of reference frame

simply requires a different phase on V and I . Therefore the electrical equations may be considered

per-phase equations without modification. Each current in the torque equation, however, must be

multiplied by the factor
√

3
2 as given in table 4.1, if per-phase quantities are used.

Using the simplified notation the per-phase steady-state BDFM equations become:






Ṽ1
s2
s1

Ṽ2

0






=







jω1







Lcs1 0 |Mcs1r |
0 Lcs2 |Mcs2r |

|Mcs1r | |Mcs2r | Mcr






+







Rc1 0 0

0 s2
s1

Rc2 0

0 0 Rcr /s1



















Ĩ1

Ĩ2

Ĩr







(4.41)

and multiplying the current phasors in (4.38) by
√

3
2 the torque equation corresponding to the per-

phase equivalent circuit is (noting that for a, b ∈ C, = {ab} = =
{

−āb̄
}

):

Te = 3=
{

− Ĩ ∗1 p1|Mcs1r |Ir + Ĩ ∗2 p2|Mcs2r |Ir

}

(4.42)

It it worth noting that equation (4.42) is identical to eq. (7) of [41], subject to the factor of 3 as (4.42)

a per-phase representation.

Some useful alternative forms of (4.42) may now be derived. From the the first row of (4.41):

Ṽ1 Ĩ ∗1 = jω1Lcs1 Ĩ1 Ĩ ∗1 + jω1 Ĩ ∗1 |Mcs1r | Ĩr + Rc1 Ĩ ∗1 Ĩ1 (4.43)

⇒ <
{

Ṽ1 Ĩ ∗1
}

− Rc1 | Ĩ1|2 = <
{

jω1 Ĩ ∗1 |Mcs1r | Ĩr

}

(4.44)
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and from the second row of (4.42):

s2

s1
Ṽ2 Ĩ ∗2 = jω1Lcs2 Ĩ2 Ĩ ∗2 + jω1 Ĩ ∗2 |Mcs2r | Ĩr +

s2

s1
Rc2 Ĩ ∗2 Ĩ2 (4.45)

⇒ s2

s1

(

<
{

Ṽ2 Ĩ ∗2
}

− Rc2 | Ĩ2|2
)

= <
{

jω1 Ĩ ∗2 |Mcs2r | Ĩr

}

(4.46)

noting that (4.42) can be written:

Te = 3<
{

j Ĩ ∗1 p1|Mcs1r |Ir − j Ĩ ∗2 p2|Mcs2r |Ir

}

(4.47)

hence, substituting (4.43) and (4.46) in (4.47):

Te =
3p1

ω1

(

<
{

Ṽ1 Ĩ ∗1
}

− Rc1 | Ĩ1|2
)

− 3p2s2

ω1s1

(

<
{

Ṽ2 Ĩ ∗2
}

− Rc2 | Ĩ2|2
)

(4.48)

We may write the per-phase BDFM equations (4.41) as an equivalent circuit as shown in figure

4.3. This form of the equivalent circuit is the same as that found in [60, 41].
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Ĩ2

Ir

Ṽ2
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Figure 4.3: Coupled Coils Per-Phase Equivalent Circuit for Single Rotor Circuit BDFM

4.4.1 Physical interpretation of parameters in the per-phase equivalent circuit model

The parameters used in (4.41) are calculated, in the first instance, from the coupled-circuit method

described in section 2.5.1, using in particular equation (2.22). These parameter values then undergo

transformation to d-q axes, model reduction (if appropriate) and then conversion to symmetrical com-

ponents as described in sections 3.3, 3.4.2, and 4.2.

However, as noted in section 2.4.3, it is also possible to calculate machine parameters from the

Fourier series representation of mutual inductance using (2.27) instead of (2.22). For each harmonic

a separate inductance matrix will be given, and an infinite sum of the harmonic terms will, of course,

give the same result as the direct calculation method. As the transformation to d-q axes, model
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reduction and transformation to symmetrical components are linear operations, the transformations

may be directly applied to each harmonic component. Note that the matrix used in model reduction

will be the one derived for the full system, and this model reduction technique then applied to each

harmonic in turn.

Furthermore the leakage inductance terms, as described in section 2.5.2 may be retained sepa-

rately and converted to symmetrical components via the same procedure.

We may therefore split the inductance terms into their constituent parts:

Mcr = Lr1 + Lr2 + Lrl + Lrh

Lcs1 = L1 f + L1h + L1l

Lcs2 = L2 f + L2h + L2l

(4.49)

These terms correspond to inductance due to leakage, and inductances due to particular space har-

monic components. Inductance due to leakage is self-inductance arising from flux which does not

cross the air gap, the leakage terms are L rl , L1l , L2l . Of the other terms, we know from section 2.6

that for the class of BDFMs considered, the first non-zero component of the harmonic Fourier series

of the inductance matrices will be p1 for stator 1 and p2 for stator 2. These harmonic terms, when

suitably transformed, become L1 f and L2 f respective, the fundamental space harmonics for the two

stator windings.

On the rotor, in general there will be a rich set of harmonics. From Lemma 2.9 we know that the

rotor-rotor mutual inductance term can only comprise of harmonics of p1 and p2, the fundamental

stator field, as the rotor is not directly energised, however in general the magnitude of these harmonic

terms is significant. Lr1 and Lr2 are the p1, p2 pole number harmonic components of the rotor self-

inductance, that is, the harmonics which link to the stator 1 and 2 respectively. The L rh , L1h , and L2h

terms are higher order space harmonic self-inductance terms, which are not included elsewhere, as

given by (4.49).

Using the relationships in (4.49), figure 4.3 may be re-written as figure 4.4.

Using standard results, figure 4.4 may be transformed into a ‘T’ equivalent form using the re-

lationships shown in figures 4.5 and 4.6 (see, for example [20]). Note that in a network sense, the

choice of N is entirely arbitrary. However we will choose the turns ratio in each case so that it is the

effective turns ratio for each coupling. The effective turns ratio, is the square root of the ratio of the

fundamental space harmonic self-inductance terms for the rotor and the stator. Equivalently, it is the

ratio of the amplitudes of the fundamental air gap mmf waveforms produced by unit current in the

stator and rotor [100, p. 381]. Therefore the effective turns ratio for stator 1 - rotor is:

N1 =
√

L1 f

Lr1

(4.50)
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Figure 4.4: Coupled coils Equivalent Circuit Separating Mcr , Lcs1 , Lcs2

and for stator 2 - rotor:

N2 =
√

L2 f

Lr2

(4.51)

Because L1 f , Lr1 and L2 f , Lr2 represent couplings between same pole number fields with no parasitic

effects, the coupling in each case is perfect, therefore:

|Mcs1r | =
√

L1 f Lr1 (4.52)

and

|Mcs2r | =
√

L2 f Lr2 (4.53)
PSfrag replacements

I1

V1

I2

V2jωL1 jωL2

M

Figure 4.5: Coupled coils

Therefore converting the coupled coils arrangements of figure 4.4 using figure 4.6 gives the equiv-

alent circuit as shown in figure 4.7. Note that from (4.52) and (4.53) the series terms in figure 4.6 are

zero.

It is helpful, for physical insight, to note that figure 4.7 is equivalent to figure 4.8. This can be

seen by noting that from (4.32) and (4.33) ωs = −s1ω1. Then as the sign of E1 and Er1 can be
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arbitrarily assigned, figure 4.8 becomes equivalent to figure 4.7 if the direction of positive V1, I1 is

reversed. Figure 4.8 may be recognised as two normal induction machine equivalent circuits with

rotors connected together, which is conceptually how the BDFM operates.

Figure 4.7 may be referred to stator 1 or stator 2, as is customary for the standard induction

machine. We will refer all quantities to stator 1, although they could easily be referred to stator 2.

The use of the modifier “ ′ ” denotes that the quantity is referred. The relationships between the
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parameter of figure 4.7 and figure 4.9 are:

L1 = (L1l + L1h )

L ′′
2 = (L2l + L2h )

N 2
1

N 2
2

L ′
r = (Lrl + Lrh )N

2
1

R′′
2 = R2

N 2
1

N 2
2

R′
r = R2 N 2

1

Lm1 = |Mcs1r |N1 = L1 f from (4.50) and (4.52)

L ′′
m2
= (|Mcs2r |N1)

N 2
1

N 2
2
= L2 f

N 2
1

N 2
2

from (4.51) and (4.53)

V ′′
2 =

N1

N2
V2

I ′′2 =
N2

N1
I2

(4.54)

4.4.2 Development of Torque Equations from the Equivalent Circuit

It is interesting to now consider how the conversion of electrical to mechanical energy is represented

in the equivalent circuit. This leads to development of expressions for the electrical torque produced

by the machine. Such expressions will be developed in terms of supply currents, voltage, and a com-

bination of the two. During these derivations two voltages, Vr1 and Vr2 are introduced, and are defined
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Figure 4.9: BDFM Referred Per-Phase Equivalent Circuit

in figure 4.9. Working in terms of these voltages leads to considerable algebraic simplifications, yet

prevents the needs for any simplification to the overall model, as analysis can be performed using

these intermediate variables, and then the terminal quantities ‘backed-out’. Vr1 and Vr2 are physically

meaningful in that they represent the voltages across the magnetizing inductances of the two wind-

ings. Thus a limit on the magnetization of the laminations may be written in terms of a limit on Vr1

and Vr2 . This point will be discussed further in section 4.7.

By applying the principle of power conservation to figure 4.9 we get:

3<{V1 I ∗1 } + 3
s2

s1
<{V ′′

2 I ′′∗2 } = 3|I 2
1 |R1 + 3|I ′2r |

R′
r

s1
+ 3|I ′′22 |R′′

2
s2

s1
(4.55)

3<{V1 I ∗1 } + 3<{V ′′
2 I ′′∗2 } = 3|I 2

1 |R1 + 3|I ′2r |R′
r + 3|I ′′22 |R′′

2 + ωr T (4.56)

where T is the torque generated by the machine, with positive values for motoring, and the ‘3’s arise

because figure 4.9 is a per-phase equivalent circuit.

From figure 4.9 we may define Pr1, Pr2 , the power delivered at the rotor terminals from stator 1

and 2 respectively:

Pr1 , 3<{Vr1 I ∗1 } = 3<{V1 I ∗1 } − 3|I 2
1 |R1 (4.57)

Pr2 , 3
s1

s2
<{Vr2 I ′′∗2 } = 3<{V ′′

2 I ′′∗2 } − 3|I ′′22 |R′′
2 (4.58)

Subtracting (4.55) from (4.56) gives the fraction of power not dissipated in the rotor and stator resis-

tances, i.e. the power which is converted to mechanical power:

3<{V ′′
2 I ′′∗2 }

(

1− s2

s1

)

= 3|I ′2r |R′
r

(

1− 1
s1

)

+ 3|I ′′22 |R′
2

(

1− s2

s1

)

+ ωr T (4.59)
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Rearranging, and substituting (4.58) for the I ′′2 terms gives the torque as:

T = Pr2

ωr

(

1− s2

s1

)

− 3
ωr
|I ′2r |R′

r

(

1− 1
s1

)

(4.60)

Alternatively, substituting (4.57) and (4.58) into (4.55) and (4.56) gives:

Pr1 +
s2

s1
Pr2 = 3|I ′2r |

R′
r

s1
(4.61)

Pr1 + Pr2 = 3|I ′2r |R′
r + ωr T (4.62)

Combining (4.61) and (4.62) and with (4.32), (4.33), (4.25), (1.2) gives the following expression for

the torque:

T = p1

ω1
Pr1 −

p2s2

ω1s1
Pr2 (4.63)

which, using (4.57) and (4.58) and some sustained manipulation may be written as:

T = 3p1

ω1

(

<
{

V1 I ∗1
}

− R1|I1|2
)

+ 3p2s2

ω1s1

(

−<
{

V2 I ∗2
}

+ R2|I2|2
)

(4.64)

= 3p1

ω1

(

<
{

Vr1 I ∗1
})

+ 3p2s2

ω1s1

(

−Vr2 I ∗2
s1

s2

)

(4.65)

= 3
Rr

ω1s1
p1|Ir |2 +

3(p1 + p2)s2

ω1s1

(

R2|I2|2 −<
{

V2 I ∗2
})

(4.66)

= 3
Rr

ω1s1
p1|Ir |2 +

3(p1 + p2)

ω1sc

(

R2|I2|2 −<
{

V2 I ∗2
})

(4.67)

= 3
(p1 + p2)

ω1

(

<
{

V1 I ∗1
}

− R1|I1|2
)

− 3
Rr

s1ω1
p2|Ir |2 (4.68)

where:

sc =
s1

s2
= −ω2

ω1
= ω1 − (p1 + p2)ωr

ω1
(4.69)

Note that (4.64) is the same as (4.48), the torque equation derived from the coupled circuit model, as

expected.

It is convenient as this stage to recall the natural speed, ωn for the BDFM, given in (1.2).

ωn =
ω1

p1 + p2

Referring back to the definition of BDFM synchronous speed (4.25), and slips (4.32), (4.33), it is

straightforward to see that the rotor speed, ωr can be written in terms of a deviation from natural

speed:

ωr =
(

1− s1

s2

)

ωn

= s1

s2

(
s2

s1
− 1

)

ωn

(4.70)
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Using (4.70), (4.32) and (4.58) the expression for the torque, (4.60), may be written as:

T = −3<{Vr2 I ′′∗2 }
ωn

+ 3|I ′2r |R′
r

p1

ω1s1
(4.71)

or more generally because <
{

Vr1 I ∗1
}

= −<
{

Vr1 I ′∗r

}

and <
{

Vr2 I ′′∗2

}

= <
{

Vr2 I ′∗r

}

, from (4.65):

T = 3p1

ω1

(

−<
{

Vr1 I ′∗r

})

+ 3p2

ω1

(

−<
{

Vr2 I ′∗r

})

(4.72)

writing I ′r in terms of Vr1 and Vr2 :

= 3p1

ω1
<
{

−Vr1

(
V ∗

r2
− V ∗

r1

Z∗
r

)}

+ 3p2

ω1
<
{

−Vr2

(
V ∗

r2
− V ∗

r1

Z∗
r

)}

= 3p1

ω1
<
{

−
Vr1 V ∗

r2

Z∗
r
+ |Vr1 |2

Z∗
r

}

+ 3p2

ω1
<
{

−|Vr2 |2
Z∗

r
+

Vr2 V ∗
r1

Z∗
r

}

(4.73)

= 3p1

ω1

(

−|Vr1 Vr2 |
|Zr |

cos(ψ + δ)+ |Vr1 |2
|Zr |

cos(ψ)
)

+ 3p2

ω1

(

−|Vr2 |2
|Zr |

cos(ψ)+ |Vr1 Vr2 |
|Zr |

cos(ψ − δ)
)

(4.74)

= 3
ω1

|Vr1 Vr2 |
|Zr |

√

p2
1 + p2

2 − 2p1 p2 cos 2ψ sin
(

δ − arctan
(
(p1 − p2) cosψ
(p1 + p2) sinψ

))

+

3
ω1

(
p1|Vr1 |2
|Zr |

− p2|Vr2 |2
|Zr |

)

cos(ψ) (4.75)

where ψ = ∠Zr and δ = ∠Vr1 − ∠Vr2 , the phase angle between Vr1 and Vr2 .

Hence the maximum (and minimum) torques occurs when (p2 − p1) tan δ = (p1 + p2) tanψ .

Furthermore note that from (4.75) for any given torque, there are either 0, 1, or 2 values of δ, for a

given set of |Vr1 , |Vr2 |, ω1, Zr , p1 and p2. There will be zero solutions when the torque is outside the

maximum and minimum torque envelopes, one solution when the torque is precisely on these torque

envelopes, and two solutions in all other cases. The two solutions will be δ0 and π − δ0. Physically,

if one these values of δ corresponds to a stable operating point, the other typically corresponds to an

unstable operating point. This fact is explored further in chapter 7.

A further variant of the torque expression is obtained by re-writing the first term of equation (4.71)

in terms of Vr1 and Vr2 . As no real power is dissipated in Lm2 , from figure 4.9 it is straightforward

to see that <
{

Vr2 I ′′∗2

}

= <
{

Vr2 I ′∗r

}

. From figure 4.9 I ′r may be written as
Vr2 − Vr1

Zr
therefore, from

4.71:

T = − 3
ωn
<
{

Vr2 V ∗
r2
− Vr2 V ∗

r1

Z∗
r

}

+ 3|I ′2r |R′
r

p1

ω1s1

= 3
ωn

( |Vr1 Vr2 |
|Zr |

cos(ψ − δ)− |Vr2 |2
|Zr |

cos(ψ)
)

+ 3|I ′2r |R′
r

p1

ω1s1
(4.76)

where δ is the angle between Vr1 and Vr2 and ψ = ∠Zr , as before.
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Figure 4.10: BDFM Rotor Circuit Phasor Diagram

4.4.3 Phasor diagram for rotor branch circuit

Figure 4.10 shows the phasor diagram for the rotor branch of the circuit shown in figure 4.9.

Figure 4.10 can be used to determine the power and VAR flow in and out of the rotor terminals

on figure 4.9. We therefore define:

Qr1 , −3=
{

Vr1 I ′r
∗} = 3=

{

V1 I ∗1
}

− 3|I1|2L1ω1 − 3
|Vr1 |2
Lm1ω1

(4.77)

Qr2 , 3=
{

Vr2 I ′r
∗} s1

s2
= 3=

{

V2 I ∗2
}

+ 3|I ′′2 |2L2ω1
s1

s2
+ 3
|Vr2 |2
Lm2ω1

s1

s2
(4.78)

Hence if Vr2 , Vr1 , and I ′r are known then the VARs produced/consumed at the machine terminals

can be calculated. For example if Qr1 and Qr2 are minimised for a given |I ′r |, |Vr1 | and |Vr2 |, then the

terminal VARs will also be minimised. Therefore specifications on the power factor at the terminals

can be translated into specifications at the rotor branch, which is completely described by the phasor

diagram in figure 4.10.

4.5 Equivalent Circuit Numerical Simulation

Figures 4.11, 4.12 and 4.13 show the maximum torque envelope for the prototype BDFM previously

described with the nested loop rotor. The machine is excited with a constant 240V, at 50Hz on the

power (4 pole) winding, and the 8 pole winding excitation is chosen such that: |Vr2 | is held constant,

and ∠(Vr2) is chosen such that the torque is maximum or minimum respectively. The base value

chosen is such that at 0rpm |V2| = 240V , and from (4.25), ω2 = 2π × 50. Maintaining a constant

|Vr2 | corresponds to maintaining constant flux on the 8 pole winding. However, as the s1 decreases

the impedance of Z ′
r increases and therefore |Vr1 | changes, thus the 4 pole flux changes. This explains

the slight change in torque envelope. Because V1 is constant it is not possible to compensate for this

change directly, rather is must be achieved indirectly by modifying V2. Section 4.7 discusses the

issues surrounding maintaining a constant magnetic loading for different relative amplitudes of 4 and

8 pole fields.
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Figure 4.12 shows how the envelope changes with a 10% decrease in L rh , the rotor excess induc-

tance due to spatial harmonics. The 4 pole flux (i.e. |Vr2 |) was kept the same in both cases. Note that

in changing the value of Lrh this will have changed the 8 pole flux as |Vr1 | will have changed. In fact

the change is a small (3%) decrease for positive torque and a 1% decrease for negative torque, thus

an even greater change in torque envelope would have resulted if the flux level had been maintained.

Figure 4.13, is similar to figure 4.12 except it shows the effect of a voltage limit on the inverter of

240V. It has been assumed that |V2| is constant and ∠(Vr2) is chosen so that the torque is maximized

(from (4.75). This gives a unique value Vr2 , however it will not necessarily put a bound on |Vr2 |,
which would be required to ensure that the magnetic loading is not exceeded.
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Figure 4.11: The synchronous and asynchronous components of torque on the maximum torque en-

velope, for constant |Vr2 | and |V1|

4.6 Equivalent Circuit Analysis

The preceding analysis leads to a number of general points regarding BDFM operation.

1. The presented equivalent circuit holds for all BDFM operating modes where the shaft speed

is constrained by equation (4.25). If this condition does not hold then the machine may be

modelled as the sum of two equivalent circuits at different frequencies, one supplied from

stator 1, the other from stator 2, and with the unsupplied stator short-circuited. This mode of

operation is known as double cascade induction mode:
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Figure 4.12: Torque envelope (blue) showing the effect of a 10% decrease in L rh (red)

The preceding derivation requires (4.25) to hold. However, if this is not the case then by the

superposition theorem, the machine may be modelled as a machine with stator 1 supplied and

stator 2 short-circuited, and a machine with stator 2 supplied and stator 1 short-circuited. The

true current in each branch is the sum of the contribution from each circuit. The average torque

may be calculated using any of the per-phase torque equations derived, and the contribution

from each circuit added. However the true torque will have a significant ripple component,

which cannot be calculated using the steady-state equivalent circuit. In this case the torque

should be calculated from the full complex currents of the two frequencies concerned, rather

than just phasors.

2. The BDFM may operate either as a p1 or p2 pole pair induction machine when only stator 1 or

stator 2 is supplied and the unsupplied stator is open-circuit. This mode of operation is known

as simple induction mode:

It is immediate from figure 4.9 that if I2 = 0, then the machine reduces to a standard induction

motor equivalent circuit, but with the rotor ‘leakage’ inductance equal to L ′
r + L ′

m2
, in the

case of supply from stator 1. Clearly analogous results hold when supplied from stator 2.

The torque reduces to the well-know expression for a standard induction machine (4.66). It is

also noteworthy that a good BDFM design will inevitably lead to poor simple induction mode

torque. This is because the second stator magnetizing inductance appears in series with the

rotor leakage inductance, and typically in a well-designed machine the magnetizing inductance
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Figure 4.13: Torque envelope (blue) showing the effect of a 10% decrease in L rh (red) with inverter

voltage limit

will be large in comparison to the leakage inductance.

3. The BDFM, when operating according to (4.25), is comprised of synchronous torques and

induction machine-like asynchronous torques.

This can be seen most clearly from equation (4.75). The last two terms are fixed for a given op-

erating speed, and rotor voltage magnitudes, as Zr is fixed. These terms are induction machine

like torque terms, in that they are fixed for a given operating speed, regardless of the phase of

the supply voltage. In contrast, the first term is dependent on the sine of δ, the angle between

the two rotor supply voltages. This term is reminiscent of the torque of a standard synchronous

machine.

4. The asynchronous torques in the BDFM will always be of opposite signs and sum to zero if

either, ψ = π/2, which means the rotor is purely inductive, or p1|Vr1 | = p2|Vr2 |:

These points come directly from equation (4.75).

5. Unlike the conventional induction machine, the BDFM would produce torque if the rotor resis-

tance were zero.

From (4.75), if Rr = 0 ⇒ cos(ψ) = 0, therefore the only non-zero term in the torque ex-

pression is the first term. It can be shown that, as ψ = π
2 , the term reduces to the first term of

(4.76).
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6. All torque in the BDFM falls to zero at the synchronous speed of stator 1:

From figure 4.8, when s1 and s2 are both zero, then Ir is zero; hence from (4.47) the torque will

be zero. From (4.32) s1 is zero at stator 1 synchronous speed, and therefore, from (4.26), ωs

(the frequency of the rotor currents), must be zero. As stator 2 is supplied in such a way that

the frequencies of the rotor currents induced match those induced by stator 1, then s2 must also

be zero. This can be seen from (4.32). A corollary to this point is that for a given BDFM with

stator 1 and stator 2 (of course of different pole numbers) a wider speed envelope for BDFM

operation is obtained if the lower pole number field is connected as stator 1.

7. When stator 2 is short-circuited the BDFM operates in cascade induction mode, which is a

special case of BDFM synchronous mode (that is, the stator 2 currents are at frequency ω2,

given by (4.25)) similar to that observed when two induction machines are connected in cascade

[49]:

Equation (4.26) gives the frequencies of the rotor currents for the BDFM. As the rotor current

frequency in the BDFM is the same for currents induced from both stator supplies, then even

if the second stator is short-circuited, the stator 2 current frequency will be at ω2. Therefore

cascade induction mode is a special case of BDFM synchronous mode, where the voltage Vr2 of

equation (4.76) although non-zero is not an independent variable as it is in synchronous mode.

Equation (4.67) shows that, when V2 = 0 there are two terms in the torque equation, one is the

stator 1 induction mode torque characteristic, the other may be thought of as the induction mode

characteristic of the cascade combination of the (effectively) two machines. (4.67) introduces

the notion of cascade slip, sc which has a similar interpretation to standard slip, and for which

the ‘synchronous’ speed is ωn , (1.2), the natural speed, corresponding to the case that ω2 = 0.

8. The cascade torque of a BDFM is inherent, and will be present on all functional real-world

BDFMs. The absence of a cascade torque implies no BDFM synchronous torque, or that R2,

the second stator resistance is zero.

Point 7 illustrates the close relationship between cascade torque and synchronous torque, and

therefore that its absence implies that there is no synchronous torque. Equation (4.67) shows

that if R2 is zero then there can be no cascade torque. In practice R2 cannot be zero, so the

absence of cascade torque will generally imply that there will be zero synchronous torque.

9. The size of the available BDFM synchronous torque envelope for a machine in practical use

is inversely proportional to the rotor impedance, |Zr | which comprises of leakage reactance,

excess harmonic reactance and resistance terms.

Figure 4.11 shows the three components of torque arising from the three terms of equations

(4.75). Notice that the two asynchronous torque terms (marked as ‘Stator 2 Async.’ and ‘Stator

1 Async.’ on the diagram) are (and in general will always be) opposite in signs (immediate from



4.6 Equivalent Circuit Analysis 113

(4.75)), and furthermore will generally be small in comparison with the maximum synchronous

torque for relatively large values of s1. From figure 4.12 the total asynchronous torque is less

than 10% of the maximum synchronous torque for s1 >
1
3 . We assume that we operate the

machine with s1 >
1
3 , which is likely as it is desirable to operate the machine around natural

speed, as natural speed will correspond to s1 = p2
p1+p2

. Under this condition the maximum

torque available is dominated by the first term of equation (4.75) which reduces to the first term

of (4.76):

Tmax ≈
3
ωn

|Vr1 Vr2 |
|Zr |

(4.79)

Now, significantly, the voltages |Vr1 | and |Vr2 | are the voltages across the magnetizing reac-

tances for the machine (see figure 4.9). Therefore for any given values of |Vr1 | and |Vr2 | the

flux densities of p1 and p2 pole number fields will be fixed. It is not immediately obvious what

‘rated’ flux density should be with two different pole number fields sharing the same iron lam-

inations, however certainly there will be some upper limit, determined by what is considered a

‘reasonable’ degree of saturation. This point will be discussed further in section 4.7. Therefore

the maximum torque available from a machine is inversely proportional to |Z r |.

We may therefore conclude that the maximum rotor impedance for a given maximum output

torque is:

|Zrmax | =
3
ωn

|Vr1 Vr2 |
Tmax

(4.80)

Now if we assume that, for any reasonable machine design, in normal operation Vr1 and Vr2 are

close to the supply voltages (i.e. stator drops are small), then equation (4.80) can be used as a

design guide. It should be noted, that because of the direction of power flow, the estimate will

be an overestimate in some regions, and an underestimate in others, due to the stator drops.

Figures 4.12 and 4.13 serve to illustrate the effect of the series rotor impedance, (Zr of figure

4.9).

10. The power factor of the stator 1 winding can be controlled by the magnitude of Vr2 in syn-

chronous operation, and can always be made to lead, however for a given |Z r |, the more resis-

tive the rotor, the greater the current required:

From figure 4.10, it is immediate that the phase of I ′r can be controlled by varying the magnitude

of Vr2 for a given δ. Furthermore, as 0 < ψ < π
2 , for speeds less than the stator 1 synchronous

speed, it will always be possible to make φ negative. If φ is negative then for a sufficiently large

current it will be possible to make the power factor of stator 1 leading. It is clear that the closer

ψ is to 0, the larger the current required for a unity or leading power factor (ψ = 0 implies the

rotor is purely resistive).
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11. If the machine is to operate at a fixed power factor on stator 1, then the smaller |Z r |, the larger

the available torque, for a well-designed machine.

From figure 4.10 a fixed stator 1 power factor will imply a fixed value of φ, if it can be assumed

that the stator 1 series impedance is relatively small, which is likely to be the case in a well

designed machine. If φ is fixed then for any operating speed, the phasor diagram is fully de-

scribed, as Zr is constant. Therefore from equation (4.75), as |Zr | decreases, the synchronous

torque envelope increases, as the rate of decrease of |Zr |must always be greater than the corre-

sponding rate of increase of |Vr2 |. Therefore the available torque increases, as we assume that

the induction torques are small because ψ is close to 90◦.

12. In the ‘nested-loop’ design BDFM rotor the components of rotor inductance L rh and Lrl are

both significant, and therefore directly impact the torque envelope:

Recall that Lrh is the additional inductance which is due to unwanted space harmonic compo-

nents in the rotor. Lrl is the additional inductance due to leakage effects - that is flux that does

not cross the air gap as discussed in appendix C.1. Table 4.2 lists the calculated components of

Zr for the prototype ‘nested-loop’ design rotor.

Xrh Xrl Rr

(µÄ) (µÄ) (µÄ)

Nested-loop design rotor

307 332 74

Table 4.2: Components of Zr for the prototype ‘nested-loop’ design rotor at 50Hz

From table 4.2 when the slip, s1, is less than 0.11 then |Zr | is less than 1.41 times its value at

s1 = 1. Therefore for the majority of the available operating regime |Z r | is determined by the

inductive components. Indeed, both L rh and Lrl are significant in determining |Zr |.

4.7 Magnetic Loading for the BDFM

As previously noted, to address the question of what ‘rated’ magnetic flux density is for a BDFM is

not a straightforward question because the iron circuit carries two different frequency magnetic flux

density waves. So the question that arises is what, if any, combination of amplitudes of the two flux

density waveforms constitute a constant magnetic loading? A conservative answer to this question

would be the sum of the amplitudes of the flux density waveforms, as inevitably this peak value will

be attained. However intuition suggests that this may lead to conservative results, as the peak value

occurs relatively infrequently.
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The issue of magnetic loading for the BDFM has received little attention. It is believed that the

only significant contribution in this area is due to Broadway [16], however Broadway only discussed

the issue for a specific example, rather than presenting any general conclusions.

In conventional induction machines designers use a specific magnetic loading, dependent on the

electrical steel chosen, which achieves the right balance between under use of the iron (and therefore

a reduced output torque from the machine), and causing excess magnetizing current and therefore a

poor power factor by driving the iron into saturation, see, for example, [92] for details.

In the conventional induction machine, the specific magnetic loading is traditionally defined as

the mean absolute flux per pole in the air gap of a machine. In a BDFM this definition becomes

unworkable because of the double feed. We therefore propose the following generalisation of the

definition:

B̄ = lim
T→∞

1
T

∫ T

0

1
2π

∫ 2π

0
|B(θ)|dθdt (4.81)

where B(θ) is the flux density in the air gap (assumed uniform along the axis of the machine).

It is clear that this definition is consistent with the concept of ‘mean flux per pole’, and the well-

known result of B̄ = 2
√

2
π

Brms may be verified.

From similar reasoning to [115] ignoring harmonic fields, the magnetic fields in the air gap of the

BDFM may be written as:

B(θ) = B1 cos(ω1t − p1θ)+ B2 cos(ω2t − p2θ + γ ) (4.82)

These fields may be referred to the rotor reference frame as follows:

θ = ωr t + φ (4.83)

from (4.26) we may write:

Br (φ) = B1 cos(ωs t + p1φ)+ B2 cos(ωs t + p2φ + γ ) (4.84)

Therefore, from (4.81) the specific magnetic load for the BDFM is:

B̄ = lim
T→∞

1
T

∫ T

0

1
2π

∫ 2π

0
|B1 cos(ωs t + p1φ)+ B2 cos(ωs t + p2φ + γ )|dφdt (4.85)

= ωs

2π

∫ 2π
ωs

0

1
2π

∫ 2π

0
|B1 cos(ωs t + p1φ)+ B2 cos(ωs t + p2φ + γ )|dφdt (4.86)

This integral may be evaluated either analytically or numerically. It is useful to note the standard

deviation of the time-varying spatial mean signal, as it gives an indication of the degree of ripple to

be expected in the specific magnetic loading in a BDFM. It may easily be shown that when B2 = 0

then B̄ = 2
π

B1 and when B2 = B1 then B̄ = 2
( 2
π

)2 B1, regardless of the value of p1, p2, ωs, γ .

Figure 4.14 shows how (4.86) varies with B2, for unity B1. Although a simple proof has not

been forthcoming, the same relationship (the green line) was found regardless of the pole number



116 Equivalent Circuit Model and its Implication for BDFM Performance

combinations or offset angle chosen. 70 pole number combinations were tried under the standard

restrictions on BDFM pole numbers, p1 6= p2 and |p1 − p2| > 1. The dashed green lines show the

one standard deviation away from the mean for the case of p1 = 2, p2 = 4. Note that the standard

deviation is strongly dependent on the pole number combination chosen, thus suggesting that specific

magnetic loading for the BDFM may not be the best measure to determine the magnetic loading for

all pole number combinations. Figure 4.14 also includes a plot of the magnetic loading if it is assumed

that the total magnetic loading is the sum of loading for each individual field, that is B̄ = B̄1 + B̄2

and, for comparison, an alternative definition of the combined magnetic loading as B̄ =
√

B̄2
1 + B̄2

2 .

This alternative can be thought of as the root-mean-square of the rms values of the air gap flux density

waves, scaled by 2
√

2
π

.
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Figure 4.14: B̄, the specific magnetic loading a 4/8 BDFM for B1 = 1 (hence B̄1 = 2
π

) as B2 varies

between 0 and 1 (hence B̄2 varies from 0 to 2
π

) . Three variations in the definition are shown, the

summation of the B̄ for each field, the new generalised and averaged B̄ and B̄ =
√

B̄2
1 + B̄2

2 , as an

analytical alternative

From figure 4.14 it is clear that the generalised magnetic loading is considerably less conservative

than assuming that the magnetic loadings for each individual field should be summed. Furthermore

it is significant that the variance of the generalised magnetic loading about its mean was small for

certain pole number combinations, thus indicating that the average field is well distributed around the

circumference of the machine under normal operating conditions. This serves to increase confidence

that the generalised magnetic loading is a good measure of iron utilisation. However the alternative
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definition, B̄ =
√

B̄2
1 + B̄2

2 is close in value to the newly proposed generalisation, but has the advan-

tage that it has a simple closed-form representation, which lends itself to analytical calculations. The

convenience of this alternative representation is that a specification on the magnetic loading can be

translated into a specification in terms of Vr1 and Vr2 .

It should be noted, however, that to use the new generalised magnetic loading, or indeed the

analytical alternative, as a ‘drop-in’ replacement for its counterpart in the conventional induction

machine may lead to higher iron losses and poorer power factor as the peak fields present are higher

than in a conventional machine. Nevertheless to assume that the true magnetic loading is the sum of

each contribution will inevitably lead to a conservative design.

4.8 Conclusion

In this chapter we have transformed the d-q equations of chapter 3 into a complex dynamic model

using sequence components using a similarity transformation. It was shown that the complex form

of the BDFM equations can be further reduced, without error, to a system containing 2+ N complex

states, where N is the number of set of rotor coils.

This complex form of the equivalent circuit was shown to admit an equivalent circuit represen-

tation. Various implementations of the equivalent circuit were derived for a BDFM with a single set

of rotor coils. Particular care was taken to maintain the physical meaning of the inductance terms,

especially the rotor leakage inductance.

The intermediate variables Vr1 and Vr2 were used to derive expressions for the torque, and inves-

tigate the effect that stator 2 can exert on the power factor of stator 1. Bounds on the values that |Vr1 |
and |Vr2 | can take were considered via their relation to the magnetic flux density of each field, where

a generalisation of the notion of specific magnetic loading was proposed.

The derived equivalent circuit was then used to explore operating modes and expected behaviour

of BDFM machines. This led to the observation that the absence of significant cascade induction

mode torque typically implies poor BDFM synchronous torque.

Furthermore it was shown in points 8 and 12 that the available torque envelope in BDFM syn-

chronous mode is inversely proportional to |Zr |, the rotor impedance, or similarly, that if the machine

is to operate at a particular power factor, then a larger operating torque is achieved for a smaller |Z r |.
It was shown that in an example nested loop rotor design, a significant part of |Z r | comprises of the

impedance due to Lrh , the spatial harmonic inductance term. Therefore the component L rh is a cru-

cial parameter for a BDFM. This makes physical sense as the rotor must cross-couple between two

different pole number fields and therefore it is likely that there will be some harmonic penalty. We

propose, therefore, that the ratio of L rh to the total rotor self inductance (Lrh + Lrl + Lr1 + Lr2) is a

figure of merit for a BDFM rotor in terms of its ability to cross couple between the two pole number

fields. This has a direct impact on the available torque envelope for a particular machine.
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In the next chapter we will investigate the proposed figure of merit for a range of BDFM rotor

designs.



Chapter 5

Possible Rotor Designs and Evaluation

5.1 Introduction

In chapter 4 an equivalent circuit model was derived for the class of BDFM machines considered,

as described in chapter 2. This equivalent circuit model was used to investigate the characteristics

and performance of the BDFM, and it was proposed in section 4.6 that |Zr |, the rotor impedance is a

key parameter in determining the maximum torque envelope for the BDFM. The composition of Z r

was discussed, and three potentially significant components were identified: L rh , the excess harmonic

series rotor inductance, Lrl , the rotor leakage inductance, and Rr , the rotor resistance. Furthermore,

it was proposed that the absence of cascade induction torque in a potential BDFM was an indicator

that the machine will not generate synchronous torque due to the absence of cross-coupling.

In this chapter these claims will be investigated by considering different possible BDFM rotor

configurations. In total, seven different rotor designs will be considered. In order to verify the efficacy

of measuring the cascade torque as an indicator of potential BDFM performance, 5 different rotors

are considered: 3 potential BDFM rotors, and 2 rotors which do not cross-couple. Then, to illustrate

the how Zr can vary with different rotor designs, 4 different rotor designs are considered and the

different components of Zr are discussed.

The chapter starts with a description of the rotor designs, and motivation for the choice of each

design. All rotors considered are tested for the same stator configuration, a D180 frame size machine,

originally a 22 kW (143 N m at 1463 rpm) Marelli Motori induction machine configured with 4 and

8 pole stator windings for operation as a BDFM (see appendix B). The 7 designs considered are as

follows:

1. ‘nested-loop’ design rotor: originally proposed and investigated by Broadway and Burbridge

[17]. The design of the ‘nested-loop’ rotor was considered in Wallace et al. [109], in which the

effect of the span of loops within each nest was investigated. It was found that loops within the

centre of a nest which subtended a small angle contributed little to the torque. However there

does not appear to be any other papers in the literature which address the design of the rotor in

119
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any detail. A prototype ‘nested-loop’ rotor was available for experimental testing.

2. A new design of BDFM rotor requiring two layers comprising of single set of p1+ p2 circuits,

with the coil pitch chosen in such a way as to couple effectively with both pole number fields.

The design is developed from comments made in Broadway and Burbridge [17], although there

is no evidence that either author ever designed or built such a rotor as they sought a single layer

design. A rotor of this design was manufactured and experimental tests from it are presented.

3. A rotor design consisting of 18 isolated loops, each pitched over 7/36 of the circumference of

the rotor, and each loop offset from the next by an equal amount (1/18 of the circumference).

This rotor will be used to illustrate that linking both p1 and p2 (in this case 2 and 4) pole pair

fields is not sufficient to ensure cross-coupling. A rotor of this design was manufactured and

experimental tests from it are presented.

4. A rotor identical to rotor 3, but with every third coil removed. This rotor illustrates that by

enforcing a p1 + p2 order of rotational symmetry on the design (as opposed to 18 order in the

case of rotor 3) cross coupling is achieved. The prototype of rotor 3 was modified to provide

an experimental rotor of this design.

5. A cage rotor with only p1+ p2 bars. This rotor design was the conceptual start for the ‘nested-

loop’ design of rotor, however it was dismissed as it was perceived to have a “...very high

referred rotor slot-leakage” [17]. This rotor design is considered by simulation.

6. A wound rotor consisting of two double layer windings (therefore 4 layers in total), one of p1

pole pairs, the other of p2 pole pairs. The two windings phases are connected together and

the star points are connected together. This rotor design is essentially the same as that used by

Lydall [97] (although Lydall did not hard-wire a connection between the two windings), which

was dismissed by Hunt as being wasteful of copper [48]. The rotor design is included because,

it is likely to have low harmonic content. This rotor design is considered by simulation.

7. A standard squirrel cage induction machine rotor with 40 bars. This rotor is considered in order

to illustrate the lack of cross-coupling present in a standard squirrel cage machine. The rotor is

the standard rotor supplied with the induction machine which was converted into a BDFM.

For each rotor design appendix B gives details of the mutual inductance matrices, including leak-

age inductances. Section C.1 gives the slot geometries used in each rotor and the formulae used to

estimate leakage inductance in each case
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5.2 Rotor Designs

5.2.1 Rotor 1 - the ‘nested-loop’ design rotor

The prototype ‘nested-loop’ rotor is of ‘type 2’ design - see figure 2.4 - that is, the rotor comprises of

nested loop terminated with a common end ring at one end only. Figure 5.1 shows the non-end ring

end of the prototype rotor. As noted in [115] the difference between types 1, 2 and 3 is essentially

one of ease of fabrication.

The rotor consists of 36 slots, and as the prototype machine has p1 = 2 and p2 = 4, the rotor has

N = p1 + p2 = 6 nests. Each nest is allocated 6 slots. Therefore three loops can be housed within

each nest sub-tending 5/36, 3/36, and 1/36 of the circumference respectively. Figure B.3 displays

this information diagrammatically.

It can be seen from figure 5.1 that the bars are insulated from the laminations. It was chosen to

insulated the bars as it was established that BDFM performance is significantly degraded unless there

is significant bar-to-lamination impedance [117]. The insulation used was a high temperature paper,

such that it would not be damaged by the brazing process needed to join the bars.

Section B.3 gives full details of the design.

Figure 5.1: Prototype ‘nested-loop’ design rotor, rotor 1
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5.2.2 Rotor 2 - the new double layer design rotor

The design of rotors for the BDFM, when undertaken by Broadway and Burbridge, had the objective

in mind of designing a rotor which was similar to a cage rotor - that is single layer and manufac-

turable by conventional casting methods [17]. This approach led to the ‘nested-loop’ design of rotor.

However whether or not the ‘nested-loop’ rotor is the best design possible, in some sense, has never

been established either mathematically or empirically. It is therefore worth investigating whether or

not improved performance can be obtained with a different design of rotor.

It is clear from simulations of ‘nested-loop’ design rotors, and noted in [109] and [53], that loops

within a nest, which only subtend a small fraction of the pitch between nests, will have relatively small

currents flowing in them, and therefore make little contribution to the output torque of the machine.

The reason for the relatively small currents can be seen from considering the flux linked by a

coil of pitch γ , recalling that the flux linked is proportional to the induced voltage as the magnetic

flux density waveforms from the two pole number fields are moving at the same speed in the rotor

reference frame at BDFM synchronous speed.

Consider an n pole-pair winding. The peak flux linked by a single turn of pitch γ in sinusoidal

magnetic flux density of amplitude B̂ is:

φmax ∝
∫ γ /2

−γ /2
B̂ cos(nθ)dθ = 2B̂

sin(nγ /2)
n

In the BDFM there are two fields of p1 and p2 pole pairs respectively, having peak flux densities of

B̂1 and B̂2. Therefore the peak flux linked is:

φmax ∝ 2B̂1
sin(p1γ /2)

p1
+ 2B̂2

sin(p2γ /2)
p2

(5.1)

which is the peak linkage from each of the two flux density waves. The peak value may be obtained

as the phase between the flux density waves can be varied.

Equation (5.1) may be maximised by γ such that
∂φmax

∂γ
= 0:

∂φmax

∂γ
∝ 1

2
[B̂1 cos(p1γ /2)+ B̂2 cos(p2γ /2)] (5.2)

hence the maximum is achieved when B̂1 cos(p1γ /2) = −B̂2 cos(p2γ /2).

Thus the pitch which can give the maximum flux linkage is dependent on the relative magnitudes

of the two pole number fields. However in the case that B̂1 = B̂2 this is achieved when:

γ = 2π
p1 + p2

(5.3)

In the prototype machine the windings were wound to give nominally equal flux densities. Therefore

if the coil pitch is chosen such that (5.3) holds then, for p1 = 2, p2 = 4, the pitch is 60◦.

It should be noted that the preceding discussion it not a complete picture, as no explicit con-

sideration has been made of the requirement to link both pole number fields, so in practice it is an

approximation.
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The design problem then is how to maintain a suitable coil pitch to ensure good coupling to both

pole number fields, whilst still achieving cross coupling. During the development of the ‘nested-loop’

design rotor it was noted that cross coupling occurs when the rotor contains p1 + p2 equally spaced

‘phases’ [17]. This fact was implicitly proved in chapter 3 by the particular choice of the class of

rotors analysed.

This design of rotor will be adopted, however it is necessary to choose both the pitch of the coils

making up each phase, and the number of progressive coils in each phase. Figure 5.2 shows calcu-

lations, performed using the models techniques developed in chapters 2, 3 and 4, for the harmonic

leakage and rotor 8 pole self-inductance. The values are expressed as percentages, of the total rotor

self-inductance in the case of the harmonic leakage, and as a percentage of the 4 pole plus 8 pole har-

monic inductance components for the 8 pole self-inductance. The values are calculated for 3 different

coil pitches, and between 3 and 6 such coils connected in series each one rotor slot advanced on the

previous. The rotor has 36 slots.
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Figure 5.2: Simulated rotor inductance parameter variations for different possible design for Rotor 2.

The pitch of the coils making up each ‘phase’ were varied (different colours on plots), and the number

of progressive loops in each ‘phase’ were varied (horizontal axis)

Figure 5.2(b) shows that having 4 or 5 coils in each phase generally yields a minimum value for

the harmonic leakage inductance percentage. However figure 5.2(a), shows that as the number of coils

in each ‘phase’ increases, the 8 pole self-inductance percentage decreases. This is undesirable as it

implies that the effective turns ratio from the 8 pole stator to the rotor will be significantly higher than

that from the 4 pole stator to the rotor. Therefore the referred rotor impedance to the 8 pole side will

be high, thus limiting the current that can be induced in the rotor from the 8 pole stator. This point

was first made in Broadway and Burbridge, where it is noted that as the angle between ‘phases’ will
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always exceed half a spatial period of the higher pole number field, the effectiveness of the ‘phase’

decreases [17, sect. 4.2].

Therefore 4 coils will be used per ‘phase’ and it only remains to choose the coil pitch. There

is little to choose between the options considered in terms of the harmonic leakage, however from

figure 5.2(a) decreasing the coil pitch improves the proportion of 8 pole self-inductance. A 60◦ coil

pitch was chosen as it gives a higher overall current than the 50◦ pitched coils, because the prototype

machine stator produces equal amplitude 4 and 8 pole fields. However, if the stator were rewound,

the 50◦ pitched coil would likely to be preferable as the 8 pole coupling is increased, albeit at the

expense of the 4 pole coupling.

Figure 5.3 shows a single ‘phase’ of the new rotor design, with the chosen 60◦ coil pitch. Figure

5.4 shows a photograph of this rotor design after manufacture. Section B.4 has further details of the

rotor including a full winding diagram.

rotor ’phase’

single coil pitch

ro
to
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or

e

Slot no.

187 9 14 etc13121110865 15 16 17etc

Figure 5.3: Prototype new double-layer design rotor, rotor 2

5.2.3 Rotor 3 - isolated loop rotor

In the discussion of the design of rotor 2, section 5.2.2, the pitch of the coils was discussed. However

it was noted that the pitch of the coils is not the only important factor to consider in the design of a

rotor for a BDFM which is required to cross-couple.

The isolated loop rotor design consists of 18 coils pitched over 70◦, and each coil offset from

the next by 20◦. Thus the loop pitch is such that it will couple with both the 4 and 8 pole fields.

However, if the current distribution due to each field is considered then it can be seen, that the 4 pole

field induces a current distribution which is predominantly 4 pole, and is certainly without an 8 pole
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Figure 5.4: Prototype new double-layer design rotor, rotor 2

component; and similarly the 8 pole field induces a predominantly 8 pole current distribution without

any 4 pole component. Therefore cross-coupling between the fields cannot take place.

Section B.5 details the design of the rotor, and notes that the rotor is in fact a member of the

class of rotors considered in chapter 3. Included in this section is a winding diagram for the machine,

and the mutual inductance matrices. The lack of cross-coupling is evident from the rotor-rotor di-

agonalised machine mutual inductance matrix after the d-q transformation, equation (B.27). From

equation (B.27) it is immediate that the dynamics associated with different stator supplies are entirely

decoupled. This is consistent with a lack of cross-coupling, which by definition requires coupling

between the two stator supplies.

Figure 5.5 shows a photograph of the manufactured prototype rotor.
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Figure 5.5: Prototype isolated loop design rotor, rotor 3

5.2.4 Rotor 4 - isolated loop rotor with coils removed

As described in the introduction rotor 4 is identical to rotor 3 but with every third loop removed,

leaving a total of 12 isolated loops, in 6 groups of 2, where each group is spaced by 40◦ and each coil

within each group spaced by 20◦ as before.

The removal of one in every three loops is to enforce an order of rotational symmetry of p1+ p2 =
6. In doing so the rotor is made to cross-couple. This may be understood by considering a cage rotor

with p1 + p2 bars. It is well known that such a rotor will cross-couple between p1 and p2 pole pair

fields [17, sect. 4.1], and although rotor 4 is not a cage rotor, a similar argument holds.

Full details of the rotor design are given in section B.6. Included in this section are the mutual

inductance matrices. The effect of the removal of one in three loops from rotor 3 becomes appar-

ent from the rotor-rotor diagonalised machine mutual inductance matrix after the d-q transformation.

Equation (B.27) shows the original rotor with all 18 loops intact. Equation (B.28) shows the mu-

tual inductance matrix for rotor 4. Equation (B.28) clearly shows cross-coupling between the stator

supplies, albeit rather weakly in comparison to the direct coupling.

The prototype rotor 4 was made by cutting one in every three bars of rotor 3 with a hacksaw. The
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unmodified rotor is shown in figure 5.5.

5.2.5 Rotor 5 - 6 bar squirrel cage rotor design

Rotor 5 is a standard 6 bar squirrel cage rotor. It well known that such a rotor will function as a

BDFM rotor, and was the conceptual starting point for Broadway and Burbridge when developing the

‘nested-loop’ design of rotor [17].

The rotor uses 6 bars of cross-sectional area 4 times that of the bars used in the ‘nested-loop’

design rotor. Unconventionally, the rotor is assumed to have open slots, of trapezoidal geometry.

It is shown in section B.7 that for the purposes of mutual inductance calculation a cage rotor may

be considered to be the same as a set of independent loops spanning the bar pitches. The resistance

and leakage inductance matrices do alter and become non-diagonal, although they are still symmet-

ric circulant. Therefore the inductance parameters for rotor 5 may be calculated using the method

described in chapter 2 as the rotor is a member of the class of rotors considered.

5.2.6 Rotor 6 - wound rotor design

Rotor 6 consists of identical windings to those on the stator, but short-circuited together with the

neutral points connected. As mentioned in the introduction, this rotor is included to illustrate its low

harmonic content, but poor copper utilisation, as noted by Hunt [48].

PSfrag replacements a a

b b

c c

4 pole 8 pole

Figure 5.6: Connection diagram for Rotor 6

The rotor does not form part of the class of rotors considered in this dissertation, however it is

a simple case to analyse. Figure 5.6 shows the connection of the two 3 phase windings, therefore

it is easy to verify that this connection may be represented by the combination matrix (B.35). This

combination matrix may be used with the method described in section 2.5.1. It is easily shown that

the rotor-rotor mutual inductance and resistance are given by the sum of the individual components

and the stator-rotor mutual inductance is the difference between the mutual inductance matrices of

the individual rotor windings. Hence it is immediate that rotor 6 will cross-couple both stator fields.
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Section B.8 contains full details of the rotor-rotor and stator-rotor inductance terms including the

leakage inductance calculation.

5.2.7 Rotor 7 - standard squirrel cage rotor

Rotor 7 is the standard cage rotor used in the induction machine frame used for the prototype BDFM.

The rotor is made of cast aluminium, has 40 bars with Boucherot type slots (to give a higher starting

resistance due to the skin effect). The rotor slots are closed as can be seen in figure 5.7. The closed

nature of the slots complicates the estimation of the leakage inductance, as discussed in section C.1.

This rotor will couple both stator fields, however there will be no cross-coupling for similar rea-

sons to those discussed for rotor 3.

Section B.9 has complete details of the mutual inductance matrices, and the d-q transformation

used. The geometry of the rotor does not fall into the class of rotors analysed therefore special

treatment is required. It can be shown that the d-q transformation used only removes unobserv-

able/uncontrollable rotor states. Therefore the resulting mutual inductance parameters are a complete

description of the machine.

The d-q mutual inductance matrix, (B.45), clearly shows the lack of cross-coupling, as the dy-

namics due to the stator 1 supply are not coupled to the dynamics from the stator 2 supply.

Figure 5.7: Standard squirrel cage rotor 7
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5.3 Experimental and Calculated Torque-Speed Curve Results

Of the 5 rotor designs that were manufactured, rotors 1, 2, 3, 4 and 7 were tested using the experi-

mental rig described in appendix E.

As discussed in section 4.6, it is to be expected that simple induction mode and cascade induction

mode give a good indication of possible BDFM performance. High torques in simple induction

mode suggest poor BDFM performance. The absence of cascade mode torques imply poor BDFM

performance. Therefore by determining the simple induction mode and cascade induction mode the

rotors may be qualitatively evaluated for BDFM performance, that is presence of significant BDFM

synchronous mode torque.

The experiments were done at nominally 90Vrms (phase). This voltage was supplied from a 25A

‘Variac’ variable transformer, and was therefore at nominally 50 Hz. The supply, therefore, has some

impedance, although the current was generally low enough so that the supply dip was less than 1%.

The operating point was set in each case by driving the DC load motor on the rig to the required

speed, and then measuring the torque.

The experimental data is overlaid with the same test done in simulation calculated using the

equivalent circuit 4.3, with the parameter values calculated as described. In each case the resistance

parameters were increased by 40% from their measured DC values (and calculated values in the case

of the rotor) to allow for heating effects.

Figures 5.8 and 5.9 show 4 and 8 pole simple induction mode (second stator open circuit) torque-

speed curves respectively. Figures 5.10 and 5.11 show 4 and 8 pole cascade induction mode (second

stator short-circuited) torque-speed curves.

5.4 Calculated Rotor Parameters

Using the tools developed in chapters 2, 3, and 4 the parameters for the machines which showed

good BDFM performance were calculated. The parameter values correspond to figure 4.3. The

intermediate states in the transformations are shown in appendix B. Table 5.1 shows the calculated

values.

Table 5.2 compares the parameter values of table 5.1 in a number of ways. As discussed in sec-

tion 4.6 the parasitic rotor impedance terms, Xrh , Xrl , Rr/s1 directly affect the available synchronous

torque envelope for a BDFM. We therefore define the following dimensionless measures of BDFM

performance:

|Xrh |
|Xr1 + Xr2 |

,
|Xrl |

|Xr1 + Xr2 |
,

|Rr/s1|
|Xr1 + Xr2 |

(5.4)

It is chosen to normalise the measures by |Xr1 + Xr2 | as this term represents the total non-parasitic

term of the rotor impedance. It is this term which couples, without leakage, to the stator, and the

changes in value of this term simply reflect different effective turns ratios between rotor and stator.
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Figure 5.8: Torque-Speed plot in simple induction mode with nominally 90Vrms phase supply voltage

to 4 pole winding, 8 pole winding open circuit, rotors as described in section 5.1. Experimental results

with calculated results superimposed.
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Figure 5.9: Torque-Speed plot in simple induction mode with nominally 90Vrms phase supply voltage

to 8 pole winding, 4 pole winding open circuit, rotors as described in section 5.1. Experimental results

with calculated results superimposed.
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Figure 5.10: Torque-Speed plot in cascade induction mode with nominally 90Vrms phase supply volt-

age to 4 pole winding, 8 pole winding in short circuit, rotors as described in section 5.1. Experimental

results with calculated results superimposed.
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Figure 5.11: Torque-Speed plot in cascade induction mode with nominally 90Vrms phase supply volt-

age to 8 pole winding, 4 pole winding in short circuit, rotors as described in section 5.1. Experimental

results with calculated results superimposed.
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R1 L1l L1 f |Mcs1r | Lr1 Lrh Lrl Rr Lr2 |Mcs2r | L2 f L2l R2

(Ä) (mH) (mH) (mH) (µH) (µH) (µH) (mÄ) (µH) (mH) (mH) (mH) (Ä)

Rotor 1: nested-loop design

2.7 3.54 307 2.7 24.1 0.98 1.06 0.074 13 2 314 8 4.4

Rotor 2: new double-layer rotor design

2.7 3.63 313 9.6 293 5.3 8.82 1.9 44 3.7 321 8.4 4.4

Rotor 5: 6 bar squirrel cage rotor design

2.7 3.08 339 2.8 23 3.5 0.888 0.028 5.7 1.4 347 6.2 4.4

Rotor 6: Wound rotor design

2.7 3.32 287 2.9 28.6 0.46 1.02 35 29 2.9 294 7.1 4.4

Table 5.1: Calculated parameter values for different BDFM rotor using coupled circuit approach

described in chapters 2, 3, and 4, corresponding to figure 4.4

The final column of table 5.2 shows the total cross-section conductor area in the machine stack

(therefore end windings are not included). For example, Rotor 1 has 133mm2 bar area and 36 bars in

total hence the total cross-sectional area of copper is 4774mm2

5.5 Discussion of Results

5.5.1 Experimental Torque-Speed Curves

• The simulated torque-speed curves give generally good agreement with those found by experi-

ment.

In figure 5.8 rotors 1-4 show good agreement. In figure 5.9 rotors 1-4 show reasonable agree-

ment. The errors, although proportionally large, are less than 1 N m in all except rotor 3. This is

well within the measurement error of the torque transducer, which drifts by around 0.5 N m over

the course of an experiment, and the frictional forces on the BDFM, which are up to 0.8 N m.

Figures 5.10 and 5.11 also show good agreement for rotors 1-4. The exceptions being rotor 2

at low speeds in 4 pole cascade mode, and 8 pole cascade mode at higher speeds; and rotor

3 at higher speeds in 8 pole cascade. The most probable cause for these errors are inaccurate

resistance values.

Rotor 7 gave consistently less good agreement, particularly in 8 pole mode. The poor agreement

at large slips (positive and negative) is due to the Boucherot slots, which are deep slots which

rely on the skin effect to increase the effective resistance at large slips where the frequencies

of the currents in the rotor are higher. It is therefore expected that the simulated results give
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|Xr1 + Xr2 | |Xr1 | |Xr2 | |Xrl | |Xrh | |Xrl + Xrh | |Rr/s1| |Zr p | ACu

(mÄ) (%) (%) (%) (%) (%) (%) (%) (mm2)

Rotor 1: nested-loop design

11.6 65.5 34.5 2.9 2.7 5.5 1.9 5.9 4774

Rotor 2: new double-layer rotor design

106 86.9 13.1 2.6 1.6 4.2 5.4 6.8 1235

Rotor 5: 6 bar squirrel cage rotor design

9.03 80.1 19.9 3.1 12 15 0.92 15 3182

Rotor 6: Wound rotor design

18.1 49.6 50.4 1.8 0.8 2.6 585 585 6514

Table 5.2: A comparison of calculated parameter values of table 5.1 expressed as a percentage of

|Xr1 + Xr2 |, the rotor fundamental reactances at 50 Hz. The slip, s1, is assumed to be 0.33, which

corresponds to 1000rpm when stator 1 (4 pole) is grid-connected. |Z r p | =
√

(Rr /s1)2+(Xrl +Xrh )
2

|Xr1+Xr2 |

lower (closer to zero) torques at large slips. However the 4 pole results at small slips are

still fairly inconsistent. This is due to the crude estimate of rotor leakage inductance used.

The simulated results could be made to coincide much more closely by adjusting the value of

leakage inductance used.

• Simple induction mode:

– All the rotors exhibited some simple induction mode torque, in both 4 and 8 pole modes.

– For 4 pole simple induction torque: Rotors 7 and 3 gave the largest peak values, rotor 4

a little less, rotor 2 even less and rotor 1 the least. This is to be expected, as rotors 7 and

3 fail to cross-couple but both couple 4 pole fields strongly. Rotor 4 gives somewhat less

torque than rotor 3 which is consistent with it producing weak cross-coupling due to the

removal of one set of windings. Rotors 1 and 2 exhibit strong cross coupling hence the

smaller torques.

– For 8 pole simple induction torque: Rotors 7 and 3 gave the largest peak values, rotor 4

a little less, rotor 1 even less and rotor 2 the least. For similar reasons to the 4 pole test

the results for rotors 7, 3 and 4 are as expected. The very small torque produced by rotor

2 is a reflection of its relatively poor 8 pole coupling combined with its relatively strong

cross-coupling. In contrast, the performance of rotor 1 is similar in both 4 pole and 8 pole

simple induction mode.
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– The differing magnitudes of the 4 and 8 pole simple mode results for rotor 7 reflect the

differing stator impedances for the two supply windings.

• Cascade induction mode:

– Rotors 3 and 7 showed no noticeable cascade torque. The torque-speed curves are essen-

tially the same as those obtained in simple induction mode. This confirms the absence of

cross coupling in these rotor designs.

– Rotors 1 and 2 showed strong cascade torque and rotor 4 showed weak cascade torque.

Rotors 1 and 2 both exhibit significant cross-coupling, therefore it is expected that the

cascade mode torque is relatively large. Rotor 4 only produced weak cascade action

because its cross-coupling is also weak.

– As discussed in section 4.6 the cascade torque-speed curve consists of an induction machine-

like torque-speed characteristic at 500rpm (cascade synchronous speed for p1 = 2, p2 =
4 at 50 Hz) superimposed on top of the standard machine torque-speed curve.

– The amplitude of the cascade mode torque-speed characteristic is similar in magnitude to

the standard torque-speed characteristic at the machine synchronous speed. This is to be

expected as cascade mode in effect lowers the impedance of the rotor as the second stator

resistance and leakage inductance appear in parallel with the second stator magnetizing

inductance, see figure 4.9.

5.5.2 Calculated machine parameters from tables 5.1 and 5.2

• In consideration of the rotor resistance term, it is desirable to minimise this term as far as

possible as it directly impacts the efficiency of the machine. It is immediately apparent that

rotor 6 suffers from its large relative rotor resistance, which is particularly bad as this rotor has

the largest amount of copper of all the rotor designs. This confirms the point made by Hunt

that having a rotor design comprising of two three phase windings is wasteful of copper [48].

Rotor 2 has a relatively large resistance, however it suffers from having a relatively low amount

of copper in the design, as compared to 1. This was simply a consequence of manufacturing a

prototype rotor with a standard slot shape, and could therefore easily be overcome. If rotor 2

had the same cross-sectional area of copper as that of rotor 1, then the resistance would drop to

1.4%. Rotor 5 has the least resistance percentage, and rotor 1 somewhat higher, but still quite

acceptable.

• The values of percentage leakage reactance on the four rotors are similar. The slightly lower

value for Rotor 6 is not significant.
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• In contrast to the leakage reactance, the values of excessive rotor harmonic reactance differs

greatly between the 4 rotor designs. Rotor 6 has the least percentage value of excess harmonic

reactance of the four rotors. This is expected as this rotor has the lowest realistic value for

any machine of this frame size, as the rotor is comprised to two double layer windings which

therefore have a low harmonic content. Rotor 5 has 12% excess harmonic reactance which is

over 4 times the next highest value of 2.7% in rotor 1. This relatively high value of excess

harmonic reactance confirms the prediction in Broadway and Burbridge that a 6 bar cage rotor

suffers from excessive harmonic inductance [17, sect. 4.1]. Rotor 2 achieves a significantly

lower value than rotor 1, demonstrating that the better choice of coil pitch has achieved the

desired effect of reducing the harmonic content. It is desirable to minimise the value of the

excess leakage reactance percentage, not only to increase the available torque but also because

it represents some of the generated harmonic magnetic flux densities in the air gap.

5.6 Conclusion

In this chapter seven rotor designs have been considered including a new potential BDFM rotor de-

sign. Five of these rotor designs were manufactured and torque-speed curves were measured for 4

different operating modes. From these tests it is clear which rotors will cross-couple and, therefore,

are potential BDFM rotors, as predicted from analysis of the equivalent circuit in section 4.6. The use

of simple and cascade mode tests to qualitatively test potential BDFM rotors is therefore confirmed.

The experiments were complemented by simulation results obtained using the equivalent circuit

model and method of parameter calculation previously derived. The agreement between measured

and predicted results was within expected experimental errors and the limitations of the model. There-

fore it is possible to have confidence in the modelling and parameter calculation methods described

in chapter 2, 3, and 4.

The four rotors which show strong cross-coupling, rotors 1, 2, 5 and 6 were analysed by calcula-

tion of their equivalent circuit parameters.

Rotors 1 and 2 are both plausible BDFM rotors if the cross-sectional area of copper in each slot

is increased in rotor 2. Rotor 2 should lead to a rotor with a larger torque envelope, and greater

efficiency than rotor 1 which has twice the percentage excess harmonic reactance.

Rotor 5 might possibly be considered as a BDFM rotor as it will have low copper losses, however

its excessive harmonic reactance is very high, as expected, and this will not only limit the available

torque but also introduce unwanted magnetic flux density harmonics. Rotor 6 will not make a good

BDFM rotor due to its excessive resistance.

The rotors were evaluated by three measures. Of these measures, the ones providing the most

differentiation between rotors were |Xrh |
|Xr1+Xr2 |

and |Rr /s1|
|Xr1+Xr2 |

, taking into consideration the area of copper

in each rotor. In terms of their effect on |Zr p | the excess harmonic reactance percentage is the more
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significant, as in a typical good rotor design (e.g. rotor 1) |Zr p | is dominated by the reactive parts.

Therefore both the excess harmonic reactance and leakage reactance are crucial parameters in the

design of BDFM rotors. The slot shape is the main controlling factor for the leakage reactance,

so this should be designed to ensure minimum leakage. The design of the rotor geometry (which

determines the rotor harmonic content) may, therefore, be evaluated using the percentage excess

harmonic reactance. However the reduction of the excess harmonic reactance must be weighed up

against any penalty in terms of rotor resistance. Rotor 6 illustrates the lowest realistic percentage

harmonic leakage reactance, however the penalty of increased rotor resistance is too great to make

the design viable. Rotor 2 achieves a significant reduction in percentage harmonic leakage reactance

(over rotor 1), with no such resistance penalty.

Therefore, as rotor designs other than the nested-loop design achieve an improved BDFM perfor-

mance, the issue of rotor design is worth further investigation. The measures proposed may be used

by the designer to evaluate proposed rotor designs.

There are, however, limitations to the proposed methods of rotor evaluation. The most signifi-

cant are restrictions imposed by the design of the iron circuit in the machine. Designs aimed at the

reduction of leakage reactance may not be feasible as they will lead to either excess iron loss, poor

power factor or both. Furthermore the skin effect has been entirely neglected in this analysis. The

skin effect will increase the rotor resistance. This will not only have a direct effect on the efficiency

of the machine, but will also impact the value of |Zr p |.



Chapter 6

BDFM Parameter Identification

6.1 Introduction

In chapter 2 a method of calculating machine parameters was presented. In chapters 2, 3, and 4

different models were developed for the BDFM, and the transformations between these models de-

rived, thus allowing parameter values for these models to be computed using the method described in

chapter 2. These models included different equivalent circuit representations for the BDFM. Chapter

5 showed experimental torque-speed curves for five rotor designs using calculated parameter val-

ues. Although the agreement was reasonable, and well within the limitations of the instrumentation

and the parameter calculation methods, there is a need for a method of experimentally determining

parameters for the machine which leads to models giving closer agreement with experimental data.

Only two previous works are known which consider the problem of parameter estimation for the

BDFM, [80, 79]. These works use a frequency domain method to find d-q parameters for a prototype

nested-loop design machine. The methods are presented in some detail in simulation, and some (but

not all) parameters are estimated from a prototype machine in [79].

Although the method proposed in [80, 79] appears to generalise to a wider class of BDFM ma-

chines, a significant amount of equipment is needed to implement such a scheme: 10 kHz multi-

channel isolated A/D, closed-loop external speed control for the test rig, variable frequency current

source supply for the BDFM [79].

A simple method of parameter estimation is therefore proposed. The method is based on curve

fitting torque-speed curves from both simple and cascade induction mode tests. This is a natural

generalisation of the standard no-load and locked rotor tests commonly used to estimate parameters

in standard induction machines.

The standard no-load test can be used to determine the stator resistance and magnetizing reac-

tance, and if the series stator resistance is measured with DC, then the core loss resistance term can

be estimated. The standard locked-rotor can estimate the rotor impedance; it works by assuming that

the magnetizing reactance is very much larger than the referred series rotor impedance, which appears

137
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in parallel with the magnetizing reactance (and the core loss resistance). As discussed in section 4.6,

the BDFM can operate as a normal induction machine, in simple induction mode, and the no-load test

can be applied to get information for both stator supplies. However, as discussed in section 4.6, and

confirmed in section 5.5, good BDFM designs will generally have very high referred rotor impedance

in simple induction mode, therefore the locked rotor test will not be directly applicable. Although it

would be possible to perform the locked rotor test, taking into account the magnetizing reactance, the

actual rotor leakage reactances would be prone to large errors as they appear in series with the second

stator magnetizing reactance.

Even with the normal induction machine, the standard locked-rotor and no load tests are known

to give parameters which lead to models which have significant errors away from the operating points

at which the parameters were determined [111]. This problem motivated a number of papers where

output error minimization methods were successfully used [29, 66, 78]. As the BDFM is similar to

the standard induction machine, approaches of this nature should lead to acceptable results. It should

be noted that all the methods considered are off-line methods, which require a special experiment to

be performed on the machine in order to determine the parameter values. This is somewhat distinct

from on-line methods where no explicit experiment is performed, and parameters are estimated during

normal machine operation. There have been efforts to address this (rather more difficult) problem for

the induction machine, a recent example is [23].

We begin by describing a new optimization method.

6.2 Parameter Extraction Optimization Method

6.2.1 General Optimization Problem

The optimisation problem to be solved is a non-linear least squares problem, and can be stated as:

Given Yi ∈ R
k , P ∈ R

n , U ∈ R
k×m , Fi : P,U 7→ R

k , i ≤ l

Find P : min
P∈WB+P0

l
∑

i=1

Si‖Yi − Fi (P,U )‖2 (6.1)

where Fi is a function which estimates the i th measured output for a particular parameter vector, P .

U is a matrix of input data points where each row is an individual data point. Yi is a vector of the

measured i th output data due to U . There are k input/output data pairs and m different measured inputs

(i.e. U has k rows and m columns). Si is a scalar weight applied to the i th output error. So there are n

parameters, m inputs, k data points for each input, and l outputs. Furthermore, Fi is defined as:

Fi (P,U ) =







fi (P, u1)

...

fi (P, uk)






, U =







u1
...

uk







(6.2)
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where fi : P, u j 7→ R
1.

WB + P0 represents the set of possible parameter values chosen from a rectangular set (as B

is a hypercube), centred on P0 with corners at P0 ± diag(W ). Clearly the value of P that gives

the minimum cost function value will, in general, not be unique. As stated this is a non-convex

optimization problem, and therefore difficult to solve [123].

In order to solve this optimisation problem we use a simple (or crude) random search (also known

as a ‘Monte Carlo’ method). For practical and theoretical details of the algorithm see, for example,

[123]. The principal advantage of a simple random search, for our purposes, is its strong resilience

to measurement noise and modelling error while guaranteeing convergence to the global minimum.

Furthermore, because it requires no gradient information, there is no need for any a priori information

about the particular cost function. It can be shown that without any such information, a simple random

search is as efficient as any other method, in reaching the global minimum [44]. The simplicity of the

algorithm means that implementation is straightforward and, because the method does not depend on

the cost function chosen, the algorithm can be applied to different cost functions without modification.

The search is performed across WB + P0 to find Q = {q1, · · · , qN } where Q :
∑m

i=1 Si‖Yi −
Fi (q,U )‖2 ≤ γ , where γ > 0 is an acceptable value for the cost function to take. We generate

guesses for candidate qks using the Mersenne Twister [71], a fast uniform random number generator

with a long repetition period. Having found Q we then find the, qk corresponding to the minimum

cost, Kmin. This qk , called qopt henceforth is an estimate of the global minimizer and Kmin an esti-

mation of the global minimum. Furthermore the standard deviation of Q gives an indication of how

much confidence one should have in taking qopt as the global minimum.

Although the efficiency could be increased by using a multi-start, (see [123] for details) or prob-

abilistic branch and bound algorithm (such as [106]), the additional complexity of the algorithm, and

requirements to have some appreciation of the modelling error and noise, make these algorithms less

appealing than they might first appear. Furthermore there is a tradeoff between increased complexity

in the algorithm versus the decreased number of iterations required.

6.2.2 Application to BDFM

Notice that thus far it has not been necessary to specify what the measured outputs Y are, or either

what the estimation functions F are.

We desire to choose the inputs and output such that they are easy to measure ‘terminal’ quantities.

Therefore we are restricted to the stator voltages, currents, the torque and the rotor speed. Furthermore

due to the substantial difficulty of trying to measure the phase difference between stator 1 and stator

2 quantities we restrict ourselves to magnitude measurements of stator 2 quantities.

Having decided what quantities to measure, it is necessary to consider what parameters are sought,

and determine whether or not finding the parameters uniquely is feasible. The problem of whether or

nor the parameters may be determined uniquely from any set of experiments is known as ‘identifia-
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bility’.

Recognising that the equivalent circuit can predict the behaviour of the machine in both simple

induction and cascade modes, we propose then an approach based on the extraction of parameters

from measured torque-speed characteristics of the kind shown in figures 5.8-5.11. This approach has

the advantage that a single frequency supply may be used to perform the tests. This is in contrast

to the only previously published works on BDFM parameter extraction, [80, 79], where a method

requiring operation at a range of different supply frequencies is proposed.

Nevertheless, not all the inductance terms in the equivalent circuit shown in figure 4.9 can be

unambiguously determined from external measurements. Figure 6.1 shows equivalent forms of the

‘T’ and ‘0’ networks, details can be derived using, for example, [20].
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Figure 6.2: Simplified Referred Per-Phase Equivalent Circuit

Using figure 6.1, figure 4.9 may be transformed into an alternative form of the equivalent circuit

as shown in fig. 6.2 for which all component values can be determined from the estimation procedure,

as the number parameter has reduced. A similar modification was proposed by Slemon in the case
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of parameter determination for the equivalent circuit for the standard induction motor [98]. For the

circuit to be electrically equivalent to that of fig. 4.9 the parameters, and turns ratios, will assume

slightly different values:

Na =
Lm1

L1 + Lm1

Nb =
L ′′

m2

L ′′
2 + L ′′

m2

R′
rn
= R′

r

N 2
a

Lm1n = Lm1 + L1

L ′′
m2n
= L ′′

m2

Nb

N 2
a

R′′
2n
= R′′

2
N 2

b

N 2
a

(6.3)

L ′
rn
= L ′

r + Lm1

N 2
a

− Lm1n +
L ′′

m2

N 2
a
− L ′′

m2n

However, in a BDFM the referred series rotor inductance is likely to be larger than the series

stator inductance so differences in inductance values between the two circuits will be small. Direct

measurements of rotor bar currents, for example using techniques described in [1, 83], would enable

all parameters in fig. 4.9 to be determined.

In simple induction mode operation there are 2 inputs, 3 measured outputs, 4 parameters, and Ns

data points. The subscript simple/1 is used to indicate simple induction mode referred to stator 1. Y

is chosen as follows:

Ysimple/11 =







T1
...

Tk






, Ysimple/12 =


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
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
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(6.4)
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ωr 1 V11
...

...
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
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(6.6)

Fsimple/1i
can be derived from the referred equivalent circuit, figure 6.2, taking I ′′2 = 0:

T = fsimple/11(Psimple/1, usimple/1) (6.7)

<{I1} = fsimple/12(Psimple/1, usimple/1) (6.8)

={I1} = fsimple/13(Psimple/1, usimple/1) (6.9)
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If Usimple/11 is chosen so that the BDFM is exercised over a range of speeds such that the slip (4.32)

varies substantially, say from 1 to -0.5, it can be shown from the equivalent circuit that each f simple/1i

depends strongly on each element of Psimple/1, which suggests that there is a unique Psimple/1 which

solves the optimization problem. However due to the presence of measurement noise and modelling

error this will not necessarily be the case. Solving this optimization problem as outlined in section

6.2.1 gives the parameters indicated in (6.6).

However we have not used |V2| as one of the measurable outputs. It can be seen from figure 6.2,

with V ′′
2 = V2

N1
N2

(from figure 4.9):

|V2|
N1

N2
= |I ′rω1|Lm2 (6.10)

and the ratio of the turns ratios, N1
N2

is unknown. Therefore all that can be achieved is the determination

of N2
N1

Lm2 . It is proposed therefore that, having determined the optimal parameter set, linear least-

squares is used to determine N2
N1

Lm2 :

N2

N1
Lm2 = (AT A)−1 AT







|V21|
...

|V2k |






, A =







|I ′r 1ω11|
...

|I ′r kω1k |







and |I ′r j | are calculated from figure 6.2 using the optimal parameter set.

In cascade induction mode operation there are 2 inputs, 4 measured outputs, 6 parameters, and

Nc data points. The subscript cascade/1 is used to indicate simple induction mode referred to stator

1. Y is chosen as follows:

Ycascade/11 =
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Fsimple/1i
can be derived from the referred equivalent circuit, figure 6.2, taking V ′′

2 = 0:

T = fsimple/11(Psimple/1, usimple/1) (6.14)

<{I1} = fsimple/12(Psimple/1, usimple/1) (6.15)

={I1} = fsimple/13(Psimple/1, usimple/1) (6.16)

|I2| = fsimple/14(Psimple/1, usimple/1) (6.17)

As for the simple mode Ucascade/11 is chosen so that the BDFM is exercised over a range of speeds

such that the slip (4.32) varies substantially. It can be shown from the equivalent circuit that each

fcascade/1i depends strongly on each element of Pcascade/1. However fcascade/1i also depends on L2,

and it is not possible to determine this from the measured outputs. Therefore the value extracted

from the simple/2 is used, and is explicitly included in fcascade/1i . In these circumstances there is a

unique Pcascade/1 which solves the optimization problem, with the same caveat regarding noise and

measurement error as in the simple mode procedure. Again the optimization problem is solved as

outlined in section 6.2.1 giving the parameters indicated in (6.13).

Although the original problem contained Si , a weight, it is set to unity without exception for

the applications described. The choice of weight can improve the algorithm by compensating for

different scaling of the measured outputs, for example if |V2| had been included as a measured output

then it would have been appropriate to scale down the effect of the error on this measurement as it is

typically 2 orders of magnitude larger than the other measured outputs.

6.3 Parameter Estimation Results

The method was applied to data similar to that shown in figures 5.8-5.11. Each data set had between

10 and 20 data points. When solving the optimization problem, in order to minimise the execution

time of each random test point the mathematical functions governing the behaviour of the machine

were simplified as far as possible using the symbolic maths package Maple, and then hard coded in

a C function along with the random number generation code. This function was then called from

Matlab. With this implementation it was possible to achieve 4 × 105 tests per second on a 2.8GHz

Pentium 4 in cascade mode, and slightly more in simple mode.

As an indication of the time taken to solve the optimization to satisfactory accuracy, it took ap-

proximately 9 × 108 tests, taking around 40 minutes, to generate 10 candidate solutions of suitable

accuracy for rotor 1. Tables 6.1, 6.2 show data from simple induction mode and tables 6.3 and 6.4

from cascade induction mode. The tables show the results of the optimization, along with the standard

deviation taken over the best 20 results. The standard deviations are generally considerably smaller

than the estimated parameter values, which indicates that the noise level in the measurements is suffi-

ciently low to have confidence in the results, and that the parameters can be uniquely determined. As
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R1 R′
rn

L ′
rn
+ L ′′

m2n
Lm1n L ′′

m2n

N2
N1

(Ä) (Ä) (mH) (mH) (mH)

Rotor 1: nested-loop rotor design

Opt: 4.02 1.2 120 240 137

Std. Dev.: 0.0243 0.00769 0.204 0.0507 0.00879

Rotor 2: new double-layer rotor design

Opt: 3.52 3.1 65.5 260 105

Std. Dev.: 0.0384 0.0306 0.246 4.44 0.547

Rotor 3: isolated loop rotor design

Opt: 3.28 1.36 26.1 252 5.46

Std. Dev.: 0.0548 0.00627 0.199 5.19 0.00855

Rotor 4: isolated loop rotor design with removed loops

Opt: 3.75 2.12 48.2 240 41.1

Std. Dev.: 0.112 0.0553 0.509 11.9 0.276

Rotor 7: standard cage rotor design

Opt: 3.54 0.486 22.8 253 0

Std. Dev.: 0.049 0.00705 0.202 17.7 0

Table 6.1: Parameter Extraction in simple induction mode with 4 pole supply

an additional measure of effectiveness, the algorithm returns the value of the minimised error which,

if suitably normalised, gives a measure of fit ‘quality’. This value could be normalised against the

experimental data if required.

6.3.1 Comparison of data obtained using estimated parameter values with experimen-
tal data

In order to verify the machine parameter values estimated by the technique described, the parameter

values tabulated in tables 6.1 to 6.4 were used in the BDFM equivalent circuit model given in figure

6.2 to generate torque-speed data.

The generated torque-speed data was produced at a constant 90Vrms (phase) stator 1 supply, with

stator 2 short and open circuit, to give simple and cascade induction modes. The data was calculated

for the 4 pole winding being stator 1 and then for the 8 pole winding as stator 1.

Figure 6.4 shows the same experimental data used in figures 5.8 to 5.11 overlayed with the calcu-
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R1 R′
rn

L ′
rn
+ L ′′

m2n
Lm1n L ′′

m2n

N2
N1

(Ä) (Ä) (mH) (mH) (mH)

Rotor 1: nested-loop rotor design

Opt: 5.58 2.52 507 267 300

Std. Dev.: 0.089 0.0273 1.92 0.692 11.4

Rotor 2: new double-layer rotor design

Opt: 6.21 30.8 1460 246 491

Std. Dev.: 0.0502 0.314 7.42 0.27 2.53

Rotor 3: isolated loop rotor design

Opt: 5.46 14 203 272 6.6

Std. Dev.: 0.0419 0.0624 0.464 0.625 0.082

Rotor 4: isolated loop rotor design with removed loops

Opt: 5.99 32.4 501 268 91.4

Std. Dev.: 0.0847 0.411 3.46 0.81 0.313

Rotor 7: standard cage rotor design

Opt: 5.08 2.42 78.9 266 0

Std. Dev.: 0.0895 0.0306 0.374 5.06 0

Table 6.2: Parameter Extraction in simple induction mode with 8 pole supply
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R1 R′
rn

L ′
rn

Lm1n R′′
2n

L ′′
m2n

N1
N2

(Ä) (Ä) (mH) (mH) (Ä) (mH)

Rotor 1: nested-loop rotor design

Opt: 3.63 1.26 35.1 277 2.46 101 0.685

Std. Dev.: 0.106 0.038 0.379 27.1 0.0628 3.83 0.0131

Rotor 2: new double-layer rotor design

Opt: 3.6 2.92 27.4 299 0.716 40.8 0.408

Std. Dev.: 0.125 0.0673 0.386 32.8 0.0197 1.55 0.00788

Rotor 4: isolated loop rotor design with loops removed

Opt: 3.61 2 39.8 266 0.188 7.6 0.169

Std. Dev.: 0.176 0.0699 0.986 26.1 0.0223 0.681 0.00718

Table 6.3: Parameter Extraction in cascade induction mode with 4 pole supply

R1 R′
rn

L ′
rn

Lm1n R′′
2n

L ′′
m2n

N1
N2

(Ä) (Ä) (mH) (mH) (Ä) (mH)

Rotor 1: nested-loop rotor design

Opt: 5.79 2.82 72.9 288 7.25 391 1.41

Std. Dev.: 0.213 0.0951 0.919 19.5 0.28 25.5 0.0447

Rotor 2: new double-layer rotor design

Opt: 5.39 23.5 189 281 22.9 1640 2.51

Std. Dev.: 0.391 0.377 1.27 5.52 0.487 39.4 0.0301

Rotor 4: isolated loop rotor design with loops removed

Opt: 7.61 23.1 337 264 16.7 607 1.59

Std. Dev.: 0.297 1.02 5.77 3.15 0.815 30.1 0.0385

Table 6.4: Parameter Extraction in cascade induction mode with 8 pole supply
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lated torque-speed data.

The figures show a generally good agreement between predicted and measured data, and show

that the use of parameter values determined by the estimation technique, yield more accurate results

than those derived by calculations in some cases. This is, of course, to be expected.

To illustrate the applicability of the parameter extraction method beyond the prediction of solely

simple and cascade induction mode torques, the parameters estimated from 4 pole cascade mode,

given in table 6.3, were used to predict the maximum and minimum torque envelope for the prototype

machine with rotor 1. The parameters were used in the equivalent circuit model, and the model

solved to find the peak torque values for given supply voltages, over a range of shaft speeds. The

stator 2 phase voltage magnitude was set as max{220
∣
∣
∣

f2
f1

∣
∣
∣ , 20.7}, that is linearly proportional to the

supply frequency with a ‘boost’ at lower frequencies. The stator 1 supply phase voltage was fixed

at 220Vrms, and 50 Hz. It was chosen to measure the maximum and minimum values of the torque,

thus each data point was well defined for given supply voltages and frequencies. Each data point was

measured by increasing the load torque (or generating torque) until pullout occurred and recording

the final torque value immediately prior to pullout. For some operating points the machine dynamics

were very lightly damped, or unstable, therefore it was necessary to use the feedback control scheme

proposed in section 7.7 to restore stability. The process was repeated for a range of shaft speeds. The

experimental apparatus used is described in appendix E.

Figure 6.3 shows the experimental results (blue crosses), with the simulation results overlaid in

red. The agreement between the experimental and simulated results is very good. The experimental

torque values are less than those predicted from calculation, however this is to be expected as the

peak torque value is practically unattainable (although one should be able to get arbitrarily close).

The structure in the plot at around natural speed (500rpm) could have been eliminated by making the

voltage boost suitably asymmetric about natural speed.

A comparison of calculated and estimated parameter values will now be made.

6.3.2 Comparison of estimated to calculated parameter values

Table 6.5 shows calculated parameter values for the prototype machine with rotors 1, 2, 3 and 7 in

the form of the equivalent circuit shown in figure 6.2. These parameter values were calculated using

the conversion formulae, (6.3), from the parameters presented in table 5.1 and, in addition, parameter

values are given for rotors 3 and 7, which were calculated in the same way.

However, as discussed in chapter 5, rotors 3 and 7 do not cross-couple, therefore parameter values

are only given for simple induction mode.

Rotors 1, 2 and 4 cascade induction mode parameters will be compared, as the cascade mode

parameters are a superset of the simple mode parameters. Simple mode parameters will be compared

for rotors 3 and 7.

We first consider the self-consistency of the estimated parameters. If the machine considered is
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Figure 6.3: Experimental verification of the parameter extraction procedure: maximum synchronous

torque envelope with varying rotor speed for rotor 1 (‘nested-loop’ design) with the 4 pole winding

supplied with nominally 220V (phase), the 8 pole is supplied with a const. V/ f law with boost, i.e.:

V8 = max{220
∣
∣
∣

f2
f1

∣
∣
∣ , 20.7} (solid lines, with experimental points marked). The parameters values used

are those of table 6.3. Where the red line is dashed, it was not possible to experimentally determine

the pull-out torque due to insufficient dissipative power in the experimental test rig.

precisely modelled by the equivalent circuit form given in 6.2, then parameter values estimated for the

machine supplied from stator 1 or stator 2 should give identical results. Furthermore, these results are

related by the square of the turns ratio, N1/N2. The results of parameter estimation when the 4 pole

winding was supplied should be equal to the results when the 8 pole winding was supplied divided by

the square of the turns ratio.

For rotor 1 the errors ranged from 0.5% to 45% across the different parameters, for rotor 2 the

errors ranged from 0.6% to 20% and for rotor 4 the errors went up to 1500%. These results are

expected as rotor 2 has only one set of 6 rotor coils and should therefore be precisely modelled. Rotor

1 has 3 sets of 6 rotor coils, the inner, middle and outer loops of each ‘nest’ and although it was

shown in chapter 3 that using the proposed model order reduction technique leads to relative small

modelling errors, errors are nonetheless present, and these are reflected in the inconsistency within

the parameter values. Rotor 4, has 2 sets of 6 rotor coils, however the coils are not arranged in a

manner which leads to good BDFM behaviour, as can be seen from the cascade mode torque-speed

curves. It is therefore unsurprising that the machine with this rotor is not well modelled by the circuit

of figure 6.2.
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We now compare the cascade induction mode estimated parameters for rotors 1 and 2 with those

found by calculation.

• The magnetizing inductance, Lm1n , is between 5% and 10% higher in the calculated parameter

values, this is most likely due to the effective air gap being larger than that estimated.

• The ratio N1/N2 is in close agreement for both rotors 1 and 2, with the error ranging from 1%

to 8%.

• The estimated leakage inductance terms, L ′
rn

, are within 20% of their calculated values for rotor

2, and within 8% for rotor 1.

• In both rotors 1 and 2, the value of L ′′
m2n

is subject to the greatest percentage error, suggesting

that the parameter estimation method is relatively insensitive to changes in this parameter value.

• The resistance values are universally higher for the estimated parameter values, which is ex-

pected as the calculated resistance values were calculated at room temperature. The estimated

values are consistent with an approximately 80 °C rise in temperature, which is plausible.

From the simple induction mode estimated parameter values we may note the following:

• The estimated magnetizing inductance, Lm1n is generally lower in simple mode than cascade

mode. This suggests that in simple induction mode, the cost function chosen is relatively less

sensitive to the value of Lm1n . The error is particularly noticeable for rotor 7, the standard squir-

rel cage rotor, which suggests that the effective air gap for the cage rotor may be significantly

greater than estimated. This could be the result of localised saturation in the rotor slot bridges.

• The leakage inductance, L ′
rn

, and rotor resistance estimates for rotors 4 and 7 are up to 100%

in error. For rotor 7 the Boucherot slots will inevitably lead to increased error as the resistance

changes substantially (by design) with shaft speed. However, the errors for rotor 4 are likely

to be due to poor quality data, as the results from rotors 1 and 2 are somewhat better in simple

induction mode.

6.3.3 Comparison of estimated parameter values to manufacturer’s parameter values

In the case of rotor 7, the standard squirrel cage rotor, it was possible to compare estimated parameter

values against those given by the manufacturer. The details of this comparison can be found in

[87], where the conclusion was that there was a close agreement, thus corroborating the parameter

estimation method.
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(a) Simple induction mode, 4 pole winding supplied
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(b) Simple induction mode, 8 pole winding supplied
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(c) Cascade induction mode, 4 pole winding supplied
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(d) Cascade induction mode, 8 pole winding supplied

Figure 6.4: Torque-Speed plot in simple induction mode with nominally 90Vrms phase supply volt-

age. Rotors as described in section 5.1. Experimental results with calculated results using estimated

parameter values superimposed.
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R1 R′
rn

L ′
rn

Lm1n R′′
2n

L ′′
m2n

N1
N2

(Ä) (Ä) (mH) (mH) (Ä) (mH)

Rotor 1: Referred to 4 pole side 2.7 0.969 37.3 310 2.16 159 0.703

Rotor 1: Referred to 8 pole side 4.37 1.96 75.4 322 5.45 627 1.42

Rotor 2: Referred to 4 pole side 2.7 2.08 22 317 0.62 46.8 0.377

Rotor 2: Referred to 8 pole side 4.37 14.7 155 329 19 2230 2.65

Rotor 3: Referred to 4 pole side 2.7 1.01 22.5 315 - - -

Rotor 3: Referred to 8 pole side 4.37 9.2 213 328 - - -

Rotor 7: Referred to 4 pole side 2.7 0.522 35.4 364 - - -

Rotor 7: Referred to 8 pole side 4.37 1.54 105 377 - - -

Table 6.5: Calculated parameters for the equivalent circuit representation given in figure 6.2

6.4 Relationship of extracted parameters to the d-q axis model

Before concluding this chapter, it will be useful to relate the estimated parameters back to those used

in the d-q model. The first stage in this process is to convert the equivalent circuit of figure 6.2 to the

coupled coil equivalent circuit representation of figure 4.3.

The left hand side of figure 6.2 may be transformed into a coupled coils representation, using the

‘T’ equivalent form, but with the left hand inductance zero. The ‘T’ equivalent form is given by figure

4.6 with N = 1 and L1 = M . This transformation, and un-referring R2n gives the representation

shown in figure 6.5.
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Figure 6.5: An equivalent form of figure 6.2

The right hand side of figure 6.5 may be transformed to coupled coils form again using figure

4.6. We temporarily define Î2a = −I2a , V̂2 = −V2, convert transformer and inductor of figure 6.5

into coupled coil form, using M N = Lm2n
′′, L2 = M/N = Lm2n

′′
(

N2 Na
N1 Nb

)2
and L1 = M N . To
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reinstate V2 and I2a , we redefine them to be equal to V̂2 and Î2a respectively. Alternatively the original

sign convention could be maintained by changing the sign of M , this can be deduced from figure 4.5.

These manipulations lead to figure 6.6.
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Figure 6.6: A further equivalent form of figure 6.2

Figure 6.6 may be represented as the following matrix equation:
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(6.18)

Equation (6.18) is in the same form as equation (4.36), if the complex conjugate is taken of each side

and the voltage and current symbols redefined.

Tracing back through the derivation of section 4.3, in particular from equation (4.31), with equa-

tions (4.15), (4.16) and (4.17) we may disaggregate the mutual inductance, ‘Q’, and resistance matri-

ces. Therefore equation (6.18) may be re-written as:
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
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

(6.19)
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where:

R+ =
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Following back the derivation in section 4.2, which leads to the d-q axis version of the BDFM

model in section 3.3, we may deduce the rotor reference frame d-q axis model:
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6.5 Conclusion

In this chapter a new method of estimating parameters for the BDFM, and indeed standard induction

machines has been presented. The method is capable of producing all parameters needed for the

referred equivalent circuit, and care has been taken to ensure that the precise meaning, and relationship

to other forms of the equivalent circuit, has been maintained.

The parameter estimation method has been demonstrated on five of the seven rotor designs con-

sidered in chapter 5, as the remaining two rotor designs were not manufactured. The parameter

estimation method has been shown to yield parameter values which lead to a model, the outputs of
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which were verified by independent experiments at different operating conditions, and shown to be in

reasonable agreement. Furthermore, where possible, the parameter values were compared with those

provided by the manufacturer, and found to be in reasonable agreement.

The estimated parameter values were compared with those calculated using the method described

in chapters 2, 3 and 4. The parameter values were shown to be in good agreement generally, particu-

larly so when estimated from cascade induction mode tests. The parameter values were demonstrated

to give accurate predictions of the maximum and minimum torque envelope. The agreement of the

parameter values increases confidence in the accuracy of the parameter calculation method, includ-

ing the calculation of excess harmonic inductance, which it was argued is a significant parameter in

BDFM design.

The chosen solution method to the optimization problem posed by parameter estimation was

found to be acceptable. However, particularly when solving the problem of finding cascade induction

mode parameter values the crude random search algorithm was found to be relatively slow, as the

parameter space is much larger. A significant decrease in computational time was achieved by stop-

ping the random search prematurely and then using a gradient-based algorithm. The gradient-based

algorithm was started at the best 1000 points found by the crude random search. The disadvantage of

this approach was that the information gained by the standard deviation was largely lost.



Chapter 7

Modelling for Control of the BDFM

7.1 Introduction

In the chapters 2, 3 and 4 dynamic and steady-state models have been developed for the BDFM. In

chapter 4 the BDFM was analysed in steady-state and then from that steady-state analysis new rotor

designs were considered in chapter 5. We now turn our attention to dynamic analysis of the BDFM,

and use this to assist in the design of controllers.

In order to progress the BDFM towards commercial service, not only must the machine be de-

signed to give best possible performance in terms of high efficiency, high output power, and other

steady-state measures. However as a prerequisite, the machine must be fully controllable so that it

can always maintain these desired operating conditions. Typically these two demands tend to be at

odds with one another. For example, as the resistance of the machine windings decreases, the effi-

ciency will increase. However it will be shown in this chapter that as the resistance decreases the

system dynamics become more lightly damped.

For example, as a wind turbine generator, the machine must operate at a specific shaft speed to

gain the maximum power output from the turbine, while also maintaining a desirable power factor

[8]. Similar requirements apply for variable-speed drive applications, such as pump drives [10].

There is therefore a need for robust control algorithms which can regulate the desired quantities.

Unfortunately, as noted in chapter 2, the BDFM dynamic equations are non-linear and time-varying,

from equation (2.59). Although the transformation to a d-q reference frame synchronous with the

rotor in chapter 3 removed the position-varying parameters, the model remains non-linear (the torque

equations) and parameter-varying (dependence on shaft speed), as shown in equations (3.35) and

(3.40).

Although there are some systematic design procedures for designing non-linear control laws,

they generally apply to a tiny subset of non-linear systems encountered, and vary significantly in their

performance. This is in contrast to linear systems theory which has a rich set of design methods.

The array of advanced linear design tools motivates the derivation of a linearized model, even

155
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if this model will have significant limitations. Although it is possible to linearize any sufficiently

smooth system, the resulting linearized system may be time varying, even if the original system were

not explicitly so [26, p. 18]. However, it will be shown that by careful choice of reference frame it

is possible to derive a linearized system where the coefficients are constant under certain conditions,

and furthermore these equilibrium conditions consist of constant valued inputs. This is in contrast to

the only other presented linearized model for the BDFM (which incidentally only applies to a subset

of the class of BDFMs analysed here) where the inputs required to keep the shaft speed in equilibrium

are sinusoidally varying quantities, thus rendering the linearized system time varying [61]. We will

show that in the special case that the machine being analysed has only a single set of rotor circuits,

then the linearized model is in a similar form to that derived for the single frame cascade induction

machine, [24, 25].

The derivation of a model where constant-valued system inputs are required to hold an operating

point was first proposed in [130]. Such a model is known as a synchronous reference frame model

as the chosen reference frame is in synchronism with the currents. However in [130] only a current-

fed model is presented, and it only applies to a subset of the class of BDFMs considered in this

dissertation. In this chapter we derive a synchronous reference frame model for the entire class

of BDFMs analysed in chapter 3. We also describe a direct, systematic method for determining

equilibrium conditions that, in contrast to [60] does not require gradient-based optimization, and

gives all possible solutions.

We then show how the linearised model can be used to design linear control laws for the BDFM.

The approach adopted assumes that the objective is speed regulation which should be robust to

changes in load torque. This objective covers a wide range of applications.

A simple linear controller was proposed for the BDFM in [127]. However no analysis was pre-

sented, and the performance of the controller is significantly worse than that obtained here. We also

demonstrate the efficacy of the linearized BDFM model, comparing it against the models of chapters

2 and 3 and against experimental results obtained for the prototype BDFM with rotor 2.

7.2 Synchronous reference frame model

We now derive a synchronous reference frame model for the class of BDFMs analysed in chapter 3.

The approach used, although related, is somewhat different to that used in [130], specifically because

we present a general transformation for voltage source models, where in [130] it was necessary to

separate rotor current components into those induced from stator 1 and 2 respectively, in order to

derive the synchronous reference frame model.

The d-q model derived in chapter 3 was aligned to the rotor angular position, which, we showed,

removed the dependence on rotor position from the mutual inductance terms. Nevertheless, when

the machine is running in equilibrium, that is at a fixed shaft speed in the synchronous mode of
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operation, the currents are not constant values. However, during the derivation of the steady-state

equivalent circuit representation, it was shown in section 4.3 that under BDFM synchronous oper-

ation, the frequencies of currents in the two stators, and in the rotor, are the same in the d-q rotor

reference frame.

This fact suggests that if the reference frame is rotated so that it is in synchronism with these

currents, then the equilibrium value of the currents will become constant values. It was derived in

section 4.3 that when the BDFM is running in synchronous mode, that is, the shaft speed is related to

the supply frequencies by:

ωr =
ω1 + ω2

p1 + p2
(7.1)

then the frequencies of the currents in both stator windings and the rotor, in the rotor reference frame

are given by:

ωs = p1ωr − ω1 = −p2ωr + ω2 (7.2)

Hence we expect that if the reference frame is rotated by
∫

ωsdt , then the currents will be constant

value in equilibrium. In order to rotate the reference frame we define a transformation matrix for each

d-q pair which is a rotation matrix that rotates the signals by
∫ t

0 ωsdt .

However, from (7.2), ωs may be expressed in terms either of ω1, the stator 1 supply frequency, or

ω2, the stator 2 supply frequency. It makes most conceptual sense to define the transformation matrix,

and therefore the synchronous reference frame, in terms of the stator 1 supply, which it is (initially)

assumed is of fixed frequency as it is grid connected.

The transformation matrix for the stator 1 supply may now be defined:

Tsync(γ ) =







cos(p1θr − ω1t + γ ) sin(p1θr − ω1t + γ ) 0

− sin(p1θr − ω1t + γ ) cos(p1θr − ω1t + γ ) 0

0 0 1







(7.3)

where γ is some constant angular offset.

It is straight forward to show that equation (7.3) transforms stator 1 rotor reference frame voltages

to constant values. The results of the transformation are given in table 7.1.

In order to transform the stator 2 voltages and currents, the same form of the transformation

matrix is used, however the direction of rotation of the transformation matrix must be reversed. This

is because the stator 2 voltages and current rotate around the machine circumference in the opposite

sense to the stator 1 voltages and currents in the rotor reference frame. This point was discussed in

more detail in section 4.3. As (7.3) is a rotation matrix, the inverse (or equivalently the transpose) of

the matrix represents a rotation in the opposite sense.

In order to transform the rotor currents, the same transformation as used on stator 1 is applied.

This is because when the rotor currents were transformed from their real values into the rotor reference



158 Modelling for Control of the BDFM

frame d-q model, in section 3.3, the transformation matrix used, equation (3.5), was defined using the

pole-pairs corresponding to stator 1. Had equation (3.5) been defined using stator 2 pole-pairs, then

the direction of the rotation of the rotor currents in the rotor reference frame would have been re-

versed and consequently the required rotation direction to transform the current into the synchronous

reference frame would also have been reversed.

We will refer to this new reference frame where the currents and voltages assume constant values

in equilibrium, as the synchronous reference frame in the sequel.

There is one additional degree of freedom in the transformation into the synchronous reference

frame which has not yet been discussed. That is the constant angular offset, γ . γ can be used to align

the stator 1 and stator 2 d and q axes within the synchronous reference frame. We may exploit this

fact to simplify the synchronous reference frame model equations by rendering some (or possibly all)

the stator-rotor mutual inductance terms diagonal. For the rotor transformations we choose γ = 0

exclusively.

Table 7.1 (found at the end of the chapter) summarises the stator transformation matrices and the

corresponding voltage waveforms in the synchronous reference frame. For convenience the trans-

formations from terminal quantities to the d-q rotor reference frame, equations (3.1) and (3.2), are

repeated too.

7.2.1 Transformation from the rotor reference frame to the synchronous reference
frame

In section 3.3 the d-q axis model in the rotor reference frame was derived. The final form of the

model was given in equation (3.35). In order to transform the rotor reference frame d-q model into

the synchronous reference frame we need to define the complete transformation matrix, which will

comprise of N + 2 copies of (7.3) along the diagonal, where N is the number of sets of rotor circuits,

as discussed in section 3.3. As discussed in the preceding section the phase offset, γ is set to zero for

the rotor circuits, and to values which diagonalize the stator-rotor mutual inductance matrices in the

case of the stator transformations. The full transformation matrix is:

Tsync =















Tsync(φ11) 0 0 0 · · · 0

0 Tsync(φ21)
−1 0 0 · · · 0

0 0 Tsync(0) 0 · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 0 Tsync(0) 0

0 · · · 0 0 0 Tsync(0)















(7.4)

where φ11 and φ21 are the angles of the first stator-rotor mutual inductance for stator 1 and 2 respec-

tively as used in equations (3.26) and (3.27). The use of the inverse transformation for stator 1 reflects

the opposing direction of the currents
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The d-q model in the synchronous reference frame may now be derived. From (3.35):
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(7.5)

where Mdq, Qdq, Rdq are given in equation (3.35), and vs
dq0s1

denotes the stator 1 supply voltage

vector in the synchronous reference frame, as given in table 7.1. Similar notation is used for the other

voltages and currents.

The torque equation in the rotor reference frame is given in equation (3.38). Transforming into

the synchronous reference frame gives:

Te =
1
2
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(7.6)

We therefore define:

Rsync , Tsync RdqT
−1

sync (7.7)

Qsync(ω1, ωr ) , ωrTsync QdqT
−1

sync + Tsync Mdq
d
dt

T
−1

sync (7.8)

Msync , Tsync MdqT
−1

sync (7.9)

Ssync , Tsync







0 0 Qdqsr1

0 0 Qdqsr2

Qdqsr1
T Qdqsr2

T 0







T
−1

sync (7.10)

In terms of the new variable the equations are:
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(7.11)
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Hence the full dynamic equations in state-space form become:
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where J is the moment of inertia of the machine, and Tl is the load torque.

We now consider the result of the transformation to the synchronous reference frame, particularly

we show that Rsync, Ssync and Msync are constant-valued, and Qsync is linearly dependent on ω1 and ωr

only.

7.2.2 Evaluation of component matrices in the synchronous reference frame

As Rdq is diagonal and the resistance values appear in pairs it is easy to show that:

Rsync = Tsync RdqT
−1

sync = Rdq

because each resistance pair may be represented at the identity multiplied by a scalar which therefore

commutes with the transformation matrix.

Similarly the stator-stator portions of Mdq must remain unchanged under the transformation as

they too have the same structure. From consideration of the rotor-rotor terms, as given in equation

(3.24), it can be seen that the rotor-rotor terms remain unchanged, as all the rotor transformation

matrices have been chosen to be the same. The stator-rotor portions of Mdq which comprise of a

scaled rotation matrix of angle φ11 for stator 1 and φ21 for stator 2 will be diagonalised, and the

remaining terms will be rotated by −φ11 or −φ21 respectively. Hence Msync comprises of constant

terms only.

As Qdq is closely related to Mdq similar comments apply. However it is convenient to observe

that, from the definitions of Qdq , equations (3.17), (3.18), (3.28) and (3.29), the following relationship

holds between Qdq and Mdq :
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0 0 0







. . .






0 1 0

−1 0 0

0 0 0
























=
[

Qdq0s1 0 Qdqsr1

]

(7.13)
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where Mdq0s1, Qdq0s1 are the stator 1-stator 1 components and Mdqsr1, Qdqsr1 the stator 1-rotor of Mdq

and Qdq respectively as given in (3.35). A similar relationship holds for the stator 2 components.

The remaining term, Qsync(ωr , ω1) = ωrTsync QdqT
−1

sync + Tsync Mdq
d
dt T

−1
sync will now be analysed.

From (7.3):

d
dt

T −1
sync = (p1ωr − ω1)







− sin(p1θr − ω1t + γ ) − cos(p1θr − ω1t + γ ) 0

cos(p1θr − ω1t + γ ) − sin(p1θr − ω1t + γ ) 0

0 0 0







= (−p1ωr + ω1)







0 1 0

−1 0 0

0 0 0







T −1
sync

Therefore we may write:

Qsync(ωr , ω1) = Tsync





















p1ωr

[
0 1 0
−1 0 0
0 0 0

]

p2ωr

[
0 1 0
−1 0 0
0 0 0

]

[
0 0 0
0 0 0
0 0 0

]

. . .











Mdq+

(−p1ωr + ω1)Mdq











[
0 1 0
−1 0 0
0 0 0

]

[
0 −1 0
1 0 0
0 0 0

]

[
0 1 0
−1 0 0
0 0 0

]

. . .





















T
−1

sync (7.14)

It is easy to verify from (7.4) that Tsync and T
−1

sync commute with their neighbouring matrices in (7.14),

therefore:

Qsync(ωr , ω1) =











p1ωr

[
0 1 0
−1 0 0
0 0 0

]

p2ωr

[
0 1 0
−1 0 0
0 0 0

]

[
0 0 0
0 0 0
0 0 0

]

. . .











Tsync MdqT
−1

sync+

(−p1ωr + ω1)Tsync MdqT
−1

sync











[
0 1 0
−1 0 0
0 0 0

]

[
0 −1 0
1 0 0
0 0 0

]

[
0 1 0
−1 0 0
0 0 0

]

. . .











(7.15)

Therefore as Msync is constant, Qsync(ωr , ω1) is linearly dependent on ω1 and ωr .

Furthermore it can be noted that equation (7.14) shows that the first three rows, that is the rows

corresponding to stator 1, of Qsync(ωr , ω1) are independent of ωr . This can be seen by noting that
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due to the structure of Mdq the 3 × 3 blocks of Mdq commute with matrices of the form:
[

0 1 0
0 −1 0
0 0 0

]

,

therefore as there is no direct coupling between stator 1 and stator 2 it can be seen that the terms in

ωr cancel out.

Similarly it is easy to show that Ssync can be written as:

Ssync = Tsync





















p1

[
0 1 0
−1 0 0
0 0 0

]

p2

[
0 1 0
−1 0 0
0 0 0

]

[
0 0 0
0 0 0
0 0 0

]

. . .











Mdq+

Mdq











p1

[
0 −1 0
1 0 0
0 0 0

]

p2

[
0 −1 0
1 0 0
0 0 0

]

[
0 0 0
0 0 0
0 0 0

]

. . .





















T
−1

sync (7.16)

which can be written as:

Ssync =











p1

[
0 1 0
−1 0 0
0 0 0

]

p2

[
0 1 0
−1 0 0
0 0 0

]

[
0 0 0
0 0 0
0 0 0

]

. . .











Tsync MdqT
−1

sync+

Tsync MdqT
−1

sync











p1

[
0 −1 0
1 0 0
0 0 0

]

p2

[
0 −1 0
1 0 0
0 0 0

]

[
0 0 0
0 0 0
0 0 0

]

. . .











(7.17)

Hence as Msync is constant, then so is Ssync.

It is interesting to note that Youla and Bongiorno proved that a reference frame transformation

will exist for any electrical machine, with linear electrical dynamics, which transforms the differential

equations into an LTI system under the condition of constant rotor angular velocity [121]. It is not,

therefore, surprising that such a transformation can be found for the BDFM.

By way of an example consider a rotor with a single set of rotor circuits (or equivalently one

to which the model reduction technique of chapter 3 has been applied), with zero sequence states

removed:
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





vs
dqs1

vs
dqs2

0






=















Rdq1 0 0 0 0 0

0 Rdq1 0 0 0 0

0 0 Rdq2 0 0 0

0 0 0 Rdq2 0 0

0 0 0 0 Rdqr 0

0 0 0 0 0 Rdqr





















i s
dqs1

i s
dqs2

i s
dqr






+















Ldq1 0 0 0 M11 0

0 Ldq1 0 0 0 M11

0 0 Ldq2 0 M21 0

0 0 0 Ldq2 0 −M21

M11 0 M21 0 Ldqr 0

0 M11 0 −M21 0 Ldqr















d
dt







i s
dqs1

i s
dqs2

i s
dqr






+










0 ω1 Ldq1 0 0

−ω1 Ldq1 0 0 0

0 0 0 ((p1 + p2)ωr − ω1)Ldq2

0 0 −((p1 + p2)ωr − ω1)Ldq2 0

0 (ω1 − p1ωr )M11 0 (−ω1 + p1ωr )M21

(p1ωr − ω1)M11 0 (p1ωr − ω1)M21 0

0 ω1 M11

−ω1 M11 0

0 −((p2 + p1)ωr − ω1)M21

−((p2 + p1)ωr − ω1)M22 0

0 (ω1 − p1ωr )Ldqr

(p1ωr − ω1)Ldqr 0
















i s
dqs1

i s
dqs2

i s
dqr







(7.18)

The torque equation is given by:

Te =
1
2







i s
dqs1

i s
dqs2

i s
dqr







T















0 0 0 0 0 p1 M11

0 0 0 0 −p1 M11 0

0 0 0 0 0 −p2 M21

0 0 0 0 −p2 M21 0

0 −p1 M11 0 −p2 M21 0 0

p1 M11 0 −p2 M21 0 0 0





















i s
dqs1

i s
dqs2

i s
dqr







(7.19)

7.3 Synchronous Reference Frame Model Equilibrium Conditions

As it is assumed that stator 1 is connected to the grid, then (from table 7.1) α1, ω1, φ11 and V1 are

constant, for a given machine and grid. α1 has the physical interpretation of a constant phase ‘offset’

between the machine and the supply grid. As the instantaneous phase of the supply grid is, in a sense,

arbitrary, α1 may be set freely. Therefore without loss of generality we set α1 = −φ11 .
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From table 7.1 the phase of the stator 2 voltage in the synchronous reference frame is given by

(−p1 − p2)θr +
∫

ω2dt + ω1t + α2 + φ21 . It is immediate that when (7.1) holds, this phase must be

a constant value. Therefore in equilibrium ω2 must be given by:

ωe
2 = (p1 + p2)ωr − ω1 (7.20)

The equilibrium currents may be found for any supply voltage by solving the synchronous reference

frame dynamic equations, (7.11), for steady-state conditions, that is d
dt

[
i s
dq0s1

i s
dq0s2
i s
dqr

]

= 0.

It is assumed that it is desired to specify a value of the stator 2 voltage magnitude, and solve to

find the equilibrium currents, and stator 2 voltage phase offset in the synchronous reference frame.

Once this phase offset has been determined, the value of α2, which constitutes the stator 2 voltage

phase offset may be calculated from table 7.1.

Under steady-state conditions, from (7.11), the voltage and current equations are related as fol-

lows:






vs
dq0s1

vs
dq0s2

0






=
(

Rsync + Qsync
)







i s
dq0s1

i s
dq0s2

i s
dqr







(7.21)

Using (7.21), the torque can be expressed in terms of the voltage (noting that Rsync+Qsync will always

be invertible as long as the resistances are non-zero). We omit the zero sequence components as they

do not produce torque:

Te =
1
2







vs
dqs1

vs
dqs2

0







T

(Rsync + Qsync)
−1T

Ssync(Rsync + Qsync)
−1







vs
dqs1

vs
dqs2

0







(7.22)

partitioning (Rsync + Qsync)
−1TSsync(Rsync + Qsync)

−1 into stator 1, stator 2 and rotor portions, and

noting that it must be symmetric as Ssync is symmetric, the torque may be written as:

Te =
1
2







vs
dqs1

vs
dqs2

0







T 





A11 A12 ?

A12
T A22 ?

? ? ?













vs
dqs1

vs
dqs2

0







(7.23)

where Axy denotes the partition of A = (Rsync + Qsync)
−1T Ssync(Rsync + Qsync)

−1 and ? is used to

denote portions of A which do not contribute to the torque.

Multiplying out (7.23), and combining terms, gives:

Te =
1
2
vs

dqs1

T A11v
s
dqs1
+ vs

dqs1

T A12v
s
dqs2
+ 1

2
vs

dqs2

T A22v
s
dqs2

(7.24)

As A22 will be of the form of a scalar multiplied by a rotation matrix, then the final term only depends

on the magnitude of vs
dqs2

, (that is
√

vs
dqs2

Tvs
dqs2

) rather than its phase. Therefore the equilibrium

conditions may be calculated from the following procedure:
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1. Compute A = (Rsync + Qsync)
−1TSsync(Rsync + Qsync)

−1.

2. Choose a magnitude for the stator 2 voltage, hence compute 1
2v

s
dqs2

T A22v
s
dqs2

(as vs
dqs2

T A22v
s
dqs2

is independent of the phase of vs
dqs2

).

3. Write the stator 2 voltage in terms of a magnitude,
√

3V2, and phase angle, ζ :

vs
dqs2
=
√

3V2

[

cos(ζ )

sin(ζ )

]

(7.25)

4. Determine the maximum and minimum possible values for the electrical torque, given this

stator 2 voltage magnitude. From (7.24) the maximum and minimum torques are give by:

T max
e = 1

2
vs

dqs1

T A11v
s
dqs1
+
√

vs
dqs1

T A12 A12
Tvs

dqs1

√
3V2 +

1
2
vs

dqs2

T A22v
s
dqs2

(7.26)

T min
e = 1

2
vs

dqs1

T A11v
s
dqs1
−
√

vs
dqs1

T A12 A12
Tvs

dqs1

√
3V2 +

1
2
vs

dqs2

T A22v
s
dqs2

(7.27)

5. For equilibrium the desired electrical torque, Te will be equal to the load torque, Tl . Clearly

an equilibrium will only be possible if T min
e ≤ Tl ≤ T max

e . Note that in the equality conditions

there is only one solution for the phase of the stator 2 voltage, however at all other conditions

there are two unique solutions. From (7.24), the solutions may be found by solving for the

angle, ζ :

vs
dqs1

T A12

[

cos(ζ )

sin(ζ )

]

= 1√
3V2

(

Tl −
1
2
vs

dqs1

T A11v
s
dqs1
− 1

2
vs

dqs2

T A22v
s
dqs2

)

= K (7.28)

Therefore the solutions are given by:

ζ = arcsin(K/
√

a2 + b2)− arctan2(a, b) (7.29)

ζ = π − arcsin(K/
√

a2 + b2)− arctan2(a, b) (7.30)

where arctan2 denotes the 4 quadrant inverse tangent function of a/b (see [107, sect. 2-115])

and:

[

a b
]

= vs
dqs1

T A12 (7.31)

6. Having now determined vs
dqs2

completely, the equilibrium currents may now be found from

equation (7.21), as vs
dqs1

is already known.

7. If desired, the terminal voltages and currents may be calculated by using the inverse of the

transformations given in table 7.1
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7.4 Linearization of the Model

The model, given in equations (7.11), may now be linearized. The model is linearized by determining

the first term of the Taylor series expansion evaluated about the chosen equilibrium conditions (see

for example [26, p. 18], or [54]).

We seek a model of the form:

d
dt
(1x) = A1x + B1u (7.32)

where x ∈ R
n represents the state vector, and u ∈ R

m the input vector, and the original nonlinear

system can be represented as ẋ = f (x, u, t).

Following [26, p. 18] A = ∇x f (xe, ue, t), B = ∇u f (xe, ue, t), where ∇x f denotes:

∇x f =













∂ f1

∂x1

∂ f1

∂x2
· · ·

∂ f2

∂x1

∂ f2

∂x2
· · ·

...
...

. . .













As the stator 1 supply is constant, as discussed, it may simply be regarded as parameter which

affects equilibrium conditions.

We seek a model of the form:

d
dt












1i s
dq0s1

1i s
dq0s2

1i s
dqr

1θr

1ωr












= A












1i s
dq0s1

1i s
dq0s2

1i s
dqr

1θr

1ωr












+ B







1V2

1α2

1Tl







(7.33)

where A and B constant matrices which depend on the particular equilibrium condition, and1 is used

to denote ‘small changes’ in the variables from their equilibrium values. The other symbol retain their

meanings from the previous sections.
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The linearized model is then:

d
dt

















1i s
dq0s1

1i s
dq0s2

1i s
dqr

1θr

1ωr

















=

















M−1
sync

(

−Rsync − Qsync(ω1, ω
e
r )
)

M−1
sync









0
∂vs

dq0s2

∂θr

∣
∣
∣
∣
eqm.

0









−M−1
sync
∂Qsync

∂ωr
(ω1)







i se
dq0s1

i se
dq0s2

i se
dqr







[

0 0 0
]

0 1

1
J

[

i se
dq0s1

T i se
dq0s2

T i se
dqr

T
]

Ssync 0 0




























1i s
dq0s1

1i s
dq0s2

1i s
dqr

1θr

1ωr












+

















M−1
sync








0
1
V2
vse

dq0s2

0








M−1
sync









0
∂vs

dq0s2

∂α2

∣
∣
∣
∣
eqm.

0









0

0 0 0

0 0 − 1
J























1V2

1α2

1Tl







(7.34)

where the superscript e indicates an equilibrium value (e.g. i se
dq0s1

).
∂Qsync

∂ωr
(ω1) denotes the partial

derivative of Qsync with respect to ωr , as Qsync was shown to be linearly dependent on ωr then the

derivative will be a constant, that is only a function of the constant ω1.
∂vs

dq0s2

∂α2

∣
∣
∣
∣
eqm.

denotes a partial

derivative of the stator 2 supply voltage, which is subsequently evaluated at the equilibrium condi-

tions; this will be discussed in the sequel. 1
V2
vse

dq0s2
is the partial derivative of the stator 2 voltage with

respect to the voltage magnitude, V2, and then evaluated at the equilibrium conditions.

The presence of partial derivatives of the stator voltages in (7.34) deserves some clarification.

From table 7.1 the stator 1 winding voltages are constant in the synchronous reference frame, that is

they are independent of the input and state variables of (7.34). However the stator 2 winding voltage is

a function of θr , which is one of the states of (7.34) as well as the control inputs V2 and α2. Therefore

the linearised system must contain a term by which 1θr affects the machine currents,
∂vs

dq0s2

∂θr

∣
∣
∣
∣
eqm.

.

Also the ‘B’ contains similar terms which derive from the partial derivatives of the stator 2 voltages.

It is significant, however, that these terms are constant valued when evaluated at their steady-state
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operating conditions. From table 7.1:

∂vs
dq0s2

∂θr

∣
∣
∣
∣
eqm.
= (−p1 − p2)







−
√

3V e
2 sin(ζ e)

−
√

3V e
2 cos(ζ e)

0







(7.35)

∂vs
dq0s2

∂V2

∣
∣
∣
∣
eqm.
=


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7.4.1 Conclusions for the Linearized Model

From the derivation of the linearized model a number of conclusions can be drawn about BDFM

behaviour in the synchronous mode of operation which corroborate well-known results:

• The BDFM has a synchronous mode of operation much a like a synchronous machine, that

is changes in load torque do not affect the steady-state shaft speed. This can be seen as a

consequence of the natural ‘integral action’, which is present in (7.34): because part of the

state vector contains 1θr , then the only possible equilibrium conditions are when 1ωr = 0, as

all others much imply d1θr
dt 6= 0. Therefore any changes in load torque imply a change in 1θr

and the current, but not1ωr . This change in physical angle was observed using a strobe on the

prototype machine, a phenomenon also noted by other authors (e.g. [115, 125]).

• Changes in both magnitude (of sufficiently small amount) and phase (by any amount) of the

stator 2 supply voltage do not affect the steady-state shaft speed. From similar reasoning to

that applied to the load torque, changes to V2 cannot affect1ωr , or else the equilibrium cannot

be maintained. From table 7.1, it can be seen that any change in the phase of V2, α2, may

be matched by a change in θr and the value of the stator 2 supply voltage in the synchronous

reference frame remain constant.

7.4.2 Simplification of Linearized Model

It is possible to simplify the linearized model derived if it is assumed that the electrical dynamics

are sufficiently fast such that they can be considered to be constant. It must be emphasised that

this assumption is not true, and may not even be a good approximation. Even if it were a good

approximation, it is entirely possible that the simplified model may not be stable when a full linearized

model (and hence the BDFM) is, and vice-versa. Nevertheless the simplicity of the model, makes the

simplification worth consideration, although its application may be very limited.
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From (7.34), if the electrical dynamics can be considered constant, then the linearized system

may be written in terms of only the mechanical states:

d
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where:
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which, from (7.23) can be written as:
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7.4.3 Linearization Example

By way of an example we consider the linearization applied to a BDFM with a single set of rotor

coils, with equations given by (7.18) and (7.19).
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It is interesting to note that (7.41) is similar in form to the linearized model of the doubly-fed

cascade induction machine analysed by Cook and Smith [24]. This similarity is not unexpected as the

form of the BDFM equations in the synchronous reference frame, are similar to those derived in [24].

The simplified linearised model becomes:



7.5 Simulated Results 171

d
dt

[

1θr

1ωr

]

=








0 1

Ksync3 (p1 + p2)ω
e
r
√

3V e
2 sin(ζ e)−

Ksync4 (p1 + p2)ω
e
r
√

3V e
2 cos(ζ e)

Ksync3 ((p1 + p2)Ldq2 ise
qs2
− (p2 + p1)M21 ise

qr )+
Ksync4 (−(p1 + p2)Ldq2 ise

ds2
− (p2 + p1)M22 ise

dr
)+

Ksync5 (−p1 M11 ise
qs1
+ p1 M21 ise

qs2
− p1 Ldqr ise

qr )+
Ksync6 (p1 M11 ise

ds1
+ p1 M21 ise

ds2
+ p1 Ldqr ise

dr
)








[

1θr

1ωr

]

+

[
0 0 0

Ksync3

√
3 cos(ζ e)− Ksync4

√
3 sin(ζ e) −Ksync3

√
3V e

2 sin(ζ e)− Ksync4

√
3V e

2 cos(ζ e) − 1
J

]




1V2

1α2

1Tl



 (7.42)

where Ksyncn
denotes the nth element of the row vector Ksync, defined in (7.40).

7.5 Simulated Results

The synchronous reference frame model and linearised model was implemented using the Mat-

lab/Simulink computer modelling environment. The nested-loop design rotor, rotor number 1 was

simulated being subject to a step increase in instantaneous phase on the the stator 2 voltage supply.

That is, α2 of table 7.1, was subject to a step increase at t = 0. The machine was configured to run

at an equilibrium point, which was determined by the method described in section 7.3. It is expected

that if the machine is in a stable operating point the operating point will recover after the increase in

phase. This phenomenon can be understood from the stator 2 voltage in the synchronous reference

frame, given in table 7.1: as α2 changes θr changes in such a way to cancel out the change. Five

different model variants were compared:

1. Full 26 state coupled-circuit model of chapter 2, 6 states for the stator currents, 18 states for

rotor currents and two mechanical states.

2. Full order d-q transformed model (with zero sequence states removed), as described in chapter

3. The prototype nested-loop rotor BDFM has 3 sets of 6 loops, therefore the model has 4 stator

states, 6 rotor states and 2 mechanical states, giving a total of 12 states.

3. Reduced order d-q transformed model, using the new method described in section, 3.4.2. The

rotor is reduced to 2 states, hence there are 8 states in total.

4. Linearized version of the full d-q model with 12 states.

5. Linearized version of the reduced order d-q model with 8 states.

As discussed in chapter 3 the reduced order d-q model appears to be a very good approximation

of the full order system. This proposition was corroborated during this series of tests, to the extent



172 Modelling for Control of the BDFM

that at the scale of the graphs there was no visible difference between the two. For this reason the

reduced order d-q model, and linearised version have been omitted from all but figure 7.2(b), to aide

clarity.

The responses of the shaft speed and d-axis stator 1 current in the synchronous reference frame

have been compared at different operating points. These measurements were chosen as they illustrate

the performance of the different models, the other current measurements had a similar accuracy.

Figures 7.1(a) and 7.1(b) show the speed response to a small phase change at two different op-

erating points, one stable, the other unstable. Figures 7.1(c) and 7.1(d) show the d-axis synchronous

reference frame current under the same conditions. In each case the response of the 26 state full

coupled circuit model, the full d-q model and the linearized d-q model were included.

Figures 7.2(a) and 7.2(b) show the the speed response at the same stable operating point used in

figure 7.1, but with a much larger phase change. Figure 7.2(a) may be compared with figure 7.1(a),

where the phase changes were 6◦ and 60◦ respectively. Figures 7.2(a) and 7.2(b) compare the full-

order linearized d-q model and reduced order linearized d-q model.

Figures 7.2(c) and 7.2(d) show the real part of the eigenvalues of the linearized full order system

at the stable and unstable operating points. The figures show the change in eigenvalues as the operat-

ing point changes, brought on by a change in load torque. No values are given outside certain bounds,

as this bound corresponds to the maximum torque available from the machine at those voltage mag-

nitudes. Two sets of eigenvalues are plotted in each case, one set in blue and the other in red. The

two sets of eigenvalues corresponding to the same load torque and voltage magnitude, but differing

voltage phase, as described in section 7.3.

Figure 7.3 shows the real parts of the eigenvalues of the full order linearised model and the reduced

order linearised model.

From figures 7.1, 7.2 and 7.3 we may draw the following conclusions:

• The full-order and reduced order d-q model are accurate representations of the full coupled

circuit model in this case.

• The full-order linearized model is an excellent approximation of the full system, however as

the system is perturbed away from the operating point the accuracy decreases, as expected.

• The reduced order linearised model is also an excellent approximations of the full system, this

fact is corroborated by the eigenvalue plots, which are almost co-incident with those of the full

order model, except for the extra eigenvalues, which are stable

• The stability of an operating point was predicted by the linearized model, as expected.

• The stability of the simulated prototype BDFM with a nested loop rotor varied significantly

with both load torque, stator voltage magnitudes and shaft speed. Certain regions were naturally

unstable.
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Figure 7.1: Nested-loop design rotor response to a step change in stator 2 voltage phase. The stable

operating point was, 300 rpm, 240Vrms stator 1 phase voltage, 216Vrms stator 2 phase voltage, 5 N m

load torque, and the phase change was 6◦ as indicated. The unstable operating point was 700 rpm,

240Vrms stator 1 phase voltage, 96Vrms stator 2 phase voltage, 5 N m load torque, and the phase change

was 0.5◦.
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Figure 7.2: The response of the prototype nested loop rotor to a 60◦ phase change, and the real part of

the eigenvalues of the linearized model at the two operating points (shown in blue). Additionally the

real part of the eigenvalues of the other solution to another operating point having the same voltage

magnitudes, load torque but differing voltage phase (shown in red). The operating points are described

in figure 7.1
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7.6 Open-loop Experimental Results

Rotor 2 was tested open-loop, in the prototype machine. Full details of the experimental apparatus are

given in appendix E. As with the simulated results a step change in phase was applied to the stator 2

voltage source, and the response of the shaft speed logged. The experimental data was compared with

simulated data generated using the parameter values found in section 6, and a calculated value for the

moment of inertia of the drive train. However as the dimensions of the rotor of the DC load motor

can only be estimated, this value could be significantly in error, the value was therefore adjusted to

J = 0.59kgm2, which was still within estimation error range of the calculated value, but gave a

natural frequency closer to that found in practice. The resistance values were increased to R1 = 4Ä

and R2 = 5.5Ä (from the estimated values of R1 = 3.6Ä and R2 = 4.3Ä) to compensate for

additional supply impedances present. This increase in impedance was necessary for the simulated

results to be stable at the second operating point.

Figure 7.4 shows the response at an unstable operating point, and figure 7.5 at a stable operating

point. It is significant to note that the two operating points differ only in their supply voltage, yet one is

stable and the other unstable (as the oscillations in figure 7.4 are divergent and whereas those in figure

7.5 are convergent). Figure 7.6 shows the maximum real part of the linearized system eigenvalues over

a range of torques at the two operating conditions. Although the same general ‘shape’ is obtained in

both conditions, the centre point moves, which made one operating point unstable at no-load. Figure

7.6 suggests that stability would be achieved if the load torque was increased, which is precisely what
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was found in practice.
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Figure 7.4: Speed response to a −67.5◦ phase change applied to the stator 2 voltage supply. V1 =
90Vrms, V2 = 81.5Vrms, 0 N m load torque. Both sub-figures show the same event at different time

scales

Figures 7.4 and 7.6 show that the full d-q model and its linearization are in reasonable agreement

with reality. The simplified linearized d-q model (as described in section 7.4.2) is also included

for comparison, however although the natural frequency is approximately right, the damping is in

significant error in both figures.

However the damping of the full d-q model and its linearization is still at odds with that found

in experiment. It is likely that effects, such as supply impedance and frictional forces are partly the

cause, combined with the inevitable errors in the parameter values in the simulation model.

Figure 7.4 shows that the natural frequency of the full d-q model and its linearized counterpart

are somewhat in error. However the amount of error is comparable with that found in figure 7.2(a)

between the non-linear and linearized models, allowing for the differing time scales.

In conclusion, the results found by experiment on the prototype machine are in good agreement

with those obtained from simulation. However, the machine dynamics themselves are very lightly

damped, or unstable at the operating conditions investigated. Even the stable operating condition

is hardly usable as a commercial drive, furthermore it was found that if the stator resistances were

halved in value in simulation tests, then neither operating point was stable for any load torque with

any stator 2 supply voltage. Therefore the use of feedback to stabilize the operating point will now

be considered.
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Figure 7.5: Speed response to a 22.5◦ phase change applied to the stator 2 voltage supply. V1 =
68Vrms, V2 = 70Vrms, 0 N m load torque.
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Figure 7.6: Comparison of the maximum real part of the eigenvalues of the linearized system at

two different supply voltage corresponding to the operating condition of figures 7.4 and 7.5, against

load torque. The horizontal lines do not correspond to valid operating conditions as the particular

combinations of supply voltages cannot deliver the torque.
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Figure 7.7: Stator 2 phase angle control concept

7.7 Closed-loop ‘stator 2 phase angle control’

In section 7.6 it was found that there are operating points within the machine operation envelope

which are very lightly damped or unstable. Such regions have been found by other groups (e.g [61]).

In [84] the author described two control strategies which can be used to stabilize the BDFM. The first

of these, ‘stator 2 phase angle control’ will now be described.

The essential idea is to feed back the speed error as the value of α2, the phase input to the stator 2

supply, as shown in figure 7.7. V1 and V2 represent the stator 1 and 2 voltages, which will be of the

form given in table 7.1, and Tl is the load torque. Together these parameters set the operating point.

The designer must choose K to stabilise the closed loop. The idea is to choose K so it robustly

stabilizes the system, such that the load torque and stator 2 supply voltage magnitude can be set

within some range (that is the operating point can be changed slightly) without loosing stability.

However, although the linearised model is accurate in some neighbourhood of the operating point, as

soon as the operating point changes, the model will no longer be correct. Furthermore the system is

not (or may not) be accurately represented by the linearized model in transition between operating

points. Typically if the transition is sufficiently slow, then the linearized model will be accurate. This

complicates the design of K .

A full discussion on the design of K is beyond the scope of this dissertation, however some

practical methods are proposed, and then some possible extensions are discussed in section 7.9.

If K is restricted to controllers without integral action, then the operating point cannot be changed

if the system is stable. This is because α2 can never be a ramp in the steady-state, and therefore the

steady-state shaft speed must remain unchanged. Although this might appear restrictive, the operating

point may still be changed by modifying ω2, and it is actually advantageous because it means that

there will be no steady-state error.

Furthermore if K does contain integral action, any error introduced will be constant in the steady-

state. The error will be proportional to the fixed errors in the measured and demanded value of ω1,

ω2 and ωr . However, as these errors can easily be made of the order 1 part in 216 (by the use of 16

bit precision electronics), then such steady state errors are small enough to make the use of integral



7.7 Closed-loop ‘stator 2 phase angle control’ 179

action in the controller possible. The addition of integral action to the controller was found to improve

the ability of the controller to stabilize large deviations from an operating point.

Regardless of how K is chosen, the steady-state operating point may be set by choice of V1, ω1, V2, ω2,

and then stabilized by K . The designer therefore has freedom to optimize for steady-state perfor-

mance, without concern for stability which can be ensured by the design of K .

In practice it was found that proportional or proportional-integral controllers could be tuned to

give reasonable damping in experiments on the prototype BDFM. Furthermore, these controllers were

found stabilize the system over a significant range of operating points. During these experiments the

value of ω2 was set open-loop by the value of ωd from equation 7.1 as shown in figure 7.7. |V2| was

chosen as a function of ωd : |V2| = k max{ |ωd−ωn |
ωn

, 0.2}, that is, |V2| was proportional to the deviation

from natural speed with a boost at low values.

7.7.1 Experimental Results

The control algorithm was implemented in simulation and on the experimental test rig described in

appendix E. Although the analysis in this section requires the synchronous reference frame model,

the implementation of the control law simply requires the creation of 3 phase balanced voltages for

the stator 2 supply. This is achieved by the inverter, the input of which was designed to accept three

parameters, ω2, V2 and α2. Thus ω2 and V2 are fixed for the operating point and α2 = K p(ωd −ωr )+
∫

Ki (ωd − ωr )dt .

Figure 7.8 shows the same operating point as figure 7.5 stabilized with a PI controller, K p = 1,

Ki = 3, with all measurements in radians (and radians per second).

We now consider the robustness of the controller by changing the operating point. This is achieved

by varying the load torque and shaft speed: figures 7.9(c) and 7.9(d) show the response to a step

change in load torque, which is now well damped.

Figure 7.9 shows 50 rpm step responses up and down for the BDFM stabilized with the same PI

controller. Note that moving operating speed changes the operating point and so the system dynamics

are no longer the same. Furthermore, as discussed, the dynamics in transit between operating points

are likely to be poorly predicted by a linear model. The stator 2 voltage magnitude, |V2| was scaled

linearly with the demanded shaft speed: |V2| = |V o
2 |
∣
∣
∣
ωd−ωn
ωn

∣
∣
∣ where ωd is the demanded speed, ωn is

the natural speed as given by (1.2), and |V o
2 | is a constant reference voltage.

The oscillations in the rising edge of figure 7.8(a) do not appear in the linearized model, and

furthermore the linearized model suffers from a steady-state offset when the shaft speed is changed.

This is to be expected from the form of the linearized model, equation (7.34).

The results show that even simple PI control can achieve stability which is robust to modest

changes in operating conditions, furthermore the linear model is shown to accurately predict the

closed loop system even under changes in load torque, which constitute a change in operating point.

However it was found that if a step change in equilibrium speed greater than about 60 rpm was de-
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(a) 67.5◦ step change in stator 2 voltage phase
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(b) 22.5◦ step change in stator 2 voltage phase

Figure 7.8: Closed-loop speed response under ‘stator 2 voltage phase angle control’ to a 67.5◦ and

22.5◦ step phase change applied to the stator 2 voltage supply. The step phase change was introduced

by augmenting α2 of figure 7.7 by injecting a disturbance d , where d represents the step change.

V1 = 68Vrms, V2 = 70Vrms, 0 N m load torque, the same operating condition as figure 7.5

manded then the system lost stability.

7.8 Control when
∫

ω2dt = (p1 + p2)θr −
∫

ω1dt

The concept of ‘stator 2 phase angle’ control was to stabilize a open-loop operating point of the

machine, however no attempt was made to stabilize transitions from one operating shaft speed to

another.

It can be seen from (7.34) that if
∫

ω2dt = (p1 + p2)θr −
∫

ω1dt , then
∂vs

dq0s2
∂θr

= 0 as vs
dq0s2

is no longer a function of θr . This has the effect of removing 1θr as a state from the linearized

model. Therefore the linearized model can now have many different equilibrium speeds. This implies

a loss of the natural integral action maintaining the synchronous speed, and the machine now behaves

more like an asynchronous machine where its steady-state operating point is not robust to torque

perturbations.

However the integral action can be restored though the design of a suitable controller, K . The

configuration of the feedback loop is the same as that for stator 2 phase angle control, as shown in

figure 7.7. It was found that reasonable performance could be achieved with K p = 0.3 and K i = 0.6.

Figure 7.10 shows experimental and simulated results from this control strategy. The first thing

to note is that figures 7.10(c) and 7.10(d) show that the system was stable for 100 rpm demanded

step changes in ωr . Furthermore it was found that the same controller gains permitted 100 rpm step

changes within the speed range from 0 to 600 rpm. Beyond that range the robustness was found to
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deteriorate, and different gains were required for adequate performance

However figures 7.10(a) and 7.10(b) show a degraded torque disturbance rejection over that shown

in figure 7.9. Furthermore there is a steady-state error introduced, as was also the case in the speed

step responses.

The steady-state error was due to the implementation of
∫

ω2dt = (p1+ p2)θr −
∫

ω1dt . Instead

of using θr measurement directly,
∫

ωr dt was used which therefore led to errors being introduced. It

was found by simulation that a 0.1% error in the value of ωr was sufficient to produce the steady-state

error observed in the experiment. This order of the error is consistent with the limitations of the speed

transducer (see appendix E). A steady-state error persisted despite integral action in the controller as

the errors in ωr led to constant errors in angular speed error, which is therefore a ramp error in phase;

hence single integral action cannot drive the steady-state error to zero.

The steady-state error can, however, be reduced by as much as is desired by reducing the error

in implementing
∫

ω2dt = (p1 + p2)θr −
∫

ω1dt . Practically speaking this was achieved by using

the measured position, θr (rather than integrating ωr ), and by generating
∫

ω1dt using a phase-locked

loop locked onto the stator 1 voltage. The input to the inverter was then the instantaneous phase of the

desired stator 2 voltage, rather than the angular frequency. This alternative design was implemented

in software using the experimental test rig, and was found to substantially remove the speed offset.

However this was achieved at the expense of requiring the measurement of the instantaneous stator 1

voltage at a high sample rate.

7.9 Future work on linear model based control

Two linear control strategies have been presented in this chapter. Both strategies are scalar strategies

and therefore assume that the magnitude of the stator 2 will be set open loop (or in a very slow

closed loop). This is a reasonable assumption for general motor drive and generator applications

where the bandwidth requirements of speed tracking are considerably more stringent than any other

consideration.

The speed step response rise-time of both strategies compared favourably to previously published

results. For a 50 rpm step the rise time for stator 2 phase angle control was 750 ms and the fall time

350 ms. For the second strategy the rise time was approximately 1500 ms and the fall time 2000 ms.

Previously published rise times are 15000 ms for so-called scalar control [127, 126], and between

300 ms and 1200 ms for various field-orientated control schemes [126, 124].

It must be emphasised that the design of controllers for these strategies has not been thoroughly

considered, so the presented results are likely to be worse than those that could be expected in the

future. We will now briefly consider methods of improving controller performance.

Although there are fundamental limitations in linear design methods when applied to non-linear

plants, a significant improvement in performance is typically obtained by designing a series of lin-
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ear controllers for different operating points and then scheduling between these controllers for the

implementation. This technique, known as gain scheduling, seeks to find a controller which is param-

eterised in some way on operating points. Traditionally such methods were ad-hoc methods where

a plant was linearized at a number of operating points, and controllers designed for each. There are

two problems with these methods, firstly that while each controller will stabilize its own operating

point, and possibly neighbouring operating points, it may not stabilise the transition between the two.

Secondly switching between two (or more) controllers which stabilize an operating point can actually

introduce instability.

Recent advances on the formulation of gain scheduling problems as LMIs has led to solutions

to both these difficulties in some circumstances. Rugh and Shamma give an thorough summary of

research to date, with a good list of references, [89], and Apkarian and Adams is recommended for

controller synthesis [3].

Rugh and Shamma describe two different methods of achieving gain scheduling. The more recent

of these methods, ‘quasi-LPV’ control, uses LMIs to find parameter dependent controllers which

guarantee stability and some performance measures [89, sect. 5]. Unfortunately the method requires

that the scheduling variable (possibly a vector) is measurable in real time. This presents a significant

problem for application of these methods to the BDFM. The BDFM operating points depend on the

load torque, shaft speed, voltages and currents, and the rotor current is very unlikely to be available

for measurement in real time.

Rugh and Shamma also give a summary of developments in the traditional gain-scheduling ap-

proach where a set of linear controllers are designed for a set of equilibria and then interpolated in

some way to produce parameter dependent controllers [89, sect. 4]. In the BDFM the steady-state

operating points of the BDFM depend only the supply voltages, shaft speed, and load torque (as the

current can be computed in the steady-state). It is likely that the load torque dependence can be re-

placed by a dependence on the stator currents. Therefore the linear controllers would only depend on

these measurable parameters. Under certain conditions, which include bounding the rate of variation

of the parameters, stability can be guaranteed.

Whether or not it is possible to obtain a stability guarantee gain scheduled controllers are likely to

be applicable. One appealing aspect of the approach is that one might choose to specify the only one

scheduling parameter, say the shaft speed, if all the other parameters can be expressed as a function of

the shaft speed. In an application where the BDFM is connected to a device for which the load torque

is a known function of speed (for example if the BDFM was operating as a pump), and the voltages

were specified open loop, then a gain scheduled controller would only need to be parameterised on

the shaft speed. In [84] the author presented results from a gain-scheduled version of stator 2 phase

angle control, where the BDFM was stabilized over a wide speed range, which illustrates that such an

approach is possible.

There is also scope for including uncertainty explicitly in the model, and designing control laws
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which achieve guaranteed stability, and possibly guaranteed performance in the face of this uncer-

tainty. Apkarian and Adams (and others) have shown that it can be achieved for unstructured time-

varying uncertainty in the case of quasi-LPV methods [3]. However at the time of writing no results

have appeared for the inclusion of structured uncertainty, which is likely to limit the application to

the BDFM. The linearization gain scheduling methods can incorporate uncertainty in the design of

linear controllers for each operating point. However this does not imply any guarantees for the global

properties of the closed loop system. However if a controller has been designed using the lineariza-

tion gain scheduling methods (or indeed by the quasi-LPV methods) its stability can be investigated

using LPV analysis techniques [120]. The practical implementation of the necessary LMIs is similar

to that described in [3] for the LPV synthesis problem.

7.10 Conclusions

In this chapter we have presented a synchronous reference frame model for the full class of BDFM

machines considered in chapter 2. The synchronous reference frame was shown to be simply an

invertible state transformation of the rotor reference frame dq model of chapter 3

The synchronous reference was used to determine all equilibrium points, and it was noted that in

general there are either 2, 1 or 0 possible equilibrium points for a given stator 1 voltage, load torque

and stator 2 voltage magnitude.

The synchronous reference frame model was then linearized about its equilibrium points. Simu-

lation results were presented for the ‘nested-loop’ design rotor, comparing the full range of models,

from the coupled circuit model of chapter 2, through the full d-q and then reduced order d-q models

of chapter 3, to the linearized versions of these models.

Excellent agreement was found for all operating conditions investigated. The linearized models

predicted the stability and damping accurately. The exception to this was the simplified linearized

model, which did not correctly predict the damping.

Experimental results were presented for the double-layer rotor design, rotor 2 in open-loop con-

ditions, and the linearized model, using parameters estimated in chapter 6, gave good predictions of

stability and dynamic performance.

Two linear control strategies were presented, stator 2 phase angle control and control when
∫

ω2dt = (p1 + p2)θr −
∫

ω1dt . It was shown that both strategies could stabilize previously un-

stable operating points, and the performance of these controllers compared favourably to previously

published results.

It was concluded that the use of gain-scheduled controllers for these control strategies would be

likely to further improve performance.
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(a) Speed step response from 200 rpm to 250 rpm
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(b) Speed step response from 250 rpm to 200 rpm
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(c) Response to load torque step from 7 N m to 0 N m
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(d) Response to load torque step from 0 N m to 7 N m

Figure 7.9: Closed-loop speed response under ‘stator 2 voltage phase angle control’ to demanded step

speed change from 200 rpm to 250 rpm and back down, and step change in load torque from 0 N m

to 7 N m and back down. V1 = 68Vrms, V2 = 70Vrms, 0 N m load torque for speed steps, the same

operating condition as figure 7.5
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(a) Response to 5 N m step increase in torque
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(b) Response to 5 N m step decrease in torque
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(c) Step response from 200 rpm to 300 rpm
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(d) Step response from 300 rpm to 200 rpm

Figure 7.10: Closed-loop speed step response when
∫

ω2dt = (p1+ p2)θr−
∫

ω1dt to demanded step

speed change from 200 rpm to 300 rpm and back down, and step change in load torque from 0 N m

to 5 N m and back down. V1 = 68Vrms, V2 = 70Vrms, 0 N m load torque for speed steps, the same

operating condition as figure 7.5
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Terminal Phase Voltage Rotor ref. frame d-q quantity Sync. ref. frame. d-q quantity

Stator 1

Voltage:







√
2V1 cos(ω1t + α1)√

2V1 cos(ω1t + α1 − 2π
3 )√

2V1 cos(ω1t + α1 + 2π
3 )













√
3V1 cos(p1θr − ω1t − α1)√
3V1 sin(p1θr − ω1t − α1)

0













√
3V1 cos(α1 + φ11)

−
√

3V1 sin(α1 + φ11)

0







Transformation:
√

2
3







cos(p1θr ) cos(p1(θr − 2π
3p1
)) cos(p1(θr − 4π

3p1
))

sin(p1θr ) sin(p1(θr − 2π
3p1
)) sin(p1(θr − 4π

3p1
))

1√
2

1√
2

1√
2













cos(p1θr − ω1t + φ11) sin(p1θr − ω1t + φ11) 0

− sin(p1θr − ω1t + φ11) cos(p1θr − ω1t + φ11) 0

0 0 1







Stator 2

Voltage:







√
2V2 cos(

∫

ω2dt + α2)√
2V2 cos(

∫

ω2dt + α2 − 2π
3 )√

2V2 cos(
∫

ω2dt + α2 + 2π
3 )













√
3V2 cos(p2θr −

∫

ω2dt − α2)√
3V2 sin(p2θr −

∫

ω2dt − α2)

0













√
3V2 cos((−p1 − p2)θr + (

∫

ω2dt + ω1t)+ α2 + φ21)

−
√

3V2 sin((−p1 − p2)θr + (
∫

ω2dt + ω1t)+ α2 + φ21)

0







Transformation:
√

2
3







cos(p2θr ) cos(p2(θr − 2π
3p2
)) cos(p2(θr − 4π

3p2
))

sin(p2θr ) sin(p2(θr − 2π
3p2
)) sin(p2(θr − 4π

3p2
))

1√
2

1√
2

1√
2













cos(p1θr − ω1t + φ21) − sin(p1θr − ω1t + φ21) 0

sin(p1θr − ω1t + φ21) cos(p1θr − ω1t + φ21) 0

0 0 1







Table 7.1: Comparison of stator voltages in different reference frames



Chapter 8

Feedback Linearization for the BDFM

In chapter 7 a synchronous reference frame model for the considered class of BDFM machines was

derived, the model linearized, and two control strategies proposed based on the linearized model.

The shortcoming of this approach is that linear controller designs for large deviations from an

equilibrium point cannot be systematically approached. This is because the linearized model is only

accurate for small deviations from the equilibrium point and, although the non-linear model can be

used to predict the performance further away from the equilibrium point, it does not aid the design of

controllers.

There is, therefore, a need for a systematic method of controller design for large deviations from

an equilibrium point. As discussed in section 1.1, a ‘direct torque control’ method was proposed for

the BDFM, although never implemented [13, 14, 128], and a number of variations of a field orientated

control scheme were proposed and some of these were implemented [125, 129, 130, 126, 124]. The

field-orientated control schemes all require a current source inverter.

We therefore develop non linear control schemes for the BDFM which may be implemented using

voltage source inverters.

Feedback linearization (FBL) was first applied to the BDFM by the author in [82, 84]. FBL was

applied to the coupled circuit model for a ‘nested-loop’ design rotor BDFM. However this led to a

high order model for which the majority of the states (the rotor currents) could not easily be measured.

An equivalent approach is used in this chapter in the d-q synchronous reference frame. It has the

advantage of reduced state dimension, and constant current and voltage values in the steady-state.

We give two applications of FBL to the BDFM, one regulating speed only and one regulating

both speed and flux. We discuss the choice of observer to estimate unmeasurable states, and inves-

tigate the entire controller implementation in simulation. We conclude the chapter with some initial

experimental results from an implementation of the FBL control schemes on the prototype machine.

187
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8.1 Feedback Linearization

We start with some definitions and then give a concise introduction to FBL. The results presented here

are taken from Isidori and Slotine and Li [50, 101], to which the reader is referred for full details.

8.1.1 Preliminaries

Definition 8.1. [101, Def. 6.1]Lie Derivative: Given a scalar function h(x), h ∈ R and a vector

function f (x) ∈ R
n , where x ∈ R

n , then the Lie derivative of h with respect of f is written as L f h

and is given by,

L f h(x) = ∇x(h) f (x)

L f h(x) is scalar since ∇x h is a row vector, and f (x) a column vector. The following notation is also

used:

Lg L f h(x) = ∇x(L f h(x))g(x)

L2
f h(x) = L f L f h(x) = ∇x(L f h(x)) f (x)

Lk
f = L f Lk−1

f h(x) = ∇x(Lk−1
f h(x)) f (x)

L0
f h(x) = h(x)

where g ∈ R
n is also a vector function.

Definition 8.2. [50, p. 137] Relative degree: Given a SISO nonlinear system, within input u ∈ R,

output y ∈ R, and state x ∈ R
n:

ẋ = f (x)+ g(x)u

y = h(x)

where f , g, and h are sufficiently smooth functions, the system is said to have relative degree r at

point xo if,

1. Lg Lk
f h(x) = 0, for all x in a neighbourhood of x o and all k < r − 1,

2. Lg Lr−1
f h(xo) 6= 0

Furthermore the system has relative degree r in the region Do ⊂ D if the above conditions hold for

all x ∈ Do.

It may therefore be shown that for a SISO system the relative degree is exactly equal to the number

of times that one has to differentiate the output, y until the input u explicitly appears in the expression

[101, p. 247]. It is possible for a system not to have an well defined relative degree, this can occur
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if, for example, the function multiplying the input is not generally zero, but happens to be zero at

precisely xo [50, p. 137].

The idea of FBL is to construct a nonlinear state transformation which renders the system linear,

or at least the states which are observable at the output must be linear. In order for such a state

transformation to exist, the Jacobian of the transformation must be invertible [101, p. 250].

A state transformation satisfying this requirement is the so-called normal form [50, Prop. 4.1.3].

If a system has a (well-defined) relative degree, r at x o, (hence r ≤ n), then:

φ1(x) = h(x)

φ2(x) = L f h(x)

...

φr (x) = Lr−1
f h(h)

If r is strictly less than n, it is always possible to find n − r more functions φr+1(x), · · · , φn(x) such

that the mapping

8(x) =







φ1(x)
...

φn(x)







has a Jacobian matrix that is nonsingular at x o and therefore qualifies as a local state transformation in

a neighbourhood of xo. Furthermore it is possible to choose the value of these additional functions at

xo arbitrarily, and it can be shown that they may be chosen in such a way that they are not a function

of the input u.

The benefit of applying this transformation is shown when the original system is written in the

new coordinates zi = φi (x), 1 ≤ i ≤ n, hence żi = ∇xφi ẋi . Therefore the system in transformed

coordinates can be shown to be ([50, p. 143]):

ż1 = z2

ż2 = z3
...

żr−1 = zr

żr = b(z)+ a(z)u = Lg Lr−1
f h(8−1(z))u + Lr

f h(8−1(z))

żr+1 = qr+1(z)+ pr+1(z)u
...

żn = qn(z)+ pn(z)u

y = h(x) = z1

where z ∈ R
n is the new state variable, and zk is the k th element of z. qk ∈ R and pk ∈ R are some

functions of z (see [50, Remark 4.1.3]).
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It is immediate that if u is chosen so that u = 1
a(z)(−b(z)− η), then the r th state becomes żr = η,

which renders the system from η to y linear. When r = n the entire system becomes linear, and

in this case the system is exactly linearised which is also described as ‘input-state’ linearization. If

r < n, then the input-output system is linear and the transformation is known as an ‘input-output’

linearization.

When the system is MIMO similar results apply. The system considered has m outputs, n states

and l inputs and is of the form:

ẋ = f (x)+
∑l

j=1 g j (x)u j

y1 = h1(x)
...

ym = hm(x)

where f ∈ R
n , g jR

n , hi ∈ R, n is the state dimension. For each output, yi the relative degree, ri is

taken as the smallest integer such that for at least one g j Lg j Lri−1
f hi (xo) 6= 0. Therefore ri is exactly

the number of times one has to differentiate the i th output yi in order to have at least one component

of the input vector u explicitly appearing [50, p.220]. Differentiating the system ri times gives:
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(8.1)

= B(x)+ A(x)
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ul







(8.2)

For the relative degree to be well-defined, in addition to the condition for SISO systems, is it also

necessary that A(x) in (8.2) be at least rank m at xo, where m is the dimension of the output [50, Rem.

5.1.3, Prop. 5.1.2]. In this case it can be shown that the system is exactly (input-state) linearizable

iff
∑m

i=1 ri = n, or if
∑m

i=1 ri < n then the system is input-output linearizable ([50, Lemma 5.2.1&

Sect. 5.3]. In order to linearize the system input, u is chosen so that:

B(x)+ A(x)


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
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u1
...

ul






−







η1
...

ηm






= 0 (8.3)

where v ∈ R
m is the new input to the linearized system. Note that if l > m then there will not be a

unique solution for u, however as long as (8.3) is satisfied the linearization will still hold. In this case
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the linearized system transfer function can be shown to be:
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0 1
sr2 · · · 0

...
. . .

. . .
...

0 0 · · · 1
srm
















η1
...
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
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(8.4)

As (8.4) comprises of m independent linear systems, m SISO controllers can be designed to stabilize

the system. The robustness of the linearized system is dependent on robust design of these ‘outer-

loop’ controllers.

As FBL can be viewed as a state transformation, it is clear that unless the sum of the relative

degrees of all the outputs are exactly equal to the number of states in the system, then the linearized

system is not a complete description of the original system. Specifically there are n −
∑m

i=1 ri states

which are unobservable at the output and uncontrollable from the new system input, η. These states

give rise to the zero dynamics of the linearized system [50, sect. 4.3].

Hence although it is straightforward to design linear controllers to stabilize the observable states,

for which the transfer functions are simply of the form 1/sr , such a controller will not affect the zero

dynamics of the system. Therefore if the zero dynamics happen to be unstable, then the system does

not have internal stability, and therefore the controller cannot work satisfactorily in practice.

8.2 Application to the BDFM

8.2.1 BDFM model in terms of flux linkages

The models derived for the BDFM in previous chapters may be represented wholly, or in part, in

terms of circuit flux linkages, rather than circuit currents. From definition 2.7, the flux linkage of a

circuit is λ = Mi where M is the mutual inductance and i the current, thus flux and current are related

by a linear transformation, which, from Lemma 2.3, must be invertible.

In the case that the BDFM has only one d-q pair representing the rotor states, then (ignoring zero

sequence states) the machine has only 6 states. In this case the machine can be fully described by

stator 1 and 2 currents, and either the stator 1, stator 2 or rotor fluxes. The most useful choice is the

stator 2 flux, as the stator 2 flux is strongly dependent on the stator 2 voltage, which is the control

input. The rotor flux could be used, however it is considerably more difficult to measure the rotor flux

than the stator flux.
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Therefore in the synchronous reference frame the currents are transformed:
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(8.5)

= Tλ
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(8.6)

where Msyncrr
and Msync22 are the stator 2-rotor and rotor-rotor portions of Msyncrr

(the stator 1-stator

2 portion is always zero by design). Note that as Msyncrr
is rank 2 then the transformation is always

invertible.

It may be shown that the 2-norm of stator flux linkages is approximately proportional to the rms

flux density in the air gap of the corresponding pole number field. This can be shown by considering

the flux linkage in the coupled circuit model in chapter 2, from where the air gap flux density can be

related to the mutual inductance terms. It is significant that the stator flux linkage is related to the

rms air gap flux density because the allowable air gap flux density for a machine is limited by the iron

laminations, as discussed in section 4.7.

Therefore, from (7.12), the full dynamic model in terms of stator 2 flux becomes:

d
dt


















i s
dqs1

i s
dqs2

λs
dqs2

θr

ωr


















=


















TλM−1
syncT

−1
λ






(−TλRsyncT

−1
λ − TλQsyncT

−1
λ )







i s
dqs1

i s
dqs2

λs
dqs2






+ Tλ







vs
dqs1

vs
dqs2

0













ωr

1
2J







i s
dqs1

i s
dqs2

λs
dqs2







T

TλSsyncT
−1
λ







i s
dqs1

i s
dqs2

λs
dqs2






− Tl

J


















(8.7)

We now consider the speed regulation problem for the BDFM using FBL. We assume that the torque

is an unmeasured disturbance, and propose two methods, one where only the speed is regulated, and

a second where both the speed and the flux are regulated.



8.2 Application to the BDFM 193

8.2.2 Control strategy 1: Speed Only Regulation

We have two control inputs, the d and q axis components of vs
dqs2

. We have one output, ωr . From

section 8.1.1 we differentiate the output, ωr until the input appears:

y1 = ωr (8.8)
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= dω̇r

dt
= 1

J







i s
dqs1

i s
dqs2

λs
dqs2







T

TλSsync M−1
sync






(−RsyncT

−1
λ − QsyncT

−1
λ )







i s
dqs1

i s
dqs2

λs
dqs2






+







vs
dqs1

vs
dqs2

0












− 1

J
dTl

dt

(8.11)

Therefore the relative degree is 2 as long as the state vector is non-zero, and the system may be

input-output linearized by choosing vs
dqs2

such that:
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where:
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where η is the new dummy input to the system, and therefore the system transfer function becomes:

ωr (s) =
η

s2
.

However it is clear that (8.12) is an under determined set of equations, that is for any chosen η

there are an infinite number of valid solutions. We therefore propose choosing the solution giving the

minimum value of ‖vs
dqs2
‖2, and which may be computed by:
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= (AT A)−1 AT
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where:

A = P1
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As the linear dynamics comprise of a double integrator, they may be stabilized through the use of

a phase lead compensator,

K1 =
ω2

x
√
αs + ω3

x

s + ωx
√
α

(8.15)

where ωx is the desired loop cross-over point (in radians per second), and α is the desired ‘spread’ of

the pole and zero, which controls the amount of phase lead (and hence the damping and robustness).

In this dissertation ωx = 100 and α = 200, which gives a phase margin of 82◦.

We now consider the case of speed and flux regulation.

8.2.3 Control Strategy 2: Speed and Flux Regulation

The system now has two outputs, ωr and ‖λs
dqs2
‖2. The relative degree for the ωr output is known to

be 2 from section 8.2.2. To determine the relative degree for the ‖λs
dqs2
‖2 output we differentiate it

repeatedly:
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Therefore the relative degree for the ‖λs
dqs2
‖2 output is 1, as long as λs

dqs2
6= 0.

Therefore vs
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should be chosen such that:
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where P1 is given in (8.13) and:
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Rearranging (8.19) gives:
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where:
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It may be verified that P3 is full rank if i s
dqs1
6= 0 and i s

dqs2
6= 0 and λs

dqs2
6= 0. Therefore equation

(8.21) may be uniquely solved to give vs
dqs2

and the linearization is valid in all practical situations.

The FBL system may be stabilized by two linear controllers: K1 (as given in (8.15)) for the speed

term, and K2 = ωx for the flux term, where ωx is the desired loop bandwidth. K2 need only be a

constant gain as the flux output has relative degree 1. In this dissertation we choose:

K2 = 100 (8.23)

It is noteworthy that equation (8.21) is similar to equation (15) of [14], as indeed were the methods

used to reach it. However the authors do not appear to have realised that this constitutes FBL, and

furthermore their derivation is not in the synchronous reference frame.

8.3 Towards A Practical Implementation

We now discuss issues related to the practical implementation the FBL control laws described. The

first point which is immediate is that the solution of (8.21) or (8.12) requires the derivative of the

load torque to be known. This is very unlikely to be available as a measurement, however normally
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the load torque will be constant, and therefore the derivative is zero. During torque transients, if

the derivative term is assumed to be zero, then any change in torque appears as a disturbance at the

input, which will be attenuated by the linear outer loop controller. Therefore we will assume that

the torque derivative is zero for controller implementation. The second point which is immediate is

that the full state must be measured in order to implement the controller. The stator currents can be

measured, but it will not be desirable to measure the stator 2 flux. This is because it would require

the addition of instrumentation to the inside of the machine, which would necessitate the controller

manufacturer (who will probably not manufacture the machine) modifying the machine. Therefore it

will be assumed that it is necessary to estimate at least the stator 2 flux.

8.3.1 Zero Dynamics and Idealized FBL Stability

As discussed in section 8.1.1, when the total relative degree of a system is less than the state dimen-

sion, then there are unobservable states, known as zero dynamics. These states must be stable if the

system is to be internally stable, as they are not controllable. If the system is not internally stable

then the controller is likely to be unusable. The analytical analysis of the zero dynamics is beyond

the scope of this dissertation, however the local stability of equilibria can be investigated numerically

by performing a standard linearization and then eigenvalue analysis.

Calculation of Equilibrium Points

The equilibrium points for both FBL methods were determined numerically by using a constrained

optimization technique. For both methods the equilibria may be found by setting the derivative term

zero in (8.7) and solving the resulting equation, omitting the ωr state. As the input, vs
dqs2

only appears

in the uppermost equations, the lower equation may be considered a non-linear constraint on the state

vector. The equilibria are found by substituting (8.14) or (8.21) for vs
dqs2

, and then minimizing the

2-norm of the derivative vector subject to the aforementioned constraint. This was achieved using

the Matlab function fmincon. However to reduce the chance of missing possible solutions the

optimization was started from 100 randomly generated starting points, and all results with 2-norms

suitably close to zero retained. In both cases multiple equilibria were found for a given load torque,

shaft speed and stator 1 supply voltage.

Local Stability Analysis of Idealized FBL

Figure 8.1 illustrates the effect of stable and unstable zero dynamics for the first FBL scheme. Figure

8.1(b) shows the maximum real part of all the eigenvalues of the system when linearized an a range

of of operating points. It is clear that there are a substantial range of speeds where the zero dynamics

are unstable for the load torques considered. We now show the transient response at two equilibria at

200 rpm, the first with Tl = 0 N m with stable zero dynamics, and the second with Tl = 5 N m with
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unstable zero dynamics.

Figure 8.1(a), shows the resulting speed transient at startup. The ‘noise’ on the signal for the

unstable equilibrium is due to imperfections in implementation of FBL. As these imperfections are

tiny (due only to errors in the ODE solver), it serves to illustrate why internal stability is necessary -

in practice there will be much larger imperfections in the implementation of FBL and consequently

greater output errors. Figures 8.1(c) and 8.1(d) show the current and flux at the stable and unstable

equilibriums.

Therefore we conclude that, even in the case of (nominally) perfect implementation of FBL, if

the zero dynamics are not stable, then the controller will not be practically usable, as expected. The

same conclusion can be drawn from a similar analysis of the second FBL scheme.

8.3.2 Practical Implementation

As previously discussed, the implementation of FBL requires an observer to estimate the stator 2

flux, or rotor currents. As the BDFM electrical equations are linear parameter varying, parameterised

on the speed, standard observer design techniques are not applicable. Four observer designs were

considered. The first three use the measurable stator currents along with the stator voltages, however

the fourth only uses the stator voltages.

1. Time varying Kalman filter: as the Kalman filter equations have been solved for linear time

varying systems the filter may be applied. However the computational burden is significant as

the state covariance estimate must be computed in real time [105, sect. 4.5].

2. LPV observer design using LMIs, adapted from an observer for a conventional induction ma-

chine in [77], designed to give minimum induced 2-norm error.

3. Novel time varying observer design where stability can always be guaranteed using appropriate

gain choices: presented by the author in [85].

4. Open-loop ‘observer’ comprising of the electrical system equations. Such an ‘observer’ is

stable for any variation in shaft speed from Theorem 3.5.

Of the four designs it was found, through simulation studies, that the robustness of FBL using an

observer was actually worse with the three observers which use current feedback. This is because the

use of feedback tends to worsen the estimate of the phase of a signal, but generally gives an improved

estimate of the magnitude. However, AC electrical machines are generally much more sensitive to

changes in phase than changes in magnitude [67]. Therefore the open-loop observer, which simply

consists of the first row of (8.7), was used.

In the implementation of the FBL controller it is necessary to convert the measured signals into

the synchronous reference frame, and the demanded output voltage from the synchronous reference

frame and back into terminal quantities. From a series of simulation tests it became apparent that
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(d) Current and flux transients at Tl = 5 N m

Figure 8.1: Local stability analysis, of FBL method 1 with V1 = 67.6Vrms, showing maximum real

part of the linearized system eigenvalues, and the speed and current transients at an equilibrium point.

At 5 N m the operating point is unstable, and at 0 N m it is stable, as can be seen from the the maximum

real part of the eigenvalues.
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the FBL controllers were very sensitive to any angular errors during this conversion. Such errors,

although generally constant, were found in the experimental apparatus. Therefore a simple adaption

law was derived to null out any offset prior to engaging the FBL controller. The adaption controller

was:

Kadap =
∫ t

0

(

i s
dqs2

T [ 0 −1
1 0

]

î s
dqs2

‖i s
dqs2
‖2‖î s

dqs2
‖2

)

dt (8.24)

Kadap is the integral of the sine of the angular difference between the measured stator 2 current, i s
dqs2

,

and that estimated by the observer î s
dqs2

. Therefore the adaption law drives any angular error between

î s
dqs2

and i s
dqs2

to zero by adjusting the angular offset of the d-q transformation. Once the angular error

has been nulled the adaption law was disengaged. The reference frame transformation is given in

table 7.1, however a software phase-locked loop was used to force φ1i + α1 = 0 and then φ2i , which

is unknown, was set to φ2i = θT where θT is the angular offset found using the adaption law. The

value of
∫

ω1dt was determined from the phase-locked loop.

Figure 8.2 shows the block diagram of the implementation of the FBL controllers. Figure 8.3

shows simulated responses of the two FBL controllers, using this implementation, where a deliber-

ate mis-match has been introduced between the parameters used in the simulated machine and those

used in the simulated observer and controller. The machine model used is the full coupled circuit

model developed in chapter 2, using calculated parameter values. The controller and observer used

the estimated parameter values given in table 6.3. The model moment of inertia was also deliberately

mis-matched by a factor of 2. The figures show that despite this modelling mis-match the controller

performance was good, and the system stabilized, and furthermore that there is some decoupling be-

tween flux and speed in the second FBL scheme even with flux estimation. However the linearized

system transfer functions are clearly not 1/s2 and 1/s for speed and flux respectively because the

transient response is around an order of magnitude slower than predicted. This suggests that the

model mis-match has introduced some attenuation into the loop. Figure 8.4 shows that when V1 is in-

creased the linearized system transfer function more closely approximates the ideal double integrator,

as the damping factor is approximately correct, and the rise time was around 50 ms whereas under

perfect linearization it would have been 30 ms. This is in contrast to figure 8.3 where the rise time is

approximately 500 ms, and the damping factor is significantly different.

Figure 8.5 shows results from experimental implementation of the speed only regulation FBL

controller. The steady-state offset is due to errors in the linearization. It was found that improved

performance was achieved with a controller with a very high proportional gain, therefore K 1 = 2000.

Nevertheless, the step down transient response is very good, and at 190 ms is faster than any previ-

ously published controller results for the BDFM. Figure 8.6 shows speed and flux step changes for

the second FBL scheme implemented on the prototype machine. The cross coupling between speed

and flux and the steady-state errors are due to shortcoming of the linearization. Again it was found

that (relatively) large proportional gains gave better performance than the designed speed controller,
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Figure 8.2: Block diagram of FBL controller implementation
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(b) Speed and Flux regulation FBL

Figure 8.3: Transient response of simulated FBL speed and flux controller, using open-loop observer

and adaptive angle offset tuning with V1 = 67.6Vrms. Deliberate model mis-match introduced be-

tween machine model and controller model. Step change in load torque at t = 15 s from 0 N m to

10 N m, and step changes in speed and flux as shown. The actual, rather than estimated flux is shown.
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Figure 8.4: Transient response of simulated FBL controllers, using open-loop observer and adaptive

angle offset tuning with V1 = 240Vrms. With a higher value of V1 the linearization error appears to

decrease. Step change in load torque at t = 15 s from 5 N m to 105 N m, and step changes in speed

and flux as shown. The actual, rather than estimated flux is shown.

equation (8.15). It was found that K2 could not be increased beyond K2 = 10 without loosing regu-

lation. The need for high gains to minimize the steady-state error is an indication that that feedback

linearization has not been effective at low frequencies, and therefore the ideal of infinite gain has not

been attained. The implementation bandwidth was 3.33 kHz for both controllers, in each period the

cpu time was busy for 240 µs in each case.

8.4 Conclusion

In this chapter controllers using feedback linearization have been developed for the BDFM, one con-

trolling speed only, and the other controlling flux and speed.

The controllers were presented using a transformed version of the synchronous reference frame

model where the stator 2 flux replaced the rotor current state. If the rotor has more than 2 states then

the derivation is similar, however some of the rotor currents will still appear in the state vector.

The control strategies were shown to give promising performance in simulation, even with intro-

duced model mis-match.

Initial attempts were made to implement the FBL strategies on the prototype machine, and met

with some success. The FBL controller held an equilibrium, and could be made to control the ma-

chine. However there was a significant departure from the ideal feedback linearized system transfer
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Figure 8.5: Experimental step up and step down speed transients for the speed only FBL implemen-

tation. The error in the linearization is apparent though the steady-state offset. V1 = 67.6Vrms, the

load torque was nominally zero. The speed controller was K1 = 2000.
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Figure 8.6: Experimental results for the speed and flux regulation FBL controller at nominally no

load. The cross coupling between speed and flux is due to errors in the linearization. Note that as the

flux has not been measured, the red line shows flux estimated by the observer. V1 = 67.6Vrms, the

load torque was nominally zero. The controllers for speed and flux were K1 = 1000, K2 = 10.
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function in each case, most notably the absence of high gains at lower frequencies. Therefore further

investigation into the cause of this error is required. However, despite the difficulties the application

of FBL to the BDFM deserves further attention.



204 Feedback Linearization for the BDFM



Chapter 9

Conclusions and Future Work

9.1 Conclusions

The objectives of this dissertation have been: to derive generalised models for a broad class of

BDFMs, and to use these models to analyse the steady-state and dynamic performance; to propose

a new rotor design and new methods of speed control for the machine. The specific contributions of

this dissertation will now be summarised.

1. A generalised framework was developed for the coherent derivation of models for a wide class

of BDFMs, of which a machine with any ‘nested-loop’ design rotor is a subset. The coherence

between the different models allowed parameters calculated for the generalised coupled circuit

to be transformed to provide parameter values for the other models:

(a) A method of computing mutual inductance parameters where the user specifies the geom-

etry and connection of the individual coils for each circuit was developed. Two calculation

methods were proposed, one giving the total inductance, and the other decomposing the

inductance into Fourier series terms. The method assumed finite width, but zero depth

conductors. The estimation of leakage inductance was included in the method using stan-

dard techniques. The methods allowed parameter calculation for any electrical machine

(Chapter 2).

(b) A generalised coupled circuit model was derived and implemented in software using cal-

culated parameter values which can model any electrical machine (Chapter 2).

(c) The generalised coupled-circuit model was transformed into a d-q axis model in the rotor

reference frame for a wide class of BDFMs by means of invertible matrix transformations,

unlike all previously published models. The only additional assumption required was the

lack of harmonic terms other than the fundamental in the stator-rotor mutual inductance

matrices, this assumption was shown to be reasonable for all the examples considered.

The invertibility of the transformation matrices showed that the transformed model was

205
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precisely equivalent. It was shown that the position dependence of the model was re-

moved. The proof made use of the circulant nature of the mutual inductance matrices for

the class of machine considered (Chapter 3).

(d) The rotor reference frame d-q axis model was shown to reduce to a model with 6 + 2N

states (including stator zero sequence states), where N is the number of sets of rotor

circuits for the entire class of BDFMs considered and without any observable error. It

was shown that the remaining states are stable, and uncontrollable/unobservable, the proof

again made use of the circulant properties of the inductance matrices (Chapter 3).

(e) The dynamic rotor reference frame d-q axis model was transformed into complex se-

quence components for the entire class of BDFMs considered. It was shown that the

dynamic sequence component model for the entire class of BDFMs considered could

comprise of 2+ N complex states (excluding stator zero sequence states) (Chapter 4).

(f) The dynamic rotor reference frame d-q axis model was transformed into a synchronous

reference frame d-q axis model for the entire class of BDFMs considered. The transforma-

tion was achieved by invertible matrix transformation, therefore the full dynamic nature

of the model was preserved, however the steady-state values became constant quantities

(Chapter 7).

(g) The complex sequence model was solved for steady-state conditions, and used to synthe-

size an equivalent circuit model for the full class of BDFMs considered. The coherence of

the derivation allowed the physical meaning of the component parameters to be retained

(Chapter 4).

(h) The synchronous reference frame d-q model was linearized for the full class of BDFMs

considered, and a method of calculation of all equilibrium points was given (Chapter 7).

(i) A model reduction technique for the rotor reference frame d-q model was proposed for

‘nested-loop’ rotor designs. The technique was shown to be a very good approximation

of the full order model for all the examples considered. Furthermore the technique was

shown to yield a model which is itself a member of the class of BDFMs considered, thus

allowing the model to be transformed into the other forms derived (Chapter 3).

2. The equivalent circuit model was used to investigate the effect of rotor impedance parameters

on the performance of the machine:

(a) The rotor impedance was shown to limit the maximum torque available from the machine,

or equivalently the torque available for a particular stator power factor. In particular the

rotor impedance was shown to significantly depend on excess harmonic inductance, L rh

(Chapter 4).
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(b) Seven rotor designs were investigated for the BDFM, five rotors were manufactured and

two studied in simulation using calculated parameter values (Chapter 5).

(c) The use of cascade induction mode torque-speed measurements were shown to give a

qualitative assessment of rotors’ ability to cross-couple, and hence their performance as

BDFM rotors. Experimental measurements were taken for the five rotors (Chapters 4 and

5).

(d) Dimensionless measures were proposed to evaluate potential BDFM rotors. Each measure

quantified different components of rotor impedance in the equivalent circuit (Chapter 5).

(e) The rotors which exhibited cross-coupling were quantitatively assessed by these mea-

sures, and both the ‘nested-loop’ design, rotor 1 and the new double layer design, rotor 2

were found to have good performance (Chapter 5).

(f) The issue of magnetic loading for the BDFM was investigated, and was shown to translate

to constraints on equivalent circuit voltages (Chapter 4).

3. A new method of parameter estimation for the BDFM, by experimental means, was proposed

for a class of machines having one set of rotor circuits. This class includes machines with a

‘nested-loop’ rotor when the new model reduction method is applied. The method was ap-

plied to the five experimental rotor designs, and the parameter values verified by independent

dynamic and steady-state experiments; by comparison against parameters calculated by the

coupled circuit method, and, where possible, compared with manufacturers’ parameter data.

The parameter values were found to be in good agreement, thus verifying both the model and

parameter estimation method (Chapter 6 and 7).

4. The stability of the BDFM was investigated:

(a) Theorem 3.5 proved that the electrical states of any BDFM in the class of machines con-

sidered are quadratically stable. That is for any finite 2-norm supply voltage and any finite

shaft speed (possibly with an unbounded rated of change), the 2-norm of currents remains

bounded (Chapter 3).

(b) The linearized version of the synchronous reference frame d-q axis model was used to

analyse the local open-loop stability of equilibria in the synchronous mode of operation.

The analysis was found to be in close agreement to that found by experiment (Chapter 7).

5. Control strategies were proposed to stabilize and improve the damping of speed regulation for

the BDFM:

(a) A linear control scheme, ‘stator 2 phase angle control’ was proposed to stabilize and

improve the damping of these equilibria. The scheme was verified by experiment, and
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was found to give dynamic performance similar to alternative non-linear control schemes

when operating close to the operating set point (Chapter 7).

(b) A control scheme where the stator 2 instantaneous voltage is phase-locked to the rotor

position was proposed and its stability analysed using the linearized model. Experimental

results were presented showing an improvement in robustness to changes in operating

point (Chapter 7).

(c) Two methods of applying feedback linearization to the BDFM were presented, shown

to work in simulation, and an initial attempt made to implement them on the prototype

machine (Chapter 8).

6. Possible pole number combinations for BDFMs were characterised for most practical situa-

tions:

(a) Theorem 2.15 gave necessary and sufficient conditions for avoiding unbalanced magnetic

pull, under the assumption that the air gap flux density contained no harmonic fields.

(b) Theorem 2.12 gave necessary and sufficient conditions for non-coupling of isolated single

layer stator winding pole combinations, which are sufficient for double layer windings.

9.2 Future Work

The work of this dissertation suggests a number of possible directions for research:

9.2.1 Analysis of the BDFM

1. The d-q axis model could be extended to include harmonic terms. In the first instance it is likely

to be most straight forward to proceed in the rotor reference frame, the results could be checked

by experiment and against the coupled-circuit model. This would complement the steady-state

harmonic analysis of Williamson et. al. [115].

2. The general analysis framework presented assumed that leakage inductance terms only con-

tributed to the self inductance of each coil. It is likely the analysis will generalise directly to

allow mutual leakage inductance parameters.

3. The model reduction method proposed for ‘nested-loop’ rotor designs, although shown to be

accurate, comes with no performance guarantees. Further investigation may yield such guaran-

tees, or at least give more specific guidance as to circumstances when the reduction method is

likely to be accurate.

4. It was shown that the d-q model in the rotor reference frame could be reduced to a model with

6 + 2N states. It is believed that this is a minimal realisation for the system, i.e. that it is not
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possible to reduce the system order further without observing an error. However a proof of this

is difficult as the system is parameterised by the shaft speed. There are, however, some results

in the literature on necessary and sufficient conditions for the minimality of parameter varying

systems which may apply to the BDFM [5].

5. The class of rotors considered was neither necessary nor sufficient as functional BDFM rotor

designs. Rotor 6 is a functional BDFM rotor, but is not within the class, and rotor 3 is within the

class and is not a functional rotor. A simple necessary condition was given in chapter 2, and it

may be possible to tighten this condition so that it becomes necessary and sufficient. One way

to proceed would be to attempt to characterise the class of rotors encompassed by the necessary

condition, although this is likely to be a challenging problem.

6. The new model order reduction method was used to reduce the order of ‘nested-loop’ design

rotors to a rotor which had a single effective set of loops. The reduction technique diagonalized

the rotor-rotor self-inductance matrix, and then truncated the system. However the model could

be left un-truncated (and therefore free from error) and then transformed into an equivalent

circuit representation. This will, in general, lead to off-diagonal resistance terms, but these can

be synthesised by a cage structure, as is the case with the squirrel cage rotor. This would lead

to a full equivalent circuit representation for nested-loop rotor designs.

7. The analysis in this dissertation has exclusively been for BDFM machines where the syn-

chronous speed is ω1+ω2
p1+p2

. However it was first noted by Hunt that reversing the phase sequence

of the second stator would lead to a machine with a natural speed given by ωr = ω1
p1−p2

. For

Hunt’s purposes this mode of operation was not “...of much commercial value.” [49, p. 407].

This fact was first noted by Field in comments on Hunt’s original paper [48, p. 669]. It is

believed that the next mention of this ‘differential’ mode of operation did not appear until 1997

in Williamson et. al. [115]. Williamson et. al. comment that the subtractive mode would

require a rotor with an “unfeasibly small numbers of rotor bars”. This comment stems from

the assumption that the rotor will be of ‘nested loop’ design, and in differential mode the rotor

must have a number of ‘nests’ equal to p1 − p2, rather than p1 + p2. The problem with this is

that it will lead to a relatively high value of rotor leakage inductance due to excess harmonic in-

ductance: Lrh in the notation of chapter 4. However, as has been illustrated in this dissertation

it is possible to reduce Lrh by judicious rotor design, therefore the differential BDFM mode

should be considered. It is anticipated that analysis in the differential mode will be similar to

the additive mode, and it is likely that many of the results will carry over, including the analysis

using circulant matrices. The differential mode offers a higher natural speed, and therefore the

possibility to run the machine at a higher speed, which will deliver more power from the same

frame size machine.
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8. Although the modelling techniques presented have been shown to yield good agreement with

experimental results, all the tests, with the exception of that shown in figure 6.3 were performed

at relatively low flux densities. As the modelling techniques assume infinite iron permeability

the accuracy will deteriorate as the flux density increases. Initial attempts to derive saturation

factors to compensate led to the conclusion that such factors would, in general, be time and load

varying [34]. Therefore further work is required to investigate how allowances can be made for

saturation.

9.2.2 BDFM Machine Design

1. Although the magnetic loading for the BDFM was addressed, the treatment requires experimen-

tal verification, and the approach may not turn out to be the right compromise. The verification

may take the form of loss measurements under different loading conditions, possibly through

the use of calorimetric measurement, or through the use of finite elements analysis.

2. This dissertation presented a quantitative method of evaluating BDFM rotors by the evaluation

of easily calculable machine parameter values. This suggests the possibility of searching for an

optimum rotor design. The search will require the parameterisation of a class of rotor designs

over which to search, and the search may be performed numerically or possibly analytically.

3. The experimental procedure to estimate machine parameter values was used without the mea-

surement of rotor bar currents. As described in chapter 6, if these measurements are taken,

possibly using Bluetooth technology [83], then the stator-rotor turns ratio can be determined

and it is likely that all parameter values will be determined with greater accuracy.

4. This dissertation has principally been concerned with the analysis of the BDFM, albeit with

emphasis on its implication for machine design. However nowhere in the current literature

are there any design guidelines for the BDFM. Such guidelines could be developed from the

equivalent circuit, which retains accuracy whilst being elegant in its simplicity. Issues to con-

sider include how the machine parameter values affect the rating of the machine, its efficiency

and power factor, and whether the stator 1-rotor-stator 2 turns ratios affect the performance.

The proposed performance measures contribute in this direction, however they do not provide

a complete picture.

9.2.3 Stability analysis and control, including parameter estimation

1. As discussed in chapter 7, the use of gain scheduling on the two control strategies proposed

is likely to lead to a controller with improved performance over a wider range. Unfortunately

recent developments in gain scheduling, offering guaranteed stability and performance are not

immediately applicable as they require measurement of all the machine currents, including the
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rotor currents. Nevertheless it is likely that gain scheduling will lead to satisfactory perfor-

mance.

2. Prempain et. al. recently presented a LPV based control algorithm for the standard induction

machine [77]. A similar scheme will apply to the BDFM, and offers a systematic method of

non-linear controller design for the BDFM, however the stability of the overall system, and in

particular the zero dynamics will need careful consideration.

3. Hopfensperger et. al. presented two control schemes for the cascaded doubly-fed machine

[46, 45]. These schemes should be investigated, in particular their claimed validity to the

BDFM.

4. Although a number of practical control schemes have been presented for the BDFM [125, 129,

130, 126, 124], the stability and performance of these schemes has not been investigated. Using

the generalised transformation to the synchronous reference frame presented in this dissertation,

the stability of such schemes may be analysed, possibly leading to directions to guarantee

stability or even performance.

5. Recent developments in model predictive control have lead to the possibility of considering

the problem of controlling an electrical machine as a search for an optimal inverter switching

pattern. For the induction machine it has been shown, albeit only in simulation at present, that

such a strategy can lead to reduced losses without any performance degradation [76]. A similar

approach could be investigated for the BDFM.

6. A off-line parameter estimation method was proposed in this dissertation for the BDFM. How-

ever, as discussed above, model-based control algorithms often require accurate machine pa-

rameters, some of which change significantly during machine operation (such that the resis-

tance parameters). Therefore on-line parameter estimation techniques could be investigated.

One possibility is to design an adaptive observer, such as the extended Kalman filter (although

this has no convergence guarantees), alternatively approaches such as that proposed by Castaldi

et. al. for the induction machine may be applicable to the BDFM [23].

7. The initial attempts to implement feedback linearization met with limited success. Future work

should investigate the stability of the proposed feedback linearization controllers, and seek to

address the reasons for the partial experimental success. It is also possible to use feedback

linearization to control different outputs other than the speed and flux, for example the speed

and stator 1 power factor could be controlled. This can be achieved by appropriate choice of

output function.
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Appendix A

Mathematics

A.1 Trigonometric Results

Lemma A.1. Given w = exp( 2π j
n ) then

∑n−1
k=0 w

kp exp( jφ) = 0 where p ∈ Z 6= tn where t ∈ Z,

and φ ∈ R. Hence
∑n−1

k=0 cos( 2πkp
n + φ)+ j sin( 2πkp

n + φ) = 0 and therefore
∑n−1

k=0 cos( 2πkp
n + φ) =

∑n−1
k=0 sin( 2πkp

n + φ) = 0

Proof.

n−1
∑

k=0

wkp exp( jφ) = exp( jφ)
n−1
∑

k=0

wkp+φ

= exp( jφ)
(

exp(0)+ exp(
2πpj

n
)+ exp(

2π2pj
n

)+ · · · + exp(
2π(n − 1)p

n
)

)

Noting that exp( 2πpj
n ) 6= 1 due to the restrictions on p, and that exp(φ j) 6= 0:

⇒ exp( jφ)
n−1
∑

k=0

wkp
(

1− exp(
2πpj

n
)

)

= exp( jφ)
(

exp(0)+ exp(
2πpj

n
)+ exp(

2π2pj
n

)+ · · ·

+ exp(
2π(n − 1)p

n
)

)(

1− exp(
2πpj

n
)

)

= exp( jφ)
(

1− exp(2πpj)
)

= 0

A.2 Linear Algebra

Theorem A.2. [38, p. 270, vol. 1] A matrix A ∈ R
n×n , such that A = AT (A is symmetric) has a

orthonormal basis of eigenvectors for R
n .

Theorem A.3. A symmetric matrix, A = AT ∈ R
n×n , can be written as:

A = T3T T

213
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where3 is a diagonal matrix of the eigenvalues of A, and T is a matrix of corresponding eigenvectors

of A.

Proof. From Theorem A.2 the eigenvectors of A form a basis for R
n . Let x1, x2, · · · , xn represent

the eigenvectors of A, and λ1, λ2, · · · , λn the corresponding eigenvalues. Furthermore let:

T =
[

x1 x2 · · · xn

]

as the eigenvectors for a basis for R
n then T is rank n (full rank) and thus T −1 exists. Furthermore as

the basis is orthonormal hence T is orthogonal, that is T T T = I hence T −1 = T T. Therefore:

AT = A
[

x1 x2 · · · xn

]

=
[

Ax1 Ax2 · · · Axn

]

=
[

λ1x1 λ2x2 · · · λnxn

]

= T3

⇒ A = T3T T

Lemma A.4. A real symmetric matrix has real eigenvalues.

Proof. Let x ∈ R
n be an eigenvector of A = AT ∈ R

n×n , and λ the corresponding eigenvalue. Note

that we know x to be real from Theorem A.2. From the definition of eigenvectors:

Ax = λx

and as both A and x are real Ax is real, hence λ is real.

Lemma A.5. [131, sect. 2.3] Let A be a square matrix partitioned as follows:

A ,

[

A11 A12

A21 A22

]

where A11 and A22 are also square matrices.

If A and A11 are non-singular then:
[

A11 A12

A21 A22

]−1

=
[

A−1
11 + A−1

11 A121
−1 A21 A−1

11 −A−1
11 A121

−1

−1−1 A21 A−1
11 1−1

]

where 1 , A22 − A21 A−1
11 A12 and furthermore it can be shown that A is non-singular if and only if

1 is non-singular.

If A and A22 are non-singular then:
[

A11 A12

A21 A22

]−1

=
[

1̂−1 −1̂−1 A12 A−1
22

−A−1
22 A211̂

−1 A−1
22 + A−1

22 A211̂
−1 A12 A−1

22

]

where 1̂ , A11 − A12 A−1
22 A21 and furthermore it can be shown that A is non-singular if and only if

1̂ is non-singular.
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Lemma A.6. The eigenvalues of a square upper or lower (block) triangular matrix, T ∈ C
n×n , are

the union of the eigenvalues of the (block) matrices on the diagonal.

Proof. Without loss of generality we assume T to be upper block triangular:

T =
[

A B

0 D

]

where A ∈ C
m×m ,D ∈ C

n−m×m−n , and B is compatibly partitioned. Let xd ∈ C
n−m be an eigenvector

of D, with corresponding eigenvalue λd ∈ C. Therefore it is immediate that:
[

A B

0 D

][

0

xd

]

= λd

[

0

xd

]

hence we conclude that λd also an eigenvalue of T , and indeed by induction that all eigenvalue of D

are eigenvalues of T .

Similarly, let xa ∈ C
m be an eigenvector of A, with corresponding eigenvalue λa ∈ C. Again it is

immediate that: [

A B

0 D

][

xa

0

]

= λa

[

xa

0

]

and hence we conclude that the eigenvalues of A are also eigenvalues of T . The proof for a lower

triangular T follows the same lines.

Lemma A.7. Given: A = A0+ρ1 A1+· · ·+ρn An ∈ R
k×k, C ∈ R

j×k and Q = QT > 0, Q ∈ R
k×k

with ρmin
n ρn < ρ

max
n ∈ R then:

AT Q + Q A + CTC < 0

⇔ Ai T
Q + Q Ai + CTC < 0 ∀Ai

where Ai denotes the i th extreme point of A. The extreme points are the points corresponding to the

‘corners’ of the parameter box containing A. There are 2n such corners.

Proof. We will prove the result for a single parameter, the result for n parameters follows by induc-

tion. Hence without loss of generality let A = A0 + ρ1 A1 and ρmin
1 < ρ1 < ρ

max
1 .

Note that A can be written as A = A0+ (ρmin
1 (1− α)+ ρmax

1 α)A1, 0 < α < 1. By definition We

have:

(A0 + A1ρ
min
1 )

T
Q + Q(A0 + A1ρ

min
1 )+ CTC < 0

(A0 + A1ρ
max
1 )

T Q + Q(A0 + A1ρ
max
1 )+ CTC < 0

hence from definition 2.10, as α > 0 and 1− α > 0:

(A0 + A1(αρ
max
1 + (1− α)ρmin

1 ))
T

Q + Q(A0 + A1(αρ
max
1 + (1− α)ρmin

1 ))+ CTC < 0

and this is exactly equivalent to AT Q+ Q A+CTC < 0, as all possible values of ρ1 are covered.
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Lemma A.8. [36, Lemma 3.2] & [93, Prop. 1.34] (Shur Complement):

Given P = P∗ ∈ C
n×n, R = R∗ ∈ C

m×m and S ∈ C
n×m then:

[

P S

S∗ R

]

< 0⇔
{

R < 0

P − S R−1S∗ < 0
⇔
{

P < 0

R − S∗P−1S < 0

Lemma A.9. The following LMIs are equivalent:







AT X + X A X B γ−1CT

BT X −I γ−1 DT

γ−1C γ−1 D −I






< 0







AT Xγ + γ X A γ X B CT

BT Xγ −Iγ DT

C D −Iγ






< 0







AT X + X A X B CT

BT X −I DT

C D −Iγ 2






< 0

where γ ∈ R > 0 and X ∈ R
n×n = XT.

Proof. Applying Lemma A.8 to the first LMI yields the following equivalent condition:

[

AT X + X A X B

BT X −I

]

−
[

γ−1CT

γ−1 DT

]

(−I )−1
[

γ−1C γ−1 D
]

< 0, −I < 0

which, as γ > 0, is equivalent to:

[

AT X + X A X B

BT X −I

]

−
[

CT

DT

]

(−Iγ 2)−1
[

C D
]

< 0, −Iγ 2 < 0

applying the Shur complement again, in reverse, yields the third LMI. The second LMI is obtained

by multiplying through by γ .

Lemma A.10. The rows of Q are orthonormal to one another, that is: Q QT = I , and furthermore,

if Q is square then QT Q = I , where:

Q =
√

2
n







cos(φ) cos( 2πp
n + φ) cos( 2π2p

n + φ) · · · cos( 2π(n−1)p
n + φ)

sin(φ) sin( 2πp
n + φ) sin( 2π2p

n + φ) · · · sin( 2π(n−1)p
n + φ)

1√
2

1√
2

1√
2

· · · 1√
2







where φ ∈ R, n ∈ N, n ≥ 3, p ∈ Z 6= tn, t ∈ Z.
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Proof.

Q QT = 2
n







cos(φ) cos( 2πp
n + φ) · · · cos( 2π(n−1)p

n + φ)
sin(φ) sin( 2πp

n + φ) · · · sin( 2π(n−1)p
n + φ)

1√
2

1√
2

· · · 1√
2
















cos(φ) sin(φ) 1√
2

cos( 2πp
n + φ) sin( 2πp

n + φ)
1√
2

...
...

...

cos( 2π(n−1)p
n + φ) sin( 2π(n−1)p

n + φ) 1√
2










From Lemma A.1, it can be seen that terms due to the product of non-trigonometric terms and trigono-

metric terms will be zero. Hence:

= 2
n







cos(φ)2 + cos( 2πp
n + φ)2 + · · · + cos( 2π(n−1)p

n + φ)2

sin(φ) cos(φ)+ sin( 2πp
n + φ) cos( 2πp

n + φ)+ · · · + sin( 2π(n−1)p
n + φ) cos( 2π(n−1)p

n + φ)
0

cos(φ) sin(φ)+ cos( 2πp
n + φ) sin( 2πp

n + φ)+ · · · + cos( 2π(n−1)p
n + φ) sin( 2π(n−1)p

n + φ) 0

sin(φ)2 + sin( 2πp
n + φ)2 + · · · + sin( 2π(n−1)p

n + φ)2 0

0 n
2







Using the trigonometric identities cos(A)2 = 1
2+

1
2 cos(2A), sin(A)2 = 1

2−
1
2 cos(2A), sin(A) cos(A) =

sin(2A) with Lemma A.1 gives:

= 2
n







n
2 0 0

0 n
2 0

0 0 n
2







Definition A.1. A matrix, C ∈ C
n×n is circulant if there exists c0, · · · , cn−1 such that Ci j =

c(i− j+n) mod n where the rows and columns of C are numbered between 0 and n − 1. k mod n

means the k modulo n i.e. the remainder after dividing k by n.

For n = 6 a circulant matrix is:

C =















c0 c1 c2 c3 c4 c5

c5 c0 c1 c2 c3 c4

c4 c5 c0 c1 c2 c3

c3 c4 c5 c0 c1 c2

c2 c3 c4 c5 c0 c1

c1 c2 c3 c4 c5 c0














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Definition A.2. A matrix F ∈ C
n×n is a Fourier matrix if Fqr = w(q−1)(r−1)/

√
n, where w =

exp( j2π
n ). A Fourier matrix is of the form:

F = 1√
n















1 1 1 · · · 1

1 w w2 · · · w(n−1)

1 w2 w4 · · · w2(n−1)

...
...

...
. . .

...

1 w(n−2) w2(n−2) · · · w(n−2)(n−1)

1 w(n−1) w2(n−1) · · · w(n−1)(n−1)















Lemma A.11. Any Fourier matrix, F ∈ C
n×n , as detailed in definition A.2 is unitary, i.e F−1 = F∗,

and hence full rank.

Proof. From the definition F∗ may be written:

F∗ = 1√
n















1 1 1 · · · 1

1 w−1 w−2 · · · w−(n−1)

1 w−2 w−4 · · · w−2(n−1)

...
...

...
. . .

...

1 w−(n−2) w−2(n−2) · · · w−(n−2)(n−1)

1 w−(n−1) w−2(n−1) · · · w−(n−1)(n−1)















hence:

F∗F = 1
n















1 1 1 · · · 1

1 w−1 w−2 · · · w−(n−1)

1 w−2 w−4 · · · w−2(n−1)

...
...

...
. . .

...

1 w−(n−2) w−2(n−2) · · · w−(n−2)(n−1)

1 w−(n−1) w−2(n−1) · · · w−(n−1)(n−1)





























1 1 1 · · · 1

1 w w2 · · · w(n−1)

1 w2 w4 · · · w2(n−1)

...
...

...
. . .

...

1 w(n−2) w2(n−2) · · · w(n−2)(n−1)

1 w(n−1) w2(n−1) · · · w(n−1)(n−1)















by considering the unit circle it is easy to see that
∑n−1

0 wkn = 0, k ∈ Z 6= 0. Hence:

F∗F = I

Lemma A.12. [131, p.19] Let D ∈ R
n×k (n > k) be such that D∗D = I , thus the columns of D are

orthonormal. Then there exists a matrix, D⊥ ∈ R
n×(n−k) such that

[

D D⊥
]

is a unitary matrix.
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Theorem A.13. For any circulant matrix C ∈ C
n×n the columns of the Fourier matrix, F of compati-

ble dimension are the eigenvectors of C, and that the corresponding eigenvalue is λ =
∑n−1

j=0 c jw
j (i−1),

where 1 ≤ i ≤ n denotes the column number of F. Furthermore, if x ∈ C
n is an eigenvector of C

then x̄ is also an eigenvector, and if C ∈ R
n×n and the corresponding eigenvalue for x is λ then the

eigenvalue of x̄ is λ̄. Finally, from Lemma A.11, C is diagonalisable, that is the eigenvectors of C are

distinct.

Proof. We shall show that for each column of F, ∃λi : C Fi = λi Fi , where Fi denotes the i th column

of F . C F may be written:

C F = 1√
n















c0 c1 c2 c3 · · · cn−1

cn−1 c0 c1 c2 · · · cn−2

cn−2 cn−1 c0 c1 · · · cn−3
...

...
...

. . .
. . .

...

c2 c3 · · · cn−1 c0 c1

c1 c2 c3 · · · cn−1 c0





























1 1 1 · · · 1

1 w w2 · · · w(n−1)

1 w2 w4 · · · w2(n−1)

...
...

...
. . .

...

1 w(n−2) w2(n−2) · · · w(n−2)(n−1)

1 w(n−1) w2(n−1) · · · w(n−1)(n−1)















hence:

C F1 =
1√
n















c0 c1 c2 c3 · · · cn−1

cn−1 c0 c1 c2 · · · cn−2

cn−2 cn−1 c0 c1 · · · cn−3
...

...
...

. . .
. . .

...

c2 c3 · · · cn−1 c0 c1

c1 c2 c3 · · · cn−1 c0





























1

1

1
...

1

1















= 1√
n















∑n−1
i=0 ci

∑n−1
i=0 ci

∑n−1
i=0 ci
...

∑n−1
i=0 ci

∑n−1
i=0 ci















= λ1 F1

noting that wn = 1 (from definition A.2):

C F2 =
1√
n















c0 c1 c2 c3 · · · cn−1

cn−1 c0 c1 c2 · · · cn−2

cn−2 cn−1 c0 c1 · · · cn−3
...

...
...

. . .
. . .

...

c2 c3 · · · cn−1 c0 c1

c1 c2 c3 · · · cn−1 c0





























1

w

w2

...

w(n−2)

w(n−1)















= 1√
n















c0 + wc1 + w2c2 + · · · + w(n−1)cn−1

w[c0 + wc1 + w2c2 + · · · + w(n−1)cn−1]
w2[c0 + wc1 + w2c2 + · · · + w(n−1)cn−1]

...

w(n−2)[c0 + wc1 + w2c2 + · · · + w(n−1)cn−1]
w(n−1)[c0 + wc1 + w2c2 + · · · + w(n−1)cn−1]















= λ2 F2
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by induction we conclude C Fi = λi Fi . By inspection the i th eigenvalue, λi =
∑n−1

j=0 c jw
j (i−1).

If x denotes any column of F , then there will always exist a column of F which is equal to x̄ , as

wkn = 1∀k ∈ Z and w̄ = w−1, so multiplication of each element of x̄ by an appropriate representation

of 1 gives a column of F .

Therefore if x if an eigenvector of C , then x̄ is also an eigenvector, the and if λ is the eigenvalue

corresponding to x then, as λi =
∑n−1

j=0 c jw
j (i−1), it is clear that the eigenvalue of x̄ is λ̄ if C is

real.

Lemma A.14. Given a circulant (not necessarily symmetric) matrix, C ∈ R
n×n, n ∈ N ≥ 3, then:

QC QT =







|λ|
[

cos(∠λ) sin(∠λ)

− sin(∠λ) cos(∠λ)

]

0

0 λ0







where λ ∈ C, λ0 ∈ R are eigenvalues of C,and the third column of QT is the corresponding eigen-

vector to λ0. Furthermore, if C is symmetric then the first and second columns of QT are eigenvectors

of C corresponding to eigenvalue λ, and of course, from Theorem A.4 λ must be real. Where:

Q =
√

2
n







cos(φ) cos( 2πp
n + φ) cos( 2π2p

n + φ) · · · cos( 2π(n−1)p
n + φ)

sin(φ) sin( 2πp
n + φ) sin( 2π2p

n + φ) · · · sin( 2π(n−1)p
n + φ)

1√
2

1√
2

1√
2

· · · 1√
2







λ =
n−1
∑

i=0

ciw
i

λ0 =
n−1
∑

i=0

ci

where p ∈ N, p 6= nt, t ∈ N. ci is the element on the i th column of row 1 of C, and w = exp( j2π
n ).

Proof. Firstly, we know that the third column is an eigenvector from Theorem A.13. We now assume,

without loss of generality, that p < n, as for all p > n∃p1 > 0 : p = p1 + nk, k, p1 ∈ N and

exp( 2πnk
n ) = 1.

C













exp( jφ)

exp( 2πpj
n + jφ)

exp( 2π2pj
n + jφ)
...

exp( 2π(n−1)pj
n + jφ)













= exp( jφ)C













exp(0)

exp( 2πpj
n )

exp( 2π2pj
n )

...

exp( 2π(n−1)pj
n )













= exp( jφ)C













cos(0)+ j sin(0)

cos( 2πp
n )+ j sin( 2πp

n )

cos( 2π2p
n )+ j sin( 2π2p

n )

...

cos( 2π(n−1)p
n )+ j sin( 2π(n−1)p

n )












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and from Theorem A.13, for some λ ∈ C:

= exp( jφ)λ













cos(0)+ j sin(0)

cos( 2πp
n )+ j sin( 2πp

n )

cos( 2π2p
n )+ j sin( 2π2p

n )

...

cos( 2π(n−1)p
n )+ j sin( 2π(n−1)p

n )













= |λ|













cos(φ + ∠λ)+ j sin(φ + ∠λ)

cos( 2πp
n + φ + ∠λ)+ j sin( 2πp

n + φ + ∠λ)

cos( 2π2p
n + φ + ∠λ)+ j sin( 2π2p

n + φ + ∠λ)

...

cos( 2π(n−1)p
n + φ + ∠λ)+ j sin( 2π(n−1)p

n + φ + ∠λ)













recalling that C is real, taking real and imaginary parts gives:

C













sin(φ)

sin( 2πp
n + φ)

sin( 2π2p
n + φ)
...

sin( 2π(n−1)p
n + φ)













= λ













sin(φ + ∠λ)

sin( 2πp
n + φ + ∠λ)

sin( 2π2p
n + φ + ∠λ)

...

sin( 2π(n−1)p
n + φ + ∠λ)













C













cos(φ)

cos( 2πp
n + φ)

cos( 2π2p
n + φ)
...

cos( 2π(n−1)p
n + φ)













= λ













cos(φ + ∠λ))

cos( 2πp
n + φ + ∠λ))

cos( 2π2p
n + φ + ∠λ))

...

cos( 2π(n−1)p
n + φ + ∠λ))













hence if C is symmetric then ∠λ = 0, and we can conclude that the rows of Q are all eigenvectors of

C :

C QT = QT







λ 0 0

0 λ 0

0 0 λ0







The eigenvalue results come directly from Theorem A.13.

If C is not necessarily symmetric the we proceed as follows. Defining:

x =













exp( jφ)

exp( 2πpj
n + jφ)

exp( 2π2pj
n + jφ)
...

exp( 2π(n−1)pj
n + jφ)













then with the previous discussion and from Lemma A.13:

C
[

x x̄
]

=
[

x x̄
]
[

λ 0

0 λ̄

]
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now notice:

C
[

x x̄
]
[

1
2 − j

2
1
2

j
2

]

=
[

x x̄
]
[

λ 0

0 λ̄

][
1
2 − j

2
1
2

j
2

]

=
[

x x̄
]
[

1
2 − j

2
1
2

j
2

][

1 1

j − j

][

λ 0

0 λ̄

][
1
2 − j

2
1
2

j
2

]

=
[

x x̄
]
[

1
2 − j

2
1
2

j
2

][

<λ =λ
−=λ <λ

]

Now notice that
[

x x̄
]
[

1
2 − j

2
1
2

j
2

]

is proportional to the first two columns of QT, hence recalling

that the third column of QT is an eigenvector of C then we may write:

C QT = QT







|λ|
[

cos(∠λ) sin(∠λ)

− sin(∠λ) cos(∠λ)

]

0

0 λ0







Lemma A.15. Given a symmetric circulant matrix, C ∈ R
n×n, n ∈ N ≥ 3, that is, a circulant matrix

such that C = CT, then:

QC
d
dt
(QT) = dφ

dt







0 λ 0

−λ 0 0

0 0 0







where λ =
∑n−1

i=0 ciw
i and:

Q =
√

2
n







cos(φ) cos( 2πp
n + φ) cos( 2π2p

n + φ) · · · cos( 2π(n−1)p
n + φ)

sin(φ) sin( 2πp
n + φ) sin( 2π2p

n + φ) · · · sin( 2π(n−1)p
n + φ)

1√
2

1√
2

1√
2

· · · 1√
2







where p ∈ N, p 6= nt, t ∈ N. ci is the element on the i th column of row 1 of C, and w = exp( j2π
n ).

Proof. From Lemma A.14 we may write:

QC =







λ 0 0

0 λ 0

0 0 λ0







Q

post multiplying by d
dφ (Q

T):

QC
d

dφ
(QT) =







λ 0 0

0 λ 0

0 0 λ0







Q
d

dφ
(QT)
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Differentiating Q gives:

d Q
dφ
=
√

2
n







− sin(φ) − sin( 2πp
n + φ) − sin( 2π2p

n + φ) · · · − sin( 2π(n−1)p
n + φ)

cos(φ) cos( 2πp
n + φ) cos( 2π2p

n + φ) · · · cos( 2π(n−1)p
n + φ)

0 0 0 · · · 0







Using a similar argument to that found Lemma A.10:

QC
d

dφ
(QT) =







0 λ 0

−λ 0 0

0 0 0







Applying the chain rule then gives the result.

Lemma A.16. Given a circulant matrix (not necessarily symmetric), C ∈ R
n×n, n ∈ N ≥ 3, then:

[

Q

Q⊥

]

C

[

Q

Q⊥

]T

=










λ 0 0 0

0 λ 0 0

0 0 λ0 0

0 0 0 S










if C is symmetric, or otherwise:

[

Q

Q⊥

]

C

[

Q

Q⊥

]T

=










|λ|
[

cos(∠λ) sin(∠λ)

− sin(∠λ) cos(∠λ)

]

0 0

0 λ0 0

0 0 S










where λ, λ0 ∈ R
1 and S ∈ R

(n−3)×(n−3) and:

Q =
√

2
n







cos(φ) cos( 2πp
n + φ) cos( 2π2p

n + φ) · · · cos( 2π(n−1)p
n + φ)

sin(φ) sin( 2πp
n + φ) sin( 2π2p

n + φ) · · · sin( 2π(n−1)p
n + φ)

1√
2

1√
2

1√
2

· · · 1√
2







where p ∈ N, p 6= nt, t ∈ N, and Q⊥ an orthogonal matrix whose rows span the orthogonal

complement of the subspace spanned by the rows of Q. Furthermore λ =
∑n−1

i=0 ciw
i and λ0 =

∑n−1
i=0 ci , where ci is the element on the i th column of row 1 of C, and w = exp( j2π

n ).

Proof. The proof follows the same steps whether or not C is symmetric, therefore without loss of

generality we assume C is symmetric. Lemma A.14 proves that each column of QT is an eigenvector
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with corresponding eigenvalues λ, λ, λ0. Therefore we may write:

C QT = QT







λ 0 0

0 λ 0

0 0 λ0







⇒ QC QT = Q QT







λ 0 0

0 λ 0

0 0 λ0







from Lemma A.10:

⇒ QC QT =







λ 0 0

0 λ 0

0 0 λ0







We now consider the entire transformation. Firstly note that an orthogonal Q⊥ exists as Q QT = I

(Lemma A.12). Therefore we may write:

[

Q

Q⊥

]

C

[

Q

Q⊥

]T

=
[

Q

Q⊥

]
[

C QT C Q⊥T
]

=
[

QC QT QC Q⊥T

Q⊥C QT Q⊥C Q⊥T

]

Noting that C QT = QT
[
λ 0 0
0 λ 0
0 0 λ0

]

, and because CT is also circulant from Lemma A.14 that QC =
[
λl 0 0
0 λl 0
0 0 λ0l

]

Q, and that by definition Q⊥QT = 0:

[

Q

Q⊥

]

C

[

Q

Q⊥

]T

=
[

QC QT 0

0 Q⊥C Q⊥T

]

=
















λ 0 0

0 λ 0

0 0 λ0







0

0 Q⊥C Q⊥T










Lemma A.17. Given M as defined below, and Q, Q⊥ as defined in Lemma A.16 (with n = p, p =
p1, φ = 0) then M is rank 2 and:

[

Q p1 0

0 Q p2

]

M

[

Q

Q⊥

]T

= 3

√

2
3
























M1
2

√
p1+p2

2 cos(β1 p1) −M1
2

√
p1+p2

2 sin(β1 p1) 0
M1
2

√
p1+p2

2 sin(β1 p1)
M1
2

√
p1+p2

2 cos(β1 p1) 0

0 0 0








0








M2
2

√
p1+p2

2 cos(β2 p2)
M2
2

√
p1+p2

2 sin(β2 p2) 0
M2
2

√
p1+p2

2 sin(β2 p2) −M2
2

√
p1+p2

2 cos(β2 p2) 0

0 0 0








0
















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where:

M =















M1 cos((θ − β1)p1) M1 cos((θ − 2π
p − β1)p1) · · ·

M1 cos((θ − 2π
3p1
− β1)p1) M1 cos((θ − 2π

p −
2π
3p1
− β1)p1) · · ·

M1 cos((θ − 4π
3p1
− β1)p1) M1 cos((θ − 2π

p −
4π
3p1
− β1)p1) · · ·

M2 cos((θ − β2)p2) M2 cos((θ − 2π
p − β2)p2) · · ·

M2 cos((θ − 2π
3p2
− β2)p2) M2 cos((θ − 2π

p −
2π
3p2
− β2)p2) · · ·

M2 cos((θ − 4π
3p2
− β2)p2) M2 cos((θ − 2π

p −
4π
3p2
− β2)p2) · · ·

M1 cos((θ − (p − 1) 2π
p − β1)p1)

M1 cos((θ − (p − 1) 2π
p −

2π
3p1
− β1)p1)

M1 cos((θ − (p − 1) 2π
p −

4π
3p1
− β1)p1)

M2 cos((θ − (p − 1) 2π
p − β2)p2)

M2 cos((θ − (p − 1) 2π
p −

2π
3p2
− β2)p2)

M2 cos((θ − (p − 1) 2π
p −

4π
3p2
− β2)p2)















and p=p1 + p2, M1,M2 ∈ R
1, n ∈ N, p1, p2 ∈ N, β1, β2, θ ∈ R

1, and:

Q p1 =
√

2
3










cos(p1θ) cos(p1(θ −
2π
3p1

)) cos(p1(θ −
4π
3p1

))

sin(p1θ) sin(p1(θ −
2π
3p1

)) sin(p1(θ −
4π
3p1

))

1√
2

1√
2

1√
2










Q p2 =
√

2
3










cos(p2θ) cos(p2(θ −
2π
3p2

)) cos(p2(θ −
2π
3p2

))

sin(p2θ) sin(p2(θ −
2π
3p2

)) sin(p2(θ −
4π
3p2

))

1√
2

1√
2

1√
2










Proof.

Recalling that cos(A) cos(A − φ) = 1
2 cos(φ) + 1

2 cos(2A − φ), sin(A) cos(A − φ) = 1
2 sin(φ) +

1
2 sin(2A − φ), and using Lemma A.1:

[

Q p1 0

0 Q p2

]

M = 3

√

2
3















M1
2 cos(β1 p1)

M1
2 cos(β1 p1 + 2πp1

p ) · · ·
M1
2 cos(β1 p1 + 2πp1(p−1)

p )

M1
2 sin(β1 p1)

M1
2 sin(β1 p1 + 2πp1

p ) · · ·
M1
2 sin(β1 p1 + 2πp1(p−1)

p )

0 0 · · · 0
M2
2 cos(β2 p2)

M2
2 cos(β2 p2 + 2πp2

p ) · · · M2
2 cos(β2 p2 + 2πp2(p−1)

p )

M2
2 sin(β2 p2)

M2
2 sin(β2 p2 + 2πp2

p ) · · · M2
2 sin(β2 p2 + 2πp2(p−1)

p )

0 0 · · · 0















(A.1)
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Now from Lemma A.19 (A.1) is rank 2, with the first two rows spanning the entire row space. Fur-

thermore it is clear that the first two rows of Q are in the row space of the first two rows, hence Q⊥

is in the null space. As cos(φ) = cos(φ + 2π), and similarly for sin(φ), the RHS of the previous

expression may be written as:

3

√

2
3















M1
2 cos(β1 p1)

M1
2 cos(β1 p1 + 2πp1

p ) · · · M1
2 cos(β1 p1 + 2πp1(p−1)

p )

M1
2 sin(β1 p1)

M1
2 sin(β1 p1 + 2πp1

p ) · · · M1
2 sin(β1 p1 + 2πp1(p−1)

p )

0 0 · · · 0
M2
2 cos(β2 p2)

M2
2 cos(β2 p2 + 2πp2

p −
2πp

p ) · · ·
M2
2 cos(β2 p2 + 2πp2(p−1)

p − 2πp(p−1)
p ))

M2
2 sin(β2 p2)

M2
2 sin(β2 p2 + 2πp2

p −
2πp

p ) · · ·
M2
2 sin(β2 p2 + 2πp2(p−1)

p − 2πp(p−1)
p )

0 0 · · · 0















= 3

√

2
3















M1
2 cos(β1 p1)

M1
2 cos(β1 p1 + 2πp1

p ) · · · M1
2 cos(β1 p1 + 2πp1(p−1)

p )

M1
2 sin(β1 p1)

M1
2 sin(β1 p1 + 2πp1

p ) · · · M1
2 sin(β1 p1 + 2πp1(p−1)

p )

0 0 · · · 0
M2
2 cos(−β2 p2)

M2
2 cos(−β2 p2 + 2πp1

p ) · · · M2
2 cos(−β2 p2 + 2πp1(p−1)

p )

−M2
2 sin(−β2 p2) −M2

2 sin(−β2 p2 + 2πp1
p · · · −M2

2 sin(−β2 p2 + 2πp1(p−1)
p )

0 0 · · · 0















multiplying this by QT, and then simplifying using cos(A + φ) cos(A) = 1
2 cos(φ) + 1

2 cos(2A +
φ), sin(A + φ) cos(A) = 1

2 sin(φ)+ 1
2 sin(2A + φ), cos(A + φ) sin(A) = − 1

2 sin(φ)+ 1
2 sin(2A +

φ), cos(A+φ) sin(A) = − 1
2 sin(φ)+ 1

2 sin(2A+φ), sin(A+φ) sin(A) = 1
2 cos(φ)− 1

2 cos(2A+φ)
with Lemma A.1 gives:

3

√

2
3

√

2
p1 + p2















M1
2

p1+p2
2 cos(β1 p1) −M1

2
p1+p2

2 sin(β1 p1) 0
M1
2

p1+p2
2 sin(β1 p1)

M1
2

p1+p2
2 cos(β1 p1) 0

0 0 0
M2
2

p1+p2
2 cos(β2 p2)

M2
2

p1+p2
2 sin(β2 p2) 0

M2
2

p1+p2
2 sin(β2 p2) −M2

2
p1+p2

2 cos(β2 p2) 0

0 0 0















hence:

[

Q p1 0

0 Q p2

]

M

[

Q

Q⊥

]T

= 3

√

2
3
























M1
2

√
p1+p2

2 cos(β1 p1) −M1
2

√
p1+p2

2 sin(β1 p1) 0
M1
2

√
p1+p2

2 sin(β1 p1)
M1
2

√
p1+p2

2 cos(β1 p1) 0

0 0 0








0








M2
2

√
p1+p2

2 cos(β2 p2)
M2
2

√
p1+p2

2 sin(β2 p2) 0
M2
2

√
p1+p2

2 sin(β2 p2) −M2
2

√
p1+p2

2 cos(β2 p2) 0

0 0 0








0
















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Lemma A.18. Given M as defined in Lemma A.17, and Q, Q⊥ are defined as in Lemma A.16 (with

n = p, p = p1, φ = 0) then M is rank 2 and:

[

Q p1 0

0 Q p2

]

d
dθ
(M)

[

Q

Q⊥

]T

= 3

√

2
3
























M1
2

√
p1+p2

2 p1 sin(β1 p1)
M1
2

√
p1+p2

2 p1 cos(β1 p1) 0

−M1
2

√
p1+p2

2 p1 cos(β1 p1)
M1
2

√
p1+p2

2 p1 sin(β1 p1) 0

0 0 0








0








M2
2

√
p1+p2

2 p2 sin(β2 p2) −M2
2

√
p1+p2

2 p2 cos(β2 p2) 0

−M2
2

√
p1+p2

2 p2 cos(β2 p2) −M2
2

√
p1+p2

2 p2 sin(β2 p2) 0

0 0 0








0

















where: p=p1 + p2, M1,M2 ∈ R
1, n ∈ N, p1, p2 ∈ N, β1, β2, θ ∈ R

1, and Q p1, Q p2 are defined

in Lemma A.17

Proof. Differentiating M by θ changes the cosine terms to negative sine terms, which is equivalent

to augmenting the angular offset in each term by π/2, and multiplying the resultant by p1, or p2

respectively. Following this change through the proof in Lemma A.17 gives the desired result.

Lemma A.19. The matrix Q ∈ R
4×(p1+p2) is rank 2, and furthermore the first two rows span the

whole of the row space of Q, where Q is defined as:

Q =










A cos(φ1) A cos(φ1 + 2πp1
p1+p2

) · · · A cos(φ1 + 2πp1(p1+p2−1)
p1+p2

)

A sin(φ1) A sin(φ1 + 2πp1
p1+p2

) · · · A sin(φ1 + 2πp1(p1+p2−1)
p1+p2

)

B cos(φ2) B cos(φ2 + 2πp2
p1+p2

) · · · B cos(φ2 + 2πp2(p1+p2−1)
p1+p2

)

B sin(φ2) B sin(φ2 + 2πp2
p1+p2

) · · · B sin(φ2 + 2πp2(p1+p2−1)
p1+p2

)










where φ1, φ2, A, B ∈ R and p1, p2 ∈ N.

Proof.

Firstly note that from Lemma A.10, that the first two rows are linearly independent. To proceed with

the proof we define X ∈ C
1×(p1+p2) as follows, noting that X is a linear combination of rows 1 and 2

of Q:

X =
[

A exp(− jφ1) A exp(− jφ1 − j 2πp1
p1+p2

) · · · A exp(− jφ1 − j 2πp1(p1+p2−1)
p1+p2

)

]

rearranging X gives:

= A
B

exp(− jφ2 − jφ1)

[

B exp( jφ2) B exp( jφ2 − j 2πp1
p1+p2

) · · · B exp( jφ2 − j 2πp1(p1+p2−1)
p1+p2

)

]

= A
B

exp(− jφ2 − jφ1)

[

B exp( jφ2) exp(0) B exp( jφ2 − 2πp1
p1+p2

) exp( j2π p1+p2
p1+p2

) · · ·

B exp( jφ2 − j 2πp1(p1+p2−1)
p1+p2

)) exp( j2π (p1+p2)(p1+p2−1)
p1+p2

)

]

= A
B

exp(− jφ2 − jφ1)

[

B exp( jφ2) B exp( jφ2 + j 2πp2
p1+p2

) · · · B exp( jφ2 + j 2πp2(p1+p2−1)
p1+p2

)

]
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similarly we may define Y , also a linear combination of the first two rows of Q:

Y = A
B

exp( jφ2 + jφ1)

[

B exp(− jφ2) B exp(− jφ2 − j 2πp2
p1+p2

) · · · B exp(− jφ2 − j 2πp2(p1+p2−1)
p1+p2

)

]

Now taking B
2A exp( jφ1+ jφ2)X+ B

2A exp(− jφ1− jφ2)Y gives the 3rd row of Q and− j B
2A exp( jφ1+

jφ2)X + j B
2A exp(− jφ1 − jφ2)Y gives the 4th row of Q.



Appendix B

Prototype Machine Stator and Rotor
Design Details

In this chapter the details of the prototype machine stator and rotor designs, as described in chapter

5, are given. Table B.1 summarises the configuration of the prototype machine stator.

Parameter Value

Frame size D180

Stator core length 190mm

Stator slots 48

Stator winding 1 Poles 4

coils per phase 16 (series connected)

turns per coil 10

Configuration star

wire diameter 1.2mm

rated current 6.78Arms (with 6A/mm2)

Measured† air gap flux density 0.31Trms at 238Vrms

at 50Hz, at phase voltage given 0.12Trms at 95Vrms

Stator winding 2 Poles 8

coils per phase 16 (series connected)

turns per coil 20

Configuration star

wire diameter 1.2mm

rated current 6.78Arms (with 6A/mm2)

Measured† air gap flux density 0.30Trms at 238Vrms

at 50Hz, at phase voltage given 0.12Trms at 95Vrms

Table B.1: Prototype machine stator summary specification. † measured at the winding synchronous

speed with a single pole pitch search coil.
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B.1 Prototype machine frame details

The prototype machine frame was a standard induction machine frame, manufactured by Marelli

Motori SpA. The details are given in table B.2.

Parameter Value

Frame size 180mm

Marelli Part No. A4C180L4

Rated output power 22kW

Rated Speed 1465rpm

Rated Torque 143Nm

Peak torque 358Nm

Rated efficiency 90.3%

Moment of Inertia 0.11kgm2

Weight 122kg

Table B.2: Original Marelli Motori SpA. 4 pole induction machine specification used for the Proto-

type BDFM frame

B.2 Prototype Machine Stator Windings

We now detail the stator windings design and analysis on the prototype machine. We begin by re-

viewing the standard winding factors used in 3-phase machine.

B.2.1 Machine Winding Factors

Winding factors are commonly used in the design of AC electrical machine windings.

The per-phase magnetizing inductance and air gap magnetic flux density of a balanced three phase

winding when excited with a balanced three phase source is given by [43, eqs. (78), (81), p. 40]:

L =
3wdµ0 N 2

ph

πg

∑

n∈Q

(
Kn

n

)2

(B.1)

B(θ, t) = 3µ0 Î Nph

πg

∑

n∈Q

(
Kn

n

)

cos(nθ ± ωt) (B.2)

where w is the machine stack length, g is the effective air gap width (as defined in section C.2), d

is the machine diameter, N is the number of turns per phase, n is the pole number (number of pole

pairs) of the field being considered, Kn is the combined winding factor for the n pole number field

and the current in the winding in one phase is Î cos(ωt).
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For a balanced three phase winding only odd harmonics of the fundamental p pole number field

appear, with the exception of third harmonics. It can be shown that for a balanced three phase winding:

Q = p|6c + 1| (B.3)

where c = {0,±1,±2,±3, · · · }. For proof see [43, eq. (36b)].

The winding factor for the n th harmonic, Kn comprises of the following terms:

Kdn =
sin(nMpαs/2)
Mp sin(nαs/2)

(B.4)

K pn = cos(nMsαs/2) (B.5)

Ksn =
sin(nws/2)

nws/2
(B.6)

Kn = Kdn K pn Ksn (B.7)

where Mp is the number of slots per phase per pole, αs , ws are the slot pitch and slot mouth width

in radians as in figure 2.2, Ms is the number of slots that the winding is short-pitched by . Equations

(B.4) and (B.5) can be found in [99] as equations (10.130) and (10.131). Equation (B.6) is found in

[112], although it is effectively proved by noting that (2.24) contains Ksn as a factor.

B.2.2 Stator Winding details

Table B.3 shows the details of the stator windings. Figures B.1 and B.2 show colour coded winding

diagrams for the 8 and 4 pole windings respectively.

Further machine parameters relating to dimensions and the like can be found in tables C.2 and

C.1.

Throughout this dissertation unless otherwise stated, the stator state order will be 4 pole states

then 8 pole states. The numerical values for the stator mutual inductance given are for the nested-loop

design rotor, Rotor 1. The values differ slightly for the different rotors because the effective air gap

changes. Mutual inductance (excluding leakage) is inversely proportional to effective air gap width,

therefore the stator mutual inductance terms for other rotors can be closely approximated by scaling

the terms given as appropriate.

The subscripts are in the order of: coil group number,connection number within a coil. So for

example a21 means coil number 2, connection number 1, and current in the ‘out’ direction. A bar (ā)

means return path current direction.
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No. slots No. slots No. Turns No. coils No. turns Wire Wire Fund. Fund. Fund. Fund.
short pitch. /phase/pole layers per coil per phase per phase dia. area dist. fac. pitch fac. slot w. fac. winding fac.

Ms Mp Nph Kd K p Ks K

(mm) (mm2)

Stator 4 pole winding

2 4 2 10 16 160 1.2 1.13 0.9577 0.9659 0.9998 0.9248

Stator 8 pole winding

1 2 2 20 16 320 1.2 1.13 0.9659 0.9659 0.9991 0.9322

Table B.3: Stator winding details and fundamental winding factors
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Slot: 1 2 3 4 5 6 7 8 9 10 11 12

8 pole: a11 a12 c̄ c̄ b11 b ā21 ā22 c11 c b̄ b̄

a82 c̄ c̄ b b ā11 ā12 c c b̄ b̄ a21

4 pole: A11 A12 A13 A14 C̄ C̄ C̄ C̄ B11 B B B

A43 A44 C̄ C̄ C̄ C̄ B B B B Ā11 Ā12

Slot: 13 14 15 16 17 18 19 20 21 22 23 24

8 pole: a31 a32 c̄ c̄ b b ā41 ā42 c c b̄ b̄

a22 c̄ c̄ b b ā31 ā32 c c b̄ b̄ a41

4 pole: Ā21 Ā22 Ā23 Ā24 C11 C C C B̄ B̄ B̄ B̄

Ā13 Ā14 C C C C B̄ B̄ B̄ B̄ A21 A22

Slot: 25 26 27 28 29 30 31 32 33 34 35 36

8 Pole: a51 a52 c̄ c̄ b b ā61 ā62 c c b̄ b̄

a42 c̄ c̄ b b ā51 ā52 c c b̄ b̄ a61

4 pole: A31 A32 A33 A34 C̄ C̄ C̄ C̄ B B B B

A23 A24 C̄ C̄ C̄ C̄ B B B B Ā31 Ā32

Slot: 37 38 39 40 41 42 43 44 45 46 47 48

8 pole: a71 a72 c̄ c̄ b b ā81 ā82 c c b̄ b̄

a62 c̄ c̄ b b ā71 ā72 c c b̄ b̄ a81

4 pole: Ā41 Ā42 Ā43 Ā44 C C C C B̄ B̄ B̄ B̄

Ā33 Ā34 C C C C B̄ B̄ B̄ B̄ A41 A42

Thus for phase a of the power (8 pole) winding the connections are as follows:

(a11, ā11), (a12, ā12), (a21, ā21), (a22, ā22), (a31, ā31), (a32, ā32), (a41, ā41), (a42, ā42),

(a51, ā51), (a52, ā52), (a61, ā61), (a62, ā62), (a71, ā71), (a72, ā72), (a81, ā81), (a82, ā82)

Thus phase a starts in slot 1, top and ends in slot 44 top. Phase B starts at slot 5 top, and ends at

slot 48 top, phase C starts at slot 9 top, and ends at slot 4, top.

Phase A for the control (4 pole) winding goes as follows:

(A11, Ā11), (A12, Ā12), (A13, Ā13), (A14, Ā14), (A21, Ā21), (A22, Ā22), (A23, Ā23), (A24, Ā24),

(A31, Ā31), (A32, Ā32), (A33, Ā33), (A34, Ā34), (A41, Ā41), (A42, Ā42), (A43, Ā43), (A44, Ā44)

Thus phase A starts in slot 1, top and ends in slot 40 top. Phase B starts at slot 9, top and finishes

in slot 48, top, phase C starts at slot 17, top, and ends at slot 8, top.

Stator combination matrices

With reference to figures B.2 and B.1, the coil group order for the mutual inductance matrices is as

follows:
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slot 3 bottom

slot 5 bottom

slot 44 top
slot 45 top
slot 46 top
slot 47 top
slot 48 top

V return

8 Pole winding (to be wound closest to the airgap)

20 turns per coil

U out

V out

W out

W return

U return

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

48
47

45
46

slot 1 bottom
slot 2 bottom

slot 4 bottom

Figure B.1: 8 pole winding diagram
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slot 48 top

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

48
47

45
46

slot 41 top

slot 46 top
slot 47 top

slot 44 top

slot 42 top

slot 1 bottom
slot 2 bottom
slot 3 bottom
slot 4 bottom

W return

V out

U out

slot 5 bottom

1

slot 7 bottom
slot 8 bottom

W out

U return

V return

4 Pole winding (to be wound furthest from the airgap)
10 turns per coil

slot 45 top

slot 43 top

slot 9 bottom
slot 10 bottom

slot 6 bottom

2

Figure B.2: 4 pole winding diagram
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Element Description

1 · · · 16 4 pole winding red phase

17 · · · 32 4 pole winding yellow phase

33 · · · 48 4 pole winding blue phase

49 · · · 64 8 pole winding red phase

65 · · · 80 8 pole winding yellow phase

81 · · · 96 8 pole winding blue phase

The combination matrix to combine individual coil inductances into winding inductances is given by:

Ts =















Q4 0 0 0 0 0

0 Q4 0 0 0 0

0 0 Q4 0 0 0

0 0 0 Q8 0 0

0 0 0 0 Q8 0

0 0 0 0 0 Q8















(B.8)

where:

Q4 =
[

Qa −Qa Qa −Qa

]

, Qa =
[

1 1 1 1
]

Q8 =
[

Qb −Qb Qb −Qb Qb −Qb Qb −Qb

]

, Qb =
[

1 1
]

The resulting mutual inductance matrix, leakage inductance matrix as calculated by the methods

described in appendix C.1, and excess harmonic inductance is given by:

Mss = 10−3 ×





210 −96.3 −96.3 0 0 0
−96.3 210 −96.3 0 0 0
−96.3 −96.3 210 0 0 0

0 0 0 217 −97.4 −97.4
0 0 0 −97.4 217 −97.4
0 0 0 −97.4 −97.4 217



 Mssl = 10−3 ×





3.5 0 0 0 0 0
0 3.5 0 0 0 0
0 0 3.5 0 0 0
0 0 0 8.0 0 0
0 0 0 0 8.0 0
0 0 0 0 0 8.0



 (B.9)

Mhl
ss = 10−3 ×





6.6 5.6 5.6 0 0 0
5.6 6.6 5.6 0 0 0
5.6 5.6 6.6 0 0 0
0 0 0 10.0 6.1 6.1
0 0 0 6.1 10.0 6.1
0 0 0 6.1 6.1 10.0



 (B.10)

Transforming these using the d-q transformation matrices, (3.1) and (3.2) (the leakage inductance

matrix is unchanged as it is diagonal):

Mdq0s = 10−3 ×





307 0 0 0 0 0
0 307 0 0 0 0
0 0 17.8 0 0 0
0 0 0 314 0 0
0 0 0 0 314 0
0 0 0 0 0 22.2



 Mhl
dq0s
= 10−3 ×





1.04 0 0 0 0 0
0 1.04 0 0 0 0
0 0 17.8 0 0 0
0 0 0 3.88 0 0
0 0 0 0 3.88 0
0 0 0 0 0 22.2



 (B.11)

Stator winding arrangement for parallel coil groups

With reference to the coil pitch table in section B.2.2:

Thus for phase a of the 8 pole winding the connections are as follows:

A: (a11, ā11), (a12, ā12), (a21, ā21), (a22, ā22)



B.3 Rotor 1: Nested-loop Rotor Design Details 237

B: (a31, ā31), (a32, ā32), (a41, ā41), (a42, ā42)

C: (a51, ā51), (a52, ā52), (a61, ā61), (a62, ā62)

D: (a71, ā71), (a72, ā72), (a81, ā81), (a82, ā82)

where A,B,C,D are the 4 sets of coil groups to be connected in parallel.

Phase A for the control 4 pole winding goes as follows:

A: (A11, Ā11), (A12, Ā12), (A13, Ā13), (A14, Ā14)

B: (A21, Ā21), (A22, Ā22), (A23, Ā23), (A24, Ā24),

C: (A31, Ā31), (A32, Ā32), (A33, Ā33), (A34, Ā34)

D:(A41, Ā41), (A42, Ā42), (A43, Ā43), (A44, Ā44)

where A,B,C,D are the 4 sets of coil groups to be connected in parallel.

B.3 Rotor 1: Nested-loop Rotor Design Details

The state order used for rotor 1 is: 6 inner rotor loops, 6 middle rotor loops, 6 outer rotor loops. This

order is preserved when transformed to dq axes.

B.3.1 Rotor-rotor inductance terms

Figure B.3 shows the arrangement of the rotor bars in the prototype nested-loop rotor. This arrange-

ment leads to a rotor-rotor mutual inductance matrix given by (B.12), calculated using the method

described in section 2.7.1:

Mrr = 10−8×
































465 −14 −14 −14 −14 −14 468 −43 −43 −43 −43 −43 439 −71 −71 −71 −71 −71

−14 465 −14 −14 −14 −14 −43 468 −43 −43 −43 −43 −71 439 −71 −71 −71 −71

−14 −14 465 −14 −14 −14 −43 −43 468 −43 −43 −43 −71 −71 439 −71 −71 −71

−14 −14 −14 465 −14 −14 −43 −43 −43 468 −43 −43 −71 −71 −71 439 −71 −71

−14 −14 −14 −14 465 −14 −43 −43 −43 −43 468 −43 −71 −71 −71 −71 439 −71

−14 −14 −14 −14 −14 465 −43 −43 −43 −43 −43 468 −71 −71 −71 −71 −71 439

468 −43 −43 −43 −43 −43 1372 −128 −128 −128 −128 −128 1318 −213 −213 −213 −213 −213

−43 468 −43 −43 −43 −43 −128 1372 −128 −128 −128 −128 −213 1318 −213 −213 −213 −213

−43 −43 468 −43 −43 −43 −128 −128 1372 −128 −128 −128 −213 −213 1318 −213 −213 −213

−43 −43 −43 468 −43 −43 −128 −128 −128 1372 −128 −128 −213 −213 −213 1318 −213 −213

−43 −43 −43 −43 468 −43 −128 −128 −128 −128 1372 −128 −213 −213 −213 −213 1318 −213

−43 −43 −43 −43 −43 468 −128 −128 −128 −128 −128 1372 −213 −213 −213 −213 −213 1318

439 −71 −71 −71 −71 −71 1318 −213 −213 −213 −213 −213 2165 −354 −354 −354 −354 −354

−71 439 −71 −71 −71 −71 −213 1318 −213 −213 −213 −213 −354 2165 −354 −354 −354 −354

−71 −71 439 −71 −71 −71 −213 −213 1318 −213 −213 −213 −354 −354 2165 −354 −354 −354

−71 −71 −71 439 −71 −71 −213 −213 −213 1318 −213 −213 −354 −354 −354 2165 −354 −354

−71 −71 −71 −71 439 −71 −213 −213 −213 −213 1318 −213 −354 −354 −354 −354 2165 −354

−71 −71 −71 −71 −71 439 −213 −213 −213 −213 −213 1318 −354 −354 −354 −354 −354 2165

































(B.12)

The leakage inductances as calculated using the methods described in appendix C.1 are 9.7753 ×
10−7, 1.0278 × 10−6, and 1.0781 × 10−6 for the inner, middle and outer loops respectively. As
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explained in appendix C.1 it has been assumed that the leakage inductances only affect the self-

inductance terms, hence the full Mrr matrix has, additionally, the appropriate leakage terms added on

the diagonal.

When converted to d-q axes and the observable/uncontrollable parts removed, as discussed in

section 3.3, the rotor-rotor mutual inductance matrix becomes:

Mrrdq = 10−8×











479 0 0 510 0 0 510 0 0

0 479 0 0 510 0 0 510 0

0 0 394 0 0 255 0 0 85

510 0 0 1499 0 0 1531 0 0

0 510 0 0 1499 0 0 1531 0

0 0 255 0 0 734 0 0 255

510 0 0 1531 0 0 2520 0 0

0 510 0 0 1531 0 0 2520 0

0 0 85 0 0 255 0 0 394











M l
rrdq
= 10−8×











98 0 0 0 0 0 0 0 0

0 98 0 0 0 0 0 0 0

0 0 98 0 0 0 0 0 0

0 0 0 103 0 0 0 0 0

0 0 0 0 103 0 0 0 0

0 0 0 0 0 103 0 0 0

0 0 0 0 0 0 108 0 0

0 0 0 0 0 0 0 108 0

0 0 0 0 0 0 0 0 108











(B.13)

Mh2
rrdq
= 10−8×











84 0 0 242 0 0 371 0 0

0 84 0 0 242 0 0 371 0

0 0 0 0 0 0 0 0 0

242 0 0 698 0 0 1069 0 0

0 242 0 0 698 0 0 1069 0

0 0 0 0 0 0 0 0 0

371 0 0 1069 0 0 1638 0 0

0 371 0 0 1069 0 0 1638 0

0 0 0 0 0 0 0 0 0











Mh4
rrdq
= 10−8×











82 0 0 206 0 0 235 0 0

0 82 0 0 206 0 0 235 0

0 0 0 0 0 0 0 0 0

206 0 0 523 0 0 594 0 0

0 206 0 0 523 0 0 594 0

0 0 0 0 0 0 0 0 0

235 0 0 594 0 0 676 0 0

0 235 0 0 594 0 0 676 0

0 0 0 0 0 0 0 0 0











(B.14)

where Mrrdq is the full d-q rotor-rotor mutual inductance matrix excluding leakage effects, M l
rrdq

is

the leakage inductance matrix, M h2
rrdq

and Mh4
rrdq

are the 4 pole and 8 pole harmonic components (the

first two non-zero components) of the rotor-rotor mutual inductance matrix.

This d-q model may be reduced in order, after removal of the zero-sequence terms, as described

in section 3.4.2. The matrix used to reduce the order of the rotor states for this machine is:

T =
[

0 0.2108 0 0.5768 0 0.7892

−0.2108 0 −0.5768 0 −0.7892 0

]

(B.15)

Applying (B.15) to (B.13), the resulting rotor-rotor mutual inductance terms become:

Mrrdq = 10−8 ×
[

3777 0

0 3777

]

M l
rrdq
= 10−8 ×

[

106 0

0 106

]

(B.16)

Mh2
rrdq
= 10−8 ×

[

2411 0

0 2411

]

Mh4
rrdq
= 10−8 ×

[

1268 0

0 1268

]

(B.17)

where, Mrrdq is the reduced order d-q rotor-rotor mutual inductance matrix, M l
rrdq

is the reduced order

leakage inductance matrix, M h2
rrdq

and Mh4
rrdq

are the 4 pole and 8 pole harmonic components (the first

two non-zero components) of the rotor-rotor mutual inductance matrix.

Subtracting equations (B.17) from Mrrdq gives the harmonic leakage (or differential leakage) in-

ductance in the rotor, that is the additional series inductance that appears due to the production of

unwanted space harmonics by the rotor:

Mhl
rrdq
= 10−8 ×

[

98 0

0 98

]

(B.18)
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B.3.2 Rotor-Stator inductance details

Figure B.4 shows the rotor-stator mutual inductance for a inner, middle, and outer loop between

both 4 and 8 pole stator phases. The data is overlaid with the fundamental component in each case,

calculated from the FFT.

Equation (B.19) shows the mutual inductance between stator and rotor for the reduced order dq

model.

Mdqsr = 10−6 ×










2408 1253

−1253 2408

345 1954

1954 −345










(B.19)

B.4 Rotor 2: New Double Layer Rotor Design Details

B.4.1 Rotor-rotor inductance terms

Figure B.5 shows the arrangement of the rotor bars in the prototype double-layer winding rotor. This

arrangement leads to a rotor-rotor mutual inductance matrix given by (B.20), calculated using the

method described in section 2.7.1:

Mrr = 10−6 ×















312 −31 −83 −83 −83 −31

−31 312 −31 −83 −83 −83

−83 −31 312 −31 −83 −83

−83 −83 −31 312 −31 −83

−83 −83 −83 −31 312 −31

−31 −83 −83 −83 −31 312















(B.20)

The leakage inductance for each rotor ‘phase’ as calculated using the methods described in appendix

C.1 are 8.8 × 10−6. As explained in appendix C.1 it has been assumed that the leakage inductances

only affect the self-inductance terms, hence the full Mrr matrix has, additionally, the appropriate

leakage terms added on the diagonal.

When converted to d-q axes, as described in section 3.3, rotor-rotor mutual inductance matrix
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Figure B.3: Rotor 1: Prototype nested-loop design rotor
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Figure B.4: Stator-Rotor mutual inductance for Rotor 1, the prototype nested loop rotor for the indi-

vidual loops of a particular nest. The dotted lines show the fundamental component of the fields.

becomes:

Mrrdq = 10−6 ×







342 0 0

0 342 0

0 0 0







M l
rrdq
= 10−6 ×







9 0 0

0 9 0

0 0 9







(B.21)

Mh2
rrdq
= 10−6 ×







293 0 0

0 293 0

0 0 0







Mh4
rrdq
= 10−6 ×







44 0 0

0 44 0

0 0 0







(B.22)

where Mrrdq is the full d-q rotor-rotor mutual inductance matrix excluding leakage effects, M l
rrdq

is

the leakage inductance matrix, M h2
rrdq

and Mh4
rrdq

are the 4 pole and 8 pole harmonic components (the

first two non-zero components) of the rotor-rotor mutual inductance matrix.

Subtracting equations (B.22) from Mrrdq gives the harmonic leakage (or differential leakage) in-

ductance in the rotor, that is the additional series inductance that appears due to the production of

unwanted space harmonics by the rotor:

Mhl
rrdq
= 10−6 ×







5 0 0

0 5 0

0 0 0







(B.23)

B.4.2 Rotor-Stator inductance details

Figure B.6 shows the rotor-stator mutual inductance between a rotor phase and a 4 and 8 pole stator

phase. The data is overlaid with the fundamental component in each case, calculated from the FFT.
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Figure B.5: Prototype rotor 2: double-layer design rotor



B.5 Rotor 3: Isolated loop rotor design 243

Equation (B.24) shows the mutual inductance between stator and rotor for the dq model.

0 60 120 180 240 300 360
−5

0

5
x 10

−3

Rotor angle (degrees)

M
ut

ua
l I

nd
uc

ta
nc

e 
(H

)

Actual
Fundamental

(a) Stator 1 - Rotor Mutual Inductance

0 60 120 180 240 300 360
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

Rotor angle (degrees)

M
ut

ua
l I

nd
uc

ta
nc

e 
(H

)

Actual
Fundamental

(b) Stator 2 - Rotor Mutual Inductance

Figure B.6: Stator-Rotor mutual inductance for Rotor 2, the prototype double-layer rotor. The dotted

lines show the fundamental component of the fields.

Mdqsr = 10−6 ×















−9119 −2875 0

2875 −9119 0

0 0 0

3690 651 0

651 −3690 0

0 0 0















(B.24)

B.5 Rotor 3: Isolated loop rotor design

The state order used for rotor 3 is: 6 loops spaced by 60◦, then another 6 loops again spaced by 60◦

and offset from the previous set by 20◦, then a third set of 6 loops again evenly spaced by 60◦ and

offset from the previous set by 20◦. The 3 sets are colour-coded on the winding diagram, figure B.7.

B.5.1 Rotor inductance terms

Figure B.7 shows the arrangement of the rotor bars in the prototype isolated loop rotor. This arrange-

ment leads to a rotor-rotor mutual inductance matrix given by (B.25), calculated using the method
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described in section 2.7.1:

Mrr = 10−6×
































29 −2 −7 −7 −7 −2 19 −7 −7 −7 −7 8 8 −7 −7 −7 −7 19

−2 29 −2 −7 −7 −7 8 19 −7 −7 −7 −7 19 8 −7 −7 −7 −7

−7 −2 29 −2 −7 −7 −7 8 19 −7 −7 −7 −7 19 8 −7 −7 −7

−7 −7 −2 29 −2 −7 −7 −7 8 19 −7 −7 −7 −7 19 8 −7 −7

−7 −7 −7 −2 29 −2 −7 −7 −7 8 19 −7 −7 −7 −7 19 8 −7

−2 −7 −7 −7 −2 29 −7 −7 −7 −7 8 19 −7 −7 −7 −7 19 8

19 8 −7 −7 −7 −7 29 −2 −7 −7 −7 −2 19 −7 −7 −7 −7 8

−7 19 8 −7 −7 −7 −2 29 −2 −7 −7 −7 8 19 −7 −7 −7 −7

−7 −7 19 8 −7 −7 −7 −2 29 −2 −7 −7 −7 8 19 −7 −7 −7

−7 −7 −7 19 8 −7 −7 −7 −2 29 −2 −7 −7 −7 8 19 −7 −7

−7 −7 −7 −7 19 8 −7 −7 −7 −2 29 −2 −7 −7 −7 8 19 −7

8 −7 −7 −7 −7 19 −2 −7 −7 −7 −2 29 −7 −7 −7 −7 8 19

8 19 −7 −7 −7 −7 19 8 −7 −7 −7 −7 29 −2 −7 −7 −7 −2

−7 8 19 −7 −7 −7 −7 19 8 −7 −7 −7 −2 29 −2 −7 −7 −7

−7 −7 8 19 −7 −7 −7 −7 19 8 −7 −7 −7 −2 29 −2 −7 −7

−7 −7 −7 8 19 −7 −7 −7 −7 19 8 −7 −7 −7 −2 29 −2 −7

−7 −7 −7 −7 8 19 −7 −7 −7 −7 19 8 −7 −7 −7 −2 29 −2

19 −7 −7 −7 −7 8 8 −7 −7 −7 −7 19 −2 −7 −7 −7 −2 29

































(B.25)

The rotor loop leakage inductance as calculated using the methods described in appendix C.1 is

3.3055×10−6H. As explained in appendix C.1 it has been assumed that the leakage inductances only

affect the self-inductance terms, hence the full Mrr matrix has, additionally, the appropriate leakage

terms added on the diagonal.

Transformation to d-q axes is achieved by the method described in section 3.3. This rotor design

can be considered as three sets of 6 evenly spaced coils, and thus the method of section 3.3. The

resulting mutual inductance matrix (with zero-sequence state removed for brevity) is:

Mdq = 10−6 ×


















315× 103 0 0 0 −2784 122 −2211 −1696 −603 −2720

0 315× 103 0 0 −122 −2784 1696 −2211 2720 −603

0 0 328× 103 0 617 736 832 −480 −328 −902

0 0 0 328× 103 736 −617 −480 −832 −902 328

−2784 −122 617 736 34 0 18 13 3 22

122 −2784 736 −617 0 34 −13 18 −22 3

−2211 1696 832 −480 18 −13 34 0 18 13

−1696 −2211 −480 −832 13 18 0 34 −13 18

−603 2720 −328 −902 3 −22 18 −13 34 0

−2720 −603 −902 328 22 3 13 18 0 34


















(B.26)

where the leakage inductance is included, and is unaffected by the dq transformation.

The rotor-rotor portion of the mutual inductance matrix may be diagonalised by an appropriate

state transformation, the eigenvectors of the rotor-rotor mutual matrix. Applying this transformation
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to the whole mutual inductance matrix (using the identity matrix for the stator potion) gives:

Mdq = 10−6 ×


















315× 103 0 0 0 211 4822 0 0 0 0

0 315× 103 0 0 −4822 211 0 0 0 0

0 0 328× 103 0 0 0 −1212 −1140 0 0

0 0 0 328× 103 0 0 −1140 1212 0 0

211 −4822 0 0 79 0 0 0 0 0

4822 211 0 0 0 79 0 0 0 0

0 0 −1212 −1140 0 0 14 0 0 0

0 0 −1140 1212 0 0 0 14 0 0

0 0 0 0 0 0 0 0 9 0

0 0 0 0 0 0 0 0 0 9


















(B.27)

As can be seem from (B.27) this rotor decouples the different stator supplies. There is no longer

any cross-coupling achieved by the rotor, as is expected.

B.6 Rotor 4: Isolated loop design rotor with one set of loops removed

This rotor is identical rotor 3 but with one set of 6 loops removed. Figure B.7 shows rotor 3. Rotor 4

is the same, but with the loops marked in blue removed.

B.6.1 Rotor inductance terms

As rotor is a subset of rotor 3 so are the mutual inductance terms. The rotor-rotor inductance is given

by the upper-left 12× 12 partition of equation (B.25). The leakage inductance per coil is the same, at

3.3055× 10−6H.

The d-q transformed machine mutual inductance is the upper-left 8× 8 partition of (B.26). How-

ever when diagonalizing the d-q transformed model the results differ significantly from those obtained

for rotor 3:

Mdq = 10−6 ×




















315× 103 0 0 0 3939 55 −117 2

0 315× 103 0 0 55 −3939 −2 −117

0 0 328× 103 0 −706 −103 −1143 167

0 0 0 328× 103 103 −706 167 1143

3939 55 −706 103 57 0 0 0

55 −3939 −103 −706 0 57 0 0

−117 −2 −1143 167 0 0 12 0

2 −117 167 1143 0 0 0 12




















(B.28)

Thus equation (B.28) demonstrates that unlike rotor 3 where the 4 and 8 pole stator currents were

decoupled from each other, there is cross-coupling in the case of rotor 4.
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Figure B.7: Prototype rotor 3: Isolated loop rotor design
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B.7 Rotor 5: 6 bar cage rotor design

B.7.1 Rotor-rotor inductance terms

A cage rotor may be analysed by mesh loop analysis. As such the for an n bar cage there will be n

such loops to fully describe the cage (assuming that no flux is linked though the end ring). Figure

B.8 shows an example cage, with two loops illustrated, with currents I1 and I2 flowing respectively.

Having defined the rotor circuits as such the bar current may be expressed in terms of the loop currents

as illustrated in figure B.8.

For the purposes of mutual inductance calculation an n bar cage is therefore identical to n isolated

loops replacing the virtual loops forms from the analysis. Therefore the mutual inductance calculation

is the same as for the other rotor designs. However the resistance and leakage inductance matrices

will be of the following form:

R =
















2Rbar + 2Rend −Rbar 0 · · · 0 −Rbar

−Rbar 2Rbar + 2Rend −Rbar 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0 · · · 0 −Rbar 2Rbar + 2Rend −Rbar

−Rbar 0 · · · 0 −Rbar 2Rbar + 2Rend
















where Rbar and Rend are the resistance (or inductance) due to the bar and end ring respectively.
PSfrag replacements

I1

I1

I1

I2

I2

I2

In − I1 I1 − I2 I2 − I3

Figure B.8: Mesh loop analysis of cage rotors

The rotor-rotor mutual inductance may therefore be calculated by the method described in section

2.7.1:

Mrr = 10−7 ×















271 −51 −56 −56 −56 −51

−51 271 −51 −56 −56 −56

−56 −51 271 −51 −56 −56

−56 −56 −51 271 −51 −56

−56 −56 −56 −51 271 −51

−51 −56 −56 −56 −51 271















(B.29)
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The leakage inductance for each bar and end winding was calculated using the methods described in

appendix C.1. The bar leakage was found to be 2.40×10−7 H and the end ring leakage 1.02×10−7H.

Therefore the leakage inductance matrix is:

M l
rr = 10−7 ×















7 −2 0 0 0 −2

−2 7 −2 0 0 0

0 −2 7 −2 0 0

0 0 −2 7 −2 0

0 0 0 −2 7 −2

−2 0 0 0 −2 7















(B.30)

When transformed to d-q axes using the method described in section 3.3, the rotor-rotor mutual in-

ductance matrix becomes:

M l
rrdq
= 10−7 ×







9 0 0

0 9 0

0 0 3







Mrrdq 10−7 ×







322 0 0

0 322 0

0 0 0







(B.31)

Mh2
rrdq

10−7 ×







230 0 0

0 230 0

0 0 0







Mh4
rrdq

10−7 ×







57 0 0

0 57 0

0 0 0







(B.32)

where Mrrdq is the full d-q rotor-rotor mutual inductance matrix excluding leakage effects, M l
rrdq

is

the leakage inductance matrix, M h2
rrdq

and Mh4
rrdq

are the 4 pole and 8 pole harmonic components (the

first two non-zero components) of the rotor-rotor mutual inductance matrix.

Subtracting equations (B.32) from Mrrdq gives the harmonic leakage (or differential leakage) in-

ductance in the rotor, that is the additional series inductance that appears due to the production of

unwanted space harmonics by the rotor:

Mhl
rrdq
= 10−7 ×







35 0 0

0 35 0

0 0 0







(B.33)

B.7.2 Rotor-Stator inductance details

Figure B.9 shows the rotor-stator mutual inductance between a rotor phase and a 4 and 8 pole stator

phase. The data is overlaid with the fundamental component in each case, calculated from the FFT.

Equation (B.24) shows the mutual inductance between stator and rotor for the dq model.
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Figure B.9: Stator-Rotor mutual inductance for Rotor 5, the prototype double-layer rotor. The dotted

lines show the fundamental component of the fields.

Mdqsr = 10−6 × 10−6 ×















−839 2660 0

−2660 −839 0

0 0 0

−1378 −243 0

−243 1378 0

0 0 0















(B.34)

B.8 Rotor 6: Wound Rotor Design Details

B.8.1 Rotor-rotor inductance terms

Figures B.1 and B.2 show the winding diagram for the stator winding of the prototype machine. Rotor

6 has the same windings as the stator winding connected together in a star short-circuit including a

neutral connection.

The connection is achieved using the following combination matrix:

Tc =







1 0 0 0 0 −1

0 1 0 0 −1 0

0 0 1 −1 0 0







(B.35)

Therefore the rotor-rotor mutual inductance matrix given by (B.36), calculated using the method
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described in section 2.7.1:

Mrr = 110−7 ×







400 −181 −181

−181 400 −181

−181 −181 400







(B.36)

The leakage inductance is calculated in exactly the same was as for the stator using the methods

described in appendix C.1. The leakage inductance matrix is given by:

M l
rr = 10−7 ×







10 0 0

0 10 0

0 0 10







(B.37)

When converted to d-q axes, as described in section 3.3, rotor-rotor mutual inductance matrix

becomes:

Mrrdq = 10−7 ×







10 0 0

0 10 0

0 0 10







M l
rrdq
= 10−7 ×







581 0 0

0 581 0

0 0 37







(B.38)

Mh2
rrdq
= 10−7 ×







286 0 0

0 286 0

0 0 0







Mh4
rrdq
= 10−7 ×







290 0 0

0 290 0

0 0 0







(B.39)

where Mrrdq is the full d-q rotor-rotor mutual inductance matrix excluding leakage effects, M l
rrdq

is

the leakage inductance matrix, M h2
rrdq

and Mh4
rrdq

are the 4 pole and 8 pole harmonic components (the

first two non-zero components) of the rotor-rotor mutual inductance matrix.

Subtracting equations (B.39) from Mrrdq gives the harmonic leakage (or differential leakage) in-

ductance in the rotor, that is the additional series inductance that appears due to the production of

unwanted space harmonics by the rotor:

Mhl
rrdq
= 10−7 ×







5 0 0

0 5 0

0 0 37







(B.40)

B.8.2 Rotor-Stator inductance details

Figure B.10 shows the rotor-stator mutual inductance between a rotor phase and a 4 and 8 pole stator

phase. The data is overlaid with the fundamental component in each case, calculated from the FFT.

Equation (B.41) shows the mutual inductance between stator and rotor for the dq model.
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(a) Stator 1 - Rotor Mutual Inductance
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(b) Stator 2 - Rotor Mutual Inductance

Figure B.10: Stator-Rotor mutual inductance for Rotor 6, the prototype double-layer rotor. The dotted

lines show the fundamental component of the fields.

Mdqsr = 10−6 ×















2341 −1639 0

−1639 −2341 0

0 0 0

−1866 2224 0

−2224 −1866 0

0 0 0















(B.41)

B.9 Rotor 7: Standard Squirrel Cage Rotor Details

B.9.1 Rotor-rotor inductance terms

The rotor is a standard 40 bar squirrel cage rotor with Boucherot slots to give a higher rotor resistance

at high slips though the skin effect.

The calculation procedure is identical to that for Rotor 5 described in section B.7. Using this
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method the rotor-rotor mutual inductance matrix is:

Mrr = 10−8 ×





















471 14 −13 −13 · · · −13 14

14 471 14 −13 · · · −13 −13

−13 14 471 14− 13 · · · −13
. . .

. . .
. . .

. . .
. . .

. . .
...

−13 · · · −13 14 471 14 −13

−13 −13 · · · −13 14 471 14

14 −13 · · · −13 −13 14 471





















(B.42)

The rotor bar and end ring leakage inductance is calculated using the methods described in appendix

C.1. The bar leakage is 1.25 × 10−6H and the end ring leakage is 1.34 × 10−6H. These inductance

parameters are added to the rotor-rotor mutual inductance as described in section B.7

Transformation to d-q axes is achieved by the method described in section 3.3. However as

the cage rotor has 40 bars it cannot directly be considered to be part of the class of rotor designs.

Therefore a different d-q transformation was used:

Cdq =
[

Cdqp1
0

0 Cdqp2

]

(B.43)

where:

Cdqp =
√

2
40







cos(0) cos( 2pπ
40 ) cos( 4pπ

40 ) cos( 6pπ
40 ) · · · cos( 78pπ

40 )

sin(0) sin( 2pπ
40 ) sin( 4pπ

40 ) sin( 6pπ
40 ) · · · sin( 78pπ

40 )

1√
2

1√
2

1√
2

1√
2

· · · 1√
2







(B.44)

and p1 = 2, p2 = 4 for the prototype stator winding.

It can be shown that this non-square transformation matrix truncates only unobservable/uncontrollable

states.

The resulting mutual inductance matrix (with zero-sequence state removed for brevity) is:

Mdq = 10−6 ×




















363645 0 0 0 −574 1260 0 0

0 363645 0 0 −1260 −574 0 0

0 0 377345 0 0 0 −1374 −96

0 0 0 377345 0 0 96 −1374

−574 −1260 0 0 6 0 0 0

1260 −574 0 0 0 6 0 0

0 0 −1374 96 0 0 6 0

0 0 −96 −1374 0 0 0 6




















(B.45)
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where the leakage inductance is included. The other rotor-rotor inductance parameters in d-q axes are

given by:

Mrrdq = 10−7 ×










54 0 0 0

0 54 0 0

0 0 53 0

0 0 0 53










M l
rrdq
= 10−7 ×










4 0 0 0

0 4 0 0

0 0 11 0

0 0 0 11










(B.46)

Mh2
rrdq
= 10−7 ×










53 0 0 0

0 53 0 0

0 0 0 0

0 0 0 0










Mh4
rrdq
= 10−7 ×










0 0 0 0

0 0 0 0

0 0 52 0

0 0 0 52










(B.47)

where Mrrdq is the full d-q rotor-rotor mutual inductance matrix excluding leakage effects, M l
rrdq

is

the leakage inductance matrix, M h2
rrdq

and Mh4
rrdq

are the 4 pole and 8 pole harmonic components (the

first two non-zero components) of the rotor-rotor mutual inductance matrix.

Subtracting equations (B.47) from Mrrdq gives the harmonic leakage (or differential leakage) in-

ductance in the rotor, that is the additional series inductance that appears due to the production of

unwanted space harmonics by the rotor:

Mhl
rrdq
= 10−8 ×










2 0 0 0

0 2 0 0

0 0 9 0

0 0 0 9










(B.48)

B.10 Machine slot utilisation

Table B.4 shows the slot utilisation of the machine for different rotors.
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Conductor Conductor Slot Fill
area metal area factor

(mm2) (mm2)

Stator

67.86 Cu 135.47 0.500

Rotor 1: ‘Nested-loop’ design

133 Cu 147.23 0.903

Rotor 2: New double layer design*

51.46 Cu 70 0.74

Rotors 3 and 4*

51.46 Cu 70 0.74

Rotor 5: 6 bar squirrel cage design (simulation only)

205.84 Cu 280 0.74

Rotor 6: wound rotor (simulation only)

135.72 Cu 135.47 1.00

Rotor 7: standard squirrel cage rotor

116.60 Al 116.60 1.00

Table B.4: Slot utilisation of the stator and rotors for the prototype machine. (* values for slots which

contain conductors only)
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M530-65A

0.65mm thick

5.3W/kg loss at 1.5T

B (T) H (A/m)

0.1 44

0.2 59.5

0.3 69.6

0.4 78.2

0.5 86.6

0.6 95

0.7 104

0.8 113

0.9 125

1.0 138

1.1 159

1.2 196

1.3 270

1.4 454

1.5 1040

1.6 2630

1.7 5620

1.8 10100

Table B.5: Magnetisation data for stator laminations for prototype BDFM
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Appendix C

Leakage Inductance and Effective Air
Gap

In this chapter the procedure used to estimate the leakage inductance are described, and the notion of

effective air gap reviewed and the chosen method of estimation described.

The symbols used in this chapter are similar to those used in figures 2.2 and 2.1, however in this

chapter all dimension are in metres unless otherwise specified, whereas in figure 2.2 all measurements

other than the air gap width were in radians. In this chapter λ is used to denote permeance, ys is used

to denote slot pitch in metres (hence ys ≈ αs
d
2 , and wo ≈ ws

d
2 where d is the diameter, and αs and

ws as depicted in figure 2.2).

C.1 Leakage Inductance

The calculation of leakage inductance is greatly simplified by the calculation of specific permeance.

Permeance is the reciprocal of reluctance.

Specific permeance is defined as the self-inductance per unit length of coil per turns squared.

Thus to calculate the self inductance of a coil due to leakage the permeances around the length of the

coil should be summed and the the result multiplied by the number of turns squared.

The sources of permeance will now be considered. For full details, and derivation of results see

[31], and [18] for trapezoidal slot geometry (and simplifications adopted here).

An estimation of the slot bridge permeance for the cage rotor considered is taken from [9].

C.1.1 Slot and Tooth-top Permeance

Figure C.1 shows a trapezoidal slot. The dotted boxes within the slot represent different conductor

positions that will be considered. A square slot, can of course, be considered as a special case of a

trapezoidal slot. It will be assumed that slot leakage can be adequately modelled by trapezoidal slot

257
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Figure C.1: Slot shape used for permeance calculations

geometry even if the slot it not exactly trapezoidal (such as having a semi-circular end).

For the conductors in the bottom position in figure C.1 the slot permeance is:

λs1 = µ0

[
2h1

3(w1 + w2)
+ 2(h2 + h3 + h4)

(w5 + w2)
+ 2h5

(w5 + wo)
+ h6

wo
+ g

ys

]

(C.1)

The first term of C.1 accounts for the permeance inside the conductor being considered, with the

average slot width being taken. The second to fourth terms account for the permeance in the region

above the conductor and the final term is the ‘tooth-top’ permeance.

For other conductors the first and second terms are adjusted accordingly:

λs2 = µ0

[
2h2

3(w2 + w3)
+ 2(h3 + h4)

(w5 + w3)
+ 2h5

(w5 + wo)
+ h6

wo
+ g

ys

]

(C.2)

λs3 = µ0

[
2h3

3(w3 + w4)
+ 2h4

(w5 + w4)
+ 2h5

(w5 + wo)
+ h6

wo
+ g

ys

]

(C.3)

λs4 = µ0

[
2h4

3(w4 + w5)
+ 2h5

(w5 + wo)
+ h6

wo
+ g

ys

]

(C.4)

C.1.2 Overhang Permeance

Overhang permeance accounts for coupling arising from the end windings which overhang the lami-

nation stack. Figure C.2 shows a diagram of an end winding.

Under the assumption that the overhang forms two sides of a square at each end coil (see figure

C.2) [31] gives an empirical formula:

λo = µ0

[

0.366 loge

(
2a
b

)

+ 0.11
]

(C.5)
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Figure C.2: Assumed end winding configuration for overhang permeance calculations

which for typical values of a and b gives:

≈ µ0 (C.6)

.

It is assumed that there is zero mutual coupling between adjacent coils (if this is not the case [31]

gives suitable modifications to (C.6).

C.1.3 Zig-zag Permeance

‘Zig-zag’ permeance accounts for coupling where the flux density path zig-zags between teeth on

opposing sides of the air gap. It is only applicable when both rotor and stator have open slots.

Assuming that the slot pitch can be assumed to be average of the rotor and stator pitch, and that

that half the zig-zag flux links the stator and half the rotor, [31] gives the permeance as:

λz = µ0
ysa

12g

(

1− wo + wor

ysa

)2

(C.7)

where figure C.3 explains the symbols.

C.1.4 Leakage flux per coil

The leakage flux per coil can then be calculated from the specific permeances previous stated. The

permeances described in sections C.1.1 and C.1.3 both act over the lamination stack length, ws ,

whereas the overhang permeance acts over the overhang length, L o.

A description of the calculation is given for each rotor in described in chapter 5.
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Stator and rotor 6

The machine being considered has two two layer windings on the stator for the power and control

winding supplies. Therefore the stator leakage for the winding closest to the air gap (in our case the

8 pole winding) is as follows:

Lcoil8 = t2
8 (ws(λs3 + λs4 + 2λz)+ 2Loλo) (C.8)

For the 4 pole winding:

Lcoil4 = t2
4 (ws(λs1 + λs2 + 2λz)+ 2Loλo) (C.9)

Rotor 6, which is considered in simulation only, is assumed to have the same slot shape and

winding arrangement as the stator.

Rotor 1: ‘nested-loop’ design, and rotor 5: squirrel cage rotor with 6 bars

On both rotors1 and 5 the rotor bars take up the entire slot therefore the slot permeance is:

λsn = µ0

[
2(h1n + h2n + h3n + h4n )

3(w1n + w5n )
+ 2h5n

w5n + won

+ h6n

won

+ g
ysn

]

(C.10)

However the zig-zag permeance and overhang permeance expressions are the same.

Therefore the leakage inductance is:

Lnested = 2ws(λsn + λz)+ Lonλo (C.11)

ignoring any leakage due to the end ring at one end, and noting that L on is dependent on the location

of the particular loop within a nest.
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Figure C.4: Rotors 2, 3 and 4 slot detail

Rotor 2: new double layer design

The rotor has a dual layer winding and the slot shape is unusual (and non-ideal), due to economic

reasons which would not affect a commercial machine, a diagram of the slot is shown in figure C.4.

Rotor 2 only uses the top slot shown in figure C.4, and each ‘phase’ consists of 4 loops. Each of

the loops comprises of a conductor taking half the area of the top slot; the out and return paths of the

loop are in the top and bottom portion of the slot respectively. Therefore:

Lphase = 4(ws(µ0

[

2
h1/2
3w1

+ h1/2
w1
+ 2

h2

wo
+ 2

g
ys

]

+ 2λz)+ 2Loλo) (C.12)

Rotor 3: A rotor design consisting of 18 isolated loops

Rotor 3 has 18 separate loops comprised of copper strip which takes the up the whole slot area of the

top then bottom slot of figure C.4 respectively. Rotor 4 is identical in construction to rotor 3, but with

fewer loops, hence the inductance per loop is unchanged.

The leakage inductance of a single loop is therefore:

L loop = ws(µ0

[

2
h1

3w1
+ h1

w1
+ h2

wo
+ 2

h2

wo
+ 2

g
ys

]

+ 2λz)+ 2Loλo (C.13)

Rotor 7: Standard squirrel cage design

Rotor 7 has closed slots, and therefore a different approach is required to calculate the permeance.

Birch and Butler give a computational method for estimating the slot permeance as a function of the
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rotor m.m.f. (magneto-motive force) [9]. However the slot geometries of the cage rotor considered

are close enough to the example given in the paper to take the results straight from figure 3 of [9].

The prototype rotor slot bridge depth on the slot line is 0.85mm, the slot top radius is 2.5mm and the

air gap is 0.55mm.

λ m.m.f. (A-turns)

7.5 100

3.5 200

2.8 300

2.5 400

Thus assuming around 300 A-turns then the specific permeance is 2.8. This permeance must be added

to the slot permeance to determine the leakage inductance for a single bar:

Lbar = 2.8µ0ws + ws(µ0

[
h1/2
3w1

+ g
ys

]

+ λz)

The leakage due to the end ring is approximated using the same method as for an end winding:

Lend = Loλo

Therefore the total leakage inductance matrix will be a symmetric circulant matrix with 2L bar+2Lend

on the diagonal, and −Lbar offset by ±1 column from the diagonal.

The dimensions for the slot leakage calculations have been assumed to be the same as those for

the progressive loop rotor.

Parameter Values for Leakage calculation

Table C.1 shows the slot and overhang dimensions for leakage flux calculation on the stator rotor

designs considered. Table C.2 contains physical geometries of the considered rotors and stator, and

the effective air gap as calculated using Carter’s factor.

C.2 Effective air gap

In 1900 Carter [21] first derived a correction factor for the air gap to allow for the effect of having

an open slot. The initial result was expanded and given in a more complete form in [22], equation

(8). Broadly the assumption made is that slots are parallel and infinitely deep, slot pitch length is

infinite. Furthermore it is assumed that the teeth themselves are made of material of infinite magnetic

permeability.

Carter’s factor is given by:

K = ys

ys − γ g
(C.14)
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wo w1 w2 w3 w4 w5 g h1 h2 h3 h4 h5 h6 ys w Lo t

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

Stator (and rotor 6 with t = 0.1 and w = 189.9) 4 pole (furthest from the air gap)

3.2 8.111 7.731 7.335 6.471 5.473 - 2.845 2.992 6.532 7.556 0.656 1.13 11.457 195.5 160 10

Stator (and rotor 6 with t = 0.2 and w = 189.9) 8 pole (closest to the air gap)

3.2 8.111 7.731 7.335 6.471 5.473 - 2.845 2.992 6.532 7.556 0.656 1.13 11.457 195.5 75 20

Rotor 1: ‘Nested-loop’ design

2.8 5.68 - - - 9.433 0.547 19.48 0 0 0 1.207 0.65 15.182 189.9 100,60,20 1

Rotor 2: New double layer design

2.1 3.74 - - - - 0.555 18.71 2.27 - - - - 15.180 190.2 110 1

Rotors 3 and 4: isolated loop designs

2.1 3.74 - - - - 0.555 18.71 2.27 - - - - 15.180 189.9 140 1

Rotor 5: 6 bar squirrel cage design

8.4 22.72 - - - 37.72 0.547 19.48 0 0 0 1.207 0.65 91.091† 189.9 110 1

Table C.1: Slot and overhang dimensions for calculation of leakage flux for the different rotors, see figures C.4, C.1 and C.2 for details. † the value

used in calculation of zig-zag permeance was 15.182mm, to coincide with rotor 1.
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diameter Stack length rotor-stator No. slots Carter Factor Carter Factor Carter Factor air gap air gap slot mouth air gap
stack overlap (Approx.) (Ossana Approx.) (tol.) width (eff.)

d w K g wo geff

(mm) (mm) (mm) (mm) ±(mm) (mm) (mm)

Stator (3 values are given for three different air gaps)

175.065 195.5 - 48 1.179 1.193 1.253 0.547 - 3.2 -

175.065 195.5 - 48 1.178 1.192 1.252 0.555 - 3.2 -

175.065 195.5 - 48 1.186 1.198 1.259 0.510 - 3.2 -

Rotor 1: ‘Nested-loop’ design

173.971 189.9 189.9 36 1.104 1.114 1.167 0.547 0.03 2.8 0.712

Rotor 2: New double layer design

173.955 190.2 189.4 36 1.064 1.138 1.120 0.555 0.03 2.1 0.696

Rotors 3 and 4: isolated loop designs

173.955 189.9 188.3 36 1.064 1.138 1.120 0.555 0.03 2.1 0.696

Rotor 5: 6 bar squirrel cage design (simulation only)

173.971 189.9 189.9 6 K = 1 by assumption 0.547 0.03 8.4 0.645

Rotor 6: wound rotor (simulation only)

173.971 189.9 189.9 48 1.181 1.194 1.255 0.547 0.03 3.2 0.762

Rotor 7: standard squirrel cage rotor

174.046 190.3 189.3 40 closed slots 0.510 0.02 - 0.605

Table C.2: Physical data for the experimental (and simulation) BDFM stator and rotor designs
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where

γ = 4
π

[

wo

2g
arctan

(
wo

2g

)

− loge

√

1+
(
wo

2g

)
]

(C.15)

and where wo is the slot mouth width, ys is the slot pitch (in distance units) and g is the air gap width

as per figure C.1.

When both rotor and stator have open slots it is assumed that the resultant Carter factor is the

product of the Carter factors for the stator and rotor respectively (see [43, sect. 6.1] and references

therein for details and experimental justification).

K total = Kr Ks (C.16)

where Kr and Ks are the rotor and stator Carter factors respectively.

As noted in [43] the assumption of infinite slot pitch length is not always reasonable. In [22] and

[39, ch. 17], Carter’s original calculation is generalised for the case of a regular slotting pattern. [39]

claims that Carter’s initial assumption i.e. equations (C.14) is quite sufficient for practical application,

which is at odds with [43, p. 56]. In practice as long as the ratio wo
g is sufficiently large (or equivalently

the ratio wo
ys−wo

sufficiently small, however in normal machines this is rarely the case) then (C.14) is a

good approximation. Sometimes these assumptions are not reasonable, and [43, sect. 6.1] gives the

following two alternative approximations which have empirical justification:

When wo
g < 12:

K ≈ ys

ys + g − 3
4wo

(C.17)

Or an alternative approximate formula is given as

K ≈ ys + 8g
ys − wo + 8g

(C.18)
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Location Frame name Frame Air gap Air gap Stack Poles No. Rotor No. Stator Original Claimed Ref. Year
size dia. Length Slots Slots Torque power

(mm) (mm) (mm) (mm) (Nm) kW

Broadway/Burbridge

Bristol, UK - 6/2 48 (40 used) [17] 1970

Bristol, UK - 177.8 69.85 18/12 60 54 [17] 1970

Spée/Wallace

Oregon NEMA 254T 158.75 0.6 210 75 6/2 44 36 40 [110, 104, 127, 11] 1989-1995

Brune/Spée/Wallace

Oregon NEMA 182T 114.30 6/2 12 [19] 1994

Williamson

Cambridge D160 160 273 8/4 36 48 70 [114] 1997

McMahon/Ali Lotia

Cambridge D100 100 0.42 91.7 96 6/2 32 36 15 2 [68] 2000

McMahon/FKI

Cambridge D180 180 0.55 175 190 8/4 36 48 140 2001

Shoudao et. al.

China 6/2 30 [96] 2000

Runcos/WEG

Brazil 12/8 100† [90] 2004

Table D.1: Prototype nested-loop rotor BDFMs. † This value is hard to believe from the evidence presented.



Appendix E

Experimental Apparatus

The test rig for the prototype BDFM is shown in figure E.3. Details on the prototype machine can be

found in appendix B. The test rig was designed and assembled for the purposes of this research. The

purpose of the design was to produce a test rig which would allow steady-state and dynamic tests to

be performed on the prototype BDFM machine over its full potential operating range. The operating

range was considered to be 0-150 N m and 0-2000 rpm. In practice the extremes of this operating

envelope were not attainable, due to limitations that will be discussed in the sequel.

The apparatus will now be described.

E.1 Apparatus Description

The apparatus is depicted in figures E.2 and E.3. The apparatus consists broadly of three parts: the

prototype BDFM machine and power supplies; the DC load motor and power supplies and control

and instrumentation hardware. In addition a Yokogawa 3 phase power meter, part number WT130

was available for confirmatory measurements.

The DC machine armature was supplied from two unregulated 220V, 30A DC supplies which

could be connected in series or parallel giving a maximum power of 13.2 kW, this was the maximum

power the rig could supply. The DC machine field winding was supplied from a regulated 600V, 4A

DC supply.

The BDFM stator 1 winding was supplied from the 3 phase, 50 Hz grid, connected through a

25A per phase Variac, variable from 0 to 245Vrms (phase). The stator 2 winding was connected to an

inverter through a L-C line filter. The PWM switching frequency was variable, but normally set to

10 kHz.

The control and instrumentation was based around a dedicated slave PC, with an AMD ‘Athlon’

1.4 GHz processor. This slave PC ran a real-time operating system, specifically designed to be pro-

grammed by, and interface to Simulink/Matlab, called ‘xPC Target’. This slave PC will be referred

to as the target PC. The target PC contained a number of peripheral boards to perform data acquisi-
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tion and output data. The target PC performed data logging, this data was accessible over a TCP/IP

network connection for subsequent downloading. The target PC was programmed, and monitored

from a host PC running Matlab/Simulink under MS Windows. The host PC simply functioned as an

interface to the target PC. Figure E.1 shows a typical screen shot of the the target PC when running.

The screen shot shows the basic signal monitoring features of the target computer. The screen shot

shows current and voltage wave forms, along with some numerical data.

Figure E.1: Typical screen shot of the target PC, showing current and voltage wave forms and numer-

ical data

Due to the extremely high levels of E-M interference generated by the inverter the elimination of

noise from measurements was particularly problematic. Where possible signals were isolated using

opto-isolators and low impedance earthing was provided throughout. These measures combined with

some filtering gave acceptable performance.

E.1.1 xPC Target PC and peripheral boards

Table E.1 gives details of the peripheral boards in the target PC. The FPGA based inverter output

board was specified by the author and designed by George Makrides[70].

E.1.2 Torque Transducer

The transducer was manufactured by Hottinger Baldwin Messtecknik (HBN), Germany part number

T30FN with display unit and amplifier part numbers DA3417 and MD555. The transducer was rated

0-1000 N m at up to 5 kHz and up to 3000 rpm. In practice, the power supply to the transducer was
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Manufacturer/Part No. Description Specification Purpose

Measurement Comput-

ing / PCI-DIO96H

96 bit digital I/O Organised in 8-bit groups,

5V levels, read latency ap-

prox. 750 ns, write latency

approx 250 ns.

Receiving parallel data

from voltage A/D, total

read time approx. 9 µs for

6 × 16 bit inputs.

Measurement Comput-

ing / PCI-DIO96H

96 bit digital I/O Organised in 8-bit groups,

5V levels, read latency ap-

prox. 750 ns, write latency

approx 250 ns.

Receiving parallel data

from speed and position

calculations, total read

time approx. 4 µs.

Measurement Comput-

ing / PCI-DAS1602/16

16 single-ended

(or 8 differential)

input 16-bit A/D,

2 16-bit D/A, 24

bit digital I/O

A/D 200kSamples/s (one

input), hence read latency

approx. 5 µs per input.

Measurement of analogue

current signals from Hall

effect sensors, torque read-

ing from transducer, flux

reading from integrating

amplifier. Total read time,

approx 40 µs.

PLX-9030 and Xilinx

Spartan 2e FPGA

Custom designed implementation of space-vector modulation, to generate

switching patterns for the inverter. Variable dead-time (0-4 µs), switching

frequency (1-50 kHz), modulation frequency (-200 to 200 Hz), av. latency 1
2

switching period, hence 50 µs at 10 kHz

Table E.1: xPC Target PC peripheral boards
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poorly decoupled resulting in large amounts of noise being picked up from the inverter. Therefore the

useful bandwidth was only a few Hz.

E.1.3 DC load motor

The DC load motor specifications are given in table E.2. For further details see [69]. As previously

mentioned the maximum power the DC machine could deliver was 13.2 kW, which was the supply

limit. The maximum power the machine can dissipate is 13.9 kW which was limited by the load

resistors.

Parameter Value

Manufacturer GEC, UK

Frame size SD160XLB

Nature separately excited

Rated power 24 kW

Rated speed 1750 rpm

Armature voltage 460V

Armature current 61A

Field winding voltage 360V

Field winding current 1.83A

Armature resistance 0.428Ä

Armature inductance 7.5 mH

Field winding resistance 196.7Ä

Field winding inductance 74 H

Table E.2: DC load motor specification

E.1.4 Inverter Output Filter

The inverter output filter was a 3 phase L-C filter. The filter was manufactured by Schaffner, part

number FN 5010-18-99 and was a star connected L-C filter with L=3.5 mH and C=1.5 µF giving the

resonant pole at approximately 2.2 kHz. The filter is rated at 18Arms per phase, and 400Vrms line at

40 °C. The manufacturer states that the filter can be used with switching frequencies from 4 kHz to

16 kHz.

E.1.5 Inverter

The inverter comprised of 3 half-bridge IGBT modules. The modules were Semikron ‘SKiiP 432 GB

120 - 207 CTV’ modules, which contain two N-channel IGBT devices in series and accompanying
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gate drive circuitry, including measures to protect the devices from overheating due to desaturation,

undervoltage and short circuit protection. The latter ensures that a suitable ‘dead-time’ between firing

high and low side devices is employed.

The devices were rated at 1200V and 400A. The devices were supplied from a 600V DC link

derived from a uncontrolled 3 phase rectifier connected directly to the mains.

The devices were mounted in an earthed protective enclosure on a heat sink with forced air cool-

ing. The overall inverter rating was calculated as 200Arms per phase with a 600V DC link at 8 kHz

switching frequency, or 100Arms per phase at a 600V DC link at 25 kHz switching frequency.

The inverter also included a ‘brake-chopper’, Semikron part number SKAI 100 E, which provided

‘bang-bang’ regulation of the DC link voltage by switching in the inverter protection resistors when

the DC link voltage exceeded around 680V. This facility was necessary when testing the BDFM, as

when the machine is in operation as a generator, above natural speed, or as a motor below natural

speed, the inverter connected winding regenerates power, which would otherwise cause the DC link

voltage to increase.

E.1.6 Position and Speed Measurements

The position and speed measurements were derived from an optical encoder (or ‘resolver’), which

produced 2500 pulses per revolution. A state-machine was implemented on a fast 8-bit micro con-

troller, a Scenix SX28 running at 50MIPS, to determine the rotor angular position to an accuracy of

0.036◦. The data was sent as 15 bit parallel data, with one bit representing the direction of rotation for

the last transition. The data was fed into the input of one of the digital I/O cards. Handshaking was

achieved by an assertion from the digital I/O card that a read was imminent; during this time the SX28

refrained from modifying its output pins. The latency between position updates was approximately

2 µs.

The speed measurement was achieved with another SX28 micro controller, which used a 50MHz

clock to time pulse widths. This data was output as a floating point number with a 5 bit exponent,

12 bit mantissa, and a saturation bit, to one of the digital I/O cards. The speed was computed by the

target PC by performing the requisite division. As the optical encoder gave 2500 pulses per revolution

the minimum speed measurable before saturation occurred was approximately 0.07 rpm. At 1000 rpm

the speed measurement was accurate to better than 1 rpm, at 2000 rpm the accuracy was better than

about 4rpm. As with the position measurement, handshaking was achieved by means of an assertion

from the I/O board.

The outputs from the optical encoder were isolated using opto-isolators to ensure that no ground

loops were present and to protect the equipment.
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E.1.7 Analogue to Digital Converters

The stator 1 and stator 2 phase currents were measured using Hall effect current sensors, LEM part

number LTA-100P, wound for a maximum current of 25Arms. The Hall effect sensors provide galvanic

isolation, however it was necessary to place the sensors in the return current path, rather than the out

current path, to reduce the capacitive coupling between the sensor circuitry and the noisy supply

voltage to stator 2 from the inverter. The sensors were read by the DAS1602/16 16 bit A/D card. The

sensor bandwidth was approximately 100 kHz, hence the bandwidth was limited by the sample rate.

The voltage measurement was achieved with a custom designed A/D board designed by the author

and implemented by Davor Dukic and Iskandar Samad. The board consists of 6 parallel 16 bit A/D

converters, AD677, driven by a differential input with a 2 kHz 4 pole Butterworth anti-aliasing filter.

The converters were isolated via opto-isolators, and the data conversion controlled by 7 PIC micro

controllers. The data was acquired by one of the digital I/O boards, in parallel format. The maximum

input voltage was ±1000V peak, and the input impedance was 1 MÄ.

E.1.8 DC Machine load resistors and Inverter dump resistors

The inverter dump resistors were six 24Ä, 10A resistors connected as three in series and the two such

sets in parallel, giving a total resistance of 36Ä at 20A, or 10 kW at 600V. Therefore the inverter could

withstand 10 kW of regeneration.

The DC machine load resistors comprises of three resistors each configured at 10.5Ä and rated at

21A. Generally either two or three resistors were connected in parallel giving a minimum resistance

of 3.5Ä at a current of 63A, and total power dissipation of 13.9 kW, which was the maximum power

which could be dissipated by the test rig.
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