
Moving Objects Databases: Issues and Solutions

Ouri Wolfsont Bo Xd Sam Chamberlains Liqin JiangT

Abstract

Consider a database rhar represents information about

moving objects and their locafion. For example, fur a
database representing rhe location of taxi-cabs a opicai

query may be: retrieve the free cabs that are current11

within 1 mile of 33 N. Michigan Ave., Chicago (to pick-

up a cusromer). In the mililar): moving objects database
applications arise in rhe context qf rhe digiral battlefield,
and in the civilian indusrot they arise in rransporration

systems.

Currently, movingobjecrsdatabaseapplicationsare be-

ing developed in an ad hoc fashion. Database Management

System (DBMS) technology provides a potential founda-
tion upon which to develop these applications. however;

DBMS’sare currenrhnorusedforthispurpose. The reason

is that there is a &&al set of capabilities that are needed
by moving objects database applicarions and are lacking
in existing DBMS’s The objective of our Databases for

MovlNg Objects (DOMINO)pmject is to buildan envelope
containing these capabilities on top ofexisting DBMS’s, In
this paper we describe the problems and our proposed so-
lutions.

1 INTRODUCTION

Consider a database that represents information about
moving objects and their location. For example, for a
database representing the location of taxi-cabs a typical
query may be: retrieve the free cabs that are currently
within I mile of 33 N. Michigan Ave., Chicago (to pick-up
a customer); or for a trucking company database a typical
query may be: retrieve the trucks that are currently within
1 mile of truck ABT312 (which needs assistance); or for
a database representing the current location of objects in

‘This research was supponed in pan by Army Rewrch Labs grant
DAALOI-96-2-0003. NSF era”, IRI-9408750, NSF grant IRI-9712967,
DARPA grant N66OUl-97-Z-89Ul. NATO gmnt CRG-960648. and a
Hughes Research Labs gti

t~partmentofElectricalEngineenngandComputerScience.Un~ver-
sity of Illinois. Chugo. IL 6N07. wolfson~eccs.uic.edu. 3 12-996-6770,
312.413.0024(fax)

t Dcpanment of Electnczd Engineering and Computer Science, Uni-
ven~ty of Illinois. Chicago, IL 60607. bxuOeecs.uic.edu

OArmy Resexch Laboratory. Aberdeen Provmg Ground. MD
nDepanment of Electrical Enpmeennp and Computer Science, Um-

versity of Illinois. Chicago. IL 60607. I~mgl Oeecs.ulc.edu

a battlefield a typical query may be: retrieve the friendly
helicopters that are in agiven region, or, retrievethe friendly
helicopters that are expected to enter the region within
the next 10 minutes. The queries may originate from the
moving objects, or from stationary users. We will refer
to applications with the above characteristics as moving-
objects-database (MOD) applications, and to quenes as the
ones mentioned above as MOD queries.

In the military, MOD applications arise in the context
of the digital battlefield (see [5, 6]), and in the civilian
industry they arise in transportation systems. For example,
Omnitracs developed by Qualcomm (see [26]) is a com-
mcrcial system used by the transportation industry, which
enables MOD functionality. It provides location manage-
ment by connecting vehicles (e.g. trucks), via satellites,
to company databases. The vehicles are equipped with a
Global Positioning System (GPS), and they automatically
and periodically report their location.

Currently, MOD applications are being developed in an
ad hoc fashion. Database Management System (DBMS)
technology provides a potential foundation upon which
to develop MOD applications, however, DBMS’s are cur-
rently not used for this purpose. The reason is that there is
a critical set of capabilities that are needed by MOD appli-
cations and are lacking in existing DBMS’s, The following
is a discussion of the needed capabilities.

l Location Modeling

Existing DBMS’s are not well equipped to handle
continuously changing data, such as the location
of moving objects. The reason for this is that in
databases, data is assumed to be constant unless it is
explicitly modified. For example, if the salary field
is 30K, then this salary is assumed to hold (i.e. 30K
is returned in response to queries) until explicitly
updated. Thus, in order to represent moving ob-
jects (e.g. vehicles) in a database and answer queries
about their location, the vehicle’s location has to be
continuously updated. This is unsatisfactory since
either the location is updated very frequently (which
would impose a serious performance overhead), or,
the answer to queries is outdated. Furthermore, as-
suming that the location updates are generated by the
moving objects themselves and transmitted via wire-
less networks, frequent updating would also impose
a serious wireless bandwidth overhead.

l Lingustics Issues

111
O-8186-8575-1/98 $10.00 0 1998 IEEE

Generally, a query in MOD applications involves
spatial objects (e.g. points, lines, regrons, polygons)
and temporal constraints. Consider for example the
query: “Retrieve the objects that will intersect the
polygon P within the next 3 minutes”. This is a spa-
tial and temporal range query. The spatial range is
the polygon P, and the temporal range is the time
interval between now and 3 minutes from now. Sim-
ilarly, there are spatio-temporal join queries such as:
“Retrieve the pairs of friendly and enemy aircraft
that will come within 10 milts of each other, and the
time when this will happen.” Traditional query lan-
guages such as SQL are inadequate for expressing
such queries. Although spatial and temporal lan-
guagcs have been studied in the database research
community, the two types of languages have been
studied independently, whereas for MOD databases
they have to be integrated. Furthermore, spatial and
temporal languages have been developed for data
models that are inappropriate for MOD applications
(due, for example, to the modeling problem men-
tioncd above).

. Indexing

Observe that the number of moving objects in the
database may be very large (e.g., in big cities with
millions of inhabitants). Thus, for performance con-
siderations, in answering MOD queries we would
like to avoid examinmg the location of each moving
object in the database. In other words, we wouldlike
to index the location attribute. The problem with a
straight-forward use of spatial indexing for this pur-
pose is that the continuous change of the locations
implies that the spatial index has to be continuously
updated. This is clearly an unacceptable solution.

l Uncertainty/Imprecision

The location of a moving object is inherently impre-
cise because, regardless of the policy used to update
the database location of the object (i.e. the object-
location stored in the database), the database location
cannot always be identical to the actual location of
the object. This inherent uncertainty has various im-
plications for database modeling, querying, and in-
dexing. For example, for range queries there can be
two different kinds of answers, i.e. the set of objects
that “may” satisfy the query, and the set that “must”
satisfy the query. Thus, drfferent semantics should
be provided for queries. Another approach would
be to compute the probability that an object satis-
fies the query. Although uncertainty in databases
has been studied extensively, the new modeling and
spatio-temporal capabilities needed for moving ob-
jects introduce the need to revisit existing solutions.

Additionally, existing approaches to deal with uncer-
tainty assume that some uncertainty information is
associated with the raw data stored in the database.

How is this initial uncertainty obtained? For MOD
applications the question becomes how to quan-
tify the location uncertainty? How to quantify the
tradeoff between the updating overhead and the un-
certainty/imprecision penalty, and how frequently
should a moving object update its location. How to
handle the possibility that a moving object becomes
disconnected and cannot send location updates?

Therefore, there is a critical set of capabilities that have
to be integrated, adapted, and built on top of existing
DBMS’s in order to support moving objects databases,
The objective of our Databases for MovINg Objects
(DOMINO) project is to build an envelope containing these
capabilities on top of existing DBMS’s, The key features
of our approach are the following.

l Dynamic Attributes

In our opinion, the key to overcoming the location
modeling problem is to enable the DBMS to predicr
the future location of a moving object. Thus, when
the moving object updates the database, it provides
not only its current location, but its expected future
locations. For example, if the DBMS knows the
speed and the route of a moving object, then it can
compute its location at any point in time without
additional updates.

Thus, WC propose a data model called the Mov-
ing Objects Spatio-Temporal (or MOST for short)
model. Its novelty is the concept of a dynamic at-
tribute, i.e. an attribute whose value changes contin-
uously as time progresses, without being explicitly
updated. So, for example, the location of a vehicle
is given by its dynamic attribute which consists of
motion information (e.g., north on route 481, at 60
milts/hour). In other words, we devise a higher level
of data abstraction where an object’s motion infor-
mation (rather than its location) is represented as an
attribute of the object. Obviously the motion infor-
mation of an object can change (thus the dynamic
attribute needs to be updated), but in most cases rt
does so less frequently than the location of the object.
We devised mechanisms to incorporate dynamic at-
tributes in existing data models and capabilities to be
added to existing query processing systems to deal
with dynamic attributes.

l Spatial and Temporal Query Language

We introduced a temporal query language called Fu-
ture Temporal Logic (FTL) for query and trigger
specifications in moving objects databases. The lan-
guage is natural and intuitive to use in formulating
MOD queries, and it uses both spatial operators (e.g.
object INSIDE polygon) and temporal operators (e.g.
UNTIL, EVENTUALLY in the future). We are de-
veloping algorithms for processing FTL queries on

112

databases with dynamic attributes. We have imple-
mented FfL in a prototyperunning on top of Sybase
and on top of MS Access.

. Indexing Dynamic Attributes

We propose the following paradigm for indexing dy-
namic attributes. The indexing problem is decom-
posed into two sub-problems; first is the geometric
representation of a dynamic attribute value (i.e. a
moving object’s speed, initial location, and starting
time) in multidimensional time-space, and second is
the spatial indexing of the geometric representation.
The geometric representation subproblem concerns
the question: how to construct the multidimensional
space, and how to map an object (more precisely,
a dynamic attribute value) into a region (or a line,
or a point) in that space, and how to map a query
into another region in that space, so that the result of
the query are the objects whose regions intersect the
query region. The object region is updated only when
the dynamic attribute is explicitly updated (e.g. when
the speed of the object changes) rather than contin-
uously. The spatial indexing subproblem concerns
the question how to find the intersection-of-regions
mentioned above in an efficient way. The latter sub-
problemcan be solved by an existing spatial indexing
method, but it is an open problem which method is
most appropriate for a particular geometric represen-
tation and dynamic attribute values distribution. We
have devised several solutions to the geometric rep-
resentation subproblem, and in this paper we present
two of them, namely the value-rime space represen-
tation and the intercept-slope space representation.

l Uncertainty/Imprecision Management

We extended our data model, query language, and
indexing method to address the uncertainty prob-
lem. The data model was extended by enabling the
provision of an uncertainty interval in the dynamic
attribute. More specifically, at any point in time the
location of a moving object is a point in some un-
certainty interval, and this interval is computable by
the DBMS. Thus, the DBMS replies to a query re-
questing the location of a moving object m with the
following answer A: “m is on route 698 at location
(z,y), with an error (ordeviation)of at most 2 miles”.
The bound b on the deviation (2 miles in the above
answer) is provided by the moving object, i.e. the
object commits to send a location update when the
deviation reaches the bound, The FfL language is
also extended. Two kinds of semantics, namely ma)
and must semantics, are incorporated, and the pro-
cessing algorithms are adapted for these semantics.
The indexing method is also extended to enable the
retrieval of both, moving objects that “must be” in a
particular region, and moving objects that “may be”
in it.

We also addressed the question of determining the
uncertainty associated with a dynamic attribute, i.e.
the bound b mentioned above. We proposed a cost
based approach which captures the tradeoff between
the update overhead and the imprecision. The lo-
cation imprecision encompasses two related but dif-
ferent concepts, namely deviation and uncertainty.
The deviation of a moving object m at a particular
point in time t is the distance between m’s actual
location at time t, and its database location at time 1.
For the answer A above, the deviation is the distance
between the actual location of m and (1,~). On the
other hand, the uncertainty of a moving object m at
a particular point in time 1 is the size of the interval
in which the object can possibly he. For the answer
A above, the uncertainty is 4 miles. The deviation
has a cost (or penalty) in terms of incorrect decision
making, and so does the uncertainty. The devia-
tion (uncertainty) cost is proportional to the size of
the deviation (uncertainty). The tradeoff between
imprecision and update overhead is captured by the
relative costs of an uncertainty-unit, a deviation-unit,
and an update-overhead unit. Using the cost model
we propose update policies that establish the uncer-
tainty bound b in a way that minimizes the expected
total cost. Furthermore, we propose an update policy
that detects disconnection of the moving object at no
additional cost.

. Simulation Testbed

We are building a simulation testbed in which theper-
fotmance of a moving objects database application
can he evaluated. The input to the simulation sys-
tem is a set of moving objects, their trajectories, their
speed variations over time, the costs of deviatron, the
cost of uncertainty, the cost of communication, the
wireless bandwidth distribution over the geographic
area, and the location update policy used by each
moving object. The objective is to determine the
performance of MOD queries, as well as to answer
questions such as: How many objects can be sup-
ported for an average imprecision that is bounded
by 2, and a wireless bandwidth allocated to location
updates that is bounded by y? Or, given n moving
objects and a houndof 10% on the imprecision, what
percentage of the bandwidth is used for location up-
dates?

The rest of this paper is organized as follows. In section
2 we present the MOST data model. In section 3 we
discuss the FfL query language. In section 4 we discuss the
indexing of dynamic attributes. In section 5 we discuss our
extensions to the above solutions to address the uncertainty
problem. We also propose three update policies and we
discuss the results of their comparison by simulation. In
section 6 WC present the prototype implementation. In
section 7 we discuss relevant work, and in section 8 we
discuss future work.

113

2 THEMOSTDATAMODEL

In traditional DBMS’s, data is assumed to be constant
unless it is explicitly modified. Thus, in order to repre-
sent moving objects (e.g. cars) in a database, and answer
queries about their location (e.g., How far is the car with li-
cense plate RWW860 from the nearest hospital?) the car’s
location has to be continuously updated. This is unaccept-
able since either the location is updated very frequently
(which would impose a serious performance and wireless-
bandwidth overhead), or, the answer to queries is outdated.
Furthermore, it is possible that due to disconnection an
object cannot continuously update its location.

We propose to solve the continuously changing location
problem by representing the location as a function of time;
it changes as time passes, even without an explicit update.
So, for example, the location of a helicopter is given as a
function of its motion vector (e.g., north, at 60 miles/hour).
In other words, we consider a higher level of data abstrac-
tion, where an object’s motion vector is represented as an
attribute of the object. Obviously, the motion vector of
an object can change, but in most cases it does so less
frequently than the location of the object.

We propose a data model called Moving Objects Spatio-
Temporal (or MOST for short). Its main contribution is the
concept of dynamic attributes, i.e. attributes that change
continuously as a function of time, without being explicitly
updated. In other words, the answer to a query depends not
only on the database contents, but also on the time at which
the query is entered. In contrast, a static attribute of an
object is an attribute in the traditional sense, i.e. it changes
only when an explicit update of the database occurs.

Formally, a dynamic attribute A is represented by
three sub-attributes, A.updatevalue, A.updutelime, and
A.function, where A.funelion is a function of a sin-
gle variable t that has value 0 at t = 0. The v&e of
a dynamic attribute depends on the time, and it is de-
fined as follows. At time A.updatetime the value of A
is A.updateualue, and until the next update of A the value
of A at time A.updaletirne $ ta (where tc is a positive
number) is given by A.updalevalue $ A.function(to).
An explicit update of a dynamic attribute may change its
value sub-attribute, or its function sub-attribute, or both
sub-attributes.

In this paper we are concerned with dynamic attributes
that represent spatial coordinates, but the model can be
used for other hybrid systems, in which dynamic attributes
represent, for example, temperature, or fuel consumption.

For a moving object, we can model its locution arrribure
L by two dynamic attributes LX, and L.y, each with its
own update value, function. and update time, representing
the 2 and y coordinates of the object respectively (all our
concepts and results can be extended to motion in three-
dimensional space). The object updates its location when
its speed changes. This is straight-forward for objects that
move freely in space (e.g. aircraft). However, this would
be ineflicient (i.e. may generate many updates) for ob-

jects moving along a winding route, since each turn would
constitute a change of L.x.funclion and L.y.function.

To address this problem, we can extend the dynamic
attribute concept to include the route as follows. The loca-
tion attribute is a dynamic attribute with five sub-attributes,
namely Lroute, L.x.updatevalue, L.y.updatevahe,
L.updatelirne, and Lspeed. Among them, L.route is

(the pointer to) a line spatial object indicating the route
on which an object is moving. L.+.updatevalue and
L.y.updalevalue are the 2: and y coordinates of a point
on L.route; it is the location of the moving object at time
L.updatetirne, i.e. the time of the last location-update,
L.speed is a linear function of the form f(t) = 6 t. It is

defined by the speed b of the moving object, and it gives
the current distance from the starting location as a function
of the time t elapsed since L.updatetime. The location
at time L.updatetime + 1 is the point (z,y) which is at
route-distance ’ L.speed t from the point with coordi-
nates (L.r.updalevalue, L.y.updalevalue).

3 THEFTLLANGUAGE

A nontemporal query is a query that pertains to the
present time, e.g. “Retrieve all the objects that are currently
inside the polygon I”‘. A regular query language such as
SQL or OQL augmented with spatial predicates can be used
for nontemporal queries on moving objects. Now consider
for example the following temporal query Q: “Retrieve the
pairs of objects o and n such that the distance between o and
n stays within 5 miles until they both enter the polygon P”.
Expressing such a temporal query would be cumbersome
in SQL or OQL. Assume that for each predicate G there are
functions begin-time(G) and endtime that give the
beginning and ending times of the first time-interval during
which G is satisfied; also assume that “now” denotes the
current time. Then the query Q would be expressed as
follows in SQL or OQL.

RETRIEVE o,n
FROM Moving-Objects
WHERE begin-time(DIST(o, n) 5 5) < now

and end-time(DIST(o, n) 5 5) >
begin-time(lNSIDE(o, P) A INSIDE(n, P)).

where DIST(o, n) and INSIDE(o, P) are both spatial
methods. DIS’T(o, n) returns the distance between o and
n, while INSIDE(o, P) indicates whether or not o is
inside P.

The FIL query language enables a natural specihca-
tion of future queries, i.e. queries pertaining to the future
states of the system being modeled. Since the language and
system are designed to be installed on top of an existing
DBMS, the FIL language assumes an underlying nontem-
poral query language provided by the DBMS. However,

‘the route-distance between two pomts on a gwe route is the dutance
along the route between the two points. We BSSU~IC that it is suaightfor-
ward 10 compute the route-distance between two points, and the point at
a given route-distnnce from another point.

114

the FTL language is not dependent on a specific underlying
query language, or, in other words, can be installed on top
of any DBMS.

(11) RETRIEVE o
WHERE Eventually-within3 (INSIDE(o, P)A
Alwaysfor- INSIDE(o, P))

The formulas (i.e. queries) of FIL use two basic future

temporal operators Until and Nexttime A formula

of the form f Until CJ is satisfied at a state, if and only if

one of the following two cases holds: either 9 is satisfied at
that state, or there exists a future state in the history where
9 is satisfied and until then f continues to be satisfied. A

formula of the form Nexttime f is satisfied at a state, if

and only if the formula f is satisfied at the next state of the

history.

The following query retrieves all the objects o that enter

the polygon P within three units of time, stay in P for
two units of time, and after at least five units of time enter

another polygon Q.

(III) RETRIEVE o
WHERE Eventuallysithid

In FTL, the query Q above can be expressed as follows:

[INSIDE(o, P)A Alwaysfor (INSIDE(o, P)
A Eventuallyafter- INSIDE(o, Q))]

RETRIEVE o,n

WHERE DIST(o, R) c: 5

Until (IRSIDE(o. P) A INSIDE(n, P))

We also developed an algorithm for evaluating FI’L

queries in the MOST model. Due to space limitations,

a detailed description of the algorithm is omitted here. See

[3 I] for a complete presentation.

Other temporal operators, such as Eventually f and

Always f can be expressed in terms of the above two basic

operators. The temporal operator Eventually f asserts that
f is satisfied at some future state, and it can be defined as

true Until f. The temporal operator Always f asserts

that f is satisfied at all future states, including the present

state, and it can he defined as 7 Eventually -I.

The FTL language also uses the following bounded tem-
poral operators that pertain to real-time:

4 INDEXINGDYNAMICATTRIBUTES

l Eventually-within-c (g) asserts that the formula .q

will be satished within the next c time umts.

. Eventuallyafterr (g) asserts that r~ holds after at

least c umts of time.

In this section we address the issue of indexing dy-

namic attributes. The objective is to enable answering

range queries of the form “Retrieve the objects that are
currently inside the polygon P”, or “Retrieve the objects

whose dynamic attribute value is in the range [(1)...(1,] at

time t” (obviously without examming all the objects). The

prohlcm with a straight-forward use of spatial indexing is
that since objects are continuously changing their locations,

the spatial index has to be continuously updated; clearly an
unacceptable solution.

l Alwaysforx (g) asserts that the formula holds con-

tinuously for the next c units of time.

. (g untiLwithin-c h) asserts that there exists a future

instance withm c units of time where h holds, and

until then y continues to be satisfied.

In our system, a query is specified by the followingsyn-
tax:

RETRIEVE <target-list>

WHERE <condition>.

We identified the following paradigm for a solution.

The indexing problem can be decomposed into two sub-
problems, namely geometric representation of moving ob-

jects and indexing of the geometric representation. The

geometric representation concerns the following questton:

how to construct a space (we will call it the represenrurinn

space), and map each moving object and each query into

a region (or a line, or a point) in that space, such that the
result of the query is the set of all objects whose region

intersects the query region. The sub-problem of indexing

the geometric representation addresses the question how to
find the result of the intersection in an efficient way. This

sub-problem can probably be solved efficiently by one of

the many existing spatial access methods (see [27] for a

survey).

Here <condition> is given by a FTL. formula. So far we have mainly addressed the first sub-problem.

For example, the following query retrieves all the objects In this paper we will discuss two representations, namely

o that enter the polygon P within three units of time, and the value-time representation space and the intercept-slope

have the attribute PRICE < 100. representation space.

RETRIEVE o

WHERE o.PRICE 2 1OOA
Eventually-within3 INSIDE(o, P)

. Value-time Representation Space

The following query retrieves all the objects o that enter
the polygon P within three units of tmle. and stay in P for
another 2 units of time.

This method plots all the functions representing the

way a dynamic attribute changes with time. Thus,

the representation space of this method is constructed
by the x-axts representmg time. and the y-axts rep-
resenting the value of the dynamic attribute. An

115

object is mapped to a trajectory that plots the loca-
tion as a function of time. A range query of the form
Q=“Retrieve the objects whose attributes value is in

the range [Ub...U,] at time t” IS a vertical line seg-
ment, the end points of which are (t, @) and (t, a,)

(see Figure I(a)). In this way, the answer set consists

of all the objects that have trajectories that intersect
the query line segment.

l Intercept-slope Representation Space

Consider an object o whose location as a function of

time is f(t)=a+ct. a is called the inter@ and u

is called the slopr. Then, the representation space is

constructed by the x-axis representing the intercept

and the y-axis representing the slope. Thus the ob-
ject o is mapped to the point (a,~) in that space. The

range query Q above is a parallelogram in the rep-

resentation space (see Figure l(b)). In this way, the

answer set consists of all the objects represented by

the points inside this parallelogram.

Observe that in each one of the above methods, the

representation of an object in space is updated when and
only when one of the sub-attributes of the location dynamic

attribute is explicitly updated. It can be argued that the

first method above is more eflictent for querymg and less
efficient for updating, whereas in the second method the

opposite is true. For space considerations, we omit the

discussion of this claim.

Each one of the above methods works for freely moving

objects. It is an open issue to find efficient geometric

representations for objects that move on routes.

5 UNCERTAINTY MANAGEMENT

The location of a moving object is inherently impre-
cise because, regardless of the policy used to update the

database location of a moving object (i.e. the object’s lo-

cation stored in the database), the database location cannot
always be identical to the actual location of the object. This

uncertainty has various implications for database modeling,

querying, and indexing.

In this section we first extend our MOST data model to

represent the uncertainty of database location (subsection

5.1). then we adapt our FIX language (5.2) and indexing

method (5.3) to process “may” and “must” queries. In sub-

section 5.4 we discuss a cost based approach to determine

when to update the location.

5.1 Data Modeling

In order to model the uncertainty of the database loca-

tion, we first define the deviation concept. In general, the
deviation of the value of a dynamic attributeat a particular

point in time t is the difference between the actual value at
time 1. and the database value (i.e. the value stored in the
database) at time t.

(a) value-time space re resentation
~ 02 and 03 constitute t R e answer to Q

8

(b) intercept-slope space representation
02 and 03 constitute the answer to Q

Figure 1. Geometric representations for a
range query.

One way of modeling the uncertainty is to provide a
bound on the deviation. AI any point in time the moving

object and the DBMS know this bound, and the moving ob-
ject commits to send an update when the deviation reaches
the bound. Thus, if the bound is I mile, then the DBMS

will answer a query “what is the current location of m?” by

an answer A: “thecurrentlocatton is (I, y) withadeviation

of at most 1 mile”. For this answer, the uncertainty is the

area of a circle with radius 1 mile. Observe that for a freely
moving object, the uncertainty is the area of a circle with

radius I mile around (2, ?I), and for an object moving on a

route, the uncertainty is an interval on the route from the

point at 1 mile behind (zl y) to the point at 1 mile ahead of
(z, y), The bound on the deviation is given by an additional

sub-attribute called L.uncertainty.

Observe that the proposed method cannot model a bound

on the deviation in the speed of a moving object (e.g. the
speed is between 50 and 60 miles/hour). Similarly, the

method cannot model a constraint that indicates that amov-

ing object does not go backwards (because, as long as the
object is m the uncertainty interval, its locatmn at time 1

can be behind its location at time t - I). Both problems

can be addressed by an extension of the above model, but

we will omit this dIscussion from the present paper.

116

Figure 2. may and must semantics

5.2 Query Language

Consider the query Q=“Retrieve the objects that are in-
side the polygon P”. Because of the uncertainty in the
database location, there can be two different kinds of se-
mantics to this query, namely may and must. Under the
“may” semantics, the answer is the set of all objects that
are possibly inside P, i.e. the objects whose uncertainty
interval intersects P. Under the “must” semantics, this will
be the set of all objects which are definitely inside P, i.e.
the objects whose uncertainty intervals are entirely inside
P (see Figure 2). We have incorporated mny and must
semantics into the FTL language and the query processing
algorithm.

A more general way of dealing with the uncertainty
problem is to associate probabilities with answers to
queries. Thus, for example, an answer to query Q would
say that object I is inside P with probability 0.4 and object
2 is inside P with probability I,

Observe that for queries that pertain to a future time,
both must and may queries are tentative in the following
sense. Consider the query “Retrieve all the airplanes that
will come within 30 miles of the airport in the next IO
minutes”. Suppose that the answer to the query Q contains
airplane a. It is possible that after the answer is presented
to the user, the motion vector of a changes in a way that
steers a away from the airport, and the database is updated
to reflect this change. Thus a does not come within 30
miles of the airport in the next IO minutes. Therefore, in
this sense the answer to future queries is tentative, i.e. it
should be regarded as correct according what is currenl!)
known about the real world, but this knowledge (e.g. the
motion vector) can change.

5.3 Indexing

Since the semantics of queries are enriched, indexing
should also be extended to efficiently process the queries
of the form Ql=“Retrieve the objects which must be inside
the polygon P at time 1” or Qz=“Retrieve the objects which
muy be inside the polygon P at time t”. In this subsection
we discuss an extension of the value-time representation
space (see section 4) to deal withuncertainty. We construct
aplane, calledtheo-plane, torepresentthelocationattribute
of a moving object a. The o-plane is the set of uncertainty
intervals of o, one uncertainty interval for each time unit
1 2 0 (see Figure 3). Thus, instead of being represented by
a line (or a trajectory), an object is represented by a plane.

Figure 3. Object o is traveling along the y
axis. (yO, y,) is the uncertainty interval at time
t. The query p (represented by the solid line
interval) is: retrieve the objects which at time
lo are at 2 = 0 between y? and y3.

In other words, at time 1, the value of the location attribute
is an interval instead of a point. A range query is still a
line segment as before. The answer to query QJ above is
the set of objects whose uncertainty intervals at time t lie
inside P in their entirety. The answer to query Q2 above
is the set of objects whose uncertainty intervals at time t
intersect P.

5.4 Uncertainty and Communication Tradeoffs
in Moving Objects Databases

Although the database location deviates from the actual
location of a moving object, more frequent updates can
reduce the deviation. Clearly there is a tradeoff between
communication and imprecision in the sense that the higher
the number of updates the lower the imprecision, and vice
versa. In the model that we presented in subsection 5.1, the
imprecision is captured by the bound on the deviation. The
main issue addressed in this subsection is how to determine
the bound, denoted L.uncerlainly.

We take a cost based approach to solve this problem.

5.4.1 The Information Cost of a Trip

The information cost of a trip has the following three com-
ponents:

. Deviation Cost

The deviation has a cost (or penalty) because it can
result in incorrect decision making. Observe first
that the cost of the deviation depends both, on the
size of the deviation and on the length of time for

117

which it persists. It depends on the size of the devi-
ation since decision-making is clearly affected by it.
To see that it depends on the length of time for which
the deviation persists, suppose that there is one query
that retrieves the location of a moving object m per
time unit. Then, if the deviation persists for two
time units its cost will be twice the cost of the devi-
ation that persists for a single time unit; the reason
is that two queries (instead of one) will pay the devi-
ation penalty. Formally, for a moving object m the
cost of the deviation between two time points tt and
tz is given by the deviation cost function, denoted
COSTd(ti ,12); it is a function of two variables that
maps the deviation between the time points ti and
t2 into a nonnegative number. In this paper we take
the penalty for each unit of deviation during a unit
of time to be one (1). Then, the cost of the deviation
between two time points It and tz is:

I
f2

cosTd(t,, 12) = d(t)dt (1)
II

l Update Cost

where d(t) is the deviation as a function of time.

The updare cost. denoted Ci, is a nonnegative num-
ber representing the cost of a location-update mes-
sage sent from the moving object to the database.
The update cost may differ from one moving object
to another, and it may vary even for a single moving
object during a trip, due for example, to changing
availability of bandwidth. The update cost must be
given in the same units as the deviation cost. In
particular, if the update cost is Ct it means the ra-
tio between the update cost and the cost of a unit of
deviation per unit of time (which is one) is Ci. It
also means that the moving object (or the system) is
willing to use l/C, messages in order to reduce the
deviation by one during one unit of time.

l Uncertainty Cost

The uncertainty has a cost (or penalty) because a
higher uncertainty conveys less information when
answering aquery. Observe that, as for the deviation,
the cost of the uncertainty depends both, on the size
of the uncertainty and on the length of time for which
it persists. Formally, for a moving object m the cost
of the uncertainty between two time points tl and
t2 is given by the uncertainty cosrfunction, denoted
COST, (11~12); Dehne the uncertain~ unit cost to
he the penalty for each unit of uncertainty during a
unit of time, and denote it by Cz. Thus Cz is the
ratio between the cost of a unit of uncertainty and
the cost of a unit of deviation. Then, the cost of the
uncertainty of a moving object m between two time
points tt and 12 is:

I
11

COST,(t,,t~) = Czu(t)dl (2)
!I

where u(l) is the value of the L.uncertainty sub-
attribute of m as a function of time.

Now we are ready to define the information cost of a
trip taken by a moving object m. Let 2, and 12 be the
time-stamps of two consecutive location update messages,
Then the information cost in the half open interval [It, ta)
is:

CO~~,[t,,t2)=CI+COS~d[t,,t2)+COS~,[t,,t~)

(3)
and the foral information cost of the trip is:

k

COSTI = COSTd[O,1t)tCOST,[O,1t)tCCOST[ti,li
i=l

(4)
where tl,t2, tk are the time points of the update mes-
sages sent by m, 0 is the time point when the trip started,
and tk+i is the time point when the trip ended.

5.4.2 Descriptions of Update Policies

The objective of the location update policies that we discuss
in this paper is to set the deviation bound (or threshold) of
a moving object, namely its L.un.certninty sub-attribute,
such that the total information cost is minimized. Due to
space limitations we only outline the main ideas in our
update policies. For a complete discussion see [33].

. The Speed Dead-rwkoning (sdr) Policy.

At the beginning of the trip the moving object
m sends to the DBMS an uncertainty value that
is selected in an ad hoc fashion, it is stored in
L.uncertainty, and it remains fixed for the dura-
tion of the trip. The object m updates the database
whenever the deviation exceeds L.uncertainty; the
update simply includes the current location and cur-
rent speed. 2

. The Adaptive Dead Reckoning (adr) Policy.

When using the adr policy, a moving object provides
with each update a new uncertainty value th that is
computed using acost based approach. th minimizes
the total information cost, i.c. the sum of the update
cost, the deviation cost, and the uncertainty cost.
At location update time, in order to compute the
new uncertainty value, m predicts the behavior of
the deviation. The uncertainty values differ from
update to update because the predicted behavior of
the deviation is different. Our analysis indicates that

the optimum uncertainty value is
r

& 2Cr+, , where a
is the approximated slope of the deviation, Ci is the
update cost, and C2 is the uncertainty unit cost.

%dr can also use another speed, for example,the avenge speed since
the last update. 01 the average speed since the beginning of the trip. or a
speed that IS predtcted based on knowledge of the term”. This comment
holds for the other policm discussed m this sectm.

118

. The Disconnection Detection Dead Reckoning
(dtdr) Policy.

A problem in our model is that the moving object

may be disconnected or otherwise unable to gener-

ate location updates. In other words, although the

DBMS “thinks” that updates are not generated be-
cause the deviation does not exceed the uncertainty

value, the actual reason is that the moving object is

disconnected. To cope with this problem we intro-

duce a third policy, “disconnection detecting dead-

reckoning(dtdr)“. The policy uses a novel technique
that decreases the uncertainty value for the purpose

of disconnection detection. Thus, in dtdr the uncer-

tainty value continuously decreases as time since the

last location update passes. It has a value Ii during

the first time unit after the updale. it has value I172
during the second time unit after the update, it has

value K/3 during the third time unit, etc. Thus, if

the object is connected, it is increasingly likely that

it will generate an update. Conversely, if the mov-

ing object does not generate an update. as time since
the last update passes it is increasingly likely that

the moving object is disconnected. The dtdr policy

computes the Ii that minimizes the total information
cost, i.e. the sum of the update cost, the deviation

cost, and the uncertainty cost.

To contrast the three policies, observe that for sdr the

uncertainty values are fixed for all location updates. For

adr the uncertainty values are fixed between each pair of
consecutive updates, but they may change from pair to pair.
For dtdr each uncertainty value decreases as the period of

time between a pair of consecutive updates increases.

5.4.3 Simulation Results

We conducted numerous simulations to compare the in-

formation cost of location update policies. The parame-

ters of the simulation are the following: the update-unit

cost, namely the cost of a location-update message, the

uncertainty-unit cost, the deviation-unit cost, and a speed

curve. namely a function that for a period of time gives

the speed of the moving object at any point in time. WC

built a simulati?n testbed which enables us to compare the

policies in terms of number of messages, deviation, and
uncertainty.

We compared by simulating the policies adr, dtdr and
sdr. The comparison is done by quantifying the total in-

formation cost of each policy for a large number of com-

binations of the parameters. Our simulations indicate that

adr is superior to sdr in the sense that it has a lower or
equal information cost for every value of the update-unit

cost, uncertainty-unit cost. and deviation-unit cost. Adr
is superior to dtdr in the same sense; the difference be-

tween the costs of the two policies quantifies the cost of

disconnncetion detection. For some parameters combina-
tions the information cost of sdr is six times as high as that
of adr.

Movq ObJeCt Subsystem Query Processing Subsysem

(--SF--) (QueryGUl)

Policy Simulation Subsystem Update Pohcy Subsystem

Figure 4. The architecture of the DOMINO
prototype

6 PROTOTYPE DESIGN

We implemented a prototype which packages all the ca-
pabilities we have discussed for MOD applications. The

prototype implements the capabilities that should be added

to a central DBMS to support MOD applications, the

software on the moving object, and a simulation sys-
tem to cvaluatc the cost of location update politics. As

shown in Figure 4, this prototype has four subsystems, i.e.

Query Processing Subsystem(QPS). Moving Object Sub-
system(MOS), Policy Simulation Subsystem(PSS), and
Update Policies Subsystem(UPS). We built these subsys-

tems in a modular fashion so that each can work inde-

pendently, and at the same time they can’ be combined in
various ways into different functional packages.

+ Query Processing Subsystem(QPS)

We implemented the MOST data model and the FTL

language on top of Sybase and MS Windows. The

Query GUI is used to enter FTL queries and trig-
gers, and view the query results. Any query or

trigger is first examined (and possibly modified) by
the MOST/FTL system, and so is the answer of the

DBMS before it is returned to the user. For a detailed

discussion on modifications to queries and answers
of the underlying DBMS see [141.

In the current prototype, there is a Central Database

which is updated with the location of all the moving
objects. In the future we intend to consider another

case in which thelocation database isdistriburcdand

partially replicated among the moving objects.

l Moving Object Subsystem(MOS)

The MO subsystem prototypes the local system on a

moving object. It implements update policies using
database triggers. The currenl location of the object
is kept in a local database and it is updated by a GPS

119

at a fixed rate (e.g. I sec.). The Local Database is

managed by a DBMS which supports triggers (cur-
rently we use the Informix Universal Server). A

trigger fires and updates the Central Database when

the deviation bound is reached. The trigger also in-

vokes the UP subsystem to compute a new deviation

bound.

. Update Policies Subsystem(UPS)

This subsystem implements update policies and their

evaluation algorithms. It enables the definition of
new policies without affecting otherparts of the over-

all system.

l Policy Simulation Subsystem(PSS)

PSS is intended to evaluate different update policies

in terms of the total cost of information, the number

of updates, the uncertainty, and the deviation. It uses
as input a speed curve, namely a curve that gives the

speed as a function of time. The Simulation GUI
allows users to enter a speed curve by plotting it on

the screen.

For each speed curve, update policy, update cost Ci,
and uncertainty unit cost 6’1 the PS subsystem ex-

ecutes a simulation run. The run computes the in-

formation cost a (a single number) of the policy on

the curve. Then, for each policy, PSS averages the

information cost over all the speed curves, and plots
this average as a function of the update cost Ct.

Each simulation run is executed as follows. A speed-
curve is a sequence S of actual speeds, one for each

time unit. Using S, PSS simulates the moving ob-
ject’s computer working withaparticularupdatepol-

icy. This is done as follows. For each time unit there
is an uncertainty value th, as well as a database speed

and an actual speed. The actual speed is given by

the speed curve. The deviation at a particular point
in time t is the difference between the integral of the

actual-speed as a function of time, and the integral of

the database-speed (the Integrals are taken from the
time of the last update until t). Denote by T the se-

quence of deviations, one at each time unit. Denote

by Q the sequence of uncertainty values (or thresh-

olds), one at each time unit. If the deviation at time

t reaches the uncertainty value, then PSS generates
an update record consisting of: the current time, the

current location, the current speed, the next uncer-

tamty (for adr and dtdr it is computed as explained in
the previous section); the deviation at time t becomes

zero. Denote by li the sequence of update records.

Using T, PSS computes the total cost of deviation,
denoted et, and using II we compute the total cost of

updates, ~2. Using Q we computes the total cost of

uncertainty, cl. The information cost of the policy

on the speed curve is ci + c2 + c?.

At each location update, the PS subsystem invokes

the UP subsystem to compute the new deviation
bound. The PS subsystem keeps the speed files and

the simulation results, and provides the tools to ag-

gregate the simulation results. In addition, the PS
subsystem allows a user to modify parameters dur-

ing a simulation run.

In the rest of this section, we discuss how the four sub-
systems can be combined into different functional pack-

ages, We are working on making these packages available

over the WWW.

Policy Simulation + Update Policies

This combination provides an update policy simula-
tion testbed,from which we got the simulation results

discussed in subsection 5.4.3.

Moving Object + Update Policies

This combination prototypes a moving object in real
life. It is used to generate location updates from a

moving object.

Moving Object + Update Policies + Query Pro-
cessing

This combination is used to query a set of real mov-

ing objects. Location data is generated by each

moving object. The MO subsystem updates the
Central Database when deviation bound is reached,

and invokes the UP subsystem to compute a new
bound. The QP subsystem is used to query the cen-

tral database.

Comprehensive Simulation

We intend to integrate the current simulation testbed

with a GIS (Geographic Information System) that
manages a geographic region, and with a model of

wireless bandwidth allocation in the region. This

will provide a comprehensive simulation drtven pro-
totype that can be used to evaluate the capacity of

a MOD system, e.g. answer the query: how many
mobile units can be supported for a given level of lo-

cation accuracy and a given percentage of available

bandwidth for location updates; or, what bandwidth

is necessary to support a 90% accuracy for 10,000

objects. It can also be used for evaluating the per-
formance of queries and triggers in a centralized and

distributed environment.

7 RELEVANT WORK

To the best of our knowledge, this is the first project in
which the critical issues in moving objects databases are

systematically addressed. Furthermore, the issues do not

120

seem to tit neatly into an established field of research. Nev-
ertheless, several research areas are relevant to the project.

One area of research that is relevant to the model and

language presented in this paper is temporal databases 18,
32,291. ‘Ihe main difference between our approach and the
temporal database works is that, by and large, those works

assume that the database varies at discrete points in time;

and between updates the values of database attributes are
constant ([29] uses interpolation functions to some extent).

In contrast, here we assume that dynamic attributeschange

continuously, and consequently the temporal data model is
different than the data mode1 presented in this paper. It

is not clear if and how temporal extensions to deal with

incomplete information (see 17, 151) are applicable to our

context. However, temporal languages other than FTL can

be used to query MOST databases. Nevertheless, when
using any other language. the query processing algorithm

will have to be modified to handle dynamic attributes.

Another relevant area is spatial databases (see [28, 18,

I I, 9, IO, 12, 171). Work in this area can be used for

defining and processing the spatial operators discussed in

section 3.

Our work is also relevant to uncertainty m databases
(see [1,251 for surveys). However, as far as we know this

area has so far addressed complementary issues to the ones

in this paper. Our current work addresses the question:

what uncertainty to initially associate with the location of

each moving object. In contrast, existing works are con-
cerned with management and reasoning with uncertainty,

after such uncertainty is introduced in the database. Thus
these works become important for query processing that
goes beyond “may” and “must” semantics.

Another body of relevant work is constraint databases
(see [22] for a survey and [16, 41 for some notable sys-

tems). Constraint databases have been separately applied

to the temporal domam, and to the spatial domain. Con-
straint databases can be used as a framework in which to
implement dynamic attributes. A constraint will have to

be adapted to provide a single value at each point in time,
with the values changing over time. It will also have to be

adapted for movement on routes and for uncertainty (see

1231).

An interesting relevant approach to modeling the loca-

tion of moving objects is taken in [l3]. In contrast to

our approach which addresses tracking of moving objects,

i.e. querying the current and future locations, the [131 ap-

proach pertains to past histories of moving objects. Thus

its modeling viewpoint is different, and it does not address

indexing, imprecision, and uncertainty.

Another relevant research concerns location manage-
ment for mobile users in the cellular architecture (see

130, 19, 3, 21, 20, 2, 241). When calling a mobile user,

the Persona1 Communication Service (PCS) infrastructure
must locate the cell in which the user is currently located.

The above works address the problem of allocating and dis-
tributing the location database (i.e. the database that gives
the current cell of each mobile user) such that the lookup

time and update overhead are minimized. The location of
a user is given at the granularity of a whole cell, which is

sufficient for the purpose of calling a mobile user. For a
given network, the cells are of a fixed size. In wide-area

networks, the diameter of a cell ranges from a couple of

miles in the terrestrial architecture, to thousands of miles
in satellite architectures. In other words, for PCS com-

munication the location uncertainty is always fixed, and is

given by the size of the cell. However, what happens when

mobile users are not covered by a cellular architecture (e.g.

in the Desert-Storm battlefield) and/or when the location-

uncertainty of the cellular network is too large (e.g., for

picking up a customer, knowing the location of a tax-cab
withing IO miles may not he satisfactory). For these cases,

the existing work on location management is not satisfac-

tory.

8 FUTUREWORK

Much remains to be done in order to make moving ob-

jects a commercial reality. We intend to extend the present

work in the following directions:

. In some cases MOD applications may not be intcr-

ested in the location of moving objects at any point

in time, but in their arrival at the destination by a

particular deadline. Assume that the database arrival

information is given by “The object is expected to

(or must) arrive within 10 minutes of 5pm”. How

do our current results apply to this case’? We believe
that most of the them carry over. However, we need

make adjustments in order to handle the increasing

criticality and better estimation capability as the 5pm

deadline approaches.

l Extend the present work to handle uncertainty for

moving objects that do not report their locatton; in-
stead their location is sensed by possibly unreliable
means. This is the case, for example, for enemy

forces in a battlefield.

l Extend our query processmg and update policies

to an environment without the central database, i.e.

where database is distributed among the moving ob-
jects. Efficient location replication strategies need to

be developed to for distributed model.

l Study the implications of the network QoS(Quality

of Service) on update policies and query process-

ing. The relevant QoS parameters are available band-
width, message loss rate. average message delay, etc.

. We intend to integrate the current simulation testbed

with a GIS (Geographic Informatton System) that

manages a geographic region, and with a mode1 of

wireless bandwidth allocation in the region, This

will provide a comprehensive simulatton driven pro-
totype that can be used to evaluate the capacity of
a MOD system, e.g. answer the query: how many

121

mobile units can be supported for a given level of lo-

cation accuracy and a given percentage of available
bandwidth for location updates; or, what bandwidth

is necessary to support a 90% accuracy for 10,000

objects. It can also be used for evaluating the per-

formance of queries and triggers in a centralized and

distributed environment.

We believe that as the world becomes a more dynamic
place. as geographic distances are shrinking and remote

locations ofthe globe become more accessible, and as new

applications are being developed, moving objects databases
will become increasingly important.

References

Ill

121

[31

[41

[51

bl

S. Abiteboul. R. Hull, and V. Vianu. Foundations of
Databases. Addison Wesley, 1995.
R. Alonso and H. F. Konh. Database system issues in no-
madic computing. Proceedings ofthe 1993 ACM SIGMOD
hternational Conference on Management of Data, May
1993.
B. R. Badrinath, T. Imielinski, and A. Virmani. Locating
strategies for personal communication networks. Workshop
on Networkingfor PersonalCommunications Applications,
IEEE GLORECOM, Dec. 1992.
A. Brodsky. V. E. Segal, J. Chen, , andR. A. Exarkhopoulo.
The ccube constraint object-oriented database system.
manuscriJJr, 1997.
S. Chamberlam. Automated information distnbutlon in
bandwidth-constrained environments. M/LCOM-94 tort-
ference, 1994.
S. Chamberlain. Model-based battle command: A paradigm
whose time has come. 1995 Sympo.~ium on CZ Research &
Technology, NDU, June 1995.

17) C. Dyreson and R. Snodgrass. Temporal deductive
databases and mfinite objects. ACM Symposwn ou Princt-
pies ofDatabase Sysrems, March 1988.

[S] R. S. ed. Special issue on temporal databases. Dora Engi-
neering, Dec. 1988.

[9] M. I. Egenhofer. Interaction with geographic information
system via spatial queries. J. Vtsuul Languages and Com-
punfIg, l(4), 1990.

[lo] M. 1. Egenhofcr. Extending sql for cartographic display.
Cartogrph~ and Geographic Information Systems. l8(4),
1991.

[I 11 M. I. Egenhofer. Spatial sql: A query and presentation
language. /EEE Transaction on Knowledge and Data En-
gineenng, 6(l), 1994.

[I21 M. I. Egenhofer and R. Franzosa. Towards a spatial query
language: User interface consideranons. Proc. 14th /a~.
Conf VLDB, 1988,

[13] M. Et-wig, R. H. Guting. M. Schneider, M., and Varzipian-
nis. Spatio-temporal data types: An approach to mod-
eling and querying moving objects in databases. First
Chomchronos Intensive Workshop on Spatio-Temporal
Database Systems, 1997.

II41 0. Etzion, S. Jajodia, . S. Sripada, and eds. Temporal
Databases. Researcharld Practice. Spnnger Verlag, 19Y8.

1151 Y.-C. P S. Gadia and S. Narr. Incomplete informanon in
relation temporal databases. Eighreenth VLDB, Aug. 1992.

[I61

H71

H81

[I91

[201

PII

[221

[231

[241

WI

1261

[271

I281

1291 .

[301

S. Grumbach. P. Rigaux. M. Scholl, and L. Segoufin.
Dedale, a spatial constraint database. manuscript, 1997.
0. Guenth and A. Buchmann. Research issues in spatial
databases. SIGMOD Rec., 19(4), 1990.
R. Guting. An introduction to spatial database systems.
VLDB Journal. 4 1994.
I. S. M. Ho and 1. F. Akyildiz. Local anchor scheme for
reducing location tracking costs in pen. Jst ACM Inter-
national Conference on Mobile Computing and Network-
mg~MOBlCOM’95j, Nov. 1995.
T. Imielinski and H. Korth. Mobile Compurmg. Kluwer
Academic Publishers, 1996.
R. Jain,Y.-B. Lin, C. Lo., and S. Mohan. A caching strategy
to reduce network Impacts of pcs. lEEEJournalon Selected
Areas in Communications, 12, Oct. 1994.
P. Kancllakis. Constraint programming and database lan-
guages. ACM Symposium on Principles of Database Sys-
terns, May 1995.
M. Koubarakis. Linear constraint databases for indefinite
spatiotemporal information. First Chomchmnos Intensive
Workshop on Spatio-Temporal Database Systems, 1997.
Lazoff, B. Stephens, and Y. Yesha. Optimal location of
broadcast sources in unreliable tree networks. IEEE Inter-
natronnl Conference on Computers and Commurtications
Networks. 1996.
A. Metro. Management of uncertainty in databasesystems.
in Modem Database Svstems, Wou Kim ed., Addrson Wes-
iev, 1995.
OmniTRACS. Communicating without limits.
http://www.qualcomm.co,n/ProdTeci~Omni/pl.
H. Samet. The destgn and am&is of spatial data strut-
tures. Addison Wesley, 1990.
H. Samet and W. Aref. Spatial data models and query
processing. In Moderrt Database Systems, Won Kim ed.,
Addison Wesley, 1995.
A. Segev and A. Shosham. Logical modehng of temporal
data. Proc. of the ACM-Sigmod International ConfI on
Management of Data, 1987.
N. Shivakumar, I. Jannink. and I. Widom. Per-user profile
replicatton in mobile envtronments: Algonthms, analysts,
and srmulatton results. to appear ACM/Baltzer Journal
on Special Topics in Mobile Nehuorks and Applications,
special issue on Data Management, 1997.

1311 P. Sistla, 0. Wolfson, S. Chamberlamand S. Dao. Modeling
and quetymgmoving ObJects. Proceedingsofthe Thirteenth
h~rematio~ml Conference on Data ~ngineen,lg(lCDEJ31,
Apr. 1997.

[32] R. Snodgrass and 1. Ahn. The temporal databases. /EEE
Computer, Sept. 1986.

[33] 0. Wolfson, L. Jiang, A. P. Sistla, S. Chamberlain, and
M. Deng. Updating and probabmsnc querying of motion
databases. submittedforpublication, 1998.

122

