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Abstract 

Consider a database rhar represents information about 

moving objects and their locafion. For example, fur a 
database representing rhe location of taxi-cabs a opicai 

query may be: retrieve the free cabs that are current11 

within 1 mile of 33 N. Michigan Ave., Chicago (to pick- 

up a cusromer). In the mililar): moving objects database 
applications arise in rhe context qf rhe digiral battlefield, 
and in the civilian indusrot they arise in rransporration 

systems. 

Currently, movingobjecrsdatabaseapplicationsare be- 

ing developed in an ad hoc fashion. Database Management 

System (DBMS) technology provides a potential founda- 
tion upon which to develop these applications. however; 

DBMS’sare currenrhnorusedforthispurpose. The reason 

is that there is a &&al set of capabilities that are needed 
by moving objects database applicarions and are lacking 
in existing DBMS’s The objective of our Databases for 

MovlNg Objects (DOMINO)pmject is to buildan envelope 
containing these capabilities on top ofexisting DBMS’s, In 
this paper we describe the problems and our proposed so- 
lutions. 

1 INTRODUCTION 

Consider a database that represents information about 
moving objects and their location. For example, for a 
database representing the location of taxi-cabs a typical 
query may be: retrieve the free cabs that are currently 
within I mile of 33 N. Michigan Ave., Chicago (to pick-up 
a customer); or for a trucking company database a typical 
query may be: retrieve the trucks that are currently within 
1 mile of truck ABT312 (which needs assistance); or for 
a database representing the current location of objects in 
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a battlefield a typical query may be: retrieve the friendly 
helicopters that are in agiven region, or, retrievethe friendly 
helicopters that are expected to enter the region within 
the next 10 minutes. The queries may originate from the 
moving objects, or from stationary users. We will refer 
to applications with the above characteristics as moving- 
objects-database (MOD) applications, and to quenes as the 
ones mentioned above as MOD queries. 

In the military, MOD applications arise in the context 
of the digital battlefield (see [5, 6]), and in the civilian 
industry they arise in transportation systems. For example, 
Omnitracs developed by Qualcomm (see [26]) is a com- 
mcrcial system used by the transportation industry, which 
enables MOD functionality. It provides location manage- 
ment by connecting vehicles (e.g. trucks), via satellites, 
to company databases. The vehicles are equipped with a 
Global Positioning System (GPS), and they automatically 
and periodically report their location. 

Currently, MOD applications are being developed in an 
ad hoc fashion. Database Management System (DBMS) 
technology provides a potential foundation upon which 
to develop MOD applications, however, DBMS’s are cur- 
rently not used for this purpose. The reason is that there is 
a critical set of capabilities that are needed by MOD appli- 
cations and are lacking in existing DBMS’s, The following 
is a discussion of the needed capabilities. 

l Location Modeling 

Existing DBMS’s are not well equipped to handle 
continuously changing data, such as the location 
of moving objects. The reason for this is that in 
databases, data is assumed to be constant unless it is 
explicitly modified. For example, if the salary field 
is 30K, then this salary is assumed to hold (i.e. 30K 
is returned in response to queries) until explicitly 
updated. Thus, in order to represent moving ob- 
jects (e.g. vehicles) in a database and answer queries 
about their location, the vehicle’s location has to be 
continuously updated. This is unsatisfactory since 
either the location is updated very frequently (which 
would impose a serious performance overhead), or, 
the answer to queries is outdated. Furthermore, as- 
suming that the location updates are generated by the 
moving objects themselves and transmitted via wire- 
less networks, frequent updating would also impose 
a serious wireless bandwidth overhead. 

l Lingustics Issues 
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Generally, a query in MOD applications involves 
spatial objects (e.g. points, lines, regrons, polygons) 
and temporal constraints. Consider for example the 
query: “Retrieve the objects that will intersect the 
polygon P within the next 3 minutes”. This is a spa- 
tial and temporal range query. The spatial range is 
the polygon P, and the temporal range is the time 
interval between now and 3 minutes from now. Sim- 
ilarly, there are spatio-temporal join queries such as: 
“Retrieve the pairs of friendly and enemy aircraft 
that will come within 10 milts of each other, and the 
time when this will happen.” Traditional query lan- 
guages such as SQL are inadequate for expressing 
such queries. Although spatial and temporal lan- 
guagcs have been studied in the database research 
community, the two types of languages have been 
studied independently, whereas for MOD databases 
they have to be integrated. Furthermore, spatial and 
temporal languages have been developed for data 
models that are inappropriate for MOD applications 
(due, for example, to the modeling problem men- 
tioncd above). 

. Indexing 

Observe that the number of moving objects in the 
database may be very large (e.g., in big cities with 
millions of inhabitants). Thus, for performance con- 
siderations, in answering MOD queries we would 
like to avoid examinmg the location of each moving 
object in the database. In other words, we wouldlike 
to index the location attribute. The problem with a 
straight-forward use of spatial indexing for this pur- 
pose is that the continuous change of the locations 
implies that the spatial index has to be continuously 
updated. This is clearly an unacceptable solution. 

l Uncertainty/Imprecision 

The location of a moving object is inherently impre- 
cise because, regardless of the policy used to update 
the database location of the object (i.e. the object- 
location stored in the database), the database location 
cannot always be identical to the actual location of 
the object. This inherent uncertainty has various im- 
plications for database modeling, querying, and in- 
dexing. For example, for range queries there can be 
two different kinds of answers, i.e. the set of objects 
that “may” satisfy the query, and the set that “must” 
satisfy the query. Thus, drfferent semantics should 
be provided for queries. Another approach would 
be to compute the probability that an object satis- 
fies the query. Although uncertainty in databases 
has been studied extensively, the new modeling and 
spatio-temporal capabilities needed for moving ob- 
jects introduce the need to revisit existing solutions. 

Additionally, existing approaches to deal with uncer- 
tainty assume that some uncertainty information is 
associated with the raw data stored in the database. 

How is this initial uncertainty obtained? For MOD 
applications the question becomes how to quan- 
tify the location uncertainty? How to quantify the 
tradeoff between the updating overhead and the un- 
certainty/imprecision penalty, and how frequently 
should a moving object update its location. How to 
handle the possibility that a moving object becomes 
disconnected and cannot send location updates? 

Therefore, there is a critical set of capabilities that have 
to be integrated, adapted, and built on top of existing 
DBMS’s in order to support moving objects databases, 
The objective of our Databases for MovINg Objects 
(DOMINO) project is to build an envelope containing these 
capabilities on top of existing DBMS’s, The key features 
of our approach are the following. 

l Dynamic Attributes 

In our opinion, the key to overcoming the location 
modeling problem is to enable the DBMS to predicr 
the future location of a moving object. Thus, when 
the moving object updates the database, it provides 
not only its current location, but its expected future 
locations. For example, if the DBMS knows the 
speed and the route of a moving object, then it can 
compute its location at any point in time without 
additional updates. 

Thus, WC propose a data model called the Mov- 
ing Objects Spatio-Temporal (or MOST for short) 
model. Its novelty is the concept of a dynamic at- 
tribute, i.e. an attribute whose value changes contin- 
uously as time progresses, without being explicitly 
updated. So, for example, the location of a vehicle 
is given by its dynamic attribute which consists of 
motion information (e.g., north on route 481, at 60 
milts/hour). In other words, we devise a higher level 
of data abstraction where an object’s motion infor- 
mation (rather than its location) is represented as an 
attribute of the object. Obviously the motion infor- 
mation of an object can change (thus the dynamic 
attribute needs to be updated), but in most cases rt 
does so less frequently than the location of the object. 
We devised mechanisms to incorporate dynamic at- 
tributes in existing data models and capabilities to be 
added to existing query processing systems to deal 
with dynamic attributes. 

l Spatial and Temporal Query Language 

We introduced a temporal query language called Fu- 
ture Temporal Logic (FTL) for query and trigger 
specifications in moving objects databases. The lan- 
guage is natural and intuitive to use in formulating 
MOD queries, and it uses both spatial operators (e.g. 
object INSIDE polygon) and temporal operators (e.g. 
UNTIL, EVENTUALLY in the future). We are de- 
veloping algorithms for processing FTL queries on 
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databases with dynamic attributes. We have imple- 
mented FfL in a prototyperunning on top of Sybase 
and on top of MS Access. 

. Indexing Dynamic Attributes 

We propose the following paradigm for indexing dy- 
namic attributes. The indexing problem is decom- 
posed into two sub-problems; first is the geometric 
representation of a dynamic attribute value (i.e. a 
moving object’s speed, initial location, and starting 
time) in multidimensional time-space, and second is 
the spatial indexing of the geometric representation. 
The geometric representation subproblem concerns 
the question: how to construct the multidimensional 
space, and how to map an object (more precisely, 
a dynamic attribute value) into a region (or a line, 
or a point) in that space, and how to map a query 
into another region in that space, so that the result of 
the query are the objects whose regions intersect the 
query region. The object region is updated only when 
the dynamic attribute is explicitly updated (e.g. when 
the speed of the object changes) rather than contin- 
uously. The spatial indexing subproblem concerns 
the question how to find the intersection-of-regions 
mentioned above in an efficient way. The latter sub- 
problemcan be solved by an existing spatial indexing 
method, but it is an open problem which method is 
most appropriate for a particular geometric represen- 
tation and dynamic attribute values distribution. We 
have devised several solutions to the geometric rep- 
resentation subproblem, and in this paper we present 
two of them, namely the value-rime space represen- 
tation and the intercept-slope space representation. 

l Uncertainty/Imprecision Management 

We extended our data model, query language, and 
indexing method to address the uncertainty prob- 
lem. The data model was extended by enabling the 
provision of an uncertainty interval in the dynamic 
attribute. More specifically, at any point in time the 
location of a moving object is a point in some un- 
certainty interval, and this interval is computable by 
the DBMS. Thus, the DBMS replies to a query re- 
questing the location of a moving object m with the 
following answer A: “m is on route 698 at location 
(z,y), with an error (ordeviation)of at most 2 miles”. 
The bound b on the deviation (2 miles in the above 
answer) is provided by the moving object, i.e. the 
object commits to send a location update when the 
deviation reaches the bound, The FfL language is 
also extended. Two kinds of semantics, namely ma) 
and must semantics, are incorporated, and the pro- 
cessing algorithms are adapted for these semantics. 
The indexing method is also extended to enable the 
retrieval of both, moving objects that “must be” in a 
particular region, and moving objects that “may be” 
in it. 

We also addressed the question of determining the 
uncertainty associated with a dynamic attribute, i.e. 
the bound b mentioned above. We proposed a cost 
based approach which captures the tradeoff between 
the update overhead and the imprecision. The lo- 
cation imprecision encompasses two related but dif- 
ferent concepts, namely deviation and uncertainty. 
The deviation of a moving object m at a particular 
point in time t is the distance between m’s actual 
location at time t, and its database location at time 1. 
For the answer A above, the deviation is the distance 
between the actual location of m and (1,~). On the 
other hand, the uncertainty of a moving object m at 
a particular point in time 1 is the size of the interval 
in which the object can possibly he. For the answer 
A above, the uncertainty is 4 miles. The deviation 
has a cost (or penalty) in terms of incorrect decision 
making, and so does the uncertainty. The devia- 
tion (uncertainty) cost is proportional to the size of 
the deviation (uncertainty). The tradeoff between 
imprecision and update overhead is captured by the 
relative costs of an uncertainty-unit, a deviation-unit, 
and an update-overhead unit. Using the cost model 
we propose update policies that establish the uncer- 
tainty bound b in a way that minimizes the expected 
total cost. Furthermore, we propose an update policy 
that detects disconnection of the moving object at no 
additional cost. 

. Simulation Testbed 

We are building a simulation testbed in which theper- 
fotmance of a moving objects database application 
can he evaluated. The input to the simulation sys- 
tem is a set of moving objects, their trajectories, their 
speed variations over time, the costs of deviatron, the 
cost of uncertainty, the cost of communication, the 
wireless bandwidth distribution over the geographic 
area, and the location update policy used by each 
moving object. The objective is to determine the 
performance of MOD queries, as well as to answer 
questions such as: How many objects can be sup- 
ported for an average imprecision that is bounded 
by 2, and a wireless bandwidth allocated to location 
updates that is bounded by y? Or, given n moving 
objects and a houndof 10% on the imprecision, what 
percentage of the bandwidth is used for location up- 
dates? 

The rest of this paper is organized as follows. In section 
2 we present the MOST data model. In section 3 we 
discuss the FfL query language. In section 4 we discuss the 
indexing of dynamic attributes. In section 5 we discuss our 
extensions to the above solutions to address the uncertainty 
problem. We also propose three update policies and we 
discuss the results of their comparison by simulation. In 
section 6 WC present the prototype implementation. In 
section 7 we discuss relevant work, and in section 8 we 
discuss future work. 
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2 THEMOSTDATAMODEL 

In traditional DBMS’s, data is assumed to be constant 
unless it is explicitly modified. Thus, in order to repre- 
sent moving objects (e.g. cars) in a database, and answer 
queries about their location (e.g., How far is the car with li- 
cense plate RWW860 from the nearest hospital?) the car’s 
location has to be continuously updated. This is unaccept- 
able since either the location is updated very frequently 
(which would impose a serious performance and wireless- 
bandwidth overhead), or, the answer to queries is outdated. 
Furthermore, it is possible that due to disconnection an 
object cannot continuously update its location. 

We propose to solve the continuously changing location 
problem by representing the location as a function of time; 
it changes as time passes, even without an explicit update. 
So, for example, the location of a helicopter is given as a 
function of its motion vector (e.g., north, at 60 miles/hour). 
In other words, we consider a higher level of data abstrac- 
tion, where an object’s motion vector is represented as an 
attribute of the object. Obviously, the motion vector of 
an object can change, but in most cases it does so less 
frequently than the location of the object. 

We propose a data model called Moving Objects Spatio- 
Temporal (or MOST for short). Its main contribution is the 
concept of dynamic attributes, i.e. attributes that change 
continuously as a function of time, without being explicitly 
updated. In other words, the answer to a query depends not 
only on the database contents, but also on the time at which 
the query is entered. In contrast, a static attribute of an 
object is an attribute in the traditional sense, i.e. it changes 
only when an explicit update of the database occurs. 

Formally, a dynamic attribute A is represented by 
three sub-attributes, A.updatevalue, A.updutelime, and 
A.function, where A.funelion is a function of a sin- 
gle variable t that has value 0 at t = 0. The v&e of 
a dynamic attribute depends on the time, and it is de- 
fined as follows. At time A.updatetime the value of A 
is A.updateualue, and until the next update of A the value 
of A at time A.updaletirne $ ta (where tc is a positive 
number) is given by A.updalevalue $ A.function(to). 
An explicit update of a dynamic attribute may change its 
value sub-attribute, or its function sub-attribute, or both 
sub-attributes. 

In this paper we are concerned with dynamic attributes 
that represent spatial coordinates, but the model can be 
used for other hybrid systems, in which dynamic attributes 
represent, for example, temperature, or fuel consumption. 

For a moving object, we can model its locution arrribure 
L by two dynamic attributes LX, and L.y, each with its 
own update value, function. and update time, representing 
the 2 and y coordinates of the object respectively (all our 
concepts and results can be extended to motion in three- 
dimensional space). The object updates its location when 
its speed changes. This is straight-forward for objects that 
move freely in space (e.g. aircraft). However, this would 
be ineflicient (i.e. may generate many updates) for ob- 

jects moving along a winding route, since each turn would 
constitute a change of L.x.funclion and L.y.function. 

To address this problem, we can extend the dynamic 
attribute concept to include the route as follows. The loca- 
tion attribute is a dynamic attribute with five sub-attributes, 
namely Lroute, L.x.updatevalue, L.y.updatevahe, 
L.updatelirne, and Lspeed. Among them, L.route is 

(the pointer to) a line spatial object indicating the route 
on which an object is moving. L.+.updatevalue and 
L.y.updalevalue are the 2: and y coordinates of a point 
on L.route; it is the location of the moving object at time 
L.updatetirne, i.e. the time of the last location-update, 
L.speed is a linear function of the form f(t) = 6 t. It is 

defined by the speed b of the moving object, and it gives 
the current distance from the starting location as a function 
of the time t elapsed since L.updatetime. The location 
at time L.updatetime + 1 is the point (z,y) which is at 
route-distance ’ L.speed t from the point with coordi- 
nates (L.r.updalevalue, L.y.updalevalue). 

3 THEFTLLANGUAGE 

A nontemporal query is a query that pertains to the 
present time, e.g. “Retrieve all the objects that are currently 
inside the polygon I”‘. A regular query language such as 
SQL or OQL augmented with spatial predicates can be used 
for nontemporal queries on moving objects. Now consider 
for example the following temporal query Q: “Retrieve the 
pairs of objects o and n such that the distance between o and 
n stays within 5 miles until they both enter the polygon P”. 
Expressing such a temporal query would be cumbersome 
in SQL or OQL. Assume that for each predicate G there are 
functions begin-time(G) and endtime that give the 
beginning and ending times of the first time-interval during 
which G is satisfied; also assume that “now” denotes the 
current time. Then the query Q would be expressed as 
follows in SQL or OQL. 

RETRIEVE o,n 
FROM Moving-Objects 
WHERE begin-time(DIST( o, n) 5 5) < now 

and end-time(DIST(o, n) 5 5) > 
begin-time(lNSIDE(o, P) A INSIDE(n, P)). 

where DIST(o, n) and INSIDE( o, P) are both spatial 
methods. DIS’T(o, n) returns the distance between o and 
n, while INSIDE(o, P) indicates whether or not o is 
inside P. 

The FIL query language enables a natural specihca- 
tion of future queries, i.e. queries pertaining to the future 
states of the system being modeled. Since the language and 
system are designed to be installed on top of an existing 
DBMS, the FIL language assumes an underlying nontem- 
poral query language provided by the DBMS. However, 

‘the route-distance between two pomts on a gwe route is the dutance 
along the route between the two points. We BSSU~IC that it is suaightfor- 
ward 10 compute the route-distance between two points, and the point at 
a given route-distnnce from another point. 
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the FTL language is not dependent on a specific underlying 
query language, or, in other words, can be installed on top 
of any DBMS. 

(11) RETRIEVE o 
WHERE Eventually-within3 (INSIDE(o, P)A 
Alwaysfor- INSIDE(o, P)) 

The formulas (i.e. queries) of FIL use two basic future 

temporal operators Until and Nexttime A formula 

of the form f Until CJ is satisfied at a state, if and only if 

one of the following two cases holds: either 9 is satisfied at 
that state, or there exists a future state in the history where 
9 is satisfied and until then f continues to be satisfied. A 

formula of the form Nexttime f is satisfied at a state, if 

and only if the formula f is satisfied at the next state of the 

history. 

The following query retrieves all the objects o that enter 

the polygon P within three units of time, stay in P for 
two units of time, and after at least five units of time enter 

another polygon Q. 

(III) RETRIEVE o 
WHERE Eventuallysithid 

In FTL, the query Q above can be expressed as follows: 

[ INSIDE(o, P)A Alwaysfor (INSIDE(o, P) 
A Eventuallyafter- INSIDE(o, Q))] 

RETRIEVE o,n 

WHERE DIST(o, R) c: 5 

Until (IRSIDE(o. P) A INSIDE(n, P)) 

We also developed an algorithm for evaluating FI’L 

queries in the MOST model. Due to space limitations, 

a detailed description of the algorithm is omitted here. See 

[ 3 I] for a complete presentation. 

Other temporal operators, such as Eventually f and 

Always f can be expressed in terms of the above two basic 

operators. The temporal operator Eventually f asserts that 
f is satisfied at some future state, and it can be defined as 

true Until f. The temporal operator Always f asserts 

that f is satisfied at all future states, including the present 

state, and it can he defined as 7 Eventually -I. 

The FTL language also uses the following bounded tem- 
poral operators that pertain to real-time: 

4 INDEXINGDYNAMICATTRIBUTES 

l Eventually-within-c (g) asserts that the formula .q 

will be satished within the next c time umts. 

. Eventuallyafterr (g) asserts that r~ holds after at 

least c umts of time. 

In this section we address the issue of indexing dy- 

namic attributes. The objective is to enable answering 

range queries of the form “Retrieve the objects that are 
currently inside the polygon P”, or “Retrieve the objects 

whose dynamic attribute value is in the range [(1)...(1,] at 

time t” (obviously without examming all the objects). The 

prohlcm with a straight-forward use of spatial indexing is 
that since objects are continuously changing their locations, 

the spatial index has to be continuously updated; clearly an 
unacceptable solution. 

l Alwaysforx (g) asserts that the formula holds con- 

tinuously for the next c units of time. 

. (g untiLwithin-c h) asserts that there exists a future 

instance withm c units of time where h holds, and 

until then y continues to be satisfied. 

In our system, a query is specified by the followingsyn- 
tax: 

RETRIEVE <target-list> 

WHERE <condition>. 

We identified the following paradigm for a solution. 

The indexing problem can be decomposed into two sub- 
problems, namely geometric representation of moving ob- 

jects and indexing of the geometric representation. The 

geometric representation concerns the following questton: 

how to construct a space (we will call it the represenrurinn 

space), and map each moving object and each query into 

a region (or a line, or a point) in that space, such that the 
result of the query is the set of all objects whose region 

intersects the query region. The sub-problem of indexing 

the geometric representation addresses the question how to 
find the result of the intersection in an efficient way. This 

sub-problem can probably be solved efficiently by one of 

the many existing spatial access methods (see [27] for a 

survey). 

Here <condition> is given by a FTL. formula. So far we have mainly addressed the first sub-problem. 

For example, the following query retrieves all the objects In this paper we will discuss two representations, namely 

o that enter the polygon P within three units of time, and the value-time representation space and the intercept-slope 

have the attribute PRICE < 100. representation space. 

RETRIEVE o 

WHERE o.PRICE 2 1OOA 
Eventually-within3 INSIDE(o, P) 

. Value-time Representation Space 

The following query retrieves all the objects o that enter 
the polygon P within three units of tmle. and stay in P for 
another 2 units of time. 

This method plots all the functions representing the 

way a dynamic attribute changes with time. Thus, 

the representation space of this method is constructed 
by the x-axts representmg time. and the y-axts rep- 
resenting the value of the dynamic attribute. An 
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object is mapped to a trajectory that plots the loca- 
tion as a function of time. A range query of the form 
Q=“Retrieve the objects whose attributes value is in 

the range [Ub...U,] at time t” IS a vertical line seg- 
ment, the end points of which are (t, @) and (t, a,) 

(see Figure I(a)). In this way, the answer set consists 

of all the objects that have trajectories that intersect 
the query line segment. 

l Intercept-slope Representation Space 

Consider an object o whose location as a function of 

time is f(t)=a+ct. a is called the inter@ and u 

is called the slopr. Then, the representation space is 

constructed by the x-axis representing the intercept 

and the y-axis representing the slope. Thus the ob- 
ject o is mapped to the point (a,~) in that space. The 

range query Q above is a parallelogram in the rep- 

resentation space (see Figure l(b)). In this way, the 

answer set consists of all the objects represented by 

the points inside this parallelogram. 

Observe that in each one of the above methods, the 

representation of an object in space is updated when and 
only when one of the sub-attributes of the location dynamic 

attribute is explicitly updated. It can be argued that the 

first method above is more eflictent for querymg and less 
efficient for updating, whereas in the second method the 

opposite is true. For space considerations, we omit the 

discussion of this claim. 

Each one of the above methods works for freely moving 

objects. It is an open issue to find efficient geometric 

representations for objects that move on routes. 

5 UNCERTAINTY MANAGEMENT 

The location of a moving object is inherently impre- 
cise because, regardless of the policy used to update the 

database location of a moving object (i.e. the object’s lo- 

cation stored in the database), the database location cannot 
always be identical to the actual location of the object. This 

uncertainty has various implications for database modeling, 

querying, and indexing. 

In this section we first extend our MOST data model to 

represent the uncertainty of database location (subsection 

5.1). then we adapt our FIX language (5.2) and indexing 

method (5.3) to process “may” and “must” queries. In sub- 

section 5.4 we discuss a cost based approach to determine 

when to update the location. 

5.1 Data Modeling 

In order to model the uncertainty of the database loca- 

tion, we first define the deviation concept. In general, the 
deviation of the value of a dynamic attributeat a particular 

point in time t is the difference between the actual value at 
time 1. and the database value (i.e. the value stored in the 
database) at time t. 

(a) value-time space re resentation 
~ 02 and 03 constitute t R e answer to Q 

8 

(b) intercept-slope space representation 
02 and 03 constitute the answer to Q 

Figure 1. Geometric representations for a 
range query. 

One way of modeling the uncertainty is to provide a 
bound on the deviation. AI any point in time the moving 

object and the DBMS know this bound, and the moving ob- 
ject commits to send an update when the deviation reaches 
the bound. Thus, if the bound is I mile, then the DBMS 

will answer a query “what is the current location of m?” by 

an answer A: “thecurrentlocatton is (I, y) withadeviation 

of at most 1 mile”. For this answer, the uncertainty is the 

area of a circle with radius 1 mile. Observe that for a freely 
moving object, the uncertainty is the area of a circle with 

radius I mile around (2, ?I), and for an object moving on a 

route, the uncertainty is an interval on the route from the 

point at 1 mile behind (zl y) to the point at 1 mile ahead of 
(z, y), The bound on the deviation is given by an additional 

sub-attribute called L.uncertainty. 

Observe that the proposed method cannot model a bound 

on the deviation in the speed of a moving object (e.g. the 
speed is between 50 and 60 miles/hour). Similarly, the 

method cannot model a constraint that indicates that amov- 

ing object does not go backwards (because, as long as the 
object is m the uncertainty interval, its locatmn at time 1 

can be behind its location at time t - I). Both problems 

can be addressed by an extension of the above model, but 

we will omit this dIscussion from the present paper. 
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Figure 2. may and must semantics 

5.2 Query Language 

Consider the query Q=“Retrieve the objects that are in- 
side the polygon P”. Because of the uncertainty in the 
database location, there can be two different kinds of se- 
mantics to this query, namely may and must. Under the 
“may” semantics, the answer is the set of all objects that 
are possibly inside P, i.e. the objects whose uncertainty 
interval intersects P. Under the “must” semantics, this will 
be the set of all objects which are definitely inside P, i.e. 
the objects whose uncertainty intervals are entirely inside 
P (see Figure 2). We have incorporated mny and must 
semantics into the FTL language and the query processing 
algorithm. 

A more general way of dealing with the uncertainty 
problem is to associate probabilities with answers to 
queries. Thus, for example, an answer to query Q would 
say that object I is inside P with probability 0.4 and object 
2 is inside P with probability I, 

Observe that for queries that pertain to a future time, 
both must and may queries are tentative in the following 
sense. Consider the query “Retrieve all the airplanes that 
will come within 30 miles of the airport in the next IO 
minutes”. Suppose that the answer to the query Q contains 
airplane a. It is possible that after the answer is presented 
to the user, the motion vector of a changes in a way that 
steers a away from the airport, and the database is updated 
to reflect this change. Thus a does not come within 30 
miles of the airport in the next IO minutes. Therefore, in 
this sense the answer to future queries is tentative, i.e. it 
should be regarded as correct according what is currenl!) 
known about the real world, but this knowledge (e.g. the 
motion vector) can change. 

5.3 Indexing 

Since the semantics of queries are enriched, indexing 
should also be extended to efficiently process the queries 
of the form Ql=“Retrieve the objects which must be inside 
the polygon P at time 1” or Qz=“Retrieve the objects which 
muy be inside the polygon P at time t”. In this subsection 
we discuss an extension of the value-time representation 
space (see section 4) to deal withuncertainty. We construct 
aplane, calledtheo-plane, torepresentthelocationattribute 
of a moving object a. The o-plane is the set of uncertainty 
intervals of o, one uncertainty interval for each time unit 
1 2 0 (see Figure 3). Thus, instead of being represented by 
a line (or a trajectory), an object is represented by a plane. 

Figure 3. Object o is traveling along the y 
axis. (yO, y,) is the uncertainty interval at time 
t. The query p (represented by the solid line 
interval) is: retrieve the objects which at time 
lo are at 2 = 0 between y? and y3. 

In other words, at time 1, the value of the location attribute 
is an interval instead of a point. A range query is still a 
line segment as before. The answer to query QJ above is 
the set of objects whose uncertainty intervals at time t lie 
inside P in their entirety. The answer to query Q2 above 
is the set of objects whose uncertainty intervals at time t 
intersect P. 

5.4 Uncertainty and Communication Tradeoffs 
in Moving Objects Databases 

Although the database location deviates from the actual 
location of a moving object, more frequent updates can 
reduce the deviation. Clearly there is a tradeoff between 
communication and imprecision in the sense that the higher 
the number of updates the lower the imprecision, and vice 
versa. In the model that we presented in subsection 5.1, the 
imprecision is captured by the bound on the deviation. The 
main issue addressed in this subsection is how to determine 
the bound, denoted L.uncerlainly. 

We take a cost based approach to solve this problem. 

5.4.1 The Information Cost of a Trip 

The information cost of a trip has the following three com- 
ponents: 

. Deviation Cost 

The deviation has a cost (or penalty) because it can 
result in incorrect decision making. Observe first 
that the cost of the deviation depends both, on the 
size of the deviation and on the length of time for 
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which it persists. It depends on the size of the devi- 
ation since decision-making is clearly affected by it. 
To see that it depends on the length of time for which 
the deviation persists, suppose that there is one query 
that retrieves the location of a moving object m per 
time unit. Then, if the deviation persists for two 
time units its cost will be twice the cost of the devi- 
ation that persists for a single time unit; the reason 
is that two queries (instead of one) will pay the devi- 
ation penalty. Formally, for a moving object m the 
cost of the deviation between two time points tt and 
tz is given by the deviation cost function, denoted 
COSTd(ti ,12); it is a function of two variables that 
maps the deviation between the time points ti and 
t2 into a nonnegative number. In this paper we take 
the penalty for each unit of deviation during a unit 
of time to be one (1). Then, the cost of the deviation 
between two time points It and tz is: 

I 
f2 

cosTd(t,, 12) = d(t)dt (1) 
II 

l Update Cost 

where d(t) is the deviation as a function of time. 

The updare cost. denoted Ci, is a nonnegative num- 
ber representing the cost of a location-update mes- 
sage sent from the moving object to the database. 
The update cost may differ from one moving object 
to another, and it may vary even for a single moving 
object during a trip, due for example, to changing 
availability of bandwidth. The update cost must be 
given in the same units as the deviation cost. In 
particular, if the update cost is Ct it means the ra- 
tio between the update cost and the cost of a unit of 
deviation per unit of time (which is one) is Ci. It 
also means that the moving object (or the system) is 
willing to use l/C, messages in order to reduce the 
deviation by one during one unit of time. 

l Uncertainty Cost 

The uncertainty has a cost (or penalty) because a 
higher uncertainty conveys less information when 
answering aquery. Observe that, as for the deviation, 
the cost of the uncertainty depends both, on the size 
of the uncertainty and on the length of time for which 
it persists. Formally, for a moving object m the cost 
of the uncertainty between two time points tl and 
t2 is given by the uncertainty cosrfunction, denoted 
COST, (11~12); Dehne the uncertain~ unit cost to 
he the penalty for each unit of uncertainty during a 
unit of time, and denote it by Cz. Thus Cz is the 
ratio between the cost of a unit of uncertainty and 
the cost of a unit of deviation. Then, the cost of the 
uncertainty of a moving object m between two time 
points tt and 12 is: 

I 
11 

COST,(t,,t~) = Czu(t)dl (2) 
!I 

where u(l) is the value of the L.uncertainty sub- 
attribute of m as a function of time. 

Now we are ready to define the information cost of a 
trip taken by a moving object m. Let 2, and 12 be the 
time-stamps of two consecutive location update messages, 
Then the information cost in the half open interval [It, ta) 
is: 

CO~~,[t,,t2)=CI+COS~d[t,,t2)+COS~,[t,,t~) 

(3) 
and the foral information cost of the trip is: 

k 

COSTI = COSTd[O,1t)tCOST,[O,1t)tCCOST[ti,li 
i=l 

(4) 
where tl,t2, . . . . tk are the time points of the update mes- 
sages sent by m, 0 is the time point when the trip started, 
and tk+i is the time point when the trip ended. 

5.4.2 Descriptions of Update Policies 

The objective of the location update policies that we discuss 
in this paper is to set the deviation bound (or threshold) of 
a moving object, namely its L.un.certninty sub-attribute, 
such that the total information cost is minimized. Due to 
space limitations we only outline the main ideas in our 
update policies. For a complete discussion see [33]. 

. The Speed Dead-rwkoning (sdr) Policy. 

At the beginning of the trip the moving object 
m sends to the DBMS an uncertainty value that 
is selected in an ad hoc fashion, it is stored in 
L.uncertainty, and it remains fixed for the dura- 
tion of the trip. The object m updates the database 
whenever the deviation exceeds L.uncertainty; the 
update simply includes the current location and cur- 
rent speed. 2 

. The Adaptive Dead Reckoning (adr) Policy. 

When using the adr policy, a moving object provides 
with each update a new uncertainty value th that is 
computed using acost based approach. th minimizes 
the total information cost, i.c. the sum of the update 
cost, the deviation cost, and the uncertainty cost. 
At location update time, in order to compute the 
new uncertainty value, m predicts the behavior of 
the deviation. The uncertainty values differ from 
update to update because the predicted behavior of 
the deviation is different. Our analysis indicates that 

the optimum uncertainty value is 
r 

& 2Cr+, , where a 
is the approximated slope of the deviation, Ci is the 
update cost, and C2 is the uncertainty unit cost. 

%dr can also use another speed, for example,the avenge speed since 
the last update. 01 the average speed since the beginning of the trip. or a 
speed that IS predtcted based on knowledge of the term”. This comment 
holds for the other policm discussed m this sectm. 
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. The Disconnection Detection Dead Reckoning 
(dtdr) Policy. 

A problem in our model is that the moving object 

may be disconnected or otherwise unable to gener- 

ate location updates. In other words, although the 

DBMS “thinks” that updates are not generated be- 
cause the deviation does not exceed the uncertainty 

value, the actual reason is that the moving object is 

disconnected. To cope with this problem we intro- 

duce a third policy, “disconnection detecting dead- 

reckoning(dtdr)“. The policy uses a novel technique 
that decreases the uncertainty value for the purpose 

of disconnection detection. Thus, in dtdr the uncer- 

tainty value continuously decreases as time since the 

last location update passes. It has a value Ii during 

the first time unit after the updale. it has value I172 
during the second time unit after the update, it has 

value K/3 during the third time unit, etc. Thus, if 

the object is connected, it is increasingly likely that 

it will generate an update. Conversely, if the mov- 

ing object does not generate an update. as time since 
the last update passes it is increasingly likely that 

the moving object is disconnected. The dtdr policy 

computes the Ii that minimizes the total information 
cost, i.e. the sum of the update cost, the deviation 

cost, and the uncertainty cost. 

To contrast the three policies, observe that for sdr the 

uncertainty values are fixed for all location updates. For 

adr the uncertainty values are fixed between each pair of 
consecutive updates, but they may change from pair to pair. 
For dtdr each uncertainty value decreases as the period of 

time between a pair of consecutive updates increases. 

5.4.3 Simulation Results 

We conducted numerous simulations to compare the in- 

formation cost of location update policies. The parame- 

ters of the simulation are the following: the update-unit 

cost, namely the cost of a location-update message, the 

uncertainty-unit cost, the deviation-unit cost, and a speed 

curve. namely a function that for a period of time gives 

the speed of the moving object at any point in time. WC 

built a simulati?n testbed which enables us to compare the 

policies in terms of number of messages, deviation, and 
uncertainty. 

We compared by simulating the policies adr, dtdr and 
sdr. The comparison is done by quantifying the total in- 

formation cost of each policy for a large number of com- 

binations of the parameters. Our simulations indicate that 

adr is superior to sdr in the sense that it has a lower or 
equal information cost for every value of the update-unit 

cost, uncertainty-unit cost. and deviation-unit cost. Adr 
is superior to dtdr in the same sense; the difference be- 

tween the costs of the two policies quantifies the cost of 

disconnncetion detection. For some parameters combina- 
tions the information cost of sdr is six times as high as that 
of adr. 

Movq ObJeCt Subsystem Query Processing Subsysem 

(--SF--) (QueryGUl) 

Policy Simulation Subsystem Update Pohcy Subsystem 

Figure 4. The architecture of the DOMINO 
prototype 

6 PROTOTYPE DESIGN 

We implemented a prototype which packages all the ca- 
pabilities we have discussed for MOD applications. The 

prototype implements the capabilities that should be added 

to a central DBMS to support MOD applications, the 

software on the moving object, and a simulation sys- 
tem to cvaluatc the cost of location update politics. As 

shown in Figure 4, this prototype has four subsystems, i.e. 

Query Processing Subsystem(QPS). Moving Object Sub- 
system(MOS), Policy Simulation Subsystem(PSS), and 
Update Policies Subsystem(UPS). We built these subsys- 

tems in a modular fashion so that each can work inde- 

pendently, and at the same time they can’ be combined in 
various ways into different functional packages. 

+ Query Processing Subsystem(QPS) 

We implemented the MOST data model and the FTL 

language on top of Sybase and MS Windows. The 

Query GUI is used to enter FTL queries and trig- 
gers, and view the query results. Any query or 

trigger is first examined (and possibly modified) by 
the MOST/FTL system, and so is the answer of the 

DBMS before it is returned to the user. For a detailed 

discussion on modifications to queries and answers 
of the underlying DBMS see [ 141. 

In the current prototype, there is a Central Database 

which is updated with the location of all the moving 
objects. In the future we intend to consider another 

case in which thelocation database isdistriburcdand 

partially replicated among the moving objects. 

l Moving Object Subsystem(MOS) 

The MO subsystem prototypes the local system on a 

moving object. It implements update policies using 
database triggers. The currenl location of the object 
is kept in a local database and it is updated by a GPS 
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at a fixed rate (e.g. I sec.). The Local Database is 

managed by a DBMS which supports triggers (cur- 
rently we use the Informix Universal Server). A 

trigger fires and updates the Central Database when 

the deviation bound is reached. The trigger also in- 

vokes the UP subsystem to compute a new deviation 

bound. 

. Update Policies Subsystem(UPS) 

This subsystem implements update policies and their 

evaluation algorithms. It enables the definition of 
new policies without affecting otherparts of the over- 

all system. 

l Policy Simulation Subsystem(PSS) 

PSS is intended to evaluate different update policies 

in terms of the total cost of information, the number 

of updates, the uncertainty, and the deviation. It uses 
as input a speed curve, namely a curve that gives the 

speed as a function of time. The Simulation GUI 
allows users to enter a speed curve by plotting it on 

the screen. 

For each speed curve, update policy, update cost Ci, 
and uncertainty unit cost 6’1 the PS subsystem ex- 

ecutes a simulation run. The run computes the in- 

formation cost a (a single number) of the policy on 

the curve. Then, for each policy, PSS averages the 

information cost over all the speed curves, and plots 
this average as a function of the update cost Ct. 

Each simulation run is executed as follows. A speed- 
curve is a sequence S of actual speeds, one for each 

time unit. Using S, PSS simulates the moving ob- 
ject’s computer working withaparticularupdatepol- 

icy. This is done as follows. For each time unit there 
is an uncertainty value th, as well as a database speed 

and an actual speed. The actual speed is given by 

the speed curve. The deviation at a particular point 
in time t is the difference between the integral of the 

actual-speed as a function of time, and the integral of 

the database-speed (the Integrals are taken from the 
time of the last update until t). Denote by T the se- 

quence of deviations, one at each time unit. Denote 

by Q the sequence of uncertainty values (or thresh- 

olds), one at each time unit. If the deviation at time 

t reaches the uncertainty value, then PSS generates 
an update record consisting of: the current time, the 

current location, the current speed, the next uncer- 

tamty (for adr and dtdr it is computed as explained in 
the previous section); the deviation at time t becomes 

zero. Denote by li the sequence of update records. 

Using T, PSS computes the total cost of deviation, 
denoted et, and using II we compute the total cost of 

updates, ~2. Using Q we computes the total cost of 

uncertainty, cl. The information cost of the policy 

on the speed curve is ci + c2 + c?. 

At each location update, the PS subsystem invokes 

the UP subsystem to compute the new deviation 
bound. The PS subsystem keeps the speed files and 

the simulation results, and provides the tools to ag- 

gregate the simulation results. In addition, the PS 
subsystem allows a user to modify parameters dur- 

ing a simulation run. 

In the rest of this section, we discuss how the four sub- 
systems can be combined into different functional pack- 

ages, We are working on making these packages available 

over the WWW. 

Policy Simulation + Update Policies 

This combination provides an update policy simula- 
tion testbed,from which we got the simulation results 

discussed in subsection 5.4.3. 

Moving Object + Update Policies 

This combination prototypes a moving object in real 
life. It is used to generate location updates from a 

moving object. 

Moving Object + Update Policies + Query Pro- 
cessing 

This combination is used to query a set of real mov- 

ing objects. Location data is generated by each 

moving object. The MO subsystem updates the 
Central Database when deviation bound is reached, 

and invokes the UP subsystem to compute a new 
bound. The QP subsystem is used to query the cen- 

tral database. 

Comprehensive Simulation 

We intend to integrate the current simulation testbed 

with a GIS (Geographic Information System) that 
manages a geographic region, and with a model of 

wireless bandwidth allocation in the region. This 

will provide a comprehensive simulation drtven pro- 
totype that can be used to evaluate the capacity of 

a MOD system, e.g. answer the query: how many 
mobile units can be supported for a given level of lo- 

cation accuracy and a given percentage of available 

bandwidth for location updates; or, what bandwidth 

is necessary to support a 90% accuracy for 10,000 

objects. It can also be used for evaluating the per- 
formance of queries and triggers in a centralized and 

distributed environment. 

7 RELEVANT WORK 

To the best of our knowledge, this is the first project in 
which the critical issues in moving objects databases are 

systematically addressed. Furthermore, the issues do not 
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seem to tit neatly into an established field of research. Nev- 
ertheless, several research areas are relevant to the project. 

One area of research that is relevant to the model and 

language presented in this paper is temporal databases 18, 
32,291. ‘Ihe main difference between our approach and the 
temporal database works is that, by and large, those works 

assume that the database varies at discrete points in time; 

and between updates the values of database attributes are 
constant ( [29] uses interpolation functions to some extent). 

In contrast, here we assume that dynamic attributeschange 

continuously, and consequently the temporal data model is 
different than the data mode1 presented in this paper. It 

is not clear if and how temporal extensions to deal with 

incomplete information (see 17, 151) are applicable to our 

context. However, temporal languages other than FTL can 

be used to query MOST databases. Nevertheless, when 
using any other language. the query processing algorithm 

will have to be modified to handle dynamic attributes. 

Another relevant area is spatial databases (see [28, 18, 

I I, 9, IO, 12, 171). Work in this area can be used for 

defining and processing the spatial operators discussed in 

section 3. 

Our work is also relevant to uncertainty m databases 
(see [ 1,251 for surveys). However, as far as we know this 

area has so far addressed complementary issues to the ones 

in this paper. Our current work addresses the question: 

what uncertainty to initially associate with the location of 

each moving object. In contrast, existing works are con- 
cerned with management and reasoning with uncertainty, 

after such uncertainty is introduced in the database. Thus 
these works become important for query processing that 
goes beyond “may” and “must” semantics. 

Another body of relevant work is constraint databases 
(see [22] for a survey and [ 16, 41 for some notable sys- 

tems). Constraint databases have been separately applied 

to the temporal domam, and to the spatial domain. Con- 
straint databases can be used as a framework in which to 
implement dynamic attributes. A constraint will have to 

be adapted to provide a single value at each point in time, 
with the values changing over time. It will also have to be 

adapted for movement on routes and for uncertainty (see 

1231). 

An interesting relevant approach to modeling the loca- 

tion of moving objects is taken in [l3]. In contrast to 

our approach which addresses tracking of moving objects, 

i.e. querying the current and future locations, the [ 131 ap- 

proach pertains to past histories of moving objects. Thus 

its modeling viewpoint is different, and it does not address 

indexing, imprecision, and uncertainty. 

Another relevant research concerns location manage- 
ment for mobile users in the cellular architecture (see 

130, 19, 3, 21, 20, 2, 241). When calling a mobile user, 

the Persona1 Communication Service (PCS) infrastructure 
must locate the cell in which the user is currently located. 

The above works address the problem of allocating and dis- 
tributing the location database (i.e. the database that gives 
the current cell of each mobile user) such that the lookup 

time and update overhead are minimized. The location of 
a user is given at the granularity of a whole cell, which is 

sufficient for the purpose of calling a mobile user. For a 
given network, the cells are of a fixed size. In wide-area 

networks, the diameter of a cell ranges from a couple of 

miles in the terrestrial architecture, to thousands of miles 
in satellite architectures. In other words, for PCS com- 

munication the location uncertainty is always fixed, and is 

given by the size of the cell. However, what happens when 

mobile users are not covered by a cellular architecture (e.g. 

in the Desert-Storm battlefield) and/or when the location- 

uncertainty of the cellular network is too large (e.g., for 

picking up a customer, knowing the location of a tax-cab 
withing IO miles may not he satisfactory). For these cases, 

the existing work on location management is not satisfac- 

tory. 

8 FUTUREWORK 

Much remains to be done in order to make moving ob- 

jects a commercial reality. We intend to extend the present 

work in the following directions: 

. In some cases MOD applications may not be intcr- 

ested in the location of moving objects at any point 

in time, but in their arrival at the destination by a 

particular deadline. Assume that the database arrival 

information is given by “The object is expected to 

(or must) arrive within 10 minutes of 5pm”. How 

do our current results apply to this case’? We believe 
that most of the them carry over. However, we need 

make adjustments in order to handle the increasing 

criticality and better estimation capability as the 5pm 

deadline approaches. 

l Extend the present work to handle uncertainty for 

moving objects that do not report their locatton; in- 
stead their location is sensed by possibly unreliable 
means. This is the case, for example, for enemy 

forces in a battlefield. 

l Extend our query processmg and update policies 

to an environment without the central database, i.e. 

where database is distributed among the moving ob- 
jects. Efficient location replication strategies need to 

be developed to for distributed model. 

l Study the implications of the network QoS(Quality 

of Service) on update policies and query process- 

ing. The relevant QoS parameters are available band- 
width, message loss rate. average message delay, etc. 

. We intend to integrate the current simulation testbed 

with a GIS (Geographic Informatton System) that 

manages a geographic region, and with a mode1 of 

wireless bandwidth allocation in the region, This 

will provide a comprehensive simulatton driven pro- 
totype that can be used to evaluate the capacity of 
a MOD system, e.g. answer the query: how many 
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mobile units can be supported for a given level of lo- 

cation accuracy and a given percentage of available 
bandwidth for location updates; or, what bandwidth 

is necessary to support a 90% accuracy for 10,000 

objects. It can also be used for evaluating the per- 

formance of queries and triggers in a centralized and 

distributed environment. 

We believe that as the world becomes a more dynamic 
place. as geographic distances are shrinking and remote 

locations ofthe globe become more accessible, and as new 

applications are being developed, moving objects databases 
will become increasingly important. 
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