

SIGHT AND LIFE activities

- provides vitamin A
- gives technical assistance
- supports field projects and scientific research
- gives training and education grants
- supports publications
- disseminates educational materials
- publishes a newsletter on the fight against vitamin A deficiency

Major nutritional deficiency diseases

- Protein-Energy Malnutrition (PEM)
- Vitamin A Deficiency Disorders (VADD)
- Nutritional anaemias (esp. Iron)
- Iodine Deficiency Disorders (IDD)

Vitamin A Deficiency Disorders (VADD)

A comprehensive term that covers all effects of the deficiency state including those on health, survival and vision

Impact of VADD on public health

- 250 million pre-school-age children are subclinically vitamin A deficient
- 3 million have clinical xerophthalmia
- 300,000 are blind from xerophthalmia (about 10% of all blind children)

Causes of child death

UNICEF, 1994

Impact of vitamin A intervention on child survival

"Improvement of vitamin A status in young child populations...leads to a reduction in all-cause mortality rates of about 23%"
United Nations, 1993

"Improved vitamin A nutriture would be expected to prevent approximately 1.3-2.5 million deaths annually among children aged under 5 years."

Bulletin of WHO, 1992

Historical background

1816	Xerophthalmia in experimental animals
1904	First large human epidemic in Japan
1913	"Fat soluble A" discovered in the USA
1930	Formulae of β-carotene and vitamin A discovered (Karrer, Switzerland)
1947	Industrial vitamin A synthesis (Isler at Roche, Switzerland)
1964 1980s	First global survey of VADD Importance of vitamin A in child survival shown
19005	importance of vitalilli A ill Cillia Survival Showii

Chemistry

all-trans β-carotene

all-trans retinol

retinyl palmitate

all-trans retinoic acid

11-cis retinal

Vitamin A requirements

Retinol Equivalents (RE) per day (1 RE = 1 μg retinol)

Child 1-6 years 400 RE

Adult Women 500 RE

Men 600 RE

Pregnancy 600 RE

Major food sources

- Dark green leafy vegetables
- Yellow fruits
- Carrots
- Palm oils
- Liver and liver oils

Examples of fruits and vegetables

Children being taught about foodstuffs rich in vitamin A

Representative values of vitamin A activity in some foodstuffs

μg Retinol Equivalents per 100 g edible portion

Vegetable sources	mango	307
	papaya	124
	carrot	2,000
	dark green leafy vegetables	685
	red palm oil	30,000
Animal sources	butter	830
	eggs	140
	milk	40
	liver	15,000
	cod liver oil	18,000

Carotenoid bioavailability factors

- Carotenoid species
- Concentration
- Food matrix
- Dietary fat etc.
- Parasites

Physiology

Molecular biology

Functions

- Vision (night, day, colour)
- Epithelial cell integrity against infections
- Immune response
- Haemopoiesis
- Skeletal growth
- Fertility (male and female)
- Embryogenesis

Analytical methods

- Spectrophotometry (visual, UV)
- Spectrophotofluorometry
- High-performance liquid chromatography (HPLC)

Stages of deficiency

Increasing deficiency

Subclinical

- reducing stores
- lowering serum level
- metaplasia

Clinical

- xerophthalmia
 - non-blinding
 - blinding

Tests of vitamin A status

Decreasing status

Subclinical

- relative dose-response test
- serum retinol
- retinal rod function
- conjunctival impression cytology (CIC)

Clinical

- night blindness
- conjunctival and corneal eye signs

Conjunctival xerosis (X1A) and corneal xerosis (X2)

Bitot's spot (X1B)

Keratomalacia (X3A, X3B)

Corneal scarring (XS)

Xerophthalmia classification by ocular signs

- Night blindness (XN)
- Conjunctival xerosis (X1A)
- Bitot's spot (X1B)
- Corneal xerosis (X2)
- Corneal ulceration/keratomalacia (X3A)
 - <1/3 of corneal surface
- Corneal ulceration/keratomalacia (X3B)
 ≥1/3 of corneal surface
- Corneal scar (XS)
- Xerophthalmic fundus (XF)

Corneal ulceration in children

Malnutrition and child death

Association between VAD and mortality

Impact of vitamin A on child mortality

Impact of vitamin A on measles mortality

Impact of vitamin A on morbidity

Diarrhoeal episodes, number of loose movements

Maternal HIV-1 infection and vitamin A status

RR = 4.4

RR = 3.6

RR = 2.2

RR = 1.0

Adapted from R.Semba et al, Lancet, 1994

Preliminary assessment of vitamin A status of a population

- Interviews by structured questionnaire
- Chart reviews
- Search for clinically active cases
- Search for old, healed disease
- Collect existing data on dietary intake and serum vitamin A levels

WHO criteria of a public health problem of xerophthalmia

Night blindness

(XN)

in >1%

Bitot's spot

(X1B)

in >0.5%

 Corneal sclerosis/ ulceration/keratomalacia (X2, X3A, X3B) in >0.01%

Corneal scar

(XS)

in >0.05%

 Plasma retinol of $< 0.35 \mu mol/l (10 \mu g/dl)$

in >5%

Biological indicators of subclinical vitamin A deficiency in children 6-71 months of age

Prevalence below cut-off to define a public health problem and its level of importance *RDR = relative dose-response test

Indicator (cut-off)	Mild	Moderate	Severe
Functional			
Night blindness (present at 24 - 71 months)	>0 – <1%	≥1 – <5%	≥5%
Biochemical			
Serum retinol (≤0.7 µmol/l)	≥2 – <10%	≥10 – <20%	≥20%
Breast milk retinol (≤1.05 µmol/l)	≥2 – <10%	≥10 – <25%	≥25%
RDR (≥1.05 μmol/l)	≥5 – <20%	≥20 – <30%	≥30%

Histological indicator (CIC)

Global map of VADD

Protective effect of different food sources

VADD risk factors 1: Age

VADD risk factors 2: Age and sex

VADD risk factors 3: Season

VADD risk factors 4: Infectious diseases

VADD risk factors 5: Location

Bangladesh

Cohen, Rahman, Mitra et al, 1987

XN

XN

VADD risk factors 6: Physiological status

Relative frequency of occurrence of eye signs

	XN	X1B	X2+3
Pre-school	+	+	++
School	++	++	+
Pregnancy	+++	+	
Lactation	+++	+	

The vitamin A deficiency disorders (VADD) cycle

Adults

Reliance on leaves and fruits Low pre-formed vitamin A

Low fat

Low vitamin E

→ Low vitamin A status

Pregnancy

Increased needs
Food taboos

Low foetal stores

Young child

Increased needs for growth

Breast:

Bottle:

Protective

Hazardous

immunisation Mother care infections

Parasites

Neglect

Treatment schedule (orally)

Immediately on diagnosis:

<6 months 50,000 IU

6-12 months 100,000 IU

>12 months 200,000 IU

Next day Same age-specific dose

At least two weeks later Same age-specific dose

Control of VADD

- Supplementation
- Fortification
- Diet diversification
- Infectious disease control
- Disaster relief
- Plant breeding

Prevention 1: Periodic oral supplementation

Infants <6 months

50,000 IU

Non-breast-fed infants, breast-fed infants whose mothers have not received supplemental vitamin A

Infants 6-12 months

100,000 IU

Every 4-6 months

Children >12 months

200,000 IU

Every 4-6 months

200,000 IU

MothersWithin 8 weeks of delivery

A child receiving a vitamin A capsule

Prevention 2: Food fortification

Requirements

- Scientific rationale
- Industrial capacity
- Training
- Advocacy
- Legislative support

- Economic viability
- Community acceptance
- Sustainability
- Monitoring
- Quality control

Vitamin A-fortified sugar

MSG (monosodium glutamate) fortification trial Indonesia

Prevention 3: Dietary diversification

Advantages: Ultimate solution

Community involvement

Generating income

Provides other nutrients

Components: Production (home, school)

Consumption

(by vulnerable groups)

Problems: Long-term cooperation

Difficult in slums and desert areas

Home gardening

Trends in xerophthalmia

