
Is There Life Outside Transactions?
Writing the Transaction Processing Book

 Andreas Reuter
European Media Laboratory
Schlosswolfsbrunnenweg 33

D-69118 Heidelberg
+49-6221-533200

reuter@eml.org

ABSTRACT
In this article I will reflect on the writing of “Transaction
Processing – Concepts and Techniques” [1], which
appeared at Morgan Kaufmann Publishers in 1992. The
process of writing had many aspects of a typical software
project: In the end, the book was more than twice as thick
as we had planned, it covered only ¾ of the material that
we wanted to cover, and completing it took much longer
than we had anticipated. Nevertheless, it was a moderate
success and served as a basic reference for many
developers in the industry for at least 10 years after its
publication. It was translated to Chinese and Japanese, and
occasionally one still finds references to it – despite the fact
that (apart from simple bug fixes) there has been no
technical update of the material, and the book deals with
“outdated” subjects like transaction processing and
client/server architectures.

Categories and Subject Descriptors
K.2 [History of Computing]: People

General Terms
Performance, Design, Reliability, Standardization.

Keywords
Transaction processing, fault tolerance, software
architecture.

1. INTRODUCTION
In 1986 Jim had signed a contract with a seminar organizer
for teaching a one-week course on transaction processing in
spring 1987. The course was to take place in Berlin, and
because he did not want to teach the full five-day load all
by himself, he invited me to share some of it, assuming that
university professors have most – if not all – of the course
material ready for delivery on short notice. For the
following eight months we worked on preparing the slides.
The “plan” guiding the process was a list of chapter
headings that each of us would work on, with each chapter
representing a 90 min lecture. There was very little
communication along the way: A phone call now and then,
but no exchange of drafts or anything like that. Exchanging
emails between a university and a (closed) company

environment – Tandem in our case – was not something
you could simply do, and slides were either drawn by hand
or printed and then copied onto transparencies1. Two weeks
before the course started we sent a complete set of paper
copies of our 980 foils to the organizer, who turned them
into handouts for the participants. Delivering them all
would have been quite a challenge, but as soon as we found
out that the participants were very knowledgeable
developers with good ideas and tricky questions (I
remember Bill Laing and Paul Shrager being among them),
Jim decided to change the course structure completely.
Instead of following the table of contents in the handouts
we focused on what the participants were interested in and
skipped those parts that nobody wanted to hear about. For
example, we discussed a design where (for reliability) the
requests are sent to two completely independent systems
and executed on both. The question was, under which
conditions one could guarantee that the transactions are
serialized in the same order on both systems. So it was a
very lively, highly interactive course. I do not know how
much the participants took home, but the two presenters
definitely learned a lot.

2. ROBERT BURNS WAS RIGHT
When we reviewed the course, Jim observed that the
students’ questions had produced something that our initial
organization of the material had not suggested: A systems-
oriented perspective on transaction processing. So instead
of describing TP technology in isolation, and then
describing databases, networking, programming issues, etc.
we presented transactional concepts as some kind of
unifying framework for all layers of a system, from the
operating system all the way up to the applications and the
user interfaces. Jim went on saying that there were no
textbooks taking that integrative approach, and that it
should not be too hard to turn our 980 foils into text. We
estimated that on average two slides would transform into
one page of prose (including tables and figures), so that we
would have to write ca. 500 pages – 250 pages per person.
Doing this within a year seemed quite reasonable at the

1 In 1987 Microsoft bought the company that had produced the

precursor to Powerpoint, but it took a couple of years for that to
impact our teaching habits.

54 SIGMOD Record, June 2008 (Vol. 37, No. 2)

time, given that we had most of the material already. This
is how the whole thing started.
Before we actually tried to implement it, the initial plan
seemed to make perfect sense: The major portion of the
work had already been completed by putting all the
technical material on the slides – or so we thought. We
would only have to convert bullets into sentences, redo
some of the figures, add a chapter drawing all the details
into the grand picture of transaction-oriented systems,
compile a list of references – and be done! It was the kind
of plan that everybody will enthusiastically agree to at the
end of a meeting, so they can get on with their real work. In
our case it was the review meeting after the course, and
neither Jim nor I had a clear idea of how to implement it
after we got back from Berlin. However, with the best of
intentions we agreed on producing text from the slides
some time soon.
With no deadline at all and many other things to do, we
made very little progress in turning the foils into prose – in
fact, we did not make any progress at all. I used the
material for a variety of courses I taught at the university,
extending and changing it as new algorithms, new systems
etc. became available. Jim did the same, teaching
transaction processing at Stanford, but we still were just
using and updating the slides; no prose was being produced
as a result of the teaching activities. The only new type of
content that proved useful when – much later – we actually
wrote the book was a rapidly growing number of problems
and exercises related to the various topics that were
covered in the foils. Those problems were specifically
created for the university courses; they had not been part of
the Berlin seminar.
That was the situation in 1987, and it did not change in
1988, or in 1989. In the fall of 1989 we discussed the
project and found that the original plan had been a failure.
It was obvious that if we wanted to get anything written, we
would have to hide in some remote, quiet and pleasant
place, equipped with PCs, printer, toner, with easy access
to good food, and spend all our time typing – well, most of
it. We figured that three months should be enough to
produce a complete first draft of the book, the polishing of
which could be done later, when we were back in our
normal habitats. After some lengthy and careful
deliberation it was decided to rent a house in a small village
in Tuscany named Ripa (near Carrara) and spend February
through April of 1990 there.
This time we got it partially right: At the end of April we
had about 600 pages of text, thanks to Jim’s strict regime
that required each of us to produce 2,000 words per day, no
matter which day. 600 pages were very close to our
estimate – but they only covered less than half the topics
we wanted to discuss. So in order to preserve the
investment, we had to plan for a second hideaway, which
took place one year later in Bolinas (north of San
Francisco), again from February to April. At the end of this

period, we had about 1,000 pages of text, plus a number of
lessons learned2:
- We would not be able to cover all the material that

was contained in the foils of the course.
- We would still have to do a lot of work in order to get

the book to the printer (glossary, index, and proof
reading).

- Writing a book is hard work; we would never do it
again.

So Robert Burns was right indeed: The best laid plans …

3. ORGANIZING THE MATERIAL
In the years between the Berlin course and the time of
finishing the book, technologies related to transaction
processing, distributed computing, parallel databases, etc
developed at a rapid pace. There is by far not enough space
to list them all, but I will mention some that had a major
influence on the way the book was structured.
First, transaction technology for distributed systems started
to be used seriously on non-proprietary operating system
platforms, i.e. Unix [4]. This partly was the result of
transferring research results from academia into real
products via start-ups. A particularly notable example for
this was Transarc’s Encina-system [7], which was the result
of a multi-year research effort at CMU, led by Alfred
Spector. Since Jim had been discussing with this group on a
regular basis, he had very detailed insight into both the
architecture and the implementation of the system.
Second, the ideas for making transactions a fundamental
mechanism for reliable execution at all levels of a system
rather than just use it for database applications were being
transformed into real systems. The most advanced example
in that category was Tandem’s TMF [6], which
demonstrated the use of transactions in the operating
system and featured real transactional RPCs, among other
interesting things. Of course, Jim was particularly familiar
with that system, so we often used it as a reference when
discussing how the elements of a “good” transaction
processing system (for teaching purposes) should play
together.
Third, C. Mohan of IBM had started to systematize and
clarify many techniques for implementing transactional
execution that had been around in various systems for
many years and present them in a coherent framework. This
resulted in a famous series of papers on the ARIES design
[5], which had a significant influence on how we presented
recovery mechanisms and methods for synchronization on
B-tree structures, among other things.
In several companies and many research labs people were
working on new synchronization protocols, disaster

2 There was yet another lesson, having to do with the deeply

rooted connection between transaction processing and the level
of precipitation in the area one writes about it - but that is
beyond the scope of this short article.

SIGMOD Record, June 2008 (Vol. 37, No. 2) 55

recovery, new access paths, and - with a special emphasis –
on generalizations of the classical ACID transaction model.
The work that had most influence on our book in that
respect was the ACTA model [8] and related ideas by
Johannes Klein [9], which we mostly learned about by
talking to him, because unfortunately most of those ideas
never got properly published.
When we prepared for driving to Tuscany from my place in
Germany, two cars loaded with computers, clunky 15”
CRTs, printers and the more mundane stuff you need for
three months away from home, I was very concerned about
the heavy load of papers, proceedings, books etc we would
have to take with us – remember, the Web was not there
yet, and email was by far not as flexible as it is today3. But
Jim argued that we would need very little of that, just our
foils, some textbooks, some manuals, and a few papers:
“We won’t write about any exotic stuff; only the things that
work – and those we know reasonably well.” This principle
was re-asserted many times throughout the writing process.
Whenever I started saying something like “Shouldn’t we
try to find a new way of ….” Jim would respond: “Don’t
invent. We just write about what we know.” In other words:
He wanted the book to be as specific and concrete as
possible, in order to provide the highest potential benefit
for the readers. Of course, these principles were not used in
a dogmatic fashion. There actually were many situations
when we had to “invent” a good way of presenting
complicated issues in an appropriate manner rather than
following the countless complications of some real
implementation. This was the case, for example, with the
transaction manager, with context management, with the
implementation of a log manager, with B-tree locking and a
number of other aspects. But in each case we did not come
up with new algorithms; the only things we invented were
suitable simplifications and/or abstractions that allowed for
a more compact presentation.
Regarding the overall “gestalt” of the book, we had two
role models: The first one was Patterson and Hennessy’s
newly published “Computer Architecture – A Quantitative
Approach” [2]. Jim was absolutely enthusiastic about it: its
basic approach of combining qualitative descriptions with
quantitative models; its heavy use of exercises and sample
solutions; its level of granularity; its layout – everything.
Throughout the six months of writing we spent a good deal
of our time figuring out how to make the various issues of
transaction processing amenable to quantitative analysis.
The second guiding light was Tanenbaum’s new book on
operating systems [3], which had come out about two years
before. The interesting aspect of it was that it contained the
complete source code for a basic operating system called
Minix. Casting the ideas presented into source code that the

3 Not that it would have mattered: The phone in the house in Ripa

only allowed incoming calls. And since there were no mobile
phones either: Can you imagine how much concentration we
were able to focus on writing the book?

reader can easily run (and modify) is certainly as close to
“real life” as you can get in a textbook – a genuinely
rational, if not quantitative, approach. We were so
impressed with this idea that we decided to present all the
relevant algorithms in syntactically correct C code (instead
of some kind of C-like pseudo code). As a matter of fact, in
the beginning we hoped to be able to complement the book
with a CD containing a rudimentary yet executable TP
system. Everybody who has read the book will remember
what happened to that idea.
Despite all these initial considerations, when writing finally
started in Ripa we proceeded in an ad-hoc fashion. Each of
us started writing about something he felt comfortable with;
there was no grand design, no master plan. Jim wrote about
logging, producing the core of what finally became Ch. 9. I
began writing about transaction models and transactional
execution, and that stuff ended up in Ch. 4, 5, 6, 10, and
some other places.
In hindsight I think we just wanted to see some text being
written, after all these years without a single line. There
was the clear understanding that all the material was just
preliminary, ready to be re-arranged whenever that should
prove necessary. And, of course, there was Jim’s relentless
“2000-words-a-day”-rule. We produced about 300 pages in
that manner - and were quite proud of how well things were
going – when we noticed that in the end we would just have
a loosely organized collection of algorithms, techniques
and tricks that could be found in various systems and that
had to do with transaction processing one way or the other.
But the title of the book was supposed to be “TP –
Concepts and Techniques”, and so far we had not delivered
on the “concepts” part. That was a bit ironic, because the
experience from the Berlin course, where the “vision” of a
fully transactional systems architecture had emanated, was
the real reason for getting started with the book writing
business – and now we had almost forgotten about it for all
the fun we had with describing our favorite algorithms and
turning (simplified versions of) them into C code. At that
point we began discussing the architectural issues, i.e. the
question of how to introduce the concepts underlying
everything that was being discussed in the book. Put in a
slightly different way: What exactly was our idea of an
“ideal” transaction processing system, taking into account
all the experiences from existing systems? On one hand, we
did not want to invent things. On the other hand, all the
existing systems were compromises of sorts, thus
introducing complications we did not want to get into.
From that moment on, writing got much harder than before,
and the 2000-words rule was in serious jeopardy.

4. WORKING OUT THE CONCEPTS
Here was the dilemma: We could not use any existing
system as a model for introducing all the aspects of
transaction processing for the reasons mentioned, and just
accumulating all the different techniques for scheduling,
concurrency control, recovery, etc would not magically

56 SIGMOD Record, June 2008 (Vol. 37, No. 2)

produce a conceptual super-structure. It also became clear
that our original idea of presenting all the techniques
separately and then taking things to the conceptual level in
a dedicated chapter was not an appropriate solution: For
many techniques, especially those for logging, recovery,
and commit processing, it is necessary to present them in
the context of a specific architecture – otherwise many
important dependencies cannot be explained. For example,
when discussing logging, it is important to know who
actually writes (flushes) the log and when, how many logs
are there, who reads the log in which order, etc. Those
issues are concerned with the interaction among different
components of the system, so there has to be some idea of
an architecture that the reader has to understand. Of course,
one could make ad-hoc assumptions for each technique
when it is being discussed; but if those assumptions are not
consistent throughout the book, it will leave the reader
confused, and it will not result in a deeper understanding of
the architectural issues.
The discussions about the conceptual framework for the
book could have gone on for a long time, had it not been
for Jim’s amazing talent of seeing the structure in an
apparently hopeless mess of detail. I had the chance of
watching this talent at work at different occasions, and each
time it was fascinating with how little effort (or so it
seemed) he would come up with an abstraction, with the
essence of very complex technical problems. The answers
often seemed to be over-simplifications, ignoring too many
relevant parameters4 – at least that was my reaction in some
cases – but after having thought about it more carefully,
one found that they emphasized exactly the right aspects
and allowed for refinements in various directions if needed.
There are people who love complexity as an intellectual
challenge. Jim’s attitude is different: He masters
complexity alright, but then he likes to reduce it to the basic
concepts and treat the rest as optimizations, special cases,
or simply entropy.
The fundamental concept he suggested for the book (and
for any good transaction processing system, for that matter)
was the transactional RPC (TRPC). At the core, all
components of the (abstract) system that we describe in the
book contribute to the implementation of TRPCs. That
means that all communication inside the system (including
the operating system) is based on TRPCs. This was clearly
inspired by the designs of Encina [7] and Tandem’s TMF
[6]. I remember the reaction of a number of colleagues
whom we told what we were writing about and which
approach we were taking: “But what about high-volume
transfers, streams, and things like that?” We explained that
we considered those as optimizations/special cases of the
basic function, and Ch. 6 of the book discusses these issues.

4 Take the five-minute rule [1] as an example. It ignores most

technological parameters, the access patterns, etc and yet it
represents a very important and stable way of looking at storage
hierarchies.

A consequence of the TRPC-design is that each resource in
the system, no matter who manages it, will be attached to
the transaction for which it provides service. In a sense, a
TRPCs acts like a spreading disease: If it invokes a new
resource (service) that so far had nothing to do with that
transaction, the resource just by being called will become
part of (be infected by) that transaction. Fig. 5.4 in [1]
presents a graphical metaphor of that idea.
Having a TRPC mechanism rooted in the operating system
makes life quite a bit simpler for the transaction manager
and for the resource managers. For example the “infection”
mentioned above is implemented by having the TRPC
mechanism automatically call the Join interface of the
transaction manager when a resource manager gets
involved into a transaction for the first time. So the
implementers of resource managers can focus on their
specific functionality rather than having to participate in
general system housekeeping chores.
The interfaces of the transaction manager could be worked
out quite easily once the basic decision had been made.
True to the principle of just presenting the core concepts,
we kept the functions for advanced transaction
management to a minimum (Leave, Resume).
Another simplification resulting from the assumption of an
underlying TRPC service was the callback model of
interaction among the different components of the system.
Rather than have various types of components (for
recovery, for communication, etc) there are basically just
resource managers, offering all they have to contribute to
transaction execution by appropriate callback entries, and a
transaction manager. In the foils we still had a separate
recovery manager, but once we had thought through the
TRPC-based design, it turned out that this was no longer
necessary. By a simple division of labor between resource
managers, transaction manager, and the log the
orchestration of recovery is a simple generalization of what
the transaction manager does anyway. Similarly, in our
design, the communication manager is just a resource
manager that is implementing the (transactional) resource
“session”.
Using all these abstractions we suggested the notion of a
transactional operating system (TPOS) which manages the
highly dynamic and powerful relationships among
processes, address spaces, server classes, and transactions,
i.e. the whole machinery required for TRPCs, including the
TRPC mechanism itself.
Once the structure was clear, we specified the interfaces of
all components that are presented in the book in C.
Likewise, all the relevant control blocks are explicitly
declared, and based on these all the important algorithms
are spelled out as C programs – of course just in the form
of code skeletons that emphasize the key aspects. This was
as close as we got in providing the code of a complete TP
system. Ch. 6 contains the central control blocks of the
TPOS, and all the other control blocks used throughout the
book are anchored there. But a lot more code would have

SIGMOD Record, June 2008 (Vol. 37, No. 2) 57

been needed to turn this into a self-contained, executable
system. In particular, we would have had to map it onto a
specific OS, and we neither had the time nor the page space
to do that – and the exercise would not have added much
value to the book.

5. CONCLUSIONS
As I said in the beginning, we did not cover all the subjects
that originally were on our list. In the foils we had chapters
on SQL, on database design, on performance optimization,
on benchmarking, on application design and a few more.
We simply had to give up because we ran out of time and
space – making it a two-volume book was never an option.
On the other hand, we wrote extra chapters that we had not
planned for: The feedback from students (in particular
Betty Salzberg’s) who helped us a lot with debugging early
versions of the text, suggested that we put in a chapter on
basic computer terms. We also added a survey of TP
systems and a glossary.
In the end we were both quite happy that the writing tasks
were completed, and that the design we had “invented” for
pedagogical purposes had proven to work very well – if a
coherent presentation can be considered as evidence for
that. I got the impression that for Jim the whole exercise
served as an “upload” of all the things he had learned and
thought about for decades, so that other people could pick
them up and he was free to take off to new territories. And
indeed, the only paper on transaction management proper
he wrote after the little black book was the one on Paxos
commit [10]. It basically was a reply to the argument used
by many people against transactions in a distributed
environment: that the two-phase-commit protocol can run
into a blocking situation.
In the meantime many arguments have been raised against
transactional execution models, mostly along the lines of
application complexity vs. the simplicity of ACID. Most of
them are missing the point: Our book never advocates
transactions as the only model for structuring applications.
It rather makes the point that transactions are proper
mechanisms for building reliable distributed systems – an
issue that is as relevant as ever. It is interesting to see that
in the context of web servers (a topic that is not even
mentioned in the book) many techniques from the area of
TP monitors and other system components have been
rediscovered and re-implemented. But that is not a new
thing: The history of TP systems up to the point that we
summarized is characterized by a lack of communication,
garbled terminology and re-invention of many basic
concepts.

Anyhow, after we had resolved the question of how to
conceptualize our presentation, we so much liked the idea
of “transactions everywhere” (inside the system, that is)
that we thought of putting the motto “There is no life
outside transactions” at the beginning of Ch. 6, which
introduces the TPOS. We decided against it, but many
times, at the end of a day, when he had churned out his
2,000+ words, Jim would come to my desk and say “Hey,
Reuter, stop. Let’s go and see if there is any life outside
transactions.”

6. ACKNOWLEDGEMENTS
Having had the chance of writing this book with Jim was
an once-in-a-lifetime experience which I have benefitted
from immensely, both professionally and personally.
Thanks a lot, Jim.

7. REFERENCES
[1] Gray, J. and Reuter, A. 1992, Transaction Processing –

Concepts and Techniques, Morgan Kaufmann Publishers,
San Mateo, CA.

[2] Patterson, D. A. and Hennessy, J. L. 1990, Computer
Architecture: A Quantitative Approach, Morgan Kaufmann
Publishers, San Mateo, CA.

[3] Tanenbaum, A. S. 1987, Operating Systems: Design and
Implementation, Prentice Hall, Englewood Cliffs, NJ.

[4] Spector, A. Z. 1991, Open, Distributed Transaction
Processing with Encina, International Workshop on High
Performance Transaction Systems, Monterey, CA.

[5] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., and
Schwarz, P. 1992, ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking and Partial Rollbacks
Using Write-Ahead Logging, ACM TODS 17(1).

[6] Tandem-TMF. 1991, Tandem’s Transaction Monitoring
Facility (TMF) – Introduction, 12014, Tandem Computers,
Cupertino, CA.

[7] Transarc-Encina. 1991, Encina Transaction Processing
System, TP Monitor, TP-00-D146, Transarc Corp.
Pittsburgh, PA.

[8] Chrysanthis, P. K. and Ramamritham, K. 1990, ACTA: A
Framework for Specifying and Reasoning About Transaction
Structure and Behavior, ACM SIGMOD.

[9] Klein, J. 1991, Advanced Rule Driven Transaction
Management, 36th IEEE Compcon.

[10] Gray, J. and Lamport, L. 2006, Consensus on Transaction
Commit, ACM TODS, ACM New York, NY.

58 SIGMOD Record, June 2008 (Vol. 37, No. 2)

