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Probabilistic Modeling for Job Symbiosis Scheduling
on SMT Processors

STIJN EYERMAN and LIEVEN EECKHOUT, Ghent University, Belgium

Symbiotic job scheduling improves simultaneous multithreading (SMT) processor performance by coschedul-
ing jobs that have “compatible” demands on the processor’s shared resources. Existing approaches however
require a sampling phase, evaluate a limited number of possible coschedules, use heuristics to gauge sym-
biosis, are rigid in their optimization target, and do not preserve system-level priorities/shares.

This article proposes probabilistic job symbiosis modeling, which predicts whether jobs will create positive
or negative symbiosis when coscheduled without requiring the coschedule to be evaluated. The model, which
uses per-thread cycle stacks computed through a previously proposed cycle accounting architecture, is simple
enough to be used in system software. Probabilistic job symbiosis modeling provides six key innovations
over prior work in symbiotic job scheduling: (i) it does not require a sampling phase, (ii) it readjusts the
job coschedule continuously, (iii) it evaluates a large number of possible coschedules at very low overhead,
(iv) it is not driven by heuristics, (v) it can optimize a performance target of interest (e.g., system throughput or
job turnaround time), and (vi) it preserves system-level priorities/shares. These innovations make symbiotic
job scheduling both practical and effective.

Our experimental evaluation, which assumes a realistic scenario in which jobs come and go, reports an
average 16% (and up to 35%) reduction in job turnaround time compared to the previously proposed SOS
(sample, optimize, symbios) approach for a two-thread SMT processor, and an average 19% (and up to 45%)
reduction in job turnaround time for a four-thread SMT processor.

Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General—Modeling of com-
puter architecture; C.1.4 [Processor Architectures]: Parallel Architectures; C.4 [Computer Systems
Organization]: Performance of Systems—Modeling techniques

General Terms: Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Simultaneous multithreading (SMT), symbiotic job scheduling, perfor-
mance modeling

ACM Reference Format:
Eyerman, S. and Eeckhout, L. 2012. Probabilistic modeling for job symbiosis scheduling on SMT processors.
ACM Trans. Architec. Code Optim. 9, 2, Article 7 (June 2012), 27 pages.
DOI = 10.1145/2207222.2207223 http://doi.acm.org/10.1145/2207222.2207223

This article extends “Probabilistic Job Symbiosis Modeling for SMT Processor Scheduling,” by Stijn Eyerman
and Lieven Eeckhout, published at the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’10), 91–102.
S. Eyerman is supported through a postdoctoral fellowship by the Research Foundation–Flanders (FWO).
Additional support is provided by the FWO projects G.0255.08, and G.0179.10, the UGent-BOF projects
01J14407 and 01Z04109, and the European Research Council under the European Communitys Seventh
Framework Program (FP7/2007-2013)/ERC Grant agreement no. 259295.
Authors’ addresses: S. Eyerman and L. Eeckhout, ELIS Department, Ghent University, Sint-
Pietersnieuwstraat 41, B-9000 Gent, Belgium; email: {seyerman, leeckhou}@elis.UGent.be.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1544-3566/2012/06-ART7 $10.00

DOI 10.1145/2207222.2207223 http://doi.acm.org/10.1145/2207222.2207223

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 2, Article 7, Publication date: June 2012.



7:2 S. Eyerman and L. Eeckhout

1. INTRODUCTION
Simultaneous multithreading (SMT) processors [Tullsen et al. 1996, 1995], such as
the Intel Core i7, IBM POWER7, and Sun Niagara, seek at improving microproces-
sor utilization by sharing hardware resources across multiple active threads. Shared
hardware resources however may affect system performance in unpredictable ways.
Coexecuting jobs may conflict with each other on various shared resources which may
adversely affect overall performance. Or, reversely, system performance may greatly
benefit from coexecuting jobs that put “compatible” demands on shared resources. In
other words, the performance interactions and symbiosis between coexecuting jobs on
multithreaded processors can be positive or negative [Tuck and Tullsen 2003].

Because of the symbiosis among coexecuting jobs, it is important that system software
(the operating system or the virtual machine monitor) makes appropriate decisions
about what jobs to coschedule in each timeslice on a multithreaded processor. Naive
scheduling, which does not exploit job symbiosis, may severely limit the performance
enhancements that the multithreaded processor can offer. Symbiotic job scheduling on
the other hand aims at exploiting positive symbiosis by coscheduling independent jobs
that “get along,” thereby increasing system throughput and decreasing job turnaround
times. The key challenge in symbiotic job scheduling however is to predict whether
jobs will create positive or negative symbiosis when coscheduled. Previously proposed
symbiotic job scheduling approaches [Snavely and Carter 2000; Snavely and Tullsen
2000; Snavely et al. 2002] sample the space of possible coschedules, that is, they select
and execute a limited number of job coschedules, and then retain the most effective
one according to some heuristic(s). This pragmatic approach however may lead to
suboptimal coschedules and thus suboptimal system performance.

This article proposes probabilistic job symbiosis modeling. The probabilistic model
uses probabilistic theory to estimate single-threaded progress rates for the individual
jobs in a job coschedule without requiring its evaluation. The model uses as input per-
thread cycle stacks (which are computed using our previously proposed cycle accounting
architecture [Eyerman and Eeckhout 2009]), and is simple enough so that system
software can evaluate all or at least a very large number of possible job coschedules
at low overhead, and search for optimum job coschedules. Probabilistic modeling and
model-driven symbiotic job scheduling provides six major innovations over prior work.

(i) It does not require a sampling phase to evaluate symbiosis—instead, symbiosis is
predicted by the probabilistic model.

(ii) It readjusts the job coschedule continuously.
(iii) It enables evaluating all (or at least a very large number of ) possible job cosched-

ules at very low overhead.
(iv) It does not rely on heuristics to gauge symbiosis but instead tracks single-threaded

progress rates for all jobs in the job mix.
(v) Because it estimates single-threaded progress rates for each job coschedule, sys-

tem software can estimate and optimize an SMT performance target of interest
such as system throughput, or job turnaround time, or a combination of both—
prior approaches on the other hand are rigid in their optimization target.

(vi) When extended with the notion of system-level priorities/shares, it enables pre-
serving shares as expected by end users while exploiting job symbiosis—a property
that was not achieved in prior work by Snavely et al. [2002].

In summary, probabilistic job symbiosis modeling makes symbiotic job scheduling both
practical and more effective.

Our experimental results demonstrate the accuracy of probabilistic job symbiosis
modeling on simultaneous multithreading (SMT) processors. The probabilistic model
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achieves an average absolute prediction error of 5.5% for a two-thread SMT processor
and 8.8% for a four-thread SMT processor for the ICOUNT fetch policy [Tullsen et al.
1996]. In addition, we demonstrate the applicability of the probabilistic model across
different SMT processor resource partitioning strategies and fetch policies, and report
average absolute prediction errors similar to ICOUNT for static partitioning [Raasch
and Reinhardt 2003] (2.9%), flush [Tullsen and Brown 2001] (5.8%), MLP-aware
flush [Eyerman and Eeckhout 2007] (4.2%) and DCRA [Cazorla et al. 2004a] (4.5%).

Model-driven job scheduling which leverages probabilistic symbiosis modeling
achieves an average reduction in job turnaround time of 16% over the previously
proposed SOS (Sample, Optimize, Symbios) [Snavely et al. 2002], and 21% over naive
round-robin job scheduling for two-thread SMT processors; for particular job mixes, we
report reductions in job turnaround time by up to 35% over SOS. For a four-program
SMT processor, we report an average reduction in job turnaround time by 19% on
average and up to 45% compared to SOS. Finally, we demonstrate that symbiotic job
scheduling achieves proportional sharing: jobs achieve as much progress as they are
entitled to, while at the same time exploiting job symbiosis.

This article makes the following contributions.

—We propose probabilistic job symbiosis modeling for SMT processors. The model takes
as input a cycle stack for each of the individual jobs when run in isolation (which
are measured by our recently proposed per-thread cycle accounting architecture
[Eyerman and Eeckhout 2009]), and predicts progress for each job in a job coschedule.
To the best of our knowledge, this is the first analytical performance model to target
SMT processors.

—We apply probabilistic modeling to symbiotic job scheduling on SMT processors and
demonstrate that it significantly improves performance over prior proposals. We pro-
vide a comprehensive analysis as to where the performance improvement comes from.

—Using the model, we analyze which job types are best coscheduled to maximize
throughput and job turnaround time. We conclude that if the goal is to maxi-
mize throughput, memory-intensive jobs should be coscheduled, however, if job
turnaround time is to be optimized, then mixed coschedules with memory-intensive
and compute-intensive jobs is the best choice.

—We find that global scheduling, that is, scheduling job mixes for a number of time-
slices ahead, does not improve performance over local scheduling which schedules
the next timeslice only.

—We study the interaction between job symbiosis scheduling on SMT processors and
DVFS. We find that SMT job scheduling and DVFS can be optimized independently,
that is, a combined scheme that optimizes job scheduling and DVFS indepen-
dently yields comparable performance to a cooperative scheme that optimizes job
scheduling and DVFS simultaneously.

This article is organized as follows. Before describing probabilistic job symbiosis mod-
eling in great detail in Section 5, we first need to provide some background on SMT
performance metrics (Section 2), prior work in symbiotic job scheduling (Section 3)
and per-thread cycle accounting (Section 4). Sections 6 and 7 present model-driven
job scheduling without and with system-level priorities/shares, respectively. After ex-
plaining our experimental setup in Section 8, we then evaluate probabilistic symbiosis
modeling and model-driven job scheduling (Section 9). Finally, we discuss related work
(Section 10) and conclude (Section 11).

2. SMT PERFORMANCE METRICS
In order to understand the optimization target of symbiotic job scheduling, we need
to have appropriate metrics that characterize SMT performance. In our prior work
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[Eyerman and Eeckhout 2008], we identified two primary performance metrics for
multiprogram workloads: system throughput (STP), a system-oriented performance
metric, and average normalized turnaround time (ANTT), a user-oriented performance
metric.

System throughput (STP) quantifies the number of jobs completed per unit of time
by the system, and is defined as

STP =
n∑

i=1

Cst
i

Csmt
i

,

with n jobs in the job mix, and Cst
i and Csmt

i the execution time for job i under single-
threaded (ST) execution and multithreaded (SMT) execution, respectively. Intuitively
speaking, STP quantifies the accumulated single-threaded progress of all jobs in the
job mix under multithreaded execution. STP equals weighted speedup as defined by
Snavely and Tullsen [2000], and is a higher-is-better metric.

Average normalized turnaround time (ANTT) quantifies the time between submit-
ting a job to the system and its completion. ANTT is defined as

ANTT = 1
n

n∑

i=1

Csmt
i

Cst
i

,

and quantifies the average user-perceived slowdown during multithreaded execution
compared to single-threaded execution. ANTT is a smaller-is-better performance met-
ric, and equals the reciprocal of the hmean metric proposed by Luo et al. [2001].

Optimizing STP has a positive impact on ANTT in general, and vice versa. For ex-
ample, improving system throughput implies that new jobs can be executed faster,
leading to shorter job turnaround times. However, STP and ANTT may also represent
conflicting performance criteria, that is, optimizing one of the two performance metrics
may have a negative impact on the other. For example, giving priority to jobs that ex-
perience little slowdown during multithreaded execution compared to single-threaded
execution, may optimize system throughput but may have a detrimental impact on job
turnaround time, and may even lead to the starvation of jobs that experience substan-
tial slowdown during multithreaded execution.

3. PRIOR WORK IN SYMBIOTIC JOB SCHEDULING ON SMT PROCESSORS
Snavely and Tullsen [2000] pioneered the work on symbiotic job scheduling for simul-
taneous multithreading (SMT) processors, and proposed SOS, or Sample, Optimize and
Symbios. For explaining SOS, we first need to define some terminology. A job cosched-
ule refers to multiple independent jobs coexecuting on the multithreaded processor
during a timeslice, that is, the jobs in a coschedule compete with each other for pro-
cessor resources on a cycle-by-cycle basis during their scheduled timeslice. A schedule
refers to a set of job coschedules such that each job in the schedule appears in an
equal number of job coschedules; a schedule thus spans multiple timeslices. During
the sample phase, SOS permutes the schedule periodically, changing the jobs that are
coscheduled. While doing so, SOS collects various hardware performance counter val-
ues such as IPC, cache performance, issue queue occupancy, etc. to estimate the level
of symbiosis of each schedule. After the sampling phase, SOS selects the schedule with
the highest symbiosis, the optimize phase, and then runs the selected schedule for a
number of timeslices, the symbios phase. SOS goes into sampling mode again when a
new job comes in or when a job leaves the system or when a symbiosis timer expires.
SOS guarantees a level of fairness by making sure each job in the schedule appears in
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an equal number of job coschedules. The goodness of symbiosis is a predictor (heuristic)
for system throughput.

In their follow-on work, Snavely et al. [2002] studied symbiotic job scheduling while
taking into account priorities. They propose four mechanisms for supporting prior-
ities: (i) a naive mechanism that assumes that all jobs make equal progress when
coscheduled, (ii) a more complex mechanism that strives at exploiting symbiosis when
coscheduling jobs, (iii) a hardware mechanism that gives more resources to high priority
jobs, and (iv) a hybrid hardware/software mechanism. Although these mechanisms im-
prove SMT performance at varying degrees, they do not preserve the notion of system-
level shares as expected by end users; end users expect single-threaded progress to be
proportional to their relative shares. The fundamental reason why these prior mecha-
nisms do not preserve the user-expected notion of proportional sharing is that they are
unable to track single-threaded progress during multithreaded execution.

4. PER-THREAD CYCLE ACCOUNTING
Probabilistic job symbiosis modeling, as we will explain in the next section, uses as
input a cycle stack for each job. We rely on our previously proposed per-thread cycle
accounting architecture [Eyerman and Eeckhout 2009] for computing per-thread cycle
stacks on SMT processors. A per-thread cycle stack is an estimate for the single-
threaded cycle stack had the thread been executed in isolation. The cycle accounting
architecture computes per-thread cycle stacks while jobs corun on the processor.

The cycle accounting architecture accounts each cycle to one of the following three
cycle counts, for each thread i in the job coschedule.

—base cycle count Csmt
B,i . The processor dispatches instructions (i.e., is making progress)

for the given thread.
—miss event cycle counts. The processor consumes cycles handling miss events (cache

misses, TLB misses and branch mispredictions) for the given thread; we make a
distinction between miss event cycles due to L1 I-cache misses (Csmt

L1I,i), L1 D-cache
misses (Csmt

L1D,i), I-TLB misses (Csmt
IT LB,i), D-TLB misses (Csmt

DT LB,i), L2 and L3 I- and D-
misses (Csmt

L2D,i, Csmt
L2I,i, Csmt

L3D,i, Csmt
L3I,i), branch mispredictions (Csmt

br,i ), and other resource
stalls due to long-latency instructions (Csmt

other,i).
—waiting cycle count Csmt

W,i. The processor is dispatching instructions for another thread
and can therefore not make progress for the given thread. The waiting cycle count
thus quantifies the number of cycles during which the processor does not make
progress for thread i because of multithreaded execution.

The cycle accounting architecture also computes two sources of reduced performance
under multithreaded execution compared to single-threaded execution. First, it quanti-
fies the reduction in per-thread memory-level parallelism (MLP). Multithreaded execu-
tion exposes less per-thread memory-level parallelism than single-threaded execution
because there are fewer reorder and issue buffer resources available per thread, and
thus the hardware can expose fewer outstanding memory requests per thread. The cycle
accounting architecture measures the amount of per-thread MLP under multithreaded
execution (MLPsmt

i ) and also estimates the amount of MLP under single-threaded ex-
ecution (MLPst

i ). The MLP ratio RMLP,i is defined as RMLP,i = MLPst
i /MLPsmt

i and
quantifies the reduction in per-thread MLP due to multithreading. Second, the cycle
accounting architecture estimates the number of additional conflict misses due to shar-
ing in the branch predictor, caches and TLBs. The ratio of the number of per-thread
misses under multithreaded execution divided by the (estimated) number of misses un-
der single-threaded execution is denoted as Rbr,i for the branch mispredictions, RL1I,i
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for the L1 I-cache misses, RL1D,i for the L1 D-cache misses, etc. These ratios estimate
the increase in the number of misses due to multithreading.

Given these cycle counts and ratios, the cycle accounting architecture can estimate
single-threaded cycle stacks and execution times. This is done by dividing the above
cycle counts with their respective ratios. For example, the branch misprediction cycle
count is estimated as the multithreaded cycle count divided by the branch misprediction
ratio, that is, C̃st

br,i = Csmt
br,i /Rbr,i. The single-threaded L3 D-cache miss cycle count takes

into account the reduction in per-thread MLP as well, and is computed as C̃st
L3D,i =

Csmt
L3D,i/(RL3D,i · RMLP,i). Further, the base cycle count under single-threaded execution

equals the base cycle count under multithreaded execution, that is, C̃st
B,i = Csmt

B,i . The
sum of the estimated single-threaded cycle counts is an estimate for the single-threaded
execution time C̃st

i .
The cycle accounting architecture incurs a reasonable hardware cost (around 1KB

of storage) and estimates single-threaded execution times accurately with average
prediction errors around 7.2% for two-program workloads and 11.7% for four-program
workloads. We refer the interested reader to Eyerman and Eeckhout [2009] for more
details.

5. PROBABILISTIC JOB SYMBIOSIS MODELING
Starting from a cycle stack for each job, the goal of probabilistic job symbiosis modeling
is to predict single-threaded progress for each job in a coschedule. This is done by
predicting the probability that a job would experience a base cycle, a miss event cycle
and a waiting cycle when coscheduled with another job. Single-threaded progress then
is the sum of the base cycle count plus the miss event cycle counts, and is an indication
of the goodness of the coschedule, that is, the higher single-threaded progress for each
job in the coschedule, the better the symbiosis.

Probabilistic job symbiosis modeling proceeds in three steps.
Step 1. Estimate multithreaded base and miss event cycle counts. The multithreaded

base cycle count is set to be the same as the single-threaded base cycle count, that
is, we consider the same unit of work done under multithreaded and single-threaded
execution. In other words, C̃smt

B,i = C̃st
B,i. The multithreaded miss event cycle counts

are estimated by multiplying the single-threaded miss event cycle counts with their
respective ratios. For example, the branch misprediction miss event cycle count is
estimated as C̃smt

br,i = C̃st
br,i · Rbr,i. The L3 D-cache cycle count also needs to account for

the reduction in per-thread MLP, that is, C̃smt
L3D,i = C̃st

L3D,i · RL3D,i · RMLP,i.
Step 2. Probability calculation under perfect multithreading. We transform these cy-

cle counts into probabilities by normalizing the individual multi-threaded cycle counts
to their overall sum

Csmt
per f ect,i = C̃smt

B,i +
∑

e

C̃smt
e,i ,

which quantifies the total execution time under perfect multithreading (in the absence
of any waiting cycles), that is, this is the sum of the base cycle count and all the miss
event cycle counts. We define the probability for a base cycle for thread i under perfect
multithreaded execution as

Psmt
B,i = C̃smt

B,i /Csmt
per f ect,i.

Likewise, we define the probability for a miss event cycle for thread i under perfect
multithreaded execution as

Psmt
e,i = C̃smt

e,i /Csmt
per f ect,i.
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We also rescale the single-threaded cycle counts using the same denominator, that is,

Pst
B,i = C̃st

B,i/Csmt
per f ect,i,

and

Pst
e,i = C̃st

e,i/Csmt
per f ect,i.

Step 3. Waiting cycle probability estimation. Having computed the probabilities for
a base cycle Psmt

B,i and a miss event Psmt
e,i under perfect multithreading for all m jobs,

we can now estimate the probability for a waiting cycle Psmt
W,i . There are three reasons

for a waiting cycle, which results in three terms in the calculation of the waiting cycle
probability.

(1) Waiting cycle due to dispatching useful instructions from another thread. Thread i
experiences a waiting cycle if the processor could dispatch an instruction for thread
i but instead dispatches an instruction for another thread. The probability for
thread i to dispatch an instruction equals Psmt

B,i ; the probability for another thread j
to dispatch an instruction equals Psmt

B, j with j != i. The product of both probabilities
Psmt

B,i · Psmt
B, j then quantifies the probability that the processor could dispatch an

instruction for thread i but the processor dispatches an instruction for thread j
instead. This can be generalized to more than two threads: for each thread j != i,
we thus have the same product from above, and these products can be added. In
summary, the first term in the waiting cycle probability equals Psmt

B,i ·
∑

j !=i Psmt
B, j .

(2) Waiting cycle due to dispatching wrong-path instructions from another thread.
Thread i experiences a waiting cycle if the processor could dispatch an instruc-
tion for thread i but instead dispatches a wrong-path instruction for another
thread. This second term is similar to the first term because the thread experi-
encing a branch misprediction continues fetching (wrong-path) instructions until
the branch misprediction is resolved. The likelihood for this case is computed as
Psmt

B,i ·
∑

j !=i Psmt
M,br, j .

(3) Waiting cycle due to a back-end resource stall caused by another thread. Thread i
experiences a waiting cycle if the processor could dispatch an instruction for thread
i but is prevented from doing so because of a back-end resource stall caused by
another thread. The back-end resource stall causes dispatch to stall because of
a full reorder buffer, full issue queue, no more rename registers, etc. A back-end
resource stall primarily occurs upon a long-latency load (cache or TLB) miss or a
long chain of dependent long-latency instructions, which causes the reorder buffer
to fill up.

The likelihood for this case can be computed as the product of two probabilities:
the probability that thread i does not stall on a back-end miss, times the probability
that another thread causes a back-end resource stall. The former probability (i.e.,
thread i does not stall) is computed as 1 − Psmt

backend stall,i = 1 − (Psmt
L3D,i + Psmt

L2D,i +
Psmt

L1D,i + Psmt
DT LB,i + Psmt

other,i). The latter probability (i.e., another thread causes a back-
end resource stall during multithreaded execution) is more complicated to compute
because it is a function of the other threads’ characteristics as well as the SMT fetch
policy. We conjecture that this probability can be computed as γ ·

∨
j !=i Psmt

backend stall, j ,
or γ times the probability that at least one other thread causes a back-end resource
stall. The big “or” (

∨
) operator is defined following the sum rule or the addition

law of probability. For example, for two threads,
∨2

j=1 Psmt
backend stall, j = Psmt

backend stall,1 +
Psmt

backend stall,2 − Psmt
backend stall,1 · Psmt

backend stall,2. The γ metric is an empirically derived
constant that is specific to the SMT fetch policy and resource partitioning strategy.
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Intuitively speaking, γ characterizes the likelihood for a long-latency load to result
into a resource stall for a given SMT processor configuration. For example, a fetch
policy such as round-robin along with a shared reorder buffer and issue queue, will
most likely lead to a back-end resource stall because of a full reorder buffer upon
a long-latency load miss. In other words, if a thread experiences a long-latency
load miss, this will most likely lead to a full reorder buffer and thus a resource
stall. Hence, γ will be close to one for the round-robin policy. The flush policy
proposed by Tullsen and Brown [2001] on the other hand, flushes instructions past
a long-latency load miss in order to prevent the long-latency thread from clogging
resources. As a result, the likelihood for a back-end resource stall due to a long-
latency load miss under the flush policy is small, hence γ will be close to zero for
the flush policy. In summary, the likelihood for a waiting cycle for thread i because
of a back-end resource stall due to another thread, is computed as (1− Psmt

backend stall,i) ·
γ ·

∨
j !=i Psmt

backend stall, j .

The overall probability that job i experiences a waiting cycle in a job coschedule
equals the sum of these probabilities, hence:

Psmt
W,i = Psmt

B,i




∑

j !=i

Psmt
B, j +

∑

j !=i

Psmt
br, j





+
(
1 − Psmt

backend stall,i
)
· γ ·

∨

j !=i

Psmt
backend stall, j .

The ratio of the sum of the single-threaded probabilities (Pst
B,i +

∑
Pst

e,i) and the
estimated multithreaded probabilities (Psmt

B,i +
∑

Psmt
e,i + Psmt

W,i ) is a measure for the
relative progress for job i in a coschedule. By consequence, for a timeslice of T cycles,
single-threaded progress for each job i is estimated as

C̃st
i = T ·

Pst
B,i +

∑
Pst

e,i

Psmt
B,i +

∑
Psmt

e,i + Psmt
W,i

.

The end result of probabilistic job symbiosis modeling is that it estimates single-
threaded progress for each job in a job coschedule during multithreaded execution
without requiring its evaluation.

6. MODEL-DRIVEN SYMBIOTIC JOB SCHEDULING
The key problem to solve in symbiotic job scheduling on multithreaded processors is to
determine which jobs to coschedule. Model-driven job scheduling leverages probabilistic
job symbiosis modeling to estimate the performance of all (or a large number of) possible
job coschedules for each timeslice. The scheduler then picks the coschedule that yields
the best performance. Predicting the symbiosis of a coschedule not only eliminates the
sampling phase required in prior symbiotic job scheduling proposals, it also enables
continuously optimizing the job schedules for optimum performance on a per-timeslice
basis; SOS on the other hand, involves multiple timeslices before a new schedule can
be established, as described in Section 3.

Model-driven symbiotic job scheduling uses two sources of information. First, it uses
multithreaded and single-threaded performance measurements for each job since the
job’s arrival in the job mix. The multithreaded execution time for a job simply is the
accumulated number of timeslices since the job’s arrival. The single-threaded execution
time is the job’s accumulated single-threaded progress. System software needs to keep
track of the single-threaded and multithreaded accumulated execution times for each
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job. The single-threaded execution time for a job in a timeslice is provided by the per-
thread cycle accounting architecture, as explained in Section 4; this does not involve any
time overhead. Second, probabilistic job symbiosis modeling estimates single-threaded
progress for each job in each possible job coschedule in the next timeslice, as explained
in the previous section. (A job’s single-threaded cycle stack that serves as input to
the probabilistic model is the one computed during the last timeslice that the job
was scheduled.) By combining the accumulated performance measures since the job’s
arrival time with predictions for the next timeslice, we can estimate the single-threaded
progress and multithreaded execution time, and in turn STP and ANTT, for each job
under each possible job coschedule. The end result is that model-driven scheduling can
optimize the job coschedule for either system throughput, or job turnaround time, or a
combination of both; in fact, it is flexible in its optimization target. Prior work on the
other hand, uses heuristics to gauge symbiosis and is rigid in its optimization target.

The overhead involved by model-driven symbiotic job scheduling is very limited.
Model-driven symbiotic job scheduling requires computing the model formulas for every
possible coschedule each timeslice. For n jobs and mhardware threads, this means that
the formulas need to be computed m-combinations out of n. From our experiments
we found that computing the formulas takes 22 cycles on average for a two-thread
SMT processor and 90 cycles on average for a four-thread SMT processor (using the
experimental setup which is described later). Given the simplicity of the formulas,
this is done at very limited overhead: for example, around 2000 coschedules can be
evaluated for a two-thread SMT processor for a runtime overhead of around 1%. For a
four-thread SMT processor, 500 coschedules can be evaluated at a 1% runtime overhead.
In comparison, SOS [Snavely and Tullsen 2000] considers only 10 possible schedules.

7. SYMBIOTIC PROPORTIONAL-SHARE JOB SCHEDULING
Modern system software allows users to specify the relative importance of jobs by
giving priorities in priority-based scheduling, or by giving shares in proportional-share
scheduling. The intuitive understanding in proportional-share scheduling is that a job
should make progress proportional to its share. This means that a job’s normalized
progress under multithreaded execution Cst

i /Csmt
i should be proportional to its relative

share pi/
∑

j pj with pi the share for job i (the higher pi, the higher the job’s share). For
example, a job that has a share that is twice as high compared to another job, should
make twice as much progress. System software typically uses time multiplexing to
enforce proportional-share scheduling on single-threaded processors by assigning more
time slices to jobs with a higher share. Preserving proportional shares on multithreaded
processors on the other hand is much harder because of symbiosis between coexecuting
jobs.

Probabilistic job symbiosis modeling provides a unique opportunity compared to prior
work because it tracks and predicts single-threaded progress, which enables preserving
proportional shares while exploiting job symbiosis. We pick the job coschedule that
optimizes the SMT performance target of interest if it preserves the proportional shares
within a certain range. We therefore define proportional progress PPi for job i as

PPi = Cst
i /Csmt

i

pi/
∑

j pj
.

Proportional progress quantifies how proportional a job’s normalized progress is com-
pared to its relative share. To quantify proportional progress across jobs, we use the
following fairness metric [Eyerman and Eeckhout 2008]:

fairness = min
i, j

PPi

PPj
.
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Fairness is the minimum ratio of proportional progress for any two jobs in the system,
and equals zero if at least one program starves and equals one if all jobs make progress
proportional to their relative shares.

Symbiotic proportional-share job scheduling now works as follows. From all job
coschedules that are predicted to achieve a fairness close to one (above 0.9), we choose
the one that optimizes SMT performance (recall, this could be either STP, or ANTT, or
a combination of both). If none of the job coschedules is predicted to achieve a fairness
above 0.9, we pick the coschedule with the highest fairness if its fairness is larger than
the accumulated fairness so far. If the highest fairness is smaller than the accumu-
lated fairness, we run the job that has made the smallest proportional progress so far
in isolation, if this is predicted to improve the overall fairness of the schedule; this
will enable the job to catch up with its relative share. Note that the 0.9 threshold is
chosen arbitrarily, and is a parameter that can be set by the user or operating system.
Choosing a threshold close to one will result in job progress rates close to their relative
shares. Picking a lower threshold value might result in better performance, however
at the cost of job progress rates being off relative to their relative shares. For the 0.9
threshold, our experiments showed that a job coschedule was selected to improve per-
formance (i.e., fairness is higher than 0.9) for approximately two thirds of the time; a
job coschedule was selected to improve overall fairness (i.e., fairness is smaller than
0.9) for the remaining one third of the time.

8. EXPERIMENTAL SETUP
We use the SPEC CPU2000 benchmarks in this article with their reference inputs.
These benchmarks are compiled for the Alpha ISA using the Compaq C compiler (cc)
version V6.3-025 with the -O4 optimization flag. For all of these benchmarks we select
500M instruction simulation points using the SimPoint tool [Sherwood et al. 2002]. We
compose job mixes using these simulation points. In our evaluation, we will be consid-
ering two experimental designs. The first design considers a fixed job mix. The second
design considers a dynamic job mix in which jobs arrive and depart upon completion.

This study does not include multithreaded workloads and focuses on multiprogram
workloads only. The reason is that symbiotic job scheduling is less effective and of less
interest for multithreaded workloads. Threads in a multithreaded workload that com-
municate frequently are preferably coscheduled on a multithreaded processor in order
to reduce synchronization and communication overhead. In other words, the real bene-
fit of symbiotic job scheduling is in coscheduling unrelated jobs. In addition, sequential
programs will continue to be an important class of workloads which motivates further
research towards more effective symbiotic job scheduling.

We use the SMTSIM simulator [Tullsen 1996] in all of our experiments. We added
a write buffer to the simulator’s processor model: store operations leave the reorder
buffer upon commit and wait in the write buffer for writing to the memory subsystem;
commit blocks in case the write buffer is full and we want to commit another store.
We simulate a 4-wide superscalar out-of-order SMT processor, as shown in Table I. We
assume a shared reorder buffer, issue queue and rename register file unless mentioned
otherwise; the functional units are always shared among the coexecuting threads.
Unless mentioned otherwise, we assume the ICOUNT [Tullsen et al. 1996] fetch policy;
in the evaluation, we will also consider alternative fetch policies such as flush [Tullsen
and Brown 2001], MLP-aware flush [Eyerman and Eeckhout 2007] and DCRA [Cazorla
et al. 2004a].

9. EVALUATION
We first evaluate the accuracy of probabilistic job symbiosis modeling. Subsequently,
we evaluate model-driven scheduling using a fixed and a dynamic job mix experimental
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Table I. The Baseline SMT Processor Configuration

Parameter Value
fetch policy ICOUNT
number of threads 2 and 4 threads
pipeline depth 14 stages
(shared) reorder buffer size 256 entries
instruction queues 96 entries in both IQ and FQ
rename registers 200 integer and 200 floating-point
processor width 4 instructions per cycle
functional units 4 int ALUs, 2 ld/st units and 2 FP units
branch misprediction penalty 11 cycles
branch predictor 2K-entry gshare
branch target buffer 256 entries, 4-way set associative
write buffer 24 entries
L1 instruction cache 64KB, 2-way, 64-byte lines
L1 data cache 64KB, 2-way, 64-byte lines
unified L2 cache 512KB, 8-way, 64-byte lines
unified L3 cache 4MB, 16-way, 64-byte lines
instruction/data TLB 128/512 entries, fully-assoc, 8KB pages
cache hierarchy latencies L2 (11), L3 (35), MEM (350)

design, and present a detailed analysis which characterizes the contributors to the re-
ported performance improvement. We then evaluate model-driven proportional-share
scheduling while exploiting job symbiosis. Finally, we provide analysis with respect
to which job types are best coscheduled; we study whether global scheduling over
multiple timeslices yields any performance benefit over local scheduling for the next
timeslice; and we study the interaction between symbiotic job scheduling and DVFS
for optimizing energy-efficiency.

9.1. Probabilistic Job Symbiosis Modeling
Recall that the goal for probabilistic job symbiosis modeling is to estimate single-
threaded progress for individual jobs in a job coschedule under multithreaded exe-
cution. As explained in Section 5, probabilistic job symbiosis modeling basically boils
down to estimating the waiting cycle count under multithreaded execution. We now
evaluate the accuracy in estimating this waiting cycle count. We therefore consider
36 randomly chosen two-program job mixes and 30 randomly chosen four-program job
mixes. We run a multithreaded execution for each job mix, and compute the single-
threaded cycle stacks as described in Section 4; starting from these single-threaded
cycle stacks, we then estimate the waiting cycle count for each job in the job mix us-
ing the probabilistic job symbiosis model, as described in Section 5, and compare the
estimated waiting cycle count against the one measured using the cycle accounting
architecture. The difference between the estimated waiting cycle count and the mea-
sured waiting cycle count, normalized to the total multithreaded execution time, is our
error metric for probabilistic job symbiosis modeling. This evaluation setup considers
the full path accuracy of the probabilistic model.

Figure 1 quantifies the error for probabilistic job symbiosis modeling as a histogram;
the two graphs consider two-program workloads and four-program workloads, respec-
tively. These histograms show the number of jobs on the vertical axis for which the error
metric is within a given bucket shown on the horizontal axis. The average absolute er-
ror equals 5.5% and 8.8% for two-program and four-program workloads, respectively.
The largest errors are observed for only a couple outlier job mixes.

To find out where the largest errors come from, we performed an experiment in which
we first assume all caches and predictors to be perfect, that is, all cache accesses are
hits and all branches are correctly predicted. In the next simulation, we assume a
realistic instruction cache and TLB while assuming the other caches/TLBs and branch
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Fig. 1. Validating probabilistic job symbiosis modeling: error histogram for (a) two-program workloads and
(b) four-program workloads.

Table II. Modeling Error and γ Parameter for Different Fetch Policies

Partitioning Fetch policy Error γ
static round robin [Raasch and Reinhardt 2003] 2.9% 0.11
dynamic ICOUNT [Tullsen et al. 1996] 5.5% 0.36
dynamic flush [Tullsen and Brown 2001] 5.8% 0.05
dynamic MLP-aware flush [Eyerman and Eeckhout 2007] 4.2% 0.10
dynamic DCRA [Cazorla et al. 2004a] 4.5% 0.12

predictor to be perfect. We subsequently add a realistic branch predictor, and finally
realistic data caches and TLBs. This yields four simulations per workload, and for
each of these simulations, we measure the number of waiting cycles. We also estimate
the number of waiting cycles using the probabilistic model, and we then compare the
estimated versus the measured number of waiting cycles. This experiment revealed
that the model outliers come from data cache and TLB modeling. These outliers are
caused by the implicit assumption made by the probabilistic model that the γ parameter
is job mix independent, that is, we assume that the probability for a job to fill up the
entire ROB in case of a long-latency data cache miss during SMT execution depends on
the fetch policy only, and not the job mix. In addition, the probabilistic model assumes
that the behavior of a job is uniform over time. This assumption turns out to be a good
approximation on average, but for some specific jobs and mixes, the impact of data
cache misses on waiting cycles is underestimated by the model. This is due to bursty
data cache/TLB miss behavior: a burst of data cache/TLB misses is more likely to fill
up the ROB than isolated misses.

These results assume an SMT processor with a dynamically partitioned or shared
reorder buffer and issue queue along with the ICOUNT fetch policy. We obtain similarly
accurate results for other resource partitioning strategies and fetch policies. Table II
shows the error and the empirically derived γ parameter for different fetch policies. As
expected, the γ parameter is higher for policies that do not explicitly prevent threads
from occupying all ROB entries (e.g., ICOUNT), while a policy like flush, which flushes
all instructions of a thread when a long-latency load miss occurs, has a small γ value.
Note that this not necessarily means that that fetch policy performs better; in the case
of the flush policy, performance can be low due to a significant loss in memory-level
parallelism [Eyerman and Eeckhout 2007].

9.2. Fixed Job Mix
Having evaluated the accuracy of probabilistic symbiosis modeling, we now evaluate
the effectiveness of symbiotic job scheduling that leverages the probabilistic model.
We first consider a fixed job mix; we will consider a dynamic job mix later. In each of
the following experiments, we assume the following setup. We consider a fixed job mix
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Fig. 2. Optimizing for system throughput (STP) for four-program mixes on a two-threaded SMT (left) and
eight-program mixes on a four-threaded SMT (right).
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Fig. 3. Optimizing for job turnaround time (ANTT) for four-program mixes on a two-threaded SMT (left)
and eight-program mixes on a four-threaded SMT (right).

consisting of m randomly chosen jobs on an n-threaded SMT processor, with m > n.
Each timeslice is assumed to be 5M cycles, which corresponds to a few milliseconds
given contemporary processor clock frequencies in the GHz range; this is a realistic
assumption given today’s operating systems, for instance, the Linux 2.6 kernel allows
for a timeslice as small as 1ms with a default timeslice of 4ms. (The short timeslice
also somewhat compensates for the lack of blocking behavior in the compute-intensive
SPEC CPU benchmarks in our setup.) Symbiotic job scheduling schedules jobs in each
timeslice following the algorithm described in Section 6. We compare against (i) a naive
scheduling approach that coschedules jobs in a round-robin manner, and (ii) Sample,
Optimize, Symbios (SOS) proposed by Snavely and Tullsen [2000] (SOS uses a set of
heuristics to assess symbiosis, and we report performance results for the IPC heuristic.)

In our first experiment, we optimize for system throughput (STP); in our second
experiment, we optimize for job turnaround time (ANTT). The results are shown in
Figures 2 and 3 for STP and ANTT, respectively, for a two-thread SMT and four-thread
SMT with twice as many jobs in the job mix as there are hardware threads, that is,
m = 2n. Model-driven scheduling improves STP by on average 7% and 13% over SOS
and naive scheduling, respectively; system throughput improves by up to 34% for some
job mixes. We obtain similarly good results when optimizing for job turnaround time.
Model-driven job scheduling reduces ANTT by on average 5.3% and 9.1% over SOS and
naive scheduling, respectively, and up to 20% for some job mixes.

For a couple job mixes, we observe a decrease in STP over naive scheduling (see M5
for four-program mixes and M8 for eight-program mixes), or an increase in ANTT (see
M5 for four-program mixes). The reason is a combination of inaccurate cycle stack es-
timations and symbiosis modeling error. The per-thread cycle accounting architecture
has an error of on average 7% for 2 SMT contexts and 11% for 4 SMT contexts, with
the largest error for the last-level cache component [Eyerman and Eeckhout 2009]. The
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Fig. 4. Optimizing for system throughput (STP) for six-program mixes on a two-threaded SMT (left) and
twelve-program mixes on a four-threaded SMT (right).
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Fig. 5. Optimizing for job turnaround time (ANTT) for six-program mixes on a two-threaded SMT (left) and
twelve-program mixes on a four-threaded SMT (right).

probabilistic job symbiosis model proposed in this article also shows the largest error for
the data cache components, as described in the previous section. These errors occasion-
ally enforce each other, leading to inaccurate performance estimates and suboptimal
job coschedules. Improving cycle stack and/or symbiosis modeling accuracy is likely
to improve scheduling performance for these job mixes. In addition, for the job mixes
that show a decrease in STP over naive scheduling (see M8 for four-program mixes),
we found that some jobs almost never get scheduled in the model-driven scheduling,
although they exhibit good progress in SOS. Unlike naive and SOS scheduling, model-
driven scheduling does not enforce each job to be scheduled an equal amount of time.
This, in combination with optimizing STP without taking into account fairness, implies
that jobs that do not show good symbiosis with other jobs at the beginning of their ex-
ecution will (almost) never be scheduled again. As a consequence, these jobs will never
proceed to a next phase in their execution which could show better symbiosis. Occa-
sionally enforcing the scheduling of rarely scheduled threads will most likely solve this
problem. Nevertheless, we found that model-driven scheduling leads to significantly
better SMT performance on average.

It is also worth noting that the efficacy of model-driven job scheduling increases
with an increasing number of jobs. Figures 4 and 5 show STP and ANTT results,
respectively, for a 6-job mix on a two-threaded SMT processor and a 12-job mix on a
four-threaded SMT processor. In comparison to Figures 2 and 3, we observe a higher
STP improvement over naive scheduling for 6-job mixes (17%) than for 4-job mixes
(11%) for the two-threaded SMT processor; on the four-threaded SMT processor, we
achieve an average 25% STP increase for the 12-job mixes compared to 13% for the
8-job mixes. Similarly, we observe a higher ANTT reduction for 6-job mixes (13%) than
for 4-job mixes (9%) for the two-threaded SMT processor; for the four-threaded SMT
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processor, the average ANTT goes down by 16% for the 12-job mixes compared to
12% for the 8-job mixes. In other words, the more jobs in the job mix, the better the
probabilistic symbiosis model exploits the potential performance improvement through
symbiotic job scheduling.

9.3. Detailed Performance Breakdown
Having reported these substantial improvements over prior work in symbiotic job
scheduling, the interesting question is where these overall improvements come from,
and what the relative importance is for each of these contributors. We identify three
potential contributors: (i) model-driven job scheduling does not rely on heuristics; (ii) it
does not execute job coschedules to evaluate symbiosis but instead predicts symbiosis,
which eliminates the sampling overhead of running suboptimal coschedules to evaluate
symbiosis and which enables continuous optimization upon each timeslice in contrast
to optimization on schedule boundaries that span multiple timeslices; and (iii) it does
not rely on sampling of a limited number of coschedules but can evaluate a large
number of possible coschedules. To understand the relative importance of these three
contributors, we set up the following experiment in which we evaluate a range of job
scheduling algorithms starting with SOS [Snavely and Tullsen 2000] and gradually
add features to arrive at model-driven scheduling; the deltas between the intermediate
scheduling algorithms illustrate the importance of each of the given contributors. We
consider the following job scheduling algorithms.

(a) SOS with heuristic is the SOS approach as proposed in Snavely and Tullsen [2000]
using IPC as the heuristic.

(b) SOS with cycle accounting architecture is a variant of the SOS approach that
uses the cycle accounting architecture to estimate single-threaded progress during
multithreaded execution. These single-threaded progress rates are then used to
evaluate whether the schedule optimizes system throughput. The delta between
(b) and (a) quantifies the importance of not having to rely on heuristics for gauging
job symbiosis.

(c) Sampling-based job scheduling uses probabilistic job symbiosis modeling to esti-
mate job symbiosis for a limited number of possible coschedules. It considers 10
possible coschedules and uses the probabilistic symbiosis model to gauge symbiosis
but does not evaluate symbiosis by executing the coschedule. The delta between
(c) and (b) quantifies the importance of eliminating the sampling overhead and not
having to evaluate symbiosis through execution.

(d) Model-driven job scheduling is the approach as proposed in this article and eval-
uates all possible coschedules through probabilistic symbiosis modeling. The delta
between (d) and (c) quantifies the impact of not being limited by the small number
of job coschedules to choose from.

Figure 6 reports the achieved STP for each of these job scheduling algorithms for
an 8-job mix and a 12-job mix on a four-threaded SMT processor; this results in 70
and 495 possible coschedules to choose from, respectively. We observe that the overall
performance improvement compared to SOS comes from multiple sources. For some
job mixes, the performance improvement comes from estimating symbiosis for a large
number of possible coschedules (see 8-job mixes #0 and #1). For other mixes, such as
8-job mix #2, the performance improvement comes from eliminating the overhead of
running suboptimal coschedules during the SOS sampling phase and from continuous
schedule optimization on per-timeslice basis. For yet other mixes, such as 8-job mix #5,
the biggest improvement comes from not having to rely on heuristics. Interestingly, for
the 8-job mixes, the various sources of improvement contribute equally, however, for
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Fig. 6. Understanding where the performance improvement comes from: STP for a number of symbiotic job
scheduling algorithms, assuming (a) an 8-job mix and (b) a 12-job mix on a four-threaded SMT processor.

the 12-job mixes being able to evaluate a large number of possible coschedules has the
largest contribution.

9.4. System-Level Priorities and Shares
Symbiotic job scheduling should be able to preserve system-level shares for it to be
useful in modern system software. Recall from Section 7 that the intuitive meaning
of proportional-share scheduling is that a job should make progress proportional to
its relative share. For evaluating whether relative shares are met by model-driven
symbiotic job scheduling, we set up an experiment in which we randomly assign shares
(between 1 and 10) to the 8 jobs in the job mix; we assume a four-thread SMT processor.
Figure 7 compares the normalized progress for each of the jobs in each job mix against
its relative share; both are shown as a normalized stack. A good match between both
stacks demonstrates that relative shares are preserved by the job scheduling algorithm,
which we find to be the case for model-driven job scheduling.

9.5. Dynamic Job Mix
So far, we assumed a fixed job mix. However, in a practical situation, jobs come and go
as they enter the system and complete. To mimick this more realistic situation, we now
consider a dynamic job mix. We assume an average job length of 200 million cycles,
and the average job interarrival time is determined such that the average number of
available jobs at any time is more than two times the number of hardware threads in
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Fig. 7. Comparing normalized progress against relative shares for model-driven proportional-share job
scheduling.

the SMT processor; this is done using M/M/1 queueing theory. Further, to quickly warm
up the system, we assume 4 and 8 initial threads for the two-thread and four-thread
SMT processor, respectively. For the two-thread and four-thread SMT processor, this
yields on average 3.6 and 7.2 ready jobs at each point in time, respectively. We record
the arrival times for the jobs in the dynamic job mix once and subsequently replay the
job mix when comparing different job scheduling algorithms.

In a situation where jobs come and go, it makes sense to focus on turnaround time
rather than system throughput. Although system throughput can be measured over a
period of time where the job mix is constant, system throughput measured over the
entire dynamic job mix makes little sense because system throughput cannot possibly
exceed the job arrival rate. We therefore optimize for job turnaround time in this
experiment. The scheduling method also differs from the fixed job mix case. In addition
to rescheduling when a timeslice ends, we now also reschedule every time a job enters
the system or finishes execution. We schedule each new job for one timeslice at the time
it enters, to be able to measure its CPI stack, because that is needed as an input for
the model. From then on, it is scheduled whenever the model predicts that it improves
ANTT the most.

Figure 8 reports the improvement in job turnaround time for model-driven job
scheduling compared to naive scheduling and SOS for both two-thread and four-thread
SMT processors. Model-driven scheduling improves job turnaround time by 21% on
average compared to naive scheduling, and by 16% on average compared to SOS. For
some job mixes we observe a reduction in job turnaround time by 44% (mix #5 for the
2-threaded SMT processor) and by 36% (mix #1 for the 4-threaded SMT processor)
compared to naive scheduling, and by 35% (mix #1 for the 2-threaded SMT processor)
and 45% (mix #0 for the 4-threaded SMT processor) compared to SOS.

9.6. Job Coschedule Analysis
The scheduling algorithm presented in this article relies on a per-thread cycle account-
ing architecture for SMT processors. This infrastructure is not (yet) implemented in
current SMT processors, and therefore the scheduling algorithm cannot be readily used
in practice on real hardware. It is therefore interesting to understand what types of jobs
are typically coscheduled by the algorithm: this can give us insight into what makes
a good symbiotic coschedule, which could ultimately lead to symbiotic job scheduling
heuristics that could be used on existing hardware.

In order to do so we use synthetic workloads rather than real benchmarks, the reason
being that synthetic workloads allow for changing their behavioral characteristics at
will, which facilitates the analysis. The synthetic workloads are characterized using
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Fig. 8. Evaluating model-driven job scheduling for a dynamic job mix for (a) a two-thread SMT processor
and (b) a four-thread SMT processor.

normalized cycle stacks, which represent where time is spent. A normalized cycle stack
consists of a base component, which represents the fraction of time where useful work
gets done, along with a number of “lost” cycle components due to miss events, such as
cache misses, branch mispredictions, etc. The cycle component of interest in this study
is the cache miss component. The reason is that cache misses represent opportunities
for SMT to exploit symbiosis, that is, the processor can get useful work done for a
thread while servicing the miss event for another thread. In particular, for this work,
we focus on the LLC miss component. A similar analysis can be done for instruction
cache misses and TLB misses, however, we did not consider this here because the
LLC miss component is far larger than the instruction cache miss and TLB miss
components for our set of benchmarks. Moreover, since instruction cache misses and
TLB misses have a similar impact on symbiosis as LLC misses, what is referred to as
the LLC miss component hereafter can also be interpreted as the sum of the LLC miss,
instruction cache miss and TLB miss components. Hence, in this study, and without
loss of generality, we characterize a workload’s behavior by a base cycle component
along with an LLC miss component.

We now create four synthetic workloads with varying degree of memory-
intensiveness by picking a (normalized) LLC miss component of 0.2, 0.4, 0.6, and
0.8. We will refer to these workloads as jobs 0, 1, 2, and 3, respectively. (Note that
picking an LLC miss component also sets the base component to one minus the LLC
miss component.) We then apply the job symbiosis model as described earlier in the
article to each possible coschedule to estimate its performance. Figure 9 shows the
resulting estimated STP for the six different two-job coschedules out of these four syn-
thetic workloads. Perhaps unsurprisingly, the highest throughput is predicted when
coscheduling the two most memory-intensive jobs (jobs 2 and 3). The intuition is that
the more memory-intensive a job is, the more the other job can make progress while ser-
vicing memory requests for the first job. By consequence, in order to maximize system
throughput, one should always coschedule the most memory-intensive jobs. (Determin-
ing whether a job is memory-intensive can be done through offline analysis, or could
possibly be done online using performance counters.)
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Fig. 9. STP for all 2-job schedules out of 4 synthetic jobs with normalized memory components 0.2, 0.4, 0.6
and 0.8 for job 0, 1, 2 and 3, respectively.
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Fig. 10. Frequency of selected job schedules while minimizing ANTT (same configuration as in the previous
graph).

Although prioritizing memory-intensive jobs maximizes system throughput, it may
starve non-memory-intensive jobs, which is undesirable from a fairness perspective. In
other words, it is important to balance system throughput and job turnaround time.
A metric that captures the impact on job turnaround time is ANTT, which penalizes
starving jobs. Therefore, we set up an experiment using the same 4 jobs, and we
minimize ANTT by selecting a new coschedule every timeslice. Figure 10 shows the
frequency of the selected coschedules. Surprisingly, the coschedule that maximizes
system throughput (i.e., coschedule of jobs 2 and 3) is almost never chosen. Instead,
the most memory-intensive job is combined with the least memory-intensive job (jobs
3 and 0, respectively); the two remaining jobs (jobs 1 and 2) are also coscheduled.
The runtime schedule alternates between these two coschedules. The alteration can be
explained as follows: if jobs 0 and 3 are coscheduled, then in order to maintain fairness,
jobs 1 and 2 have to be coscheduled in the next timeslice. Interestingly, coscheduling
the memory-intensive jobs (jobs 2 or 3) and the compute-intensive jobs (jobs 0 and 1)
does not minimize job turnaround time. The reason is that although coscheduling the
memory-intensive jobs (jobs 2 and 3) yields higher system throughput, coscheduling
the compute-intensive jobs (jobs 0 and 1) yields less throughput, relatively speaking,
compared to coscheduling mixed memory-intensive versus compute-intensive jobs (a
coschedule of jobs 0 and 3, and jobs 1 and 2), see also Figure 9.

Figure 11 further validates this finding using a total of 100 random job workloads
(with random LLC miss component) for 6 jobs and 2 SMT contexts, and 6 jobs and
4 SMT contexts; the graphs in Figure 11 show the relative frequency of the job
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Fig. 11. Frequency of selected job schedules while minimizing ANTT (average across 100 random job work-
loads).

coschedules. All jobs are sorted by their LLC miss component (i.e., job 0 always has
the lowest LLC miss component of all jobs, and job 5 has the highest). The conclusion
from these results is that mixed schedules, consisting of both memory-intensive and
compute-intensive jobs, yield shorter job turnaround times than alternately coschedul-
ing memory-intensive and compute-intensive jobs. In conclusion, to optimize ANTT
(i.e., minimize the individual job turnaround time degradation), coschedules should be
made of memory-intensive and compute-intensive jobs.

9.7. Global Scheduling
So far, we considered local scheduling, that is, we determine what is the optimum
coschedule for the next timeslice, and we do not optimize beyond the next timeslice. We
now study whether global scheduling or optimizing for the next few timeslices yields
any performance benefit over local scheduling. The rational is that global scheduling
may select a nonlocal optimum coschedule for the next timeslice which enables achiev-
ing a global optimum in the longer term across multiple timeslices. Global scheduling
might be of interest in batch-style systems in which job mixes do not change frequently,
such as a supercomputer facility.

Say global scheduling optimizes over the next d timeslices, with d the depth of the
global scheduling. This means that, with j jobs and c contexts, we now have

( j
c

)d
possible

coschedules for global scheduling, in contrast to
( j

c

)
coschedules for local scheduling.

The search space is thus much larger for global scheduling, but could potentially lead
to better performing schedules.

To evaluate the potential of global scheduling, we redo the experiments described in
the previous section, and we vary the global scheduling depth d from 1 (local scheduling)
to 10. Interestingly, these experiments showed that global scheduling does not provide
any performance benefit: ANTT decreases by less than 0.1% for depth 10 compared
to depth 1 (local scheduling). The explanation can be found by analyzing the selected
coschedules, see Figure 12 for the 4 jobs and 2 contexts case, for depths d = 1, 2, 5
and 10. There seems to be no shift in the selected coschedules: the two most commonly
selected coschedules for local scheduling are also selected for global scheduling, and
their relative importance even slightly increases as scheduling depth is increased.
The only benefit from global scheduling is that the optimal coschedules are selected
sooner, whereas local scheduling converges somewhat slower to selecting the optimal
coschedules.

We conclude there is no benefit in global scheduling over local scheduling, which
means that there is no need to explore more schedules than the number of combina-
tions for the next schedule. Because our experiment using synthetic workloads, which
does not account for the extra overhead due to the enlarged search space, shows no
benefit, we did not perform experiments with real benchmarks. Moreover, for real
workloads, global scheduling may yield even worse performance compared to local
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scheduling. Global scheduling revisits its schedule every d timeslices in contrast to
local scheduling which revisits its schedule every timeslice. This may lead to global
scheduling reacting to time-varying execution behavior later, unless one would be able
to predict and proactively react to upcoming phase changes.

9.8. SMT Scheduling and DVFS
Dynamic voltage and frequency scaling (DVFS) allows for trading off performance ver-
sus power consumption. Reducing the voltage of a processor reduces its dynamic and
static power consumption, but also requires the clock frequency to decrease. This makes
programs run slower, but consume less power. It is well known that memory-intensive
programs are affected less by DVFS than compute-intensive programs. This is interest-
ing for SMT scheduling: from a job symbiosis point of view it is beneficial to coschedule
memory-intensive jobs, as discussed in the previous sections. One might thus expect
some synergy between job symbiosis scheduling and DVFS for optimizing energy ef-
ficiency: by coscheduling memory-intensive jobs while lowering voltage/frequency, one
could potentially improve both throughput and reduce power consumption; similarly,
when coscheduling compute-intensive jobs, increasing voltage/frequency may compen-
sate for the performance loss. This intuitive observation motivated us to study the
synergy between job symbiosis scheduling and DVFS.

To do so, we again consider four jobs with a normalized LLC miss component of 0.2,
0.4, 0.6, and 0.8, for jobs 0, 1, 2, and 3, respectively. Figure 13 quantifies throughput for
the six different 2-context combinations out of these 4 jobs, as a function of processor
frequency. We consider five frequencies: the base frequency, and 80%, 60%, 40%, and
20% of the base frequency. STP is defined here as the total progress made relative to
single-threaded progress at the base frequency, and reflects the impact of both SMT
and DVFS.
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Several interesting observations can be made from this figure. First, coscheduling
memory-intensive workloads yields the highest SMT throughput across the entire fre-
quency range. Coscheduling compute-intensive workloads yields the lowest through-
put, with the mixed coschedules in between. Second, when going from the base fre-
quency to 80% of the base frequency, the throughput decrease is less severe for a
memory-intensive coschedule than for a compute-intensive schedule (−0.17 versus
−0.23, respectively). This is because memory-intensive jobs are less susceptible to
frequency scaling than non-memory-intensive jobs. As a result, the performance differ-
ence between the best and worst performing coschedule grows with decreasing clock
frequency and voltage. The third observation is that at lower frequencies, for instance,
when going from 40% to 20% of the base frequency, the decrease in throughput is now
larger for the memory-intensive coschedule than for the compute-intensive coschedule
(−0.43 versus −0.27). This can be explained by the fact that as frequency decreases,
the memory component remains constant, while the computation component increases.
This means that memory-intensive jobs become more and more compute-intensive,
as the memory component decreases, relatively speaking. This causes memory- and
compute-intensive jobs to “converge” at very low clock frequencies, that is, all the jobs
become compute-intensive and most of their time is spent doing computation work.

Another interesting observation is that at 60% of the base frequency, the STP of
the best performing coschedule (the one consisting of the two most memory-intensive
jobs) is higher than that of the worst performing coschedule at the base frequency.
This may open perspectives, as we can now take advantage of the fact that memory-
intensive jobs are affected less by both SMT coscheduling and DVFS: as mentioned
before, one could coschedule memory-intensive jobs and run them at a low frequency,
and coschedule compute-intensive jobs and run them at a high frequency. Like that,
we can possibly obtain large energy savings with a small impact on performance only.
This would suggest that SMT job scheduling and DVFS should cooperate.

To better understand the synergestic benefits of SMT job scheduling and DVFS, we
again use the same 4-job, 2-context example as before, and we consider two policies. In
the first, so-called combined policy, SMT scheduling and DVFS are done independently,
that is, SMT scheduling is done using the model as previously presented in this article,
and frequency is set independently of the selected schedule. The DVFS policy used is
to execute one fraction of the time at one frequency, and the other fraction at another
neighboring frequency (i.e., one frequency step higher or lower). This policy yields
optimal DVFS settings if the program behavior is homogeneous [Ishihara and Yasuura
1998]. The second policy is a cooperative policy that cooperatively explores the optimum
SMT coschedule and the optimum clock frequency. More specifically, it selects the
coschedule and frequency that optimizes ANTT for every timeslice. A cooperative policy
needs to search a larger solution space which obviously incurs a higher overhead; this
experiment is a limit study and does not take into account the overhead.

The results of this experiment are shown in Figure 14. Power consumption is plotted
against ANTT. The gray curve connects results for the combined policy. The leftmost
point reflects the case of executing all coschedules at the base frequency. For the second
point to the left, the base frequency is assumed half of the time and 80% of the base
frequency is assumed for the other half of the time, effectively running at 90% of the
base frequency. The next point is generated by executing all coschedules at 80% of
the base frequency, and at the fourth point the processor is clocked half of the time
at 80% of the base frequency and half of the time at 60%, etc. The last gray point
represents all coschedules executed at 40% of the base frequency. The black dots are
generated using the cooperative policy. For the first point a maximum 10% performance
decrease was allowed while minimizing power consumption, for the second point the
maximum performance decrease is 20%, 30% for the third point, and 40% and 50%
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for the remaining points. Surprisingly, the cooperative policy does not outperform the
combined policy. In other words, SMT scheduling and DVFS are independent problems
that, when solved separately, yield a global optimum when combined. Interestingly,
however, when looking at Figure 15, which shows the selected schedules for the two
policies at a 30% performance degradation, we observe that the selected coschedules
are very different for the two policies. The cooperative policy most frequenctly selects
the extreme coschedules, whereas the combined policy barely selects these coschedules.
In spite of the drastic shift in selected coschedules, there is no significant improvement
in energy efficiency. We can conclude that SMT scheduling and DVFS can be performed
completely independently. For completeness, we also performed experiments using
global scheduling and the combined SMT/DVFS model, but again, no considerable
gains were obtained.

10. RELATED WORK
10.1. Symbiotic Job Scheduling
Snavely and Carter [2000] were the first to coin the term symbiotic job scheduling
and developed the SOS symbiotic job scheduling algorithm for the Tera MTA (Multi-
Threaded Architecture). Snavely and Tullsen [2000] extended the SOS approach to
SMT processors, and Snavely et al. [2002] studied the interplay between symbiotic
job scheduling and system-level priorities. We extensively argued the improvements
of probabilistic job symbiosis modeling and model-driven job scheduling over SOS
throughout the article.

Several other proposals have been made for symbiotic job scheduling. Settle et al.
[2004] drive symbiotic job scheduling by monitoring activity in the memory subsystem.
El-Moursy et al. [2006] monitor contention in the register file, functional units and L1
caches. Parekh et al. [2000] monitor cache miss rates and IPC. Bulpin and Pratt [2005]
build an empirical model that predicts single-threaded progress based on hardware
performance counter data. The key difference between these prior approaches and this
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article is that these prior approaches use heuristics, focus on a single source of resource
contention, and/or require a sampling phase to gauge symbiosis. Probabilistic symbiosis
modeling on the other hand does not rely on heuristics and enables predicting a priori
which coschedules will result in positive symbiosis.

Other papers study job coscheduling in a different setting. Tam et al. [2007] cosched-
ule threads from a multithreaded workload on the same chip in a multiprocessor en-
vironment based on shared memory access patterns. Jain et al. [2002] study symbiotic
scheduling of soft real-time applications on SMT processors. Fedorova et al. [2006] find
that non-work-conserving scheduling, that is, running fewer threads than there are
hardware threads, can improve system performance; they use an analytical model to
find cases where a non-work-conserving policy is beneficial. Probabilistic job symbiosis
modeling could be helpful in predicting the impact of a non-work-conserving sched-
ule on overall SMT performance; this would be a fairly straightforward extension to
model-driven job scheduling.

VMware’s ESX Server 2.1 hypervisor offers SMT support [VMware 2004]. It assumes
a simple accounting mechanism: it assumes that jobs coexecuting on a 2-thread SMT
processor make half as much progress as when run in isolation. VMware’s ESX Server
leverages this accounting mechanism to give CPU time to virtual machines propor-
tional to their share allocation, capped by minimum and maximum values. To achieve
proportional progress, ESX Server dynamically decides whether or not to run virtual
machines in isolation or coscheduled with other virtual machines. To the best of our
knowledge, ESX Server does not exploit job (i.e., virtual machine) symbiosis. In addi-
tion, our cycle accounting scheme (as described in Section 4) makes a more accurate
estimate of single-threaded progress during SMT execution.

10.2. Multithreaded Processors
This article focused on probabilistic modeling for symbiotic job scheduling in the con-
text of a simultaneous multithreading (SMT) processor. Our choice for SMT processors
is motivated by its wider commercial adoption and the larger performance entangle-
ment between coscheduled jobs compared to other multithreading paradigms such as
fine-grained multithreading (e.g., Tera MTA, HEP) and coarse-grained multithread-
ing (e.g., IBM RS64 IV, Intel Montecito). By consequence, the modeling challenge for
job symbiosis is the largest for SMT processors. We strongly believe that the general
idea of probabilistic job symbiosis modeling is (easily) extendable to other flavors of
multithreading.

10.3. Improving Shared Resource Utilization
A large body of work has been done on improving shared resource utilization for both
SMT and multicore processors. Tullsen et al. [1996] realized the importance of resource
partitioning and fetch policies on SMT performance, and proposed the ICOUNT mecha-
nism as an effective solution. Follow-on research has proposed further refinements and
improvements, such as flush [Tullsen and Brown 2001], MLP-aware flush [Eyerman
and Eeckhout 2007], DCRA [Cazorla et al. 2004], hill-climbing [Choi and Yeung 2006],
runahead threads [Ramirez et al. 2008], etc.

Chandra et al. [2005] propose an analytical model that predicts the number of ad-
ditional misses for each thread due to cache sharing. The input to the model is the
per-thread L2 stack distance distribution. This analytical model can be used for ex-
ample by system software to improve cache symbiosis in a chip multiprocessor with
shared caches. Qureshi and Patt [2006] aim at creating better cache symbiosis through
a hardware mechanism that provides more cache resources to threads that benefit
more performance-wise from the increased cache resources.
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10.4. QoS Management in Multithreaded Processors
A number of studies have been done on improving quality-of-service (QoS) in multi-
threaded processors. Cazorla et al. [2004b, 2006] target QoS in SMT processors through
resource allocation. They propose a system that samples single-threaded IPC, and dy-
namically adjusts the resources to achieve a pre-set percentage of single-threaded
IPC. Cota-Robles [2003] describes an SMT processor architecture that combines OS
priorities with thread efficiency heuristics (outstanding instruction counts, number of
outstanding branches, number of data cache misses) to provide a dynamic priority for
each thread scheduled on the SMT processor. The IBM POWER5 [Boneti et al. 2008;
Gibbs et al. 2005] implements a software-controlled priority scheme that controls the
per-thread dispatch rate. Software-controlled priorities are independent of the oper-
ating system’s concept of thread priority and are used for temporarily increasing the
priority of a process holding a critical spinlock, or for temporarily decreasing the prior-
ity of a process spinning for a lock, etc. Gabor et al. [2007] propose fairness enforcement
on coarse-grained switch-on-event (SOE) multithreaded processors.

11. CONCLUSION
Job coscheduling by system software has a significant impact on overall SMT processor
performance. Symbiotic job scheduling, which seeks to exploit the positive symbiosis
between coexecuting jobs, can lead to substantially higher system throughput and
lower job turnaround time. This article addressed the fundamental problem in sym-
biotic job scheduling and proposed probabilistic job symbiosis modeling for estimating
the symbiosis between jobs in a coschedule without having to execute the coschedule.
The model itself is simple enough to be implemented in system software. Probabilistic
job symbiosis enhances previously proposed symbiotic job scheduling algorithms by:
(i) eliminating the sampling phase which requires coschedule execution to evaluate
symbiosis, (ii) continuously readjusting the job coschedule, (iii) evaluating a large
number of possible coschedules at very low overhead, (iv) tracking and predicting
single-threaded progress during multithreaded execution instead of having to rely on
heuristics, (v) optimizing SMT performance targets of interest (e.g., STP, or ANTT),
(vi) preserving system software level priorities/shares. These innovations over prior
work make symbiotic job scheduling both practical and more effective. Our experimen-
tal results report substantial improvements over prior work. In a realistic experiment
where jobs come and go, we report an average 16% (and up to 35%) and 19% (and up to
45%) reduction in job turnaround time for a two-thread and four-thread SMT processor,
respectively, compared to the previously proposed SOS algorithm. We also demonstrate
that global scheduling over multiple timeslices does not yield better performance than
local scheduling which schedules the next timeslice only. Finally, we found that SMT
job scheduling and DVFS are independent of each other, that is, a combined scheme
that optimizes job scheduling versus energy efficiency through DVFS independently
performs equally well as a cooperative scheme that optimizes job scheduling and energy
efficiency through DVFS simultaneously.

As part of our future work, we plan to extend probabilistic symbiosis modeling and
model-driven job scheduling to other forms of multithreading (fine-grained and coarse-
grained multithreading), as well as multicore and many-core processors. In addition,
we plan to study symbiotic job scheduling for multi/many-core processors in which
each core is a multithreaded processor: the key question then is to decide which jobs to
coschedule on a core and which jobs to schedule on different cores for optimum perfor-
mance. We also plan to study job symbiosis job scheduling issues when coscheduling
multiprogram and parallel workloads.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 2, Article 7, Publication date: June 2012.



7:26 S. Eyerman and L. Eeckhout

ACKNOWLEDGMENTS

We thank the reviewers for their constructive and insightful feedback.

REFERENCES
BONETI, C., CAZORLA, F. J., GIOIOSA, R., BUYUKTOSUNOGLU, A., CHER, C.-Y., AND VALERO, M. 2008. Software-

controlled priority characterization of POWER5 processor. In Proceedings of the International Sympo-
sium on Computer Architecture. 415–426.

BULPIN, J. R. AND PRATT, I. 2005. Hyper-threading aware process scheduling heuristics. In Proceedings of the
USENIX Annual Technical Conference. 103–106.

CAZORLA, F. J., KNIJNENBURG, P. M. W., SAKELLARIOU, R., FERNÁNDEZ, E., RAMIREZ, A., AND VALERO, M. 2006.
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