
On-Line Predictive Thermal Management under Peak

Temperature Constraints for Practical Multi-core

Platforms

Guanglei Liu1, Ming Fan1, Gang Quan1, Meikang Qiu2

1Department of ECE, Florida International University, Miami, FL 33174

2Department of ECE, University of Kentucky, Lexington, KY 40506

gliu002@fiu.edu, mfan001@fiu.edu, gang.quan@fiu.edu, mqiu@engr.uky.edu

*corresponding author: Guanglei Liu

Address:

Florida International University

Department of Electrical and Computer Engineering

10555 West Flagler Street, EC 3155

Miami, FL 33174, USA

Office : (305) 348 3715

Fax : (305) 348 3707

Email : gliu002@fiu.edu

Date of Receiving: to be completed by the Editor

Date of Acceptance: to be completed by the Editor

On-Line Predictive Thermal Management under Peak

Temperature Constraints for Practical Multi-core

Platforms

Guanglei Liu, Ming Fan, Gang Quan, Meikang Qiu

Abstract - The power and thermal issues have become one of the major design challenges

for the development of modern computing systems. Developing an effective Dynamic ther-

mal management algorithm for the practical multi-core computing system to deliver maximal

throughput without encountering temperature emergencies becomes highly demanded. In this

paper, we first identify the limitation of the existing theoretical work, and we introduce an

enhanced reactive thermal management algorithm based on the dynamic voltage and fre-

quency scaling (DVFS) technique. Then, we develop a new temperature prediction technique

and migration scheme that take the local temperature of a core as well as the impacts from

neighboring cores into consideration and we validate our algorithm on an Intel desktop. The

experimental results show that our approach can significantly improve the throughput while

satisfying the temperature constraint compared to the conventional approach.

Keywords - Dynamic thermal management, thermal-aware scheduling, throughput maxi-

mization, temperature prediction, thermal-aware management.

1 INTRODUCTION

Due to the increasing demand for the higher computation capability, the size of transistors
is continuously shrinking, and more and more transistors are integrated into a single chip
to build up more complicated circuit architectures, i.e. chip multiprocessors (CMPs). As a
result, the power density of the IC chip exponentially increases, and also generates a large
amount of heat. The rapidly growing heat generation greatly increases the packaging/cooling
costs, and adversely affects the performance and reliability of a computing system. Besides,
the increased heat generation may reduce processor life span, even force the computing sys-
tem to completely shut down to prevent permanent physical damage to the processor [25].
Therefore, an effective thermal management solution is highly desirable, not only to bal-
ance the chip’s temperature but also to enable the computing system to operate at a high
computing performance without exceeding its temperature limit.

Dynamic thermal management (DTM) technique, as one of the most effective approaches
to address the power and thermal design issue, has been researched extensively in recent
years. Some of the researches are focusing on the thermal aware performance maximization
problem [5, 31, 32, 18, 21]. To solve this problem, the DVFS technique has been widely
used to develop the thermal-aware DTM algorithms [16, 15, 24, 11, 20]. It can control the
temperature by dynamically adjusting the processor speed based on the workload. Thus,
some researches have been done based on this characteristic. Zhang and Chatha [31] pre-
sented a pseudo-polynomial time speed assigning algorithm based on dynamic programming
to minimize the total execution latency. They further developed several heuristics [32] to
maximize the throughput of a real-time system by sequencing the execution of a task set
consisting of tasks with different power and thermal characteristics for processors with and
without DVFS capabilities. Chantem et al. [5] proposed one methodology to run real-time
tasks by frequently switching between the two speeds which are neighboring to the con-
stant speed whose stable temperature is the given peak temperature limit. However, DVFS
techniques sacrifice the performance to cool down the temperature. Task migration is an
alternative technique to manage the temperature by balancing the workload among CPU
cores without slowing down the processing speed [30, 15, 12, 29, 9, 23, 19]. For example,
Fabrizio et al. [22] presented a lightweight thermal balancing policy, which could minimize
the on-chip temperature gradients by using the task migration technique. Coskun [10] et
al. proposed a thermal aware scheduling algorithm, which migrates tasks according to the
calculated priority. However, the above theoretical works are based on simplified models and
idealized assumptions, such as the accurate temperatures of processors are readily available,
which is not necessarily true on a practical platform.

When DTM techniques are applied for real applications, they must deal with important
practical details in the physical environment. To this end, many researches have been carried
out based on practical hardware platforms [3, 6, 4, 21, 28, 14]. For example, Yefu [27] et al.
proposed a chip-level power management algorithm by using control theory and implemented
their algorithm on an Intel Xeon desktop. Ahn [3] et al. developed and validated a heuristic
to reduce the power consumption and control the temperature on the Intel Centrino Duo
and ARM-11 MPCore platforms. The above algorithms rely on the thermal sensor reading
to trigger their DTM actions. Since the thermal sensor lacks accuracy due to their place-
ment location and long latency, the effectiveness of the DTM techniques can be severely

degraded. To address this issue, performance counters have been used as a soft sensor to
develop more accurate thermal modules [7, 17]. Even though the thermal sensor can accu-
rately detect a thermal emergency when temperature reaches the threshold, it still takes 100
to 200 millisecond for the DTM manager to decrease the frequency or migrate the hot task
to a different processor [16]. As a result, the temperature would exceed the threshold before
the algorithm takes effect. To this end, predicting the potential thermal emergency before
thermal failure occurring is a very important feature for the DTM algorithm [12]. In re-
sponse to this, Inchoon [30] et al. proposed a temperature prediction algorithm, which takes
the application’s thermal behavior into consideration. Khan [15] et al. developed an alter-
native thermal management schedule which combined temperature history based prediction
and task migration techniques to efficiently control the CPU temperature under threshold.
However, they assumed that at each sampling point, the temperature will increase at the
same rate until it reaches the threshold, which is not true for the practical scenario.

In this paper, we first identify several limitations of existing theoretical algorithms on
the practical desktop platform and develop a reactive thermal aware DVFS algorithm to
evaluate the efficiency of dynamic voltage and frequency scaling technique on the practical
computing system. Then, we analyze the drawbacks of the reactive DTM approach and
propose an on-line predictive thermal management algorithm to maximize the throughput
on multi-core systems while satisfying the peak temperature constraint. Compared with the
previous work, we make three major contributions in this work:

• We develop a temperature prediction method, which can predict the temperature of a
core more accurately by taking its temperature as well as the neighboring impacts into
consideration.

• We develop a new task migration strategy. While it has been a common approach to
migrate tasks from the hottest to the coolest core, our approach chooses the destination
core differently. We choose the destination core not only by its current temperature,
but also by the temperature trends as well as the neighboring impacts as well.

• We validate our algorithm on a practical hardware test bed, i.e. a desktop workstation
with an Intel i5 750 quad core microprocessor. The experimental results show that our
proposed algorithm can significantly outperform the previous approachs.

The rest of the paper is organized as follows. In Section 2, we first discuss the limitation
of the theoretical work, and then use an example to motivate our research. To overcome the
hardware limitations, we introduce an enhanced reactive approach in Section 3. We present
the neighbor-aware temperature prediction technique in Section 4, and propose our predictive
thermal-aware algorithm in Section 5. Experimental results are discussed in Section 6, and
the conclusion is given in Section 7.

2 PRELIMINARY

In this section, we first introduce the related theoretical work on throughput maximization
and their limitations. Then we give motivational examples to introduce the design constraints
to develop an effective dynamic thermal management algorithm.

2.1 Motivational example

As discussed in Section 1, many researches have been published to address the thermal
aware performance maximization problem [5, 31, 32]. However, most of these approaches
require detailed knowledge of processes running on the platform, such as the exact numbers
of processes and their execution times, which is not always available on a general computing
platform such as the desktop. Some other information such as the thermal resistance and
the thermal capacitance, which are essential to build the thermal model for the processor,
are also not immediately available.

To develop a general thermal aware scheduling algorithm for the desktop computing
platform, the less information is required regarding the processes and platform, the more
effective can the algorithm be. In this regard, the reactive two speed scheduling approach,
proposed by Wang et al [26], seems to be a good choice. According to this algorithm, the
processor runs at the maximum speed before it reaches the temperature limit and then
runs at a speed, so called the equilibrium speed, to maintain this temperature. It has been
proved [8], theoretically, this is the optimal approach to maximize the workload under a peak
temperature constraint.

However, there are several drawbacks in this approach. First, since most processors
support only discrete levels of working frequencies. The ideal equilibrium speed may not
always be available for a given peak temperature constraint. Second, the power consumption
of the processor varies with not only the processor speeds, but also other factors such as the
types of processes, operating temperature, etc. In fact, even a single processor running a
single process may have different power consumptions at different times [16]. Therefore, the
the equilibrium speed is not unique and constant at all, and it is simply not possible to simply
set a processor to a constant speed once and for all to maintain a constant temperature.

Dealing with these problems, another approach [25], as shown in Figure 1, seems to be
more flexible. This approach assumes no a priori knowledge of the applications running on
the computing system at all. It monitors the chip temperature regularly and adjusts the
processor speed dynamically. At each temperature sampling point, if the current temperature
does not reach the threshold, the processor speed is elevated to one level higher. Otherwise,
if the current temperature equals or exceeds the temperature limit, the processor speed is
changed to one level lower to cool down the temperature.

At first sight, it seems that this approach solves all the problems mentioned above.
It naturally assumes the processor has a discrete working frequency levels. It does not
assume any a priori knowledge of the programs running on the processor either. However,
there are still a few problems that make this approach less effective in a practical desktop
environment. First, this approach assumes that the instant temperature information is
available immediately and accurately. Second, updating the frequency level one at a time
might not be quick enough to respond to temperature change and meet the temperature
constraint.

We use a simple example to explain these two problems. Consider Figure 2. Recall that it
takes about 1 second for the thermal sensor in our desktop to reflect any temperature changes.
It is possible that even though the system temperature has already reached or surpassed the
temperature threshold at t1, the sensor reading may still be lower than temperature limit.
The algorithm continues to increase the speed level of the processor and thus violates the

peak temperature constraint. Moreover, even though the algorithm can sense the accurate
temperature at t1 and find that it has already reached the temperature threshold, since it
adjusts frequency level one at a time, it may not be able to reduce the temperature fast
enough. The temperature continues to rise and violates the peak temperature constraint.
To address these problems, in what follows, we develop a reactive and a proactive DTM
algorithm respectively.

2.2 Problem description

The system considered in this paper consists of N tasks, denoted as Γ = {τ1, τ2, ..., τN} and
M identical processors, denoted as P = {P1, P2, ..., PM}. The problem discussed in this
paper is how to manipulate the scheduler such that the throughput of the system can be
maximized under peak temperature constraint. The formal description of the problem is
represented below.

Given a task set Γ and a multi-core system P , maximize the throughput of the system
under the peak temperature constraint, denoted as T THRESHOLD.

For processor Pi, we use a tuple (Ti, ti) to represent the temperature of Pi at a certain
time point ti. To be more specific, we use T curri and T previ to denote Pi’s current temperature
and previous temperature respectively, while tcurri and tprevi are the corresponding times.

In order to address the design constraints described in the previous subsection, we first
introduce an improved reactive DTM heuristic. We implement a non-constant sampling
period based on the practical hardware platform characteristic to reduce the response latency.
Also, by defining the temperature buffer zone and building up an offline temperature speed
lookup table, the algorithm quickly adjust to a proper working frequency level to improve
the throughput.

After we discuses the limitation of the reactive approach, we propose our predictive ther-
mal management algorithm. We first introduce a new temperature prediction method, which
predicts the future temperature of a processor core by considering both local temperature
history and neighbors’ effect. Once a potential risk is detected under our temperature pre-
diction model, i.e. the predicted temperature is over the threshold, we dynamically manage
the executions of corresponding tasks on that core by either migration or DVFS. By con-
sidering the neighbors’s temperature and their temperature changing trends, we can select
a processor among all available candidates to improve the total system performance from a
global and long-term perspective.

3 ENHANCED REACTIVE DYNAMIC THERMAL MANAGEMENT
ALGORITHM

In this section, we give a detailed introduction about our Enhanced Reactive Dynamic Ther-
mal Management (ERDTM) algorithm, which can maximize the system throughput while
satisfy the temperature constraint.

3.1 Identify sampling period

Being able to monitor the temperature change timely and accurately so that the thermal
management algorithm can react is one of the most critical issues for the reactive approach.
Thus, defining the appropriate sampling period becomes critical. One intuitive idea to define

the sampling period is to set the period as small as possible in order to track the temperature
change quickly. However, the redundant sensor reading can cause accumulated overhead and
degrade the overall system performance. Meanwhile, it takes extra power to read thermal
sensor and increase the chip temperature. On the other hand, setting the sampling period
too long cannot catch the temperature variations timely.

Given the limitations of the temperature sensor in our platform, we set the sampling
period equal to the minimal response time of the thermal sensor for temperature change. To
identify the minimal temperature response time, we ran different benchmarks at different
speeds with different sampling periods. The minimal interval within which the temperature
sensor has the same reading is set to be the sampling period. From our empirical work, we
found the minimal temperature response time is 0.98 seconds. However, in the worst-case
scenario, it cannot always take 0.98 seconds to find out that the thermal sensor readings
has changed. For example, the thermal reading changes exactly after one sampling point.
To further improve the performance, we use non-constant sampling periods. It uses two
sampling speeds, regular sampling speed, denoted as Pregu and small sampling speed, denoted
as Psmal, where Pregu >> Psmal. When temperature changes are detected at the sampling
point, a new processor speed will be set accordingly and the sampling period remains as
Pregu. If the temperature sensor remains the same value, (i.e. T curr = T prev), the algorithm
changes the sampling period to Psmal and processor speed remain the same. In this work,
Pregu = 0.98 seconds and Psmal = 0.1 seconds accordingly. In comparison with the algorithm
using a constant sampling period, this approach catches temperature change and responds
to it more timely.

3.2 Buffer zone and lookup table

Even though the non-constant sampling period can effectively detect a temperature change,
it still takes time for the conventional reactive approach to adjust the processor speed one
level at a time. Thus, when the temperature is really close to its limit, the processor speed is
not decreased fast enough to cool down the temperature in time. On the other hand, when
the temperature is much lower than the temperature threshold, the processor speed is not
increased fast enough to maximize the throughput.

To solve these problems, we first introduce a concept called the temperature buffer zone
as shown in Figure 3. Given a temperature threshold T THRESHOLD, the temperature buffer
zone is defined as the interval of [T SAFE, T THRESHOLD], where T SAFE is determined by the
following equation

T SAFE = T THRESHOLD −4T, (1)

where 4T is the maximum possible temperature increment within one sampling period.
4T can be determined empirically. Using SPEC2000 benchmark, we found that 4T = 4oC.
When the temperature is lower than T SAFE, we say that the temperature is in the safe
region.

When the processor temperature is within the safe region, we can safely use the highest
possible speed to maximize the throughput before temperature enters into the buffer zone.
Thus, the problem becomes how to define the safe speed to run the task and ensure the
temperature does not exceed the threshold after entering the buffer zone.

To solve this problem, we implement an offline thermal profiling analysis by collecting

their temperature information associate with different execution speed. Thus, given a task
set Γ = {τ1, τ2, ..., τN}, Tstable(τi, sj) denotes the stable temperature when running τi using
processor speed sj. Let Si be the speed such that

Si = max{sj such that Tstable(τi, sj). ≤ T THRESHOLD}. (2)

And the safe speed Ssafe is determined as follows.

Ssafe = min
τi∈T

Si. (3)

Our Enhanced Reactive Dynamic Thermal Management algorithm is depicted in Algo-
rithm 1. When a process is running, the processor uses the highest possible speed to improve
its throughput if the temperature is located in the safe region (line 5-6). Otherwise, it adopts
the safe speed to make sure the temperature constraint is not violated (line 7-9). If the run-
ning task sets are known a priori, we can further improve the performance of our algorithm
by building up a lookup table. The lookup table lists the tasks and their specific safe speeds
under different temperature constraints, as those defined in equation (2). In that case, we
can use the corresponding safe speed depending on the current running process to further
maximize its throughput.

Algorithm 1 Enhanced Reactive Dynamic Thermal Management

1: while Process is running do
2: if T curr = T prev; then
3: Wait Psmal = 0.1 seconds;
4: else
5: if T curr ≤ T SAFE then
6: Set processor speed to the maximum speed;
7: else
8: Set processor speed to Ssafe.
9: end if

10: Wait Pregu = 0.98 seconds;
11: end if
12: end while

4 NEIGHBOR-AWARE TEMPERATURE PREDICTION

As we discussed in Section 3, the reactive approach might not precisely react with the tem-
perature change. Thus, an effective temperature prediction heuristic, which can accurately
detect the temperature emergency, is highly demanded. In this section, we first use a mo-
tivation example to illustrate the importance of considering heat transfer from neighboring
processor when developing temperature prediction algorithm, then we proposed two different
neighbor-aware temperature prediction techniques.

4.1 Motivational example

The processor heat dissipation comes mainly from the power consumed by the processor.
However, there is another important heat source that comes from the neighboring cores
which cannot be ignored. Since the number of transistors and cores that are integrated into
the CMPs chip is increasing, the power density rapidly increases. Each core also receives
heat transferred from its surrounding neighbor. This heat can also heat up a core, even
though it is not running at the highest working frequency.

To illustrate this scenario, we executed one set of experiments to study how different
neighbor environments can affect the processor temperature. First, we selected one core
of our multi-core platform, for which its working frequency was set to the minimal speed
level without executing any benchmark. Then, the temperature traces of this idle core with
two different neighbor environments are collected. With the Hot neighbor environment, the
surrounding cores have been assigned with the highest working frequency and executing a hot
process to create a high temperature neighbor environment. On the other hand, with Cool
neighbor environment, all the neighbor cores have been assigned with low working frequency
running a cool task. The temperature information of the idle core with two different neighbor
environments is collected and plotted in Figure 4. The experimental result clearly shows that
even when the idle core does not execute any process, the heat transfer from the neighboring
cores can also heat up its temperature by as much as 18oC (i.e. 61oC at the stable state)
with the hot neighbor environment. In contrast, the idle core temperature only increased
5oC (i.e. 45oC at the stable state) with the cool neighbor environment.

4.2 Temperature prediction model

In this subsection, we introduce the temperature prediction model, which takes the heat
transfer from the neighboring processors into consideration. It can accurately predict the
future temperature of a core as well as its future trend. First, we introduce the following
definitions to represent the future local temperature increment of each processor individually.

Definition 4.1. Given processor Pi, the local increment factor of Pi, denoted as I ini , is
defined as

I ini = T curri − T previ . (4)

This local temperature increment will be used to predict the future temperature at the
next sampling point, as shown in Figure 3 (∆t is the sampling period). In this work, the
sampling period has been set to 1 second, since this is approximately how long it takes for
the thermal sensor to reflect a temperature change [2].

Besides its own power consumption, the temperature of a processor is also affected by
other processors on the same chip, especially its neighbors. In this paper, we define the
neighbor processors of a processor Pi, denoted as PNBi , as the cores which are adjacent to Pi.
When predicting the temperature of a processor, we consider only the heat transfer impacts
from its neighboring processors to simplify our algorithm. By considering the effect of
neighbor processors, we define the following two concepts to represent the neighbors’ thermal
effect for a given processor. The first concept, i.e. neighbor average factor, represents the
average temperature of all neighbors. The second concept, i.e. neighbor increment factor,
represents the temperature increment trend of all neighbors. Two concepts are formally
defined as follows.

Definition 4.2. Given any processor Pi, the neighbor average factor of Pi, denoted as A(Pi),
is defined as

A(Pi) =

∑
Pj∈PNB

i
T currj

|PNBi |
(5)

Note that |PNBi | returns the number of neighboring processors of Pi.

Definition 4.3. Given any processor Pi, the neighbor increment factor of Pi, denoted as
I(Pi), is defined as

I(Pi) =

∑
Pj∈PNB

i
(T currj − T prevj)

|PNBi |
(6)

According to Definition 4.3, I(Pi) represents the average temperature increment of Pi’s
neighboring processors. In other words, the neighbor increment factor describes the temper-
ature increment speed for each processor’s neighbors.

Consider processor Pi, the temperature increment caused by Pi’s neighbors can be cal-
culated as following

Inbi = γ1 · A(Pi) + γ2 · I(Pi), (7)

where γ1 and γ2 are the weights of A(Pi) and I(Pi), respectively, which can be obtained
off-line.

With the above definitions, we are now ready to introduce our temperature prediction
model. Let T predi denote the predicted temperature for Pi. We formulate T predi as a linear
function of its current temperature T curri , its local temperature increment rate I ini , and also
its neighbor effect factor Inbi , as shown below:

T predi = αi · T curri + βi · I ini + γi · Inbi , (8)

where αi, βi and γi are weight parameters for Pi.
In addition, to make our prediction model more accurate, we take different processor lo-

cation scenarios into consideration. Because each processor with different number of neigh-
boring cores has different neighbor effects as shown in Figure 5. Thus, the temperature
prediction for a task τi can be categorized into three cases: 1) τi runs on a corner processor;
2) τi runs on a boundary processor; 3) τi runs on a middle processor. Then we discuss the
neighbor effect for τi by using matrix.

Temperature prediction base T̂Bi is a 3× 1 vector:

T̂Bi = [T curri , I ini , I
nb
i]

T
.

Based on the different cases of processor position, i.e. corner, boundary and middle,
temperature prediction weights for different scenario can be expressed as following.

• weights for corner scenario:
wci = [αci , β

c
i , γ

c
i].

• weights for boundary scenario:

wbi = [αbi , β
b
i , γ

b
i].

• weights for middle scenario:
wmi = [αmi , β

m
i , γ

m
i].

Combine all three scenarios of τi together, we have

Wi 3×3 = [wci , w
b
i , w

m
i]

T
.

Next, we introduce two temperature prediction algorithms based on the above prediction
model.

4.3 Neighbor-different prediction

In this subsection, we introduce a neighbor-different temperature prediction (NDTP) algo-
rithm, which considers all the different scenarios of neighbor processor condition as discussed
in the previous subsection. We conduct the temperature prediction matrix, i.e. T̂i to rep-
resent the temperature prediction result for task τi.

T̂i 3×1 = [T ci , T
b
i , T

m
i]

T
,

where T ci , T bi and Tmi are the temperature prediction results for corner processor, boundary
processor and middle processor, respectively.

For each item of T̂i , i.e. T xi , x ∈ [c, b,m], the temperature can be calculated by

T xi = [αxi , β
x
i , γ

x
i]× [T curri , ∆T ini , ∆T nbi]

T
= wxi ×Bi, (9)

thus, we have T ciT bi
Tmi

 =

αci βci γci
αbi βbi γbi
αmi βmi γmi

×
T curri

∆T ini
∆T nbi

 (10)

or
T̂i = Wi ×Bi. (11)

Since we can get the weight matrix Wi off-line, the predicted temperature of τi can be
obtained on-line by determining host processor position of τi.

The detail flow of NDTP algorithm is presented in Algorithm 2. For any processor Pi,
we first get the current temperature from the sensor and previous temperature from history
record, and denote as T curri and T previ respectively, as shown in line 1 and line 2. Then, based
on the current and history temperatures, we estimate the local temperature increment for
the next sampling period, i.e. ∆t, under the same trend of nearest history (line 3). Moreover,
we take the environment of Pi into consideration by calculating the neighbors’ thermal effect
of Pi (line 4). The weight factors can be determined by identifying the processor’s location
(line 6). Then we predict the future temperature according to the three major factors (line
7).

4.4 Neighbor-normalized prediction

Instead of categorizing the processors into three categories and generating three different
groups of weight, we propose a neighbor-normalized temperature prediction (NNTP) algo-

Algorithm 2 Neighbor-Different Temperature Prediction

1: T curri := the current temperature of processor Pi;
2: T previ := the previous temperature of processor Pi;
3: calculate the local temperature increment of Pi after ∆t by

I ini =
T curr
i −T prev

i

tcurri −tprevi
·∆t;

4: calculate Pi’s neighbors effect Inbi based on equation (7)
5: x = determine the location of processor, corner, boundary or middle;
6: determine the weight of τi under mode x such that

wxi = [αxi β
x
i γ

x
i];

7: predict the future temperature of Pi by
T predi = wxi ·Bi

where Bi = [T curri I ini Inbi];

rithm to reduce the complexity for temperature prediction by applying the least-square esti-
mation [30] to derive one uniform and normal weight matrix for all three different neighbor
cases.

For any task τi, from equation (8), we know that the temperature prediction problem is
formulated by

T predi = αi · T curri + βi · I ini + γi · Inbi .

To map the above temperature prediction problem into a general least-square problem, we
construct a linear model for the output T pred by the following linear parameterized expression

T pred(t) = α · T curr(t) + β · I in(t) + γ · Inb(t),

where t = [t1, t2, t3] is the model’s input vector, T curr(t), I in(t) and Inb(t) are known func-
tions of t, and α, β and γ are unknown parameters to be estimated. Let T̂ represent
[T curr(t), I in(t), Inb(t)], and Ŵ represent [α, β, γ]. In our model, let t be time units, and
can be chosen from three different scenarios with respect of neighbor processor condition,
i.e. t ∈ [tc, tb, tm], where tc, tb, tm represent the scenarios for corner, boundary and middle
processor respectively.

To identify the unknown parameters, Ŵ , experiments usually have to obtain a training
data set (T predj (t);T currj (t), I inj (t), Inbj (t)), where j = 1, ..., n. Expressed in matrix notation,
the following equation can be obtained:

T̂ pred = T̂ × Ŵ ,

where T̂ is a 3× 3 matrix:

T̂ =

 T curr(tc) I in(tc) Inb(tc)
T curr(tb) I in(tb) Inb(tb)
T curr(tm) I in(tm) Inb(tm)

 (12)

Ŵ is a 3× 1 unknown weight parameter vector:

Ŵ = [α, β, γ]T , (13)

and T̂ pred is a 3× 1 output vector:

T̂ pred = [T c, T b, Tm]
T
. (14)

If (T̂ pred)T T̂ pred is nonsingular, the least square estimator can be derived as

Ŵ = (T̂ T T̂)
−1
T̂ T T̂ pred. (15)

Eventually, we predict the future temperature by applying equation (8), with the corre-
sponding task-based weight parameter obtained by equation (15).

Algorithm 3 Neighbor-Normalized Temperature Prediction

1: T curri := the current temperature of processor Pi;
2: T previ := the previous temperature of processor Pi;
3: calculate the local temperature increment of Pi after ∆t by

I ini =
T curr
i −T prev

i

tcurri −tprevi
·∆t;

4: calculate Pi’s neighbors effect Inbi based on equation (7)
5: get the weight parameter wi for current task, wxi = [αxi , β

x
i , γ

x
i];

6: predict the future temperature of Pi by
T predi = wi ·Bi

where Bi = [T currenti , I ini , I
nb
i];

The NNTP prediction algorithm could be described in the similar expression as algo-
rithm 2. After calculating the local temperature increment and the neighbor effect, the
weight parameters of the current task can be calculated by using the least-square estimation
method. The future temperature is predicted by applying equation (7).

5 PROACTIVE DTM ALGORITHM

With the temperature prediction technique, we introduce our complete proactive thermal
management algorithm in this section.

5.1 Candidate processor for migration

When the thermal emergency is detected by the temperature prediction technique, one so-
lution is migrating the task away from the hot processor to bring down the temperature.
To identify the appropriate destination, one common approach [13] is to migrate the task to
the processor with the lowest current temperature. However, selecting the coolest proces-
sor is not always the best decision. Due to the sudden neighboring processor temperature
change or the potential of the big temperature increasing rate by itself, the coolest core can
rapidly become a hotspot after the next sampling interval. Thus, to address this problem
in our approach, besides the current temperature of the candidate processor, we consider its

neighboring temperatures, as well as its temperature changing rate to make the migration
decision.

We first introduce a concept, heat index, to quantify how hot a candidate processor (i.e.
Pk) is.

Definition 5.1. Given processor Pk, the heat index of Pk, denoted as H(Pk), is defined as

H(Pk) =

∑
Pj∈PNB

k

⋃
{Pk} Tj

|PNBk

⋃
{Pk}|

. (16)

Intuitively, the smaller the heat index of a processor is, the better the candidate processor
it can be.

Besides the heat index of a processor, we also consider the temperature changing rates
of itself as well as its neighbors. We present the following definition, i.e. the heat index
increasing factor of a processor Pk, to capture this concept.

Definition 5.2. Given processor Pk, the heat index increasing factor of Pk, denoted as
I(Pk), is defined as

I(Pk) =

∑
Pj∈PNB

k

⋃
{Pk}

T curr
j −T prev

j

tcurrj −tprevj

|PNBk

⋃
{Pk}|

. (17)

According to Definition 5.2, I(Pk) indicates how fast the temperature at Pk and its
neighbors can increase in average. Thus, the smaller the heat index increasing factor, the
better the candidate processor can be. From equation (16) and (17), we choose the migration
candidate as the one that minimizes

H(Pk) + I(Pk) ·∆t, (18)

where ∆t is the length of the sampling interval.
Note that task migration is not always effective in dealing with a thermal emergency,

especially when the workload is heavy. Given a processor Pk in thermal emergency, it does
not help much if the selected target processor (e.g. Pk) for migration has a temperature very
close to the peak temperature limit, even if theH(Pk)+I(Pk)·∆t is minimum among all other
processors. Besides, too many unnecessary task migrations may cause redundant context
switch overhead, which could degrade throughput performance. To avoid this scenario, in
our approach, the tasks on processor Pk are only allowed to migrate to processor Pk if

H(Pk) + I(Pk) ·∆t ≤ T THRESHOLD, (19)

where T THRESHOLD is the given temperature constraint. Otherwise, we can adopt an al-
ternative solution to cool down the processor. Such as selecting a safe working speed for
the processor Pk by using the same offline thermal profiling analysis approach as presented
before.

5.2 Thermal management algorithm

In this subsection, we introduce our proposed thermal management algorithm, the Neighbor-
Aware Dynamic Thermal Management (NADTM) algorithm, to maximize the throughput

of a multi-core system while keeping the temperature under a predefined peak temperature
limit.

Algorithm 4 Neighbor-Aware Dynamic Thermal Management (NADTM) Algorithm

1: T previ := T curri // the temperature at previous sampling point ;
2: T curri := the temperature of Pi from temperature sensor;
3: T predi := predicted temperature of Pi at next sampling point based on equation (8);
4: if T predi > T THRESHOLD then
5: Pk := the processor from P such that H(Pk) + I(Pk) ·∆t is minimum;
6: if H(Pk) + I(Pk) ·∆t ≤ T THRESHOLD then
7: migrate current running tasks on Pi to Pk;
8: else
9: degrade the performance of Pi by setting its speed to the pre-defined safe speed (i.e

SSAFEi);
10: end if
11: end if

The NADTM algorithm is presented in Algorithm 4. For processor Pi, we read the
temperature sensor to get its current temperature and then predict its temperature at the
next sampling point based on the method described in section 4. If the predicted temperature
exceeds the temperature constraint, we will search for a candidate processor that we can
migrate the tasks to. The candidate processor is selected based on method presented in
section 5.1. If such a processor is not available, we select a safe speed from the thermal
profile lookup table as discussed in Section 3.2.

We assume that the weights in equation (8) have been identified off-line. The safe speed
to run a processor is essentially the maximum processor speed for a processor such that its
peak temperature will not exceed the temperature constraint. We also assume that this
speed is obtained off line.

6 EXPERIMENTAL RESULTS

In this section, we first introduce the experiment setup. Then we validate the accuracy of our
neighbor-aware temperature prediction technique by comparing it with the enhanced reactive
approach. Finally, we analyze the performance improvement of our NADTM algorithms.

6.1 Experiment setup

An overview of the practical desktop environment is depicted in Figure 6. The target plat-
form is a Dell Precision T1500 desktop workstation with an Intel i5 750 quad core micro-
processor, which running Linux operating system with kernel version of 2.6.32. The Intel i5
microprocessor has integrated with Enhanced Intel SpeedStep Technology (EIST) [1] and sup-
ports 12 different working frequency levels ranging from 1.2GHz to 2.66GHz. We adopted
the CPUfreq Linux kernel subsystem to implement the DVFS features. Furthermore, we
implement task migration technique by changing the CPU affinity of the running process.

A Dell Precision T1500 desktop workstation has two cooling components: the heat sink
and cooling fans. The cooling effect of the heat sink depends on its physical characteristic,

which does not change when running an application. The fans, on the other hand, can
be adjusted dynamically between the maximum of 4500RPM (rotation per minute) and
minimum of 1500RPM. The fan speed is fixed at the minimal speed to ensure all experiments
were conducted under the same cooling condition.

A key aspect in our study is to capture the temperature information accurately and
timely. Dell Precision T1500 desktop has an external thermal sensor, located underneath
the CPU chip. A more accurate method is to read the temperature value directly from the
built-in digital thermal sensor integrated with each core. In our experiment, we used the
on-chip thermal sensors to measure the instant temperature of the processor. The resolution
of the on-chip thermal sensor is only 1oC; and the minimal time for a temperature sensor to
reflect a change in temperature is approximately 1 second [2]. To ease our implementation
and tests, we adopted a Linux hardware monitoring tool called Lm-sensors to capture the
temperature, to set the fan speed, to vary supply voltage and working frequency.

All experiments were carried out with the same ambient temperature. We selected six
benchmarks galgel, parser, ammp, crafty, lucas and equake from the well-known commercial
benchmark SPEC CPU2000, including both integer and floating point operation to obtain
credible and comparable experiment results. Those benchmarks have been grouped into
three categories, which are hot, warm, and cool, based on their thermal characteristics. To
build up the temperature lookup table, we conducted the off-line thermal profiling analysis
by running each benchmark at different CPU speeds. The stable temperatures with their
corresponding speed levels were stored in a lookup table. To ensure the schedule effectiveness,
each benchmark was tested with the hot benchmark applications running on its neighboring
processors. In the lookup table, the safe speed is the maximal speed corresponding to the
stable temperature lower than the given temperature constraint.

6.2 Prediction analysis

To evaluate the accuracy of our NADTM temperature prediction technique, we compared
our heuristic with the conventional temperature prediction approach, which uses the previous
and current temperature values of a processor to predict the next temperature value without
considering the heat transfer from the neighboring processors.

Figure 7 shows the temperature traces of running benchmark galgel, as well as the tem-
perature prediction results based on our proposed temperature prediction method and the
conventional one. From Figure 7, we can clearly see that the temperature prediction results
of using the NADTM approach are much closer to the actual temperature values than the
conventional approach. Also, the NADTM approach has a smaller maximum prediction er-
ror of 1oC comparing with 3oC by the conventional approach. The results shown in Figure 7
demonstrate that, by taking consideration of the heat transfer impacts from the neighboring
processors, the temperature prediction methods introduced in section 4 can achieve a higher
accuracy than the traditional method.

To further validate this conclusion, we ran different benchmark programs on our test
platform. First, temperature prediction results were collected and compared with the actual
temperature value. Then the temperature prediction accuracy, using two different prediction
methods, was plotted in Figure 8. (i.e., the prediction accuracy is the number of accurate
predictions over total number of predictions). In order to compare the two approaches, both

results are normalized to the approach without NADTM. From Figure 8 we can see that
our NADTM approach can improve the temperature prediction accuracy by 38% in average
compared to the conventional approach. Based on those experiment results, our neighboring
aware temperature prediction technique could effectively improve the prediction accuracy.

6.3 Performance analysis

Since our prediction technique can effectively detect the thermal emergency, we further
evaluate the performance of our NADTM algorithm in term of its capability to satisfy the
temperature constraints and to maximize system throughput by comparing with the con-
ventional reactive approach presented in Section 2.1, and the ERDTM algorithm presented
in Section 3.

Ideally, a thermal management schedule should push the computing system to the ther-
mal boundary while delivering the highest system performance. At the same time, the
temperature needs to be carefully maintained under the threshold. Thus, we implement
each of the dynamic thermal management algorithms to control the processor temperature
under a pre-defined threshold, (i.e. 55oC in this work).

After running the conventional reactive algorithm, we can see that the processor tem-
perature violates the given threshold frequently and can exceed the temperature threshold
as much as 4oC as shown in Figure 9. This is mainly due to two reasons: first, the thermal
sensor cannot keep up with the temperature changes timely; second, the algorithm either
decreases or increases the speed whenever the temperature change occur, It actually overre-
acts and misleads the speed setting of the processor before the temperature become stable.
However, the Figure 10 shows that after we implement the enhanced ERDTM algorithm,
the number of temperature violations have been significantly reduced, and the temperature
oscillation range has been reduce by 50%. This is because the non-constant sampling periods
can catch the temperature changes timely. On the other hand, the offline thermal profile
lookup table could quickly locate the proper speed level that can satisfy the temperature
constraint and dramatically reduce the redundant frequency-switching overhead. However,
there are still several spikes (i.e. temperature violations) over the ERDTM algorithm. This
is due to the drawback of the reactive approach itself. For example, it cannot take action un-
til the sensor detects the thermal emergency. In contrast, our proactive NADTM algorithm
can safely predict the thermal emergency as proved in the previous subsection and provide
enough time for the thermal management algorithm to react the temperature change. As
shown in Figure 11, our NADTM algorithm can completely eliminate the temperature viola-
tions and let the computing system deliver maximal throughput. We analyze the throughput
performance of our proposed NADTM algorithm in the next subsection.

6.4 Throughput analysis

To analyze the throughput of our NADTM algorithm, we only compare it to the proactive
approaches. This is due to two reasons: first, in the previous subsection, we already proved
that reactive approach cannot affectively management the processor under the temperature
constraint. And, preventing thermal violation is the first priority for thermal-aware schedul-
ing algorithm, thus any thermal violation is not acceptable for a thermal-aware algorithm.
Second, because of the close correlation between chip temperature and working speed, the

reactive approach has longer time to make the system temperature over the threshold, which
will result in a higher throughput. Thus, it would not be fair to compare our approach to
the reactive approach, which cannot satisfy the temperature constraint.

We use NP, CP to denote neighbor-aware prediction and conventional prediction, and NM,
CM for neighbor-aware migration and conventional migration, respectively. The conven-
tional temperature prediction approach refers to the one that predicts the future temperature
solely based on its own temperature history. And the conventional migration approach refers
to the approach that simply migrates the running tasks from the hottest core to the coolest
core. As a result, we have four combinations, i.e. CP CM NP CM, CP NM and NP NM.

We first compare the throughput of each approach when running a single task on our
hardware platform. In this experiment, six previously used benchmarks have been selected to
provide reliable experiment results. The execution times by using different approaches have
been recorded for comparison, those experiment results have been normalized and plotted
in Figure 12(a). The results show that, with the neighbor-aware prediction algorithm i.e.
NP CM can improve the throughput over CP CM as much as 1.7% in average. Since our
prediction technique is more accurate than the conventional approach as shown before, it
helps to make better scheduling decision and thus improves the performance. Another ob-
servation is that CP NM improves the throughput over CP CM as much as 3.6%. This
is because CP NM can find the appropriate migration candidate rather than simply lo-
cate the coolest core. By combining our proposed prediction and task migration algorithm
together, NP NM can achieve an average of 5.8% overall throughput improvement when
compared with CP CM.

To further test our thermal management algorithm, we assigned multiple tasks to the
multicore platform. By gradually increasing the number of tasks running on the multicore
processor, their corresponding execution times have been recorded for comparison. The ex-
ecution times have been normalized and plotted in Figure 12(b). As we can see from the
experiment results, the overall throughput decreases as the number of tasks increases. An-
other important observation is that when the number of tasks is larger than the number
of core (i.e. the number of task is more than 4), the throughput drops significantly. The
experiment results show that the throughput for the NP CM decreased by 0.9% while the
tasks increased from 1 to 6. The throughput for CP NM decreased by 3%. The through-
put decreased by 3.6% for the overall NADTM algorithm. All these results show that the
proposed algorithm works better with a lighter workload than a heavy workload.

7 CONCLUSION

In this paper, we first studied the limitations of the existing theoretical work. Then we devel-
oped a predictive thermal-aware algorithm for the practical multi-core platform to maximize
the system throughput under peak temperature constraint. Our proposed approach takes
the neighbor effect into consideration to make a more accurate temperature prediction and
to determine a better migration destination. The algorithm has been validated on an Intel
multi-core platform, and the experiment results illustrate that our NADTM algorithm can
significantly improve the system throughput while satisfying the temperature constraint.

8 ACKNOWLEDGEMENT

This work is supported in part by NSF under projects CNS-0969013, CNS-0917021, CNS-
1018108, and CNS-1249223.

REFERENCES

[1] Enhanced intel speedstep technology [available online]:
http://www.intel.com/support/processors/sb/cs-028855.htm.

[2] Lm-sensors linux hardware monitoring: http://www.lm-sensors.org.

[3] Y. Ahn, Y.-S. Hwang, and K.-S. Chung. Flexible framework for dynamic management
of multi-core systems. In SoC Design Conference (ISOCC), 2009 International, pages
237 –240, Busan, Korea, November 2009.

[4] P. Bailis, V. J. Reddi, S. Gandhi, D. Brooks, and M. Seltzer. Dimetrodon: processor-
level preventive thermal management via idle cycle injection. In Design Automation
Conference (DAC), 2011 48th ACM/EDAC/IEEE, pages 89 –94, San Diego, USA, June
2011.

[5] T. Chantem, X. S. Hu, and R. P. Dick. Online work maximization under a peak tem-
perature constraint. In Proceedings of the 14th ACM/IEEE International Symposium
on Low Power Electronics and Design, ISLPED ’09, pages 105–110, New York, USA,
2009. ACM.

[6] T. Chen, J. Huang, L. Xiang, and Q. Shi. Dynamic power management framework for
multi-core portable embedded system. In Proceedings of the 1st International Forum on
Next-generation Multicore/Manycore Technologies, IFMT ’08, pages 1:1–1:4, New York,
USA, 2008. ACM.

[7] S. W. Chung and K. Skadron. Using on-chip event counters for high-resolution, real-
time temperature measurement. In Thermal and Thermomechanical Phenomena in
Electronics Systems, ITHERM ’06. The Tenth Intersociety Conference on, pages 114
–120, June 2006.

[8] A. Cohen, F. Finkelstein, A. Mendelson, R. Ronen, and D. Rudoy. On estimating
optimal performance of CPU dynamic thermal management. IEEE Comput. Archit.
Lett., 2:6–, January 2003.

[9] A. K. Coskun, T. S. Rosing, and K. C. Gross. Proactive temperature management in
MPSoCs. In Proceeding of the 13th International Symposium on Low Power Electronics
and Design, ISLPED ’08, pages 165–170, New York, USA, 2008. ACM.

[10] A. K. Coskun, T. S. Rosing, and K. Whisnant. Temperature aware task scheduling in
MPSoCs. In Proceedings of the conference on Design, Automation and Test in Europe,
DATE ’07, pages 1659–1664, San Jose, USA, 2007. EDA Consortium.

[11] A. K. Coskun, R. Strong, D. M. Tullsen, and T. Simunic Rosing. Evaluating the impact
of job scheduling and power management on processor lifetime for chip multiprocessors.
In Proceedings of the eleventh International Joint Conference on Measurement and Mod-
eling of Computer Systems, SIGMETRICS ’09, pages 169–180, New York, USA, 2009.
ACM.

[12] Y. Ge, P. Malani, and Q. Qiu. Distributed task migration for thermal management in
many-core systems. In Design Automation Conference (DAC), 2010 47th ACM/IEEE,
pages 579 –584, Anaheim, USA, June 2010.

[13] M. Gomaa, M. D. Powell, and T. N. Vijaykumar. Heat-and-run: leveraging SMT and
CMP to manage power density through the operating system. SIGOPS Oper. Syst.
Rev., 38:260–270, October 2004.

[14] C. Isci and M. Martonosi. Runtime power monitoring in high-end processors: method-
ology and empirical data. In Proceedings of the 36th annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 36, page 93, Washington, USA, 2003. IEEE
Computer Society.

[15] O. Khan and S. Kundu. Hardware/software co-design architecture for thermal man-
agement of chip multiprocessors. In Design, Automation Test in Europe Conference
Exhibition, 2009. DATE ’09., pages 952 –957, Dresden, Germany, April 2009.

[16] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks. System level analysis of fast, per-core
DVFS using on-chip switching regulators. In High Performance Computer Architecture,
2008. HPCA 2008. IEEE 14th International Symposium on, pages 123 –134, Salt Lake
City, USA, February 2008.

[17] J. S. Lee, K. Skadron, and S. W. Chung. Predictive temperature-aware DVFS. Com-
puters, IEEE Transactions on, 59(1):127 –133, January 2010.

[18] J. Li, M. Qiu, J. Niu, T. Chen, and Y. Zhu. Real-time constrained task scheduling
in 3D chip multiprocessor to reduce peak temperature. In Proceedings of the 2010
IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, EUC
’10, pages 170–176, Washington, USA, 2010. IEEE Computer Society.

[19] G. Liu, M. Fan, and G. Quan. Neighbor-aware dynamic thermal management for multi-
core platform. In Design, Automation Test in Europe Conference Exhibition (DATE),
2012, pages 187 –192, Dresden, Germany, March 2012.

[20] G. Liu and G. Quan. Thermal aware scheduling on an Intel desktop computer. In
Southeastcon, 2011 Proceedings of IEEE, pages 79 –84, Nashville, USA, March 2011.

[21] G. Liu, G. Quan, and M. Qiu. Throughput maximization for Intel desktop platform
under the maximum temperature constraint. In Green Computing and Communications
(GreenCom), 2011 IEEE/ACM International Conference on, pages 9 –15, Chengdu,
China, August 2011.

[22] F. Mulas, D. Atienza, A. Acquaviva, S. Carta, L. Benini, and G. De Micheli. Ther-
mal balancing policy for multiprocessor stream computing platforms. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 28(12):1870 –1882,
December 2009.

[23] F. Mulas, M. Pittau, M. Buttu, S. Carta, A. Acquaviva, L. Benini, and D. Atienza.
Thermal balancing policy for streaming computing on multiprocessor architectures. In
Proceedings of the conference on Design, Automation and Test in Europe, DATE ’08,
pages 734–739, New York, USA, 2008. ACM.

[24] M. Qiu, L. T. Yang, Z. Shao, and E. H.-M. Sha. Dynamic and leakage energy mini-
mization with soft real-time loop scheduling and voltage assignment. IEEE Trans. Very
Large Scale Integr. Syst., 18(3):501–504, March 2010.

[25] E. Rohou and M. D. Smith. Dynamically managing processor temperature and power.
In In 2nd Workshop on Feedback-Directed Optimization, 1999.

[26] S. Wang and R. Bettati. Reactive speed control in temperature-constrained real-time
systems. In Real-Time Systems, 2006. 18th Euromicro Conference on, pages 10 pp.
–170, Dresden, Germany, 2006.

[27] Y. Wang, K. Ma, and X. Wang. Temperature-constrained power control for chip multi-
processors with online model estimation. In Proceedings of the 36th Annual International
Symposium on Computer Architecture, ISCA ’09, pages 314–324, New York, USA, 2009.
ACM.

[28] T. Wei, X. Chen, and P. Mishra. Designing a multi-core hard real-time test bed for
energy measurement experiments. In Proceedings of the 2009 ACM Symposium on
Applied Computing, SAC ’09, pages 1998–1999, New York, USA, 2009. ACM.

[29] I. Yeo and E. J. Kim. Temperature-aware scheduler based on thermal behavior grouping
in multicore systems. In Design, Automation Test in Europe Conference Exhibition,
2009. DATE ’09., pages 946 –951, Nice, France, April 2009.

[30] I. Yeo, C. C. Liu, and E. J. Kim. Predictive dynamic thermal management for multicore
systems. In Design Automation Conference, 2008. DAC 2008. 45th ACM/IEEE, pages
734 –739, Anaheim, USA, June 2008.

[31] S. Zhang and K. Chatha. Approximation algorithm for the temperature-aware schedul-
ing problem. In Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM International
Conference on, pages 281 –288, San Jose, USA, November 2007.

[32] S. Zhang and K. S. Chatha. Thermal aware task sequencing on embedded processors. In
Proceedings of the 47th Design Automation Conference, DAC ’10, pages 585–590, New
York, USA, 2010. ACM.

FIGURES AND TABLES

Set$frequency$

Read$current$$
temperature$

Compare$
with$

threshold$
Sampling$$
Period$

Execute$with$
Max$speed!

If$(Tcurr%<%TTHRESHOLD%)$
speed=speed+1%

!

If$(Tcurr%>%TTHRESHOLD%)$
speed=speed61%

!

Figure 1: The conventional dynamic approach for throughput maximization.

Temperature)

Time)

T
TURESHOLD

t1 t2 t3

Figure 2: An example of temperature trace.

Temperature)

Time)

T
TURESHOLD

T
SAFE

T
prev

T
curr T

pred

tprev tcurr tcurr + �t

Buffer Zone

Safe Region

Figure 3: Temperature history based prediction

0 50 100 150 200
25

30

35

40

45

50

55

60

65

70

Time

T
e
m

p
e
ra

tu
re

Cool neighbor

Hot neighbor

Figure 4: Temperature trace with Hot and Cool neighbor processors

Middle&

P11& P12& P13& P14&

P21& P22& P23& P24&

P31& P32& P33& P34&

P41& P42& P43& P44&

Corner&Boundary&

Figure 5: Different processor location scenarios

Intel&i5&quad&core& Thermal&Sensor&

SPEC&Benchmark&

DVFS&Technique&

Fan&Speed&Control&&

Compu>ng&system&hardware&monitoring&tool&

Figure 6: Structure of hardware platform

0 50 100 150 200
35

40

45

50

Time

T
e
m

p
e
ra

tu
re

Real temperature

NADTM

Without NADTM

Figure 7: NADTM compares to the conventional prediction method, which does not take
the neighbor effect into consideration

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

lucas" parser" ammp" cra2y" galgel" equake"

Ac
cu
ra
cy
'Im

pe
ro
ve
m
en

t''

NADTM' Without'NADTM'

Figure 8: Prediction accuracy comparison with different benchmarks

0 50 100 150 200 250 300

46

48

50

52

54

56

58

60

62

Sampling point

T
em

pe
ra

tu
re

Figure 9: Massive temperature violations occur after implement the conventional reactive
approach.

0 50 100 150 200 250 300

46

48

50

52

54

56

58

60

62

Sampling point

T
em

pe
ra

tu
re

Figure 10: Temperature violations has been significantly reduced after using the ERDTM
algorithm.

0 50 100 150 200 250 300
45

50

55

60

Sampling point

T
em

pe
ra

tu
re

Figure 11: The proposed NADTM algorithm could completely eliminate the temperature
violation.

0.96%

0.98%

1%

1.02%

1.04%

1.06%

1.08%

galgel% parser% ammp% cra3y% lucas% equake%

Th
ro
ug
hp

ut
)

NP_NM) CP_NM) NP_CM) CP_CM)

(a) Throughput comparison by using different single task

0.96%

0.98%

1%

1.02%

1.04%

1.06%

1.08%

1%task%% 2%tasks% 3%tasks% 4%tasks% 5%tasks% 6%tasks%

Th
ro
ug
hp

ut
)

NP_NM) CP_NM) NP_CM) CP_CM)

(b) Throughput comparison with multiple tasks running on the mul-
tiprocessor platform

Figure 12: Throughput comparison with four different approaches. NP and CP represent
the neighbor-aware and conventional prediction respectively. NM and CM represent neighbor-
aware and conventional migration respectively

BIOGRAPHIES

Guanglei Liu is currently a masters student in the Department of Computer Engineer-
ing at San Jose State University, California. He received his Ph.D. degree in Electrical and
Computer Engineering from Florida International University, Miami in August 2012, and his
Bachelors degree in Electrical Engineering from Harbin University, Harbin, China in 2006.
He is a student member of IEEE and his research interests include thermal and power-aware
computing and embedded real-time operating system design.

Ming Fan is a PhD candidate in the Department of Electrical and Computer Engineering
at the Florida International University, FL. He received both the BS and MS degrees in com-
puter engineering from Bei Hang University, Beijing, China, in 2006 and 2009, respectively.
His research interests include real-time systems, power and thermal-aware computing and
fault-tolerant systems.

Gang Quan is currently an Associate Professor in Electrical and Computer Engineering
Department, Florida International University (FIU), Miami. He received the B.S. degree
from the Tsinghua University, Beijing, China, the M.S. degree from the Chinese Academy
of Sciences, Beijing, and the Ph.D. degree from the University of Notre Dame, Notre Dame,
IN. Before joining FIU, he was an assistant professor at the Department of Computer Sci-
ence and Engineering, University of South Carolina. His research interests includes real-time
system, power/thermal aware design, embedded system design, advanced computer archi-
tecture. Prof. Quan received the NSF CAREER award in 2006 and the Best Paper Award
from the Design Automation Conference (DAC)

Meikang Qiu is currently an Assistant Professor in Electrical and Computer Engineering
Department, University of Kentucky, Lexington. He received the BE and ME degrees from
Shanghai Jiao Tong University, China. He received the MS and PhD degrees of computer
science from the University of Texas at Dallas, in 2003 and 2007, respectively. He had worked
at Chinese Helicopter RD Institute and IBM. He has published more than 150 peer-reviewed
papers, including 60 journal papers. He has been on various chairs and TPC members for
many international conferences. He served as the Program Chair of IEEE EmbeddCom 09
and EM-Com 09. He is the recipient of the ACM Transactions on Design Automation of
Electronic Systems (TODAES) 2011 Best Paper Award. He received Navy Summer Faculty
Award in 2012 and Air Force Summer Faculty Award 2009. He won four best paper awards
(IEEE Embedded and ubiquitous Computing (EUC 09), IEEE/ACM GreenCom 10, IEEE
CSE 10, IEEE ICESS 12) and one best paper nomination. He also holds 2 patents and
has published 3 books. His research is supported by NSF. His research interests include
embedded systems, computer security, and wireless sensor networks. He is a senior member
of the IEEE.

